
 
Author responses are embedded below the specific referee comment in green color. Respective 
changes in the manuscript are highlighted in blue color below each comment. 

Response to Anonymous Referee #1 

 
This is an interesting study that compares several gridded datasets of land energy, water and carbon 
fluxes with in situ observations over Europe. Simulations from the CLM5 land surface model are 
examined in more detail using two categories of simulations, one for each plant functional type and 
another aggregated to the grid cell level. It is found that CLM5 tends to underestimate the variability of 
water and carbon fluxes. 
 

We appreciate the referee's insightful comments and revised the manuscript accordingly. Based on 
the referees' suggestions, we provide a thoroughly revised manuscript, and the main changes include 
the following: 

1) Analysis of LAI to support the interpretation of the results for ET and GPP. 

2) Taylor diagrams for a straightforward interpretation of the evaluation indices between the 
models. 

3) A quantitative analysis of the shift between observed and simulated phenology curves. 

Note that minor updates in the used libraries and code led to minor changes in the evaluation indices 
and distributions. However, this did not alter the interpretation of the results or any relative order 
between the observation and models in any of the analyses. 

 

A list of possible reasons is given in the Discussion section, but nothing is said about the 
representation of leaf area index (LAI) by CLM5 and how a misrepresentation of the LAI seasonal cycle 
and interannual variability could affect model performance. In the introduction, the authors give a very 
broad definition of phenology without ever mentioning LAI. In reality, LAI is certainly more directly 
related to phenology than any other variable considered in this work. Moreover, LAI strongly controls 
land surface fluxes and the evaporative fraction. How is LAI represented in CLM5? Because LAI 
responds to environmental conditions, it can exhibit large interannual variability. Failure to represent 
this variability would reduce the ability of the model to represent land surface fluxes. 

 

We acknowledge that the leaf area index (LAI) is a crucial indicator of phenology and ecosystem 
function, and it co-varies with carbon uptake (GPP) and evapotranspiration (ET). We did not initially 
include LAI in our study for three main reasons: 

1) In-situ LAI measurements are typically low-frequency, providing only a handful (at best) of data 
points per year. Therefore, we focused on the high-resolved GPP data, which we believe are 
more informative and robust for higher-order statistical analyses. 

2) In CLM5-BGC, LAI is calculated from the leaf carbon (a partition from GPP) and controls the 
upscaling of the carbon uptake from the individual plant to the canopy. Because of this tight 
relationship between GPP and LAI, we assumed that the analysis of only one variable is 
sufficiently informative. 

3) LAI measurements are done over given vegetation stands for each site, which might not exactly 
coincide with the eddy covariance tower footprint, where the measured GPP and ET originate. 



The mismatch in vegetation composition, soil characteristics, and microclimate limits the 
ability to infer relationships and explain co-variation between these variables. 

 

However, as the referee rightly pointed out, exploring LAI's phenology and variability could be 
beneficial. Therefore, the supplement of our revised manuscript includes the evaluation of LAI from 
CLM5-BGC, GLASS remote sensing (MODIS-based), and ERA5-Land with in-situ measurements. ICOS 
data sets include LAI measurements. However, as pointed out, these are not as systematic, frequent, 
and harmonized as data from the eddy-covariance towers. Moreover, ICOS measurements started 
only more recently from 2017, limiting the possible evaluation period to two years (2017 and 2018). 
Lastly, only needleleaf evergreen forest (ENF) and cropland (CRO) sites have available data for this 
period. In short, the evaluation was performed for ENF and CRO in 2017 and 2018. Figure S15 shows 
the comparison of the distribution moments for each of these plant functional types with their 
respective uncertainty: 

Figure S15: The mean (a), variance (b), skewness (c), and kurtosis (d) of the leaf area index 
(LAI) distributions from the models (color, y-axis), as opposed to the corresponding values 
from observations (x-axis) aggregated for each plant functional type (marker type): Evergreen 
Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), Croplands 
(CRO). The error bars are the standard errors of the respective moment, depending on the 
sample size. 



We further discuss the implications of this analysis in lines 672 – 694: 

 

“Given the hydraulic role of vegetation leaves in controlling transpiration, there is a tight relationship 
between ET, GPP, and LAI. In CLM5-BGC, the assimilated carbon by GPP gets further partitioned to 
respiration and the carbon storage in the plant organs, i.e., leaves, roots, and stems. Furthermore, the 
leaf carbon then controls the development and state of the vegetation leaves and, thus, the LAI. On 
the other hand, LAI controls GPP by determining the upscaling factors from leaf photosynthesis to the 
canopy, thereby driving canopy conductance. Unfortunately, no large-scale LAI in-situ measurements 
and no CLM5PFT simulated LAI are available, and comparisons between CLM5grid LAI and reanalysis 
or remote sensing LAI suffer from known biases in the latter and yield no further context on our 
evaluation based on ground truth information. We adhered to an LAI evaluation of CLM5 with sparse 
but systematic ICOS measurements, ERA5L reanalysis, and GLASS based on MODIS (Supplementary 
Figure S15). Notably, the ICOS LAI measurements are only available for two years of the study period 
(2017 to 2018) and are limited to ENF and CRO sites. Additionally, LAI measurements' expensive and 
time-intensive nature restricts the time resolution to a few measurement points per year. As a result, 
the data points for comparison are few, and the uncertainties are larger (noticeable larger error bars in 
Supplementary Figure S15). Another caveat is the potential mismatch of the land surface 
representation between the EC tower footprint (ET and GPP measurements) and the area covered by 
the LAI measurement campaigns. However, some key findings from this analysis are still robust. For 
example, all models overestimate LAI at ENF and CRO sites (Supplementary Figure 14 a), contrasting 
the results of GPP and ET. The variance in ENF sites is much more significant in GLASS and ERA5L than 
in CLM5grid, which is closest to the observations. The higher-order moments are more uncertain 
because of the small number of data points. The contrasting results, especially between the LAI and 
GPP PFT-level averages, suggest that processes and parameters connecting the assimilated carbon to 
the leaf area, depending on the environmental conditions, must be revisited. However, we make an 
even stronger case for systematic, long-term, and high-resolution LAI in-situ measurements (for 
example, using drones (Bates et al. 2021)), which would support a more robust and diverse evaluation 
of the simulations of this essential variable.” 

 
Recommendation: major revisions. 
 
Particular comments: 
- L. 105-106 (warm winter 2020): Explain why it is called "warm winter". 
 
