

1	Using machine learning algorithm to retrieve cloud fraction based on
2	FY-4A AGRI observations
3	Jinyi Xia ¹ Li Guan ¹
4	¹ China Meteorological Administration Aerosol-Cloud and Precipitation Key
5	Laboratory, Nanjing University of Information Science and Technology, Nanjing
6	210044, China
7	Correspondence to: Li Guan liguan@nuist.edu.cn
8	
9	Abstract
10	Cloud fraction as a vital component of meteorological satellite products plays an
11	essential role in environmental monitoring, disaster detection, climate analysis and
12	other research areas. A long short-term memory (LSTM) machine learning algorithm
13	is used in this paper to retrieve the cloud fraction of AGRI (Advanced Geosynchronous
14	Radiation Imager) onboard FY-4A satellite based on its full-disc level-1 radiance
15	observation. Correction has been made subsequently to the retrieved cloud fraction in
16	areas where solar glint occurs using a correction curve fitted with sun-glint angle as
17	weight. The algorithm includes two steps: the cloud detection is conducted firstly for
18	each AGRI field of view to identify whether it is clear sky, partial cloud or overcast
19	cloud coverage within the observation field. Then the cloud fraction is retrieved for the
20	scene identified as partly cloudy. The 2B-CLDCLASS-LIDAR cloud fraction product
21	from Cloudsat& CALIPSO active remote sensing satellite is employed as the truth to 1

22	assess the accuracy of the retrieval algorithm. Comparison with the operational AGRI
23	level 2 cloud fraction product is also conducted at the same time. During daytime, the
24	probability of detection (POD) for clear sky, partly cloudy, and overcast scenes in the
25	official operational cloud detection product were 0.5359, 0.7041, and 0.7826,
26	respectively. The POD for cloud detection using the LSTM algorithm were 0.8294,
27	0.7223, and 0.8435. While the operational product often misclassified clear sky scenes
28	as cloudy, the LSTM algorithm improved the discrimination of clear sky scenes, albeit
29	with a higher false alarm rate compared to the operational product. For partly cloudy
30	scenes, the mean error (ME) and root-mean-square error (RMSE) of the operational
31	product were 0.2374 and 0.3269. The LSTM algorithm exhibited lower ME (0.1134)
32	and RMSE (0.1897) than the operational product. The large reflectance in the sun-glint
33	region resulted in significant cloud fraction retrieval errors using the LSTM algorithm.
34	However, after applying the correction, the accuracy of cloud cover retrieval in this
35	region greatly improved. During nighttime, the LSTM model demonstrated improved
36	POD for clear sky and partly cloudy scenes compared to the operational product, while
37	maintaining a similar POD value for overcast scenes and a lower false alarm rate. For
38	partly cloudy scenes at night, the operational product exhibited a positive mean error,
39	indicating an overestimation of cloud cover, whereas the LSTM model showed a
40	negative mean error, indicating an underestimation of cloud cover. The LSTM model
41	also exhibited a lower RMSE compared to the operational product.

42 Key words: Cloud detection, cloud fraction, FY-4A AGRI, LSTM neural network.

43 Introduction

44	Clouds occupy a significant proportion within satellite remote sensing data
45	acquired for Earth observation. According to the statistics from the International
46	Satellite Cloud Climatology Project (ISCCP), the annual average global cloud coverage
47	within satellite remote sensing data is around 66% with even higher cloud coverage in
48	specific regions (such as the tropics) (Zhang, et al., 2004). The impact of clouds on the
49	radiation balance of the Earth's atmospheric system is determined by the optical
50	properties of clouds. Cloud detection, as a vital component of remote sensing image
51	data processing, is considered a critical step for the subsequent identification, analysis,
52	and interpretation of remote sensing images. Therefore, accurately determining cloud
53	coverage is essential in various research domains, such as environmental monitoring,
54	disaster surveillance and climate analysis.

55 Fengyun-4A (FY-4A) is a comprehensive atmospheric observation satellite launched by China in 2016. The uploaded AGRI (Advanced Geosynchronous Radiation 56 Imager) has 14 channels and captures full-disk observation every 15 minutes. In 57 58 addition to observing clouds, water vapor, vegetation and the Earth's surface, it also 59 possesses the capability to capture aerosols and snow. Moreover, it can clearly distinguish different phases and particle size of clouds and obtain high- to mid-level 60 water vapor content. It is particularly suitable for cloud detection due to its 61 simultaneous use of visible, near-infrared and long-wave infrared channels for 62

63 observation with high spatial resolution.

64	Numerous cloud detection algorithms have been provided based on observations
65	from satellite-borne imagers. The threshold method has been widely employed by
66	researchers, encompassing the early ISCCP (International Satellite Cloud Climatology
67	Project) method (Rossow, 1993) and the proposed threshold methods based on different
68	spectral features or underlying surfaces. Kegelmeyer (1994) used a straightforward
69	cloud pixel as threshold for cloud detection with Whole Sky Imaging Cameras.
70	Solvsteen (1995) distinguished cold water pixels and cloud pixels by analyzing the
71	correlation between different channels based on AVHRR (Advanced Very High
72	Resolution Radiometer) images. A grouping threshold method based on AVHRR
73	images has been developed by Baum and Trepte (1996) to classify scenes as clouds,
74	fires, smoke or snow. LI and Zhang (2006) proposed a multispectral integrated cloud
75	detection algorithm based on the characteristics of MODIS instrument channels and the
76	spectral characteristics of different objects (clouds, snow, land, etc.). Zhang et al. (2020)
77	used a multi-temporal cloud detection method based on FY-4A AGRI data to identify
78	observations on the Qinghai-Tibet Plateau. However, there is a significant subjectivity
79	in selection of thresholds whether it is the single and fixed threshold in the early days,
80	multiple thresholds, dynamic thresholds, or adaptive thresholds. These thresholds are
81	highly influenced by factors such as season and climate.

82 The other category of cloud detection algorithms is the based on statistical83 probability theory. Such as the principal component discriminant analysis and quadratic

84	discriminant analysis methods were used to SEVIRI (Spinning Enhanced Visible and
85	Infrared Imager) cloud detection (Amato et al., 2008). The cloud detection algorithm
86	for Thermal Infrared (TIR) sensor was based on the Bayesian theory of total probability
87	(Merchant et al., 2010) and the naive Bayes algorithm for AGRI (Qu, et al., 2022). The
88	unsupervised clustering cloud detection algorithms for MERIS (Medium Resolution
89	Imaging Spectrometer) (GomezChova, et al., 2007) and the fuzzy C-means clustering
90	algorithms for MODIS (Pan, et al., 2009) all have achieved high accuracy in cloud
91	detection.
92	More and more machine learning algorithms are being utilized by researchers in

cloud detection studies with the development of machine learning. For instance, the
probabilistic neural networks, especially radial basis function networks was used for
AVHRR cloud detection (Zhang, et al., 2001). The utilization of convolutional neural
network methods (Hu, et al., 2020) offers important perspectives for cloud detection
research.

98 Currently, there is limited research literature on cloud detection and cloud fraction 99 retrieval algorithms for FY-4A/4B AGRI. The operational cloud fraction product of FY-100 4A AGRI utilized a threshold method with 4 km spatial resolution. Differences in 101 climatic and environmental factors lead to varying albedo and brightness temperature 102 observations for the instrument at different times and locations. Therefore, the choice 103 of thresholds is easily influenced by factors such as season, latitude and land surface 104 type (Gao and Jing, 2019). Using multiple sets of thresholds for discrimination would

- 105 significantly slow down the cloud detection process. Moreover, most algorithms focus
- 106 solely on cloud detection, which classified the observed scenes into cloud or clear-sky
- 107 without providing the specific cloud fraction information for the scenes.
- 108 In summary, a LSTM (Long Short-Term Memory) machine learning algorithm for
- 109 cloud fraction retrieval was established using level-1 radiation observations from FY-
- 110 4A AGRI full-disk scanning in this paper. The cloud fraction of the level-2 product 2B-
- 111 CLDCLASS-LIDAR from Cloudsat&CALIPSO was used as the reference label. The
- 112 retrievals were compared against with the cloud fraction of 2B-CLDCLASS-LIDAR
- and the AGRI operational products to verify the algorithm accuracy.

114 **1 Research Data and Preprocessing**

115 1.1 FY-4A data

FY-4A was successfully launched on December 11, 2016. Starting from May 25, 2017, 116 117 FY-4A drifted to a position near the main business location of the Fengyun 118 geostationary satellite at 104.7 degrees east longitude on the equator. Its successful 119 launch marked the beginning of a new era for China's next-generation geostationary 120 meteorological satellites as an advanced comprehensive atmospheric observation 121 satellite. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main 122 payloads of the Fengyun-4 series geostationary meteorological satellites, can perform 123 large-disk scans and rapid regional scans at a minute level. It has total 14 observation 124 channels with the main task of acquiring cloud images. The channel parameters and

125	main uses of AGRI are detailed in Table 1. FY-4A AGRI data was downloaded from
126	the official website of the China national satellite meteorological center
127	(http://satellite.nsmc.org.cn), including level-1 full disk radiation observation data
128	preprocessed through quality control, geolocation and radiation calibration as well as
129	level-2 cloud fraction product (CFR). The spatial resolution of these data is all 4 km
130	and the temporal resolution is 15 minutes.

131

 Table 1 FY-4A AGRI channel parameters

Channel	Dand Danas /	Central	Smotial and alterian dama	Main Analisations
Number	Band Range /µm	Wavelength /µm	Spatial resolution/km	Main Applications
1	$0.45 \sim 0.49$	0.47	1	clouds, dust, aerosols
2	0.55 ~ 0.75	0.65	0.5	clouds, sand dust, snow
3	$0.75 \sim 0.90$	0.825	1	vegetation
4	1.36 ~ 1.39	1.375	2	cirrus
5	$1.58 \sim 1.64$	1.61	2	clouds_ snow
6	2.10 ~ 2.35	2.225	2	cirrus aerosols
7	3.50 ~ 4.00	3.75H	2	fire point, the intense solar reflection signal
8	$3.50 \sim 4.00$	3.75L	4	low clouds, fog
9	5.80 ~ 6.70	6.25	4	upper-level water vapor
10	$6.90 \sim 7.30$	7.1	4	mid-level water vapor
11	8.00 ~ 9.00	8.5	4	subsurface water vapor
12	10.30 ~ 11.30	10.8	4	surface and cloud-top temperatures
13	11.5 0~ 12.50	12.0	4	surface and cloud-top temperatures
14	13.2 ~ 13.8	13.5	4	cloud-top height

132

133 **1.2 CloudSat & Calipso Cloud Product**

134 CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)

135 is a satellite jointly launched by NASA and CNES (the French National Center for