This curated data set supported research regarding Europe's record-warm winter of 2020. We included 
this information in the revised manuscript in the lines 104 – 106: 
 
“The Integrated Carbon Observation System (ICOS) provides the WARM-WINTER-2020 data (Warm 
Winter 2020 Team and ICOS Ecosystem Thematic Centre, 2022), which includes Eddy Covariance 
measurements over a dense network of over 70 sites in Europe, and was curated named after and to 
support research on the effect of the warm winter of the year 2020 on the terrestrial carbon fluxes.” 
 
- L. 143-144 (single soil column): This means that PFT-scale simulations are influenced by other PFTs. 
This weakens the rationale for PFT-scale simulations. It should be noticed than in other models, each 
PFT has its own soil column within a grid cell. This should be mentioned in the Discussion section. 
 



We agree with the referee that PFTs sharing a single soil column compete for water, potentially 
introducing water stress for less competitive PFTs. PFTs sharing a soil column better represent real-
world conditions in heterogeneous and water-scarce ecosystems — where competition for water does 
occur — than PFTs having separate soil columns. Thus, PFT-scale ecosystem processes should 
compare better to in-situ measurements, strengthening the rationale for PFT-scale evaluations that 
potentially include competition for resources. We included respective information in the revised 
manuscript in the lines 144 – 148: 
 
“The vegetation is grouped into PFTs (Lawrence and Chase, 2007), which are distinguished through 
leaf habit (evergreen or deciduous), morphology (needle and broad leaves, grass, and shrubs), and the 
bioclimate of the grid cell location (boreal, temperate, and tropical). While competition for soil 
moisture includes interactions among different PFTs, this is closer to natural conditions than 
separated soil columns and encourages evaluations on the PFT scale.“ 
 
- L. 151: How does soil moisture affect stomatal conductance? Given the scope of this work, this 
should be clearly and completely explained. 
 
A significant soil moisture deficit introduces water stress and down-regulates the stomatal 
conductance, carbon uptake, and transpiration. We included this aspect in the Method section of the 
revised manuscript, in lines 174 – 176: 
 
“If T cannot meet the atmospheric water demand because of a soil moisture shortage, CLM5-BGC 
introduces water stress and attenuates gs based on that transpiration deficit factor. Through 
decreased gs, water stress also regulates the photosynthesis, A.” 
 
- L. 227 (warm winter 2020): For which time period are data available in the WARM-WINTER 2020 
dataset? Only the 2019-2020 winter? 
 
This varies on a site and variable basis. While the most extended available time series began in 1996, 
some sites only provide one year of data that overlaps our study period (1995 – 2018). We only 
consider the simulation data where the observations are available at the respective location. Please 
refer to Supplementary Table S1 for the 8-daily data points available for each station. In the revised 
manuscript, that table also includes the years within the study period where data is available for each 
site. See the excerpt (first six entries) below: 
 
ID country PFT lat lon years lat (cell) lon 

(cell) 
N (ET) N (GPP) 

BE-Bra Belgium ENF 51.3
1 

4.52 1996 – 
2018 

51.29 4.51 503 670 

BE-Dor Belgium GRA 50.3
1 

4.97 2011 – 
2018 

50.31 4.96 0 270 

BE-Lcr Belgium DBF 51.1
1 

3.85 - 51.10 3.85 0 0 

BE-Lon Belgium CRO 50.5
5 

4.75 2004 – 
2018 

50.57 4.76 440 476 



CH-Cha Switzerland GRA 47.2
1 

8.41 2005 – 
2018 

47.21 8.43 386 459 

CH-Dav Switzerland ENF 46.8
2 

9.86 1997 – 
2018 

46.80 9.84 546 866 

 

- L. 263 (1995-2018): Clarify the link to the WARM-WINTER 2020 data set. 
 
We have added further information on the post-processing and the link to the ICOS WARM-WINTER 
reference data in the revised manuscript in lines 274 – 283: 
 
“First, the remote sensing and reanalysis data are bilinearly remapped to the 3 km European CORDEX 
grid and interpolated to 8-daily means for 1995 - 2018. The ICOS observation time series are 
interpolated to 8-daily means for each station whose data availability overlaps with our study period. 
Then, we extracted the CLM5grid, GLASS, ERA5L, and GLEAM data from the grid cell closest to the 
location of each selected ICOS station. Further, we select the time series in CLM5PFT that coincides 
with that grid cell and the station’s PFT. Importantly, we focus only on the four predominant PFTs 
represented in the ICOS network: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest 
(DBF), Grasslands (GRA), and Croplands (CRO), as outlined in Table 1. Finally, the periods where 
station data is absent or of bad quality (determined by the corresponding measurement or gap-filling 
quality flag in the ICOS data) are discarded from the simulations to ensure we are comparing the same 
set of conditions.” 
 
- L. 300: Fig. 1c is not readable as many symbols overlap. This could be improved. 
 
Indeed. We improved the visibility of the marker points in the Figure 1 map by choosing hollow marker 
types. The individual site locations are now more visible in the figure in the revised manuscript, Figure 
1: 
 
 



Figure 1: The share of represented plant functional types (color: Evergreen Needleleaf Forest (ENF), 
Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)) in a) the ICOS station 
network used in subsequent analyses and b) the corresponding grid cells in our European CLM5 setup. 
In c) is a map showing the locations of the ICOS stations, with the marker type indicating their PFT and 
the color of the marker indicating their hydro-climate (adapted from Jafari et al. (2018)) based on the 
mean annual precipitation from the COSMO-Reanalysis 6. 
 
- L. 326 (Table 2): units are missing ; what is the meaning of the symbol of column 2, lines 6 and 11? 
 
Sorry for the inconvenience. The units are included now in the revised manuscript. In some regions, 
the symbol “⌀” is commonly used to indicate the mean value. We changed it to “mean,” these tables 
are now available in the Supplementary Material as Tables S4 and S5. In the main text, we now provide 
modified Taylor diagrams to assess the model performances more easily: 



 

Figure 2: Modified Taylor diagrams with observations from the Integrated Carbon Observation System 
(ICOS) of evapotranspiration as reference (black markers) and showing model performances between 
the years 1996 – 2018 (years varying by station; see Supplementary Table S1. Data sources by color: 
Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface Satellite 
(GLASS): green, European Center for Medium-Range Weather Forecasts Reanalysis 5 – Land (ERA5L): 
brown, Global Land Evaporation Amsterdam Model (GLEAM): purple). Each diagram shows these plots 
for one plant functional type. Upper left: Evergreen Needleleaf Forest (ENF, circles), upper right: Decid-
uous Broadleaf Forest (DBF, triangles), lower left: Grasslands (GRA, squares), and lower right: 
Croplands (CRO, crosses). The azimuth angle indicates the Pearson correlation with the ICOS data, 
the radial distance is the standard deviation, and the semicircles centered at the reference standard 
deviation show the root mean square error (RMSE). The size of each marker indicates the percent bias 
(PBIAS). 
 