136	Space Studies) in 2006. It is a member of the A-Train satellite observation system.
137	CALIPSO is equipped with three payloads, among which CALIOP (the Cloud and
138	Aerosol Lidar with Orthogonal Polarization) is a primary observational instrument.
139	Observing with dual wavelengths (532 nm and 1064 nm) CALIOP can provide high-
140	resolution vertical profiles of clouds and aerosols with 30 m vertical resolution. As the
141	first satellite designed to observe global cloud characteristics in a sun-synchronous orbit
142	CloudSat is also among NASA's A-Train series satellites. The CPR (Cloud Profile
143	Radar) installed on it operates at 94 GHz millimeter-wave and is capable of detecting
144	the vertical structure of clouds and providing vertical profiles of cloud parameters. The
145	scanning wavelengths of CPR and CALIOP are different. CALIOP is capable of
146	observing the top of mid-to-high level clouds, whereas CPR can penetrate optically
147	thick clouds. Combining the strengths of these two instruments enables the acquisition
148	of precise and detailed information on cloud layers and cloud fraction.
149	The joint level 2 product 2B-CLDCLASS-LIDAR is mainly utilizing in this study.
150	It provides the cloud fraction at different heights with horizontal resolution 2.5 km
151	(along-track) \times 1.4 km (cross-track) through combining the observations from CPR and
152	CALIOP (Zhen, et al., 2018). The CloudSat product manual (Wang, 2019) can be
153	referred for more detailed information on 2B-CLDCLASS-LIDAR. The data used is

- 154 available for download from the ICARE data and services center
- 155 (https://www.icare.univ-lille.fr/data-access/data-archive-access/).

156 **1.3 Establishment of Training Data**

157	The crucial aspect of establishing a training data in machine learning algorithms
158	is how to obtain the cloud fraction values (ground truth) as labels. The error in cloud
159	fraction retrieved solely from passive remote sensing instruments is significant. Using
160	active remote sensing data can provide more accurate cloud fraction information in the
161	vertical direction. Therefore, the spatiotemporally matched 2B-CLDCLASS-LIDAR
162	cloud fraction are utilized as output labels in this paper.
163	The FY-4A AGRI and 2B-CLDCLASS-LIDAR data with a distance difference
164	between fields of view within 1.5 km and a time difference within 15 minutes are
165	spatiotemporal matched. To make the 2B-CLDCLASS-LIDAR cloud fraction data
166	collocated within AGRI pixels more effective, at least two 2B-CLDCLASS-LIDAR
167	pixels are required within each AGRI field of view. The cloud fraction average of these
168	pixels is used as the cloud fraction for that AGRI pixel.
169	Cloud detection and cloud fraction label generation for 2B-CLDCLASS-LIDAR
170	are as follows. There may be multiple layers of clouds in each field of view. If there is
171	at least one layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-LIDAR profile,
172	then the scene is labeled as overcast with a cloud fraction of 1. If all layers in the profile
173	are cloud-free, the scene is labeled as clear sky. The scene between the above two
174	situations is labeled as partly cloudy and the cloud fraction is the average of cloud

175 fractions at different layers.

176	The algorithm includes two steps: the cloud detection is conducted firstly for each
177	AGRI field of view to identify whether it is clear sky, partial cloud or overcast cloud
178	coverage within the observation field. Then the cloud fraction is retrieved for the scene
179	identified as partly cloudy. So the training data include A dataset used for cloud
180	detection and B dataset for cloud fraction retrieval. The input variables in A dataset
181	are the FY-4A AGRI level-1 radiative observations from 14 channels and the output
182	variable is the temporally and spatially matched 2B-CLDCLASS-LIDAR cloud
183	detection label. The output is categorized into three types: overcast, partly cloudy and
184	clear sky with values 1, 2 and 3 respectively. To ensure diversity and representativeness
185	of the samples, the three conditions of overcast, partly cloudy, and clear sky each
186	account for one-third of the sample size in dataset A. Regarding the samples for partly
187	cloudy type in dataset A, the collocated 2B-CLDCLASS-LIDAR cloud fraction
188	products serve as output labels for cloud fraction retrieval model B. The input of
189	training dataset B remains the FY-4A AGRI level-1 radiative observations.
190	Due to the lifespan of the instrument only 2B-CLDCLASS-LIDAR data before
191	July 2019 can be obtained. So, the FY-4A AGRI observations and 2B-CLDLASS-
192	LIDAR matched in time and space in May 2019 are used as training samples to build
193	the algorithm model. The paired samples of whole June 2019 are served as the testing

May are 12,420 for dataset A and 4140 for B. Testing samples in June are 15,459 for A

196 and 5,153 for B.

194

samples to assess the model's retrieval accuracy. The number of training samples in

197	Although the retrieval model was trained and tested using 2019 data, the algorithm
198	was also applied to real-time observations of FY-4A and FY-4B AGRI in 2023 to verify
199	its universality.