Figure 2: Modified Taylor diagrams with observations from the Integrated Carbon Observation System 
(ICOS) of gross primary production as reference (black markers) and showing model performances be-
tween the years 1996 – 2018 (years varying by station; see Supplementary Table S1. Data sources by 
color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface Satellite 
(GLASS): green, European Center for Medium-Range Weather Forecasts Reanalysis 5 – Land (ERA5L): 
brown, Global Land Evaporation Amsterdam Model (GLEAM): purple). Each diagram shows these plots 
for one plant functional type. Upper left: Evergreen Needleleaf Forest (ENF, circles), upper right: Decid-
uous Broadleaf Forest (DBF, triangles), lower left: Grasslands (GRA, squares), and lower right: 
Croplands (CRO, crosses). The azimuth angle indicates the Pearson correlation with the ICOS data, 
the radial distance is the standard deviation, and the semicircles centered at the reference standard 
deviation show the root mean square error (RMSE). The size of each marker indicates the percent bias 
(PBIAS). 
 
The updated Tables with the evaluation indices are now in the Supplementary material in the revised 
manuscript as Tables S4 and S5: 
  



 
 
Table S4: The evapotranspiration (ET) root mean square error (RMSE) indicates the general 
model approximation and the percent bias (PBIAS), demonstrating systematic bias to the 
observations. Each value corresponds to a group of stations representing the sa me plant 
functional type (PFT; Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 
Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT is also 
indicated. 

 PFT N CLM5grid CLM5PFT ERA5L GLASS GLEAM 

RMSE 
[mm 
day-1] 

ENF 5038 0.71 0.72 0.84 0.83 0.67 
DBF 1663 0.56 0.62 0.73 0.70 0.56 
GRA 2859 0.65 0.85 0.60 0.57 0.59 
CRO 3690 0.72 1.00 0.88 0.86 0.63 
mean 3285 0.66 0.80 0.76 0.74 0.61 

PBIAS 
[%] 

ENF 5038 -20.57 -15.42 21.86 13.32 15.43 
DBF 1663 -9.90 -0.54 44.55 29.74 16.24 
GRA 2859 -18.62 -13.94 3.14 2.63 2.41 
CRO 3690 -3.24 11.20 44.99 27.30 7.58 
mean 3285 -13.08 -4.68 28.64 18.25 10.42 

 
 

Table S5: The gross primary production (GPP) root mean square error (RMSE) indicates the 
general model approximation and the percent bias (PBIAS), demonstrating systematic bias 
to the observations. Each value corresponds to a group of stations representing the same 
plant functional type (PFT: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest 
(DBF), Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT 
is also indicated. 

 PFT N CLM5grid CLM5PFT GLASS 

RMSE 
[g C day-1] 

ENF 5976 2.25 2.44 1.75 
DBF 2473 3.71 3.35 2.81 
GRA 2838 3.14 3.01 2.63 
CRO 3607 3.85 4.21 3.55 
mean 3723.5 3.24 3.25 2.69 

PBIAS 
[%] 

ENF 5976 -26.00 -7.7 -14.53 
DBF 2473 -38.88 -43.76 -24.51 
GRA 2838 -30.73 -25.5 -21.34 
CRO 3607 -14.99 -1.48 -6.29 
mean 3723.5 -27.65 -19.61 -16.67 

 
- L. 340 (Table 3): units are missing ; what is the meaning of the symbol of column 2, lines 6 and 11? 
 
Sorry for the inconvenience. The units are included now in the revised manuscript. In some regions, 
the symbol “⌀” is commonly used to indicate the mean value. We changed it to “mean”. This updated 
Table S5 is in the Supplementary material of the revised manuscript: 



Table S5: The gross primary production (GPP) root mean square error (RMSE) indicates the 
general model approximation and the percent bias (PBIAS), demonstrating systematic bias 
to the observations. Each value corresponds to a group of stations representing  the same 
plant functional type (PFT: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest 
(DBF), Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT 
is also indicated. 

 PFT N CLM5grid CLM5PFT GLASS 

RMSE 
[g C day-1] 

ENF 5976 2.25 2.44 1.75 
DBF 2473 3.71 3.35 2.81 
GRA 2838 3.14 3.01 2.63 
CRO 3607 3.85 4.21 3.55 
mean 3723.5 3.24 3.25 2.69 

PBIAS 
[%] 

ENF 5976 -26.00 -7.7 -14.53 
DBF 2473 -38.88 -43.76 -24.51 
GRA 2838 -30.73 -25.5 -21.34 
CRO 3607 -14.99 -1.48 -6.29 
mean 3723.5 -27.65 -19.61 -16.67 

 
 
- L. 356 (Fig. 2): For a given PFT, is it a mean value across sites? 
 
Correct. It is a mean value across the sites belonging to the respective PFT (and across the years 
available at those sites). We updated the Phenology Figures (now Figures 4 and 6) so that the 
observation data is more distinguishable (now in black and bolder) and included further information in 
the caption: 
  



Figure 4: In the left column are the yearly evapotranspiration (ET) evolutions averaged across stations 
belonging to one plant functional type (rows: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf 
Forest (DBF), Grasslands (GRA), and Croplands (CRO)) and across the years (available years vary per 
station, see Supplementary Table S1). We differentiate the data source by color (Integrated Carbon 
Observation System (ICOS) observations: black, Community Land Model v5 (CLM5), CLM5grid: red, 
CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green, European Center for Medium-Range 
Weather Forecasting Reanalysis 5 – Land (ERA5L): brown, Global Land Evaporation Amsterdam Model 
(GLEAM): purple). The corresponding standard deviations across the sites and across the years are 
plotted in the right column to measure the spread around this mean. 