200

201 2. Long Short-Term Memory (LSTM) Algorithm

202 LSTM is an improved algorithm based on RNN (Recurrent Neural Network) with 203 the ability to retain long-term memory. and demonstrates improved performance in 204 longer sequences data comparing to ordinary RNNs (Sarker, 2001). It can effectively 205 address the challenges of gradient explosion and gradient vanishing over time in 206 models., LSTM network has been extensively applied in diverse domains owing to its 207 distinctive features, such as meteorology and environmental prediction and so on (Bao, et al., 2024; Bai and Shen. 2019). The structure of the LSTM unit is depicted in Figure 208 209 1. The update and transmission of historical information is facilitated through the 210 internal control of three states: the Forget Gate, the Input Gate and the Output Gate. 211 The pertinent mathematical expressions are:

212
$$f_t = \sigma(W_f^T \times [h_{t-1}, x_t] + b_f)$$
 (1)

213 where f_t denotes the output of the Forget Gate, σ signifies the Sigmoid 214 activation function; W_f^T and b_f correspond to the weight and bias of the Forget Gate, 215 respectively, x_t stands for the current input, h_{t-1} represents the output from the

216	previous time step.
217	$i_t = \sigma(W_i^T \times [h_{t-1}, x_t] + b_i) $ ⁽²⁾
218	where i_t represents the information updated after σ activation, W_i^T and b_i
219	denote the weight and bias, respectively.
220	$\widehat{C}_t = \sigma(W_c^T \times [h_{t-1}, x_t] + b_c) $ (3)
221	\widehat{C}_t signifies the information updated after tanh activation, W_c^T and b_c denote
222	the weight and bias, respectively.
223	$C_t = f_t \times C_{t-1} + i_t \times \widehat{C}_t \tag{4}$
224	C_t is the current information of the LSTM structure, C_{t-1} denotes the
225	information of the LSTM structure from the previous time step.
226	$O_t = \sigma(W_0^T \times [h_{t-1}, x_t] + b_0) \tag{5}$
227	O_t is the current output information, W_0^T and b_0 denote the weight and bias,
228	respectively.
229	$h_t = o_t \times \tanh\left(C_t\right) \tag{6}$
230	h_t denotes the current output result.

231 232

233 In a neural network, the hidden layer is a layer or multiple layers located between 234 the input layer and the output layer. Each hidden layer consists of multiple nodes, which process the input data and generate outputs through connection weights and activation 235 functions. Increasing the size of the hidden layer can enhance the network's 236 representational capacity and learning ability, as more nodes can capture additional data 237 238 patterns and features. However, having a hidden layer that is too large may lead to 239 overfitting, making the network overly complex and difficult to train. Typically, the 240 optimal size of the hidden layer is determined by trying different sizes and evaluating 241 their performance on a validation set. The hidden layer sizes for both the cloud 242 classification model and the cloud fraction retrieval model in this paper are set to 3. The key model parameter 'batch size' has two main impacts on training network: 243

244	(1) A larger batch size typically reduces the training time per epoch as more samples
245	are processed with each parameter update. On the contrary, a smaller batch size may
246	slow down the training speed since more iterations are needed to complete an epoch.
247	(2) Model Performance: Different batch sizes can impact the model performance.
248	Generally, a larger batch size may lead to quicker model convergence, yet it could
249	increase the risk of overfitting at times; whereas a smaller batch size could aid in the
250	model's generalization ability but might result in a less stable training process. In this
251	paper, the batch size of the model is set to 500. The optimizer is configured with the
252	Adam gradient descent algorithm, and the loss function used is cross-entropy.
253	The training dataset A was used to construct the LSTM cloud detection model. For
254	daytime, the inputs are the radiation observations from 14 channels of FY-4A AGRI
255	with 'input size' 14. However, during nighttime, as there are no observations in the
256	visible light channels (channels 1 to 6) of AGRI, the inputs consisted of the radiance
257	observations of channels 7 to 14 of FY-4A AGRI with 'input size' 8. The output label
258	is the classification of field of view, including overcast, partly cloudy and clear sky.
259	To derive the specific cloud fraction for AGRI scenes identified as partly cloudy
260	in the previous cloud mask step, an LSTM cloud fraction retrieval model needs to be
261	constructed. The training dataset B was used to train the cloud fraction retrieval model.
262	For daytime, the input is the observed radiances for all channels of AGRI (input
263	size=14), while during nighttime, the input comprises the observed radiance values of
264	channels 7 to 14 of AGRI (input size = 8). The output label is the value of cloud fraction

265	in the scene ranging from 0 to 1. When selecting parameters for the LSTM cloud
266	fraction model, a batch size of 60 is chosen due to the limited sample number in dataset
267	B. The optimizer is also configured with the Adam gradient descent algorithm. The loss
268	function used is mean square error.

269 3. Results and Analysis

270 To assess the accuracy and stability of the retrieval model, two types of validation 271 methods are utilized. One way involves a direct comparison from images, qualitatively 272 comparing the model's retrieval results and official cloud fraction products with AGRI 273 observed cloud images. Another way is quantitative comparison using 2B-274 CLDCLASS-LIDAR as the true value. Four quantitative parameters, including 275 possibility of detection(POD), alse alarm rate(FAR), mean error (ME) and root mean 276 square error (RMSE) are introduced. 'Possibility of detection' is calculated using the formula POD=TP/(TP+FN), and false alarm rate is calculated using the formula 277 278 FAR=FP/(TP+FP). Taking the covercast scenes as an example, TP represents the 279 number of correctly identified overcast, FN represents the number of overcast scenes 280 wrongly identified as partly cloudy or clear sky, and FP represents the number of clear 281 sky or partly cloudy scenes wrongly identified as overcast. The ME (mean error) and 282 RMSE (root mean square error) are utilized to assess the accuracy of the LSTM cloud 283 fraction model in retrieving cloud fraction for partly cloudy scenes.

284 **3.1** Objective Analysis of Cloud Fraction Retrievals

285	The test samples from dataset A (i.e., June data) are used to perform cloud
286	detection experiments based on the cloud detection model mentioned above. The
287	temporally and spatially matched 2B CLDCLASS-LIDAR cloud mask products are
288	used as reference to evaluate the accuracy of cloud detection. The POD and FAR for
289	different view field classifications are shown in Table 2. Columns 2 and 4 represent the
290	operational cloud detection products for daytime and nighttime respectively, for the
291	same time and pixel. Columns 3 and 5 represent the LSTM cloud detection results for
292	daytime and nighttime respectively. The table indicates that during daytime, operational
293	cloud detection products have a relatively low possibility of detection for clear sky view
294	fields. However, the LSTM model increases the possibility of detection for clear sky
295	from 0.54 to 0.83. Moreover, for some partly cloudy and overcast view fields, the
296	possibilities of detection is higher than those of operational cloud detection products.
297	During nighttime, compared to operational cloud detection products, the LSTM model
298	increases the POD for clear sky from 0.51 to 0.73, with slightly higher possibilities of
299	detection for partial cloud view fields than the operational products, while the
300	possibility of detection for full cloud view fields is lower. During the day, the
301	Operational product has a lower false alarm rate for clear sky compared to the LSTM
302	model, while the LSTM model has a lower false alarm rate for partly cloudy and
303	overcast conditions than the Operational product. At night, the LSTM model

significar	ntly reduces the f	false alarm rat	te for overcas	t conditions co	ompared to the
Operation	nal product.				
	Та	ble 2 POD and	I FAR of Clou	d Detection	
		Daytime		Nighttime	
	Slav	Operational	Daytime	Operational	Nighttime
	Sky Classification	Cloud	LSTM	Cloud	LSTM
		Detection	Results	Detection	Results
		Product		Product	
	Clear Sky	0. 5359	0.8294	0.5136	0.7341
POD	Partly cloudy	0.7041	0.7223	0.6957	0.7101
	Overcast	0.7826	0.8435	0.7984	0.7523
	Clear Sky	0.2174	0.3633	0.1789	0.1983
FAR	Partly cloudy	0.2959	0.1677	0.3107	0.3488
	Overcast	0.4641	0.2358	0.5543	0.2105

307

204

308 For the view fields judged as partly cloudy by the aforementioned model, the cloud 309 amount in the AGRI view field was inverted using the LSTM cloud amount model 310 established earlier in this text. For samples classified as partly cloudy by the model, 311 operational products and 2B-CLDCLASS-LIDAR cloud amount products, the mean 312 error and root mean square error (RMSE) of the cloud amount retrieval were calculated 313 based on the matched 2B-CLDCLASS-LIDAR cloud amount product as ground truth, 314 separately for daytime and nighttime operational cloud amount products (columns 2 315 and 4) and the LSTM-inverted cloud amount (columns 3 and 5), as shown in Table 3. 316 It can be observed that during daytime, compared to the FY-4A operational cloud 317 amount product, the LSTM cloud amount retrieval model shows significant improvement in both mean error (ME) and RMSE. The ME decreases from 0.23 to 0.11, 318

	Daytime Nighttime
326	Table 3 Errors in cloud fraction retrieval
325	product.
324	retrieval results during nighttime is lower than that of the operational cloud amount
323	indicating an overall underestimation of cloud amount. The RMSE of the LSTM model
322	overestimation of cloud amount. In contrast, the ME of the LSTM model is negative,
321	ME of the operational cloud amount product is positive, indicating an overall
320	retrieval model provides more accurate estimates of cloud amount. For nighttime, the
319	and the RMSE decreases from 0.32 to 0.19, indicating that the LSTM cloud amount

	Flouuet		Flouuet	
ME	0.2374	0.1134	0.2488	-0.1911
RMSE	0.3269	0.1897	0.3374	0.2361

Daytime

LSTM Results

Operational

Cloud

Detection

Decidence

Nighttime

LSTM Results

327 **3.2** Cloud fraction correction in sun glint regions

Operational

Cloud

Detection

Due due at

Sun glint refers to the bright areas created by the reflection of sunlight to the sensors of observation systems (satellites or aircrafts). This phenomenon usually occurs on extensive water surfaces, such as oceans lakes or rivers. This specular reflection of sunlight will cause an increase in the reflected solar radiation received by onboard sensors, manifested as an enhancement of white brightness in visible images. The increase in visible channel observation albedo will affect various subsequent applications of data, including cloud detection and cloud cover retrieval, etc.

335	The position of Sun glint area can be determined using the SunGlintAngle value
336	in the FY-4A GEO file. SunGlintAngle is defined as the angle between the satellite
337	observation direction or reflected radiation direction and the mirror reflection direction
338	on a calm surface (horizontal plane). It is generally accepted that the range of
339	SunGlintAngle < 15° is easily affected by sun glint (Kay S, et al., 2009). The positions
340	of the SunGlintAngle contour lines at 5 and 15° are marked in Figure 2(a). It can be
341	observed that the edge of sun glint in Figure 2(a) essentially overlaps with the position
342	of SunGlintAngle = 15° . Thus, the region where SunGlintAngle < 15° is defined as the
343	sun glint range in this paper and only the cloud fraction within this range will be
344	adjusted in the subsequent correction.
345	To correct the cloud fraction in the sun glint region, we initially identified 672

346 fields of view where sun glint occurred in the FY-4A AGRI observations between 1 June and 31 July 2019. Subsequently, a direct least squares fitting was conducted 347 between the inverted cloud fraction and the collocated 2B-CLDCLASS-LIDAR cloud 348 349 fraction (ground truth). The scatter plot is illustrated in Figure 2(b), where x-axis is the 350 2B-CLDCLASS-LIDAR cloud fraction and y-axis is the model-inverted cloud fraction. 351 The blue line represents the curve (namely Eq.7) fitted by the least squares method between the retrievals and the truths. The thin dash line is the x=y line. It is evident that 352 353 the inverted cloud fraction is generally slightly overestimated.