 

Figure 6: In the left column are the yearly Gross Primary Production (GPP) evolutions averaged across 
stations belonging to one plant functional type (rows: Evergreen Needleleaf Forest (ENF), Deciduous 
Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)) and across the years (available years 
vary per station; see Supplementary Table S1). We differentiate the data source by color (Integrated 
Carbon Observation System (ICOS) observations: black, Community Land Model v5 (CLM5), CLM5grid: 
red, CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green). The corresponding standard devia-
tions across the sites and across the years are plotted in the right column to measure the spread 
around this mean. 

 

Furthermore, we include new Figures showing the quantified shifts of key phenological events 
between the observations and the models and their uncertainty  as Figures 5 and 7: 

 



Figure 5: Mean shifts in ET phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green, European Center for Medium-Range Weather Forecasts 
Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation Amsterdam Model (GLEAM): purple), 
among sites belonging to one plant functional type: Evergreen Needleleaf Forest (ENF), Deciduous 
Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). On the x-axis is the day of the year of 
the event. Error bars in grey correspond to the standard deviation of the day of the event in the models 
across sites of one plant functional type, and the error bars in black correspond to the standard devia-
tion across the respective observations. 

  



Figure 7: Mean shifts in GPP phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green), among sites belonging to one plant functional type: Ev-
ergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 
(CRO). On the x-axis is the day of the year of the event. Error bars in grey correspond to the standard 
deviation of the day of the event in the models across sites of one plant functional type, and the error 
bars in black correspond to the standard deviation of the respective observations. 

  



Author responses are embedded below the specific referee comment in green color. 

Response to Anonymous Referee #2 

CLM5 ET and GPP are compared to ICOS sites in Europe, with RMSE and percent bias metrics. Model 
ET is often closer to the observations than remote sensing data, but model GPP is underestimated, 
particularly in deciduous forests. 
 
Generally, the methods in this study seem robust, sources of uncertainty are carefully considered 
(Section 4), and the aims of the study are worthwhile. I certainly agree with the recommendations, 
especially with respect to optimizing PFT parameters and co-location of biodiversity and other data 
with the ICOS sites. The RMSE and bias metrics are well explained and appropriate. 
 

We appreciate the referee's insightful comments and revised the manuscript accordingly. Based on 
the referees' suggestions, we provide a thoroughly revised manuscript, and the main changes include 
the following: 

1) Analysis of LAI to support the interpretation of the results for ET and GPP. 

2) Taylor diagrams for a straightforward interpretation of the evaluation indices between the 
models. 

3) A quantitative analysis of the shift between observed and simulated phenology curves. 

Note that minor updates in the used libraries and code led to minor changes in the evaluation indices 
and distributions. However, this did not alter the interpretation of the results or any relative order 
between the observation and models in any of the analyses. 

 
However, this study would be more accessible to a broader readership if metrics re the phenology and 
data distributions were better explained, with far less text given to describing the many details of the 
results and more to interpretation. Data-model comparisons (including for seasonal effects) should be 
quantified where possible, rather than just assessed by eye. 
 
We agree that quantified phenology indices would be more accessible than the descriptions 
in written text. In the revised manuscript, we provide specific quantifications of the shift of 
critical phenology events for each plant functional type (the summer peaks and the beginning 
and the end of the growing season indicated by the infliction point) between the observations 
and the models and consider their uncertainties. We also substantially shortened the written 
descriptions. The shifts in phenological events are depicted in Figures 5 and 7: 
 



Figure 5: Mean shifts in ET phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green, European Center for Medium-Range Weather Forecasts 
Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation Amsterdam Model (GLEAM): purple), 
among sites belonging to one plant functional type: Evergreen Needleleaf Forest (ENF), Deciduous 
Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). On the x-axis is the day of the year of 
the event. Error bars in grey correspond to the standard deviation of the day of the event in the models 
across sites of one plant functional type, and the error bars in black correspond to the standard devia-
tion across the respective observations. 

 



Figure 7: Mean shifts in GPP phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green), among sites belonging to one plant functional type: Ev-
ergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 
(CRO). On the x-axis is the day of the year of the event. Error bars in grey correspond to the standard 
deviation of the day of the event in the models across sites of one plant functional type, and the error 
bars in black correspond to the standard deviation of the respective observations. 

 
Regarding data distributions, we extensively quantified and evaluated their moments in 
Figures 9 and 11 (numbering of the revised manuscript). These moments are more inherent to 
data distributions and already inform about distribution shifts (e.g., comparing the means 
informs about shifts in the distribution center of mass). We, therefore, opt not to precisely 
quantify these shifts in new analysis and figures but include further interpretations in the text 
in lines 466 – 482 (for ET) and 497 – 508 (for GPP) of the revised manuscript: 

“The moments of these distributions give more insights into their specific characteristics. Further, 

differences in moments between the observations and the models can yield important information on 

potential misrepresentations (Figure 9). For example, a differing mean between ICOS and a model 

points to a general shift in the distribution, specifically its center of mass. Therefore, we confirm a shift 

of ET distributions of ERA5L, GLASS, and GLEAM towards higher values for all PFTs in reference to ICOS. 

CLM5grid and CLM5PFT have lower means, except for CLM5PFT at CRO. The second moment, the variance, 

informs about the variability of values. Notably, GLEAM data underestimate, and GLASS data 



overestimate the observed variability of ET at all PFTs. CLM5PFT has a broad range of variability across 

PFTs, which corresponds well with ICOS observations, while CLM5grid and the other models show a very 

similar level of variability independent of the PFT. All models agree with the observed positive sign of the 

skewness (indicating a longer right tail of the distribution) for all PFTs. And while all the models simulate 

a platykurtic (negative excess kurtosis, pronounced relative tailedness) characteristic of the 

distributions across PFTs, ICOS shows leptokurtic (positive excess kurtosis, less pronounced tails, and 

more pronounced peak) behavior at ENF and CRO sites. Furthermore, the variation of the reach model’s 

skewnesses and kurtoses (y-axis ranges for each color in Figure 9 c and d) across the PFTs are 

considerably lower than the observed ranges (corresponding x-axis ranges). Altogether, these findings 

showcase the ability of CLM5PFT to model intra- and inter-PFT ET variance better than the other 

considered models on the one hand, but shortcomings of all the considered models to represent the 

variation of the extreme ends of the ET distributions across all PFTs.” 

“The models show lower GPP means than the ICOS measurements for all PFTs in Figure 11. Similarly, 

for all models across all PFTs, the underestimated GPP variance indicates a lower spread of the PFT 

distributions than in ICOS. While models agree on the positive skewness of the GPP distribution (skewed 

to the left), the largest skewness at CRO sites is not well represented by all the models. Finally, similar 

to the findings with ET kurtosis, the models fail to distinguish the distinct leptokurtic characteristics 

(less heavy tails) of the GPP distribution of CRO sites compared to the other PFTs, as seen in the 

observations. Across PFTs and for all models, the ranges spanned by the intra-PFT distribution moments 

are smaller than the observed. Most strikingly, the GPP variance range across PFTs, which is, among the 

models, the largest for CLM5PFT (between 8 g C day-1 and 12 g C day-1), is much smaller than for ICOS (11 

g C day-1 to 27 g C day-1). This suggests the models do not simulate GPP differently enough between the 

PFT groupings. Thus, model development and parameter optimization studies that aim to improve these 

representations should focus on enhancing the variability at DBF.” 

 
The authors present the RMSE and bias results in tables 2 and 3, and also in the text (with some 
mistakes; e.g. in Section 3.2). Please consider displaying these results in a single diagram, such as a 
modified Taylor diagram. 
 
We corrected the mistakes, moved Tables 2 and 3 to the Supplementary Material (now Supplementary 
Tables S4 and S5) and provided the modified Taylor diagrams in the revised manuscript as Figures 2 
and 3: 
  



 
 

Figure 2: Modified Taylor diagrams with observations from the Integrated Carbon Observation System 
(ICOS) of evapotranspiration as reference (black markers) and showing model performances between 
the years 1996 – 2018 (years varying by station; see Supplementary Table S1. Data sources by color: 
Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface Satellite 
(GLASS): green, European Center for Medium-Range Weather Forecasts Reanalysis 5 – Land (ERA5L): 
brown, Global Land Evaporation Amsterdam Model (GLEAM): purple). Each diagram shows these plots 
for one plant functional type. Upper left: Evergreen Needleleaf Forest (ENF, circles), upper right: Decid-
uous Broadleaf Forest (DBF, triangles), lower left: Grasslands (GRA, squares), and lower right: 
Croplands (CRO, crosses). The azimuth angle indicates the Pearson correlation with the ICOS data, 
the radial distance is the standard deviation, and the semicircles centered at the reference standard 
deviation show the root mean square error (RMSE). The size of each marker indicates the percent bias 
(PBIAS). 
 
  



 

Figure 3: Modified Taylor diagrams with observations from the Integrated Carbon Observation System 
(ICOS) of gross primary production as reference (black markers) and showing model performances be-
tween the years 1996 – 2018 (years varying by station; see Supplementary Table S1. Data sources by 
color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, Global Land Surface Satellite 
(GLASS): green). Each diagram shows these plots for one plant functional type. Upper left: Evergreen 
Needleleaf Forest (ENF, circles), upper right: Deciduous Broadleaf Forest (DBF, triangles), lower left: 
Grasslands (GRA, squares), and lower right: Croplands (CRO, crosses). The azimuth angle indicates 
the Pearson correlation with the ICOS data, the radial distance is the standard deviation, and the semi-
circles centered at the reference standard deviation show the root mean square error (RMSE). The size 
of each marker indicates the percent bias (PBIAS). 
  
 
Seasonal effects are shown in Figures 2 and 3, but they are then only discussed qualitatively in the 
text. There is no attempt to quantify differences (or variability) between model and observed peak ET or 
GPP timings. For example, model vs observed phase lag or estimated day of max ET or GPP 
(calculations clearly explained, with appropriate error bars) could be plotted and assessed. In any 
case, it would be helpful if the second "hypothesis" at the end of the introduction states how 



goodness-of-fit for phenology is to be quantified. Likewise, for the third "hypothesis", briefly state how 
the variability will be quantified. 
 
As shown above, we quantified the timings of crucial phenology events for each plant 
functional type and their standard deviation across respective sites to quantify their 
variability. We then compare the timings of these events in Figures 5 and 7 of the r evised 
manuscript: 

 

Figure 5: Mean shifts in ET phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green, European Center for Medium-Range Weather Forecasts 
Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation Amsterdam Model (GLEAM): purple), 
among sites belonging to one plant functional type: Evergreen Needleleaf Forest (ENF), Deciduous 
Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO). On the x-axis is the day of the year of 
the event. Error bars in grey correspond to the standard deviation of the day of the event in the models 
across sites of one plant functional type, and the error bars in black correspond to the standard devia-
tion across the respective observations. 

  



Figure 7: Mean shifts in GPP phenological events (the start of the growing season, peak, and the end of 
the growing season) between the Integrated Carbon Observation System (ICOS) observations (solid 
black line) and the models (by color: Community Land Model v5 (CLM5), CLM5grid: red, CLM5PFT: yellow, 
Global Land Surface Satellite (GLASS): green), among sites belonging to one plant functional type: Ev-
ergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands 
(CRO). On the x-axis is the day of the year of the event. Error bars in grey correspond to the standard 
deviation of the day of the event in the models across sites of one plant functional type, and the error 
bars in black correspond to the standard deviation of the respective observations. 

 

The updated hypotheses in the revised manuscript in lines 133 – 142 now include information on how 
they would be tested quantitatively: 
 

1. There is a lower systematic bias, and the simulation is closer to the observations by the PFT 

scale than the grid-scale CLM5 outputs, remote sensing, and reanalysis data. 

2. The remotely sensed and modeled data approximate critical events in the phenologies of ET and 

GPP within the standard deviation of the ICOS measurements for sites of one PFT. However, this 

ability varies between PFTs. 

3. The remotely sensed and modeled ET and GPP data distributions show a lower range among the 

moments within the PFT groups than the ICOS measurements. 

  



The introduction states that the statistical distributions can help "contextualize" model drought 
responses, but there is no analysis or discussion about interpretation of the higher moments, 
responses to drought, or the apparent bimodality seen in Figures 4 and 6 in this article. Do the ICOS 
data suggest drought conditions at any time at any station? If not, are there any other climate-related 
factors that could be discussed or quantified here? Please analyze/quantify/discuss drought, or 
another factor appearing in the ICOS data. In any case, it would be useful to know how drought (or 
other factors) affects skewness and kurtosis, and more broadly, what these moments will actually tell 
us or why we should care about them. For example, would we use the kurtosis to indicate changes in 
the frequency of extreme values, given kurtosis is a measure of the "heaviness" of the tails of a 
distribution? 
 