Taking observations at 04:00 on 5 June 2019 as an example, Figure 2(c) presents
the distribution of SunGlintAngle and the flight trajectory of the Cloudsat&Calypso

356	satellite. White circles denote the sun glint region with SunGlintAngle $<15^\circ$ and the
357	white line represents the satellite flight track. As depicted in the figure, the majority of
358	Cloudsat&Calypso flight trajectories do not pass through the central position of sun
359	glint area but instead traverse locations with larger SunGliantAngle values. The
360	intensity of sun glint effect decreases with the increase of SunGliantAngle. This
361	suggests that the true values for spatial and temporal matching mostly do not fall within
362	the strongest sun glint region. From Figure 2(d), it can be seen that the impact of sun
363	glint becomes stronger as SunGlintAngle decreasing, which results in a higher
364	observation albedo. This further leads to the overestimated cloud fraction values in the
365	retrieval. It is evident that the cloud fraction error is related to the value of
366	SunGlintAngle and this influence is not considered in Eq. (7). Directly applying
367	equation (7) to correct the cloud fraction retrievals would result in a too small correction
368	intensity for the FOVs near the center of sun glint and an excessively large correction
369	intensity for the FOVs in the Sun-glint edge region (even erroneous clear sky may
370	appear). Considering this, a correction formula (8)-(9) using SunGlintAngle as weight
371	is introduced, where W_i represents the angle weight for a certain pixel <i>i</i> in the sun glint
372	region, n is the number of pixels within the SunGlintAngle $< 15^{\circ}$ range, yi is the initial
373	model retrieval of cloud cover for the field of view <i>i</i> and x_i is the final corrected cloud
374	fraction.

375
$$x = (y - 0.2562)/0.8428$$
 (7)

376
$$W_i = \frac{glintangle_i}{\frac{1}{n}\sum_{i=0}^{n}glintangle_i}$$
(8)

377
$$x_i = W_i \left(\frac{y_i - 0.2526}{0.8428}\right)$$
 (9)

Figure 2(d) shows the distribution of errors with respect to SunGlintAngle, where the blue dots represent the error distribution corrected using formula (7), and the orange dots represent the error distribution corrected using formula (9). It can be seen from Figure 2(d) that after correction by formula (9), the errors in the smaller range of SunGlintAngle are significantly reduced.

384

383

Figure 2 (a) albedo image of 0.67µm channel (the circles are the contours of the sun-

386 glint angle), (b) Scatter plot of cloud fraction in sun glint region, (c) Distribution of

387 SunGlintAngle and satellite flight track of CloudSat & Calypso at 4:00 on June 5, 2019,

388 (d) Distribution of cloud fraction retrieval error with sun-glint angle.

389 **3.3 Algorithm universal applicability testing**

Although the retrieval model in this article was built based on data from May 2019
due to the limited lifespan of the instrument, how effective is it in real-time FY-4A
AGRI observations and even subsequent FY-4B AGRI applications? The algorithm's
universal applicability was tested using real-time observations from FY-4A and FY-4B
AGRI in 2023.

395 Taking the full-disk observation of FY-4A AGRI at 04:00 (UTC, the same below) 396 on 1 June 2023 as an example, the radiance observations from 14 channels are initially 397 fed into the LSTM cloud detection model to determine the sky classification (overcast, partly cloudy or clear sky) in each AGRI field. The LSTM cloud fraction retrieval 398 model is utilized to estimate the cloud fraction in scenes identified as partly cloudy. 399 400 Figure 3(a) is the observed albedo at 0.67 μ m, where the circles represent the contours 401 of the sunglint angle, (b) is the cloud fraction retrievals from LSTM algorithm, (c) is 402 the official operational cloud fraction product and (d) is LSTM cloud fraction retrievals 403 with sun-glint correction. It can be seen from Figure 3 that many clear-sky scenes are 404 erroneously identified as cloudy by the operational product and the cloud fraction is 405 generally overestimated with many scenes having a cloud fraction of 1. The LSTM 406 algorithm identifies more regions as clear skies or partly cloudy than the operational 407 products, matching better with the observations in the 0.67 µm albedo image. Brighter

408	regions in the visible image correspond to cloud cover areas and darker areas represent
409	clear sky conditions. The sun glint region in the central South China Sea (the circled
410	area in Figure 3(a)) is depicted in Figure 3(b), where the clear-sky scenes over the ocean
411	are misidentified as partly cloudy by LSTM algorithm due to the increase in observed
412	albedo. Although operational product in this area also suffers from the impact of
413	unremoved sun glint, it identifies more clear-sky scenes and the cloud fraction is
414	relatively low. Thus, it is evident that the LSTM algorithm exhibits significant cloud
415	detection and cloud fraction errors in these sun glint regions. Correction is necessary
416	for the cloud fraction retrievals in the sun glint region.
417	Figure 3(d) shows the cloud fraction distribution after correction using equation
418	(9) in the sun glint region., The correction eliminates the influence of sun glint
419	comparing to the cloud fraction in sun glint area before correction in Figure 3(b). The
420	scenes misjudged as partly cloudy are corrected to clear sky and match well with the

421 actual albedo observations in 3(a), which accurately restores the true cloud coverage

422 over the South China Sea.

423

424

Figure 3 FY-4A AGRI at 04:00 on 1 June 2023 (a) albedo image of 0.67µm channel 426 427 (the circles are the contours of the sun-glint angle), (b) LSTM cloud fraction 428 retrieval without sun-glint correction, (c) operational cloud fraction product, (d) 429 LSTM cloud fraction retrieval with sun-glint correction.