We thank the referee for the critical remark. Investigating drought (e.g., soil moisture deficit) and a 
drought signal in the carbon uptake or evapotranspiration is highly complex due to the differences in 
the drought response functionality. For example, plant water stress might occur due to different 
magnitudes of water deficit in the soil, on different aggregation time scales of the water deficit, and 
with variable lead time (lag) when propagating from the soil to the vegetation. Given that, investigating 
whether and when a drought signal is present in the ecosystem processes is out of scope for this 
study. Nevertheless, in the revised manuscript, we briefly discuss how characteristics of the 
distribution moments, particularly the skewness and kurtosis, could evaluate the representation of 
observed extreme events in the model data in lines 726 – 751: 
 

“4.5 Distribution moments and droughts 
Investigating the influence of drought on the analyses, or generally the ability of the models to simulate 
drought and the vegetation response, is complex due to the differences in drought response function-
ality. For instance, plant water stress might occur due to different magnitudes of water deficit in the 
soil, on different aggregation time scales, and with a variable lag to the water deficit. A future study will 
investigate the PFT-scale drought responses from the model and how the drought propagates through 
the eco-hydrological sphere and compare it to observations. However, drought frequency, duration, 
and severity affect the shapes of the distribution of the precipitation and, eventually, the ecosystem 
processes. Thus, we briefly discuss possible insights into their drought responses. 
Importantly, the skewness and excess kurtosis moments, which inform about the characteristics of 
the distribution tails (relativity between the tails and the general tailedness, respectively) of 
precipitation (Guo, 2022), and vegetation states and function (Kanavi et al., 2020; Liu et al., 2022; 
Cooley et al., 2022), are influenced by dry conditions, depending on their frequency, duration and 
severity. We found a low variability in the skewness and excess kurtosis of the precipitation used to 
force our CLM5 simulations (Figure S10 c and d), specifically a significantly lower skewness and 
excess kurtosis at ENF and DBF sites. A lower positive skewness than the observations means that the 
distribution is less skewed towards lower values, and a lower positive excess kurtosis than the 
observations indicates generally larger tails. A possible interpretation of these differences in the 
distribution moments is that the atmospheric forcings show more frequent, longer, and more severe 
extreme precipitation events, while the ICOS measurements are more concentrated around their 
mean. While the propagation of these extreme events could be complex and non-linear, we generally 
found the same results (lower skewness and smaller absolute excess kurtosis) for the simulated 
distributions of ET and GPP for almost all models and PFTs (Figures 9 c and d and 11 c and d), 
suggesting a more direct relationship. However, because of the possible non-linearity and the 
influence of other factors, the detailed relationship between these findings and the ability of CLM5 to 
simulate ecosystem drought responses must be examined in future studies. In any case, the missing 



accuracy in representing higher distribution moments in the atmospheric forcings and in land surface 
models must be considered in studies using these to investigate drought.” 
 
 
Specific remarks 
 
Abstract 
The second sentence sounds odd. CLM5 quantifies fluxes and estimates the carbon and water 
budgets, potentially allowing for a better understanding of how climate change impacts ecosystems. 
 
We improved this sentence accordingly in the revised manuscript in lines 19 – 22: 
 

“Land surface models such as the Community Land Model v5 (CLM5) quantify these fluxes, estimate 
the state of carbon budgets and water resources, and contribute to a better understanding of climate 
change’s impact on ecosystems.” 
 
Line 30: reanalyses of what? 
 
We referred to reanalyzed data of GPP and ET (e.g., ET from ERA5-Land and GLEAM). We adapted the 
sentence for a better understanding in the revised manuscript in lines 29 – 31: 
 
“Furthermore, the simulated ET and GPP distribution moments across PFTs in CLM5grid and CLM5PFT 
and their reanalyzed and remotely sensed counterparts indicate an underestimated spatiotemporal 
variability compared to the observations across Europe.” 
 
  



Figures and tables 
 
 Figure 1c (map of flux towers): Please show the extent of the CLM5 grid (1544x1592 gridcells), perhaps 
by using a different/lighter grey or white outside the grid area. Please state the number of stations 
shown in the caption. 
 
The extent of the European CLM5 model corresponds to the complete map box shown. We included 
the requested information in the last sentence of the image caption in the revised manuscript: 
 
Figure 1: The share of represented plant functional types (color: Evergreen Needleleaf Forest 
(ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)) in a) the 
ICOS station network used in subsequent analyses and b) the corresponding grid cells in our 
European CLM5 setup. In c) is a map showing the locations of the ICOS stations, with the 
marker type indicating their PFT and the color of the marker indicating their hydro-climate 
(adapted from Jafari et al. (2018)) based on the mean annual precipitation from the COSMO-
Reanalysis 6. Our 3 km European CLM5 simulation domain corresponds to the entire map box 
in c). 

 
Figures 2 and 3 (seasonality curves): Define the ICOS, GLASS and model acronyms, and clarify that 
these curves are means and standard deviations of data covering X-X years during the period 1995 
through 2018. It is difficult to see the ICOS curves in some of the panels; please bring them to the 
foreground in these plots to make them more obvious. 
 
Thanks. We adapted ICOS data in the figures to bold black color to make them more visible in all 
figures throughout the manuscript. We also stated that the years included in the analysis vary by 
station, and refer to Supplementary Table S1. As an example, this is Figure 4 in the revised manuscript 
(previously Figure 2): 
 



Figure 4: In the left column are the yearly evapotranspiration (ET) evolutions averaged across stations 
belonging to one plant functional type (rows: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf 
Forest (DBF), Grasslands (GRA), and Croplands (CRO)) and across the years (available years vary per 
station, see Supplementary Table S1). We differentiate the data source by color (Integrated Carbon 
Observation System (ICOS) observations: black, Community Land Model v5 (CLM5), CLM5grid: red, 
CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green, European Center for Medium-Range 
Weather Forecasting Reanalysis 5 – Land (ERA5L): brown, Global Land Evaporation Amsterdam Model 
(GLEAM): purple). The corresponding standard deviations across the sites and across the years are 
plotted in the right column to measure the spread around this mean. 
 
  



Figures 4 and 6 (statistical distributions): It is rather difficult to see alignment of the main peaks in 
some of the panels, which is a point of discussion in the text. 
 