430 Statistical analysis was conducted on the correction effect using samples with sun 431 glint in the training data. The possibility of detection and false alarm rate in sun glint 432 area is listed in table 4 and the error is in table 5. The possibility of detection for clear skies has increased from 0.09 to 0.83. The false alarm rate for partly cloudy has 433 434 decreased from 0.89 to 0.17. The mean error of cloud fraction retrievals decreased from

444

436	Table 4 The cloud mask recall rate in sun glint area				
		Sky	Operational	ISTM	LSTM after
		Classification	Product	LSTW	Correction
		Clear Sky	0.5535	0.0900	0.8301
	POD	Partly cloudy	0.6738	0.8279	0.7436
		Overcast	0.8505	0.9744	0.9744
		Clear Sky	0.1437	0.0063	0.3142
	FAR	Partly cloudy	0.3742	0.8972	0.1719
		Overcast	0.5545	0.1324	0.1324
437 438		Table	5 cloud fraction I	Errors in sun glint area	
		0			LSTM after
		Opera	ational Product	LSTM Retrievals	Correction
	ME		0.2691	0.2760	0.1634
	RN	MSE	0.3458	0.1948	0.1883
439	FY-4	4B launched in 202	1 has a total of 1	5 channels with an addi	tional low-level
440	water vapor channel at 7.42 μ m compared to FY-4A. Taking the full-disk observation				
441	of FY-4B AGRI at 17:00 on April 18, 2023, as an example, The radiance observation				
442	data of the remaining eight channels (near-infrared and infrared channels) except for				
443	the 7.42	μm channel and th	e visible light cha	nnels were input into th	ne LSTM cloud

435 0.176 to 0.09. These all indicate that the positive effect of the sun glint correction.

detection model. Figure 4 (a) shows the brightness temperature distribution observed 25

445 in the 10.8 µm channel of FY-4B AGRI, (b) represents the operational cloud fraction product for FY-4B AGRI and (c) shows the cloud fraction retrieved by this algorithm. 446 447 Figure 4 illustrates that the LSTM algorithm identifies more regions as clear skies or 448 partly cloudy than the operational products, aligning better with the brightness 449 temperature observations in 10.8 µm. Especially in high latitude regions of the southern 450 hemisphere and areas with strong convection near the equator, the cloud cover provided 451 by operational products is too high and even misjudged. It can be seen that the LSTM 452 algorithm is also suitable for cloud fraction retrieval of FY-4B AGRI.

453

- 454 Figure 4 FY-4B AGRI at 17:00 on 18 April 2023, (a) brightness temperature of
 455 10.8μm channel, (b) operational cloud fraction product, (c) LSTM cloud fraction
 456 retrieval.
- 457

458 4 Conclusion

459 The long short-term memory (LSTM) machine learning algorithm based on FY460 4A AGRI full-disc level-1 radiance observations is developed to retrieve the cloud

461	fraction for each field of view in this paper. The accuracy of the algorithm is validated
462	using the 2B CLDCLASS-LIDAR cloud fraction product from the Cloudsat&Calypso
463	active remote sensing satellite and FY-4A AGRI level 2 operational product. The
464	following conclusions are drawn:
465	(1) Not only the cloud detection but also the cloud fraction within each FY-4A
466	AGRI field of view can be retrieved by the LSTM machine learning algorithm.
467	(2) The operational product has a relatively high false alarm rate for clear sky
468	scenes, while the LSTM algorithm improves the probability of detection (POD)
469	for clear sky scenes during the daytime from 0.54 to 0.83. However, the false
470	alarm rate (FAR) is higher compared to the operational product. The POD for
471	clear sky scenes at night increases from 0.51 to 0.73, and the POD for partially
472	cloudy and fully cloudy scenes is comparable to the operational product.
473	(3) For partly cloudy fields, during the day, the mean error and root-mean-square
474	error of the operational product are 0.2374 and 0.3269, respectively, while this
475	algorithm exhibits lower mean error (0.1134) and RMSE (0.1897) than the
476	operational product. At night, the operational product tends to overestimate
477	cloud cover, while this algorithm underestimates cloud cover, with a lower
478	RMSE compared to the operational product.
479	(4) The cloud fraction correction curve for sun glint region fitted with
480	SunGlintAngle as weight significantly improves the accuracy of the LSTM
481	cloud fraction retrievals. It reduces the misjudgment rate where increased

27

482	albedo leads to the identification of clear-sky scene as partly cloudy or overcast.
483	
484	Data availability
485	FY-4A AGRI data is available at http://satellite.nsmc.org.cn and the 2B-CLDCLASS-
486	LIDAR data at https://www.icare.univ-lille.fr/data-access/data-archive-access/
487	
488	Author contributions
489	JX: Formal analysis, Methodology, Software, Visualization and Writing – original draft
490	preparation. LG: Conceptualization, Data curation, Funding acquisition, Supervision,
491	Validation and Writing – review & editing.
492	
493	Competing interests
494	he contact author has declared that none of the authors has any competing interests.
495	
496	Disclaimer
497	Acknowledgements
498	Funding: This work was supported by the National Natural Science Foundation of
499	China under grant no. 41975028.
500	References