We improved the visibility of the statistical distributions by making the ICOS observations line bold 
and black, and the colored model lines thinner. Please see Figures 8 and 10 in the revised manuscript: 
 

 

Figure 8: The probability density curves for all evapotranspiration (ET) values from stations belonging to 
the selected plant functional types: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest 
(DBF), Grasslands (GRA), and Croplands (CRO). The data source differs by color (Integrated Carbon 
Observation System (ICOS) observations: black, Community Land  Model v5 (CLM5), CLM5grid: red, 
CLM5PFT: yellow, Global Land Surface Satellite (GLASS): green, European Center for Medium-Range 
Weather Forecasts Reanalysis 5 Land (ERA5L): brown, Global Land Evaporation Amsterdam Model 
(GLEAM): purple). 

  



 

Figure 10: The probability density curves for all Gross Primary Production (GPP) values from 
stations belonging to the selected plant functional types are shown: Evergreen Needleleaf 
Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), Croplands (CRO). The 
data source differs by color (Integrated Carbon Observation System (ICOS) obser vations: 
black, Community Land Model v5 (CLM5), CLM5 grid: red, CLM5PFT: yellow, Global Land Surface 
Satellite (GLASS): green). 

Further, we support the discussion about alignment and shifts of the distributions with the 
findings from the analysis of distribution moments in Figures 9 and 11. See the following 
changes in the lines 466 – 482 (for ET) and 497 – 508 (for GPP) of the revised manuscript: 

“The moments of these distributions give more insights into their specific characteristics. Further, 

differences in moments between the observations and the models can yield important information on 

potential misrepresentations (Figure 9). For example, a differing mean between ICOS and a model 

points to a general shift in the distribution, specifically its center of mass. Therefore, we confirm a shift 

of ET distributions of ERA5L, GLASS, and GLEAM towards higher values for all PFTs in reference to ICOS. 

CLM5grid and CLM5PFT have lower means, except for CLM5PFT at CRO. The second moment, the variance, 

informs about the variability of values. Notably, GLEAM data underestimate, and GLASS data 

overestimate the observed variability of ET at all PFTs. CLM5PFT has a broad range of variability across 



PFTs, which corresponds well with ICOS observations, while CLM5grid and the other models show a very 

similar level of variability independent of the PFT. All models agree with the observed positive sign of the 

skewness (indicating a longer right tail of the distribution) for all PFTs. And while all the models simulate 

a platykurtic (negative excess kurtosis, pronounced relative tailedness) characteristic of the 

distributions across PFTs, ICOS shows leptokurtic (positive excess kurtosis, less pronounced tails, and 

more pronounced peak) behavior at ENF and CRO sites. Furthermore, the variation of the reach model’s 

skewnesses and kurtoses (y-axis ranges for each color in Figure 9 c and d) across the PFTs are 

considerably lower than the observed ranges (corresponding x-axis ranges). Altogether, these findings 

showcase the ability of CLM5PFT to model intra- and inter-PFT ET variance better than the other 

considered models on the one hand, but shortcomings of all the considered models to represent the 

variation of the extreme ends of the ET distributions across all PFTs.” 

“The models show lower GPP means than the ICOS measurements for all PFTs in Figure 11 a. Similarly, 

for all models across all PFTs, the underestimated GPP variance indicates a lower spread of the PFT 

distributions than in ICOS. While models agree on the positive skewness of the GPP distribution (skewed 

to the left), the largest skewness at CRO sites is not well represented by all the models. Finally, similar 

to the findings with ET kurtosis, the models fail to distinguish the distinct leptokurtic characteristics 

(less heavy tails) of the GPP distribution of CRO sites compared to the other PFTs, as seen in the 

observations. Across PFTs and for all models, the ranges spanned by the intra-PFT distribution moments 

are smaller than the observed. Most strikingly, the GPP variance range across PFTs, which is, among the 

models, the largest for CLM5PFT (between 8 g C day-1 and 12 g C day-1), is much smaller than for ICOS (11 

g C day-1 to 27 g C day-1). This suggests the models do not simulate GPP differently enough between the 

PFT groupings. Thus, model development and parameter optimization studies that aim to improve these 

representations should focus on enhancing the variability at DBF.” 

 
 
Figures 5 and 7 (moments): Clarify that these are moments from the distributions shown in figures 4 
and 6. The kurtosis appears an "excess" kurtosis, given the normal distribution has kurtosis=3. Please 
clarify. 
 
Thanks. In the captions of each Figure showing distribution moments, we clarified that they refer to the 
distributions shown in the corresponding distribution Figures. Further, we included the information 
that, indeed, we are presenting the “excess” kurtosis throughout the revised manuscript. 
 
Tables 2 and 3: Ideally, the model and remote sensing acronyms should be defined in the caption; this 
may be more important than those of the PFTs which are defined in the previous figure and table. 
Please also explain PFT ⌀ in the final rows for the RMSE and PBIAS sections. 
 
The ⌀ stands for the average in some regions. Because we included the modified Taylor plots as Figure 
2 and Figure 3 now in the main text of the revised manuscript, we moved the Tables with the evaluation 



indices (previously Tables 2 and 3) to the Supplementary material. We added the data source full 
names in the Table captions and wrote out “mean” in the corresponding row indices in the revised 
manuscript, Supplementary Tables S4 and S5: 
 
Table S4: The evapotranspiration (ET) root mean square error (RMSE) indicates the general model 
approximations and the percent bias (PBIAS), demonstrating systematic bias of the models 
(Community Land Model v5 (CLM5) on grid-scale (CLM5grid), CLM5 on PFT scale (CLM5PFT), from the 
European Center of Medium-Range Weather Forecasts Renalysis 5 - Land (ERA5-Land), the Global 
Land Surface Satellite (GLASS), and the Global Land Evaporation Amsterdam Model 
(GLEAM)) to the observations. Each value corresponds to a group of stations representing the same 
plant functional type (PFT; Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 
Grasslands (GRA), and Croplands (CRO)). The amount of data points (N) for each PFT is also indicated. 