501 Bai, S., Shen, X.: PM2. 5 prediction based on LSTM recurrent neural network,

- 502 *Computer Applications and Software*, 36, 67-70, 2019.
- 503 Bao S., Qin H., Dai Y.: Short-term precipitation prediction research based on UI-
- 504 LSTM model, *Radio Engineering*. 1-10, 2023.
- 505 Baum, B., Trepte Q.: A Grouped Threshold Approach for Scene Identification in
- 506 AVHRR Imagery, Journal of Atmospheric & Oceanic Technology, 16, 793-800,
- 507 https://doi.org/10.1175/1520-0426(1999)016<0793:AGTAFS>2.0.CO;2, 1999.
- 508 Merchant, C.J., Harris, A.R., Maturi, E., Maccallum S.: Probabilistic physically based
- 509 cloud screening of satellite infrared imagery for operational sea surface temperature
- 510 retrieval, Quarterly Journal of the Royal Meteorological Society, 131, 2735-2755,
- 511 https://doi.org/10.1256/qj.05.15, 2005.
- 512 Gao, J., Jing, Y.: Satellite Remote Sensing Cloud Detection Method Based on Fully
- 513 Convolutional Neural Network, *Infrared Technology*, 41, 607-615, 2019.
- 514 Gomez-Chova, L., Camps-Valls, G., Amoros-Lopez, J., Guanter, L., Alonso, L.,
- 515 Calpe, J., Moreno, J.: New Cloud Detection Algorithm for Multispectral and
- 516 Hyperspectral Images: Application to ENVISAT/MERIS and PROBA/CHRIS
- 517 Sensors, IEEE International Symposium on Geoscience and Remote Sensing, 2757–
- 518 2760, doi:10.1109/igarss.2006.709, 2006.
- 519 Hu, J.: Research on Cloud Detection Algorithm of Remote Sensing Image Based on
- 520 Convolution Neural Network, Nanjing University of Information Science and
- 521 *Technology*, doi:10.27248/d.cnki.gnjqc, 2020.
- 522 Kay, S., Hedley, J., Lavender, S.: Sun Glint Correction of High and Low Spatial

- 523 Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-
- 524 Infrared Wavelengths, Remote Sensing, 1, 697-730,
- 525 https://doi.org/10.3390/rs1040697, 2009.
- 526 Kegelmeyer, W.P.J.: Extraction of cloud statistics from whole sky imaging
- 527 cameras,1994.
- 528 Kong, Y.-L., Huang, Q., Wang, C., Chen, J., Chen, J., & He, D. (2018). Long Short-
- 529 Term Memory Neural Networks for Online Disturbance Detection in Satellite
- 530 Image Time Series. *Remote Sensing*, 10(3), 452. doi:10.3390/rs10030452
- 531 Li, W., Zhang, L., Chen, X., Li, D.: The universal cloud detection algorithm of
- 532 MODIS data, Society of Photo-Optical Instrumentation Engineers (SPIE)
- 533 *Conference Series*, 64190F-64190F-6, doi:10.1117/12.712722, 2006.
- 534 Pan, C., Xia B., Chen, Y.: Research on MODIS Cloud Detection Algorithms Based on
- 535 Fuzzy Clustering, *Microcomputer Information*, 25, 124-125+131, 2009.
- 536 Rossow, W. B., Leonid, C.G.: Cloud detection using satellite measurements of
- 537 infrared and visible radiances for ISCCP. Journal of Climate, 12, 2341-2369,
- 538 https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2, 1993.
- 539 Sarkar, V.: Optimized Unrolling of Nested Loops, International Journal of Parallel
- 540 *Programming*, 29, 545-581, https://doi.org/10.1023/A:1012246031671, 2001.
- 541 Solvsteen, C.: Correlation based cloud-detection and an examination of the split-
- 542 window method, Proceedings of SPIE The International Society for Optical
- 543 Engineering, 86-97, 1995.

- 544 Amato, U., Antoniadis, A., Cuomo, V., Cutillo, L., Franzese, M., Murino, L., Serio,
- 545 C.: Statistical cloud detection from SEVIRI multispectral images, *Remote Sensing*
- 546 *of Environment*, 112, 750–766, https://doi.org/10.1016/j.rse.2007.06.004, 2008.
- 547 Wang, Z.: CloudSat Project: CloudSat 2B-CLDCLASS-LIDAR product process
- 548 description and interface control document, *Jet Propulsion Laboratory*, 2019.
- 549 Yan, J., Guo, X., Qu, J.: An FY-4A/AGRI cloud detection model based on the naive
- 550 Bayes algorithm, *Remote Sensing for Natural Resources*, 34, 33-42, 2022.
- 551 Zhang, W., He, M., Mak, M.W.: Cloud detection using probabilistic neural networks,
- 552 *Geoscience and Remote Sensing Symposium*, IEEE 2373-2375, 2001.
- 553 Zhang, Y., William, B. R., Andrew, A. L., Valdar, O., Michael, I. M.: Calculation of
- radiative fluxes from the surface to the top of atmo- sphere based on ISCCP and
- 555 other global data sets: Refine- ments of the radiative transfer model and the input
- data, Journal of Geophysical Research Atmospheres, 109, 1-27,
- 557 https://doi.org/10.1029/2003JD004457, 2004.
- 558 Zhang, Y., Yang, C., Tao, R.: Multi-temporal Cloud Detection Method for Qin- ghai-
- 559 Tibet Plateau based with FY-4A Data, *Remote Sensing Technology and Application*,
- 560 35, 389-398, 2020.
- 561 Zhen, J., Liu, D., Wang Z.: Analysis of global distribution and seasonal variation
- 562 characteristics of clouds using CloudSat/CALIPSO satellite data, Meteorological
- 563 *Journal*, 76, 420-433, 2018.