 PFT N CLM5grid CLM5PFT ERA5L GLASS GLEAM 

RMSE 
[mm 
day-1] 

ENF 5038 0.71 0.72 0.84 0.83 0.67 
DBF 1663 0.56 0.62 0.73 0.70 0.56 
GRA 2859 0.65 0.85 0.60 0.57 0.59 
CRO 3690 0.72 1.00 0.88 0.86 0.63 
mean 3285 0.66 0.80 0.76 0.74 0.61 

PBIAS 
[%] 

ENF 5038 -20.57 -15.42 21.86 13.32 15.43 
DBF 1663 -9.90 -0.54 44.55 29.74 16.24 
GRA 2859 -18.62 -13.94 3.14 2.63 2.41 
CRO 3690 -3.24 11.20 44.99 27.30 7.58 
mean 3285 -13.08 -18.70 28.64 18.25 10.42 

  



 

Table S5: The gross primary production (GPP) root mean square error (RMSE) indicates the 
general model approximation and the percent bias (PBIAS), demonstrating systematic bias 
of the models (Community Land Model v5 (CLM5) on grid -scale (CLM5grid), CLM5 on PFT 
scale (CLM5PFT), from the European Center of Medium-Range Weather Forecasts Renalysis 5 
Land (ERA5-Land), the Global Land Surface Satellite (GLASS), and the Global Land 
Evaporation Amsterdam Model (GLEAM)) to the observations. Each value corresponds to a 
group of stations representing the same plant functional type (PFT: Evergreen Needleleaf 
Forest (ENF), Deciduous Broadleaf Forest (DBF), Grasslands (GRA), and Croplands (CRO)). 
The amount of data points (N) for each PFT is also indicated.  

 PFT N CLM5grid CLM5PFT GLASS 

RMSE 

[g C day-1] 

ENF 5976 2.25 2.44 1.75 

DBF 2473 3.71 3.35 2.81 

GRA 2838 3.14 3.01 2.63 

CRO 3607 3.85 4.21 3.55 

mean 3723.5 3.24 3.25 2.69 

PBIAS 

[%] 

ENF 5976 -26.00 -7.7 -14.53 

DBF 2473 -38.88 -43.76 -24.51 

GRA 2838 -30.73 -25.5 -21.34 

CRO 3607 -14.99 -1.48 -6.29 

mean 3723.5 -27.65 -19.61 -16.67 

  



 

2.1.2 Setup of the European CLM5 
Line 178: did you mean sub models for ice rather than "stub" models for ice? 
 
No. We refer to a stub model as a method that represents a system compartment simplistically. 
 
2.2.1 Station data 
 
Line 229: Table S1 lists a single PFT for each ICOS station; please clarify here that this the dominant 
PFT as indicated in the last sentence of sec 2.3 ending line 267. 
 
The last sentence in sec. 2.3 instead referred to the predominance of these four PFTs (ENF, DBF, GRA, 
and CRO) in the station network rather than a single station's footprint. We tried making this point 
clearer in sec. 2.3 of the revised manuscript in lines 274 – 281:  
 

“Further, we select the time series in CLM5PFT that coincides with that grid cell and the station’s 
predominant PFT. Importantly, we focus only on the four predominant PFTs represented in the entire 
ICOS station network: Evergreen Needleleaf Forest (ENF), Deciduous Broadleaf Forest (DBF), 
Grasslands (GRA), and Croplands (CRO), as outlined in Table 1.” 

 
We included a clarification in the revised manuscript in lines 233 – 235: 
 
“Note that the land cover type indicated by the ICOS site metadata and represented in the 
measurements refers to the predominant PFT in the footprint of the eddy covariance station.”  
 
And in the caption of Table S1: 
 
“Table S1: A list of ICOS stations, their land cover, coordinates, years of data availability for our study 
period (1995 – 2018), the coordinates of the corresponding grid cell of the 3 km European Coordinated 
Regional Climate Downscaling Experiment (CORDEX) grid used in our simulations, and the number of 
8-daily data points available for the analyses for evapotranspiration (ET) and gross primary production 
(GPP). Note that stations that do not belong to the plant functional types (PFT) of evergreen needleleaf 
forest (ENF), deciduous broadleaf forest (DBF), grasslands (GRA), and croplands (CRO) were omitted, 
and some included sites did not have data corresponding with the study period, thus having a count of 
0 data points. See Section 2.2.1. The indicated PFT is the predominant PFT in the footprint of the ICOS 
eddy covariance towers. Stations, where the land cover was not directly indicated in the metadata 
sites were also left out in our analyses.” 
 
Line 234: Please state how many of the 73 stations were kept after wetlands, mixed forest, shrublands 
and indeterminate-land-cover stations were excluded; I assume 42 (the sum from Table 1). 
 
Correct, 42 stations were retained for the analyses. We included this information in the revised 
manuscript lines 238 – 240:  
 



The analyses also excluded stations whose land cover type was not included in metadata sites (e.g., 
DEIMS-SDR https://deims.org), leaving a total of 42 stations for our analyses." 

 
3.2 General model performance 
Line 333 bottom of page 16: The absolute value of PBIAS is smaller for CLM5PFT than for CLM5grid but 
the actual PBIAS is lower, being more negative. Please clarify; at least replace the word "lower" with 
"smaller". 
 
We corrected the wording in the revised manuscript in the lines 365 – 366:  
 

“In Table 2, we list the performance indices for ET and the number of 8-daily time-steps across the 
corresponding stations that went into their calculation. CLM5PFT has a higher RMSE and a smaller 
absolute PBIAS than CLM5grid for ET across PFTs, except in CRO.” 

 
Line 336: In Table 2, ERA5L and GLASS RMSEs are largest for ENF and DBF as stated, but their RMSEs 
are lower than those of the CLM for GRA, rather than "similarly" as stated. Their PBIAS values are also 
much closer to zero than those of CLM5. 
 
Thanks. We corrected the sentence in the revised manuscript in lines 368 – 369: 
 
“ERA5L and GLASS show more significant deviations from the ICOS ET observations at ENF and DBF 
than CLM5PFT and CLMgrid and have smaller RMSE values at GRA.” 

 
  

https://deims.org/


Section 3.3.1 ET 
Line 371: Please refer back to Table 2 when discussing the PBIAS and RMSE for ET. "Conversely" is 
better than "Oppositely"; the latter sounds weird. 
 
We generally improved the wording of the Results section and considered this suggestion. However, 
this sentence does not appear in the revised manuscript, as we now refer more to the modified Taylor 
diagrams than the Tables. 
 
After this point, I stopped attempting to compare the text to the tables and figures. Rather than 
summarizing key points of a story, the text rambles on far too much about almost every detail of the 
results, and it is not always easy to see those details in the figures. 
 
The Results section was drastically improved in readability by removing descriptive text, improving the 
wording, and concisely pointing out the main findings of each figure and analysis. Please check the 
much shorter and rewritten Results section in the revised manuscript. 


