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Abstract 9 

Cloud fraction as a vital component of meteorological satellite products plays an 10 

essential role in environmental monitoring, disaster detection, climate analysis and 11 

other research areas. A long short-term memory (LSTM) machine learning algorithm 12 

is used in this paper to retrieve the cloud fraction of AGRI (Advanced Geosynchronous 13 

Radiation Imager) onboard FY-4A satellite based on its full-disc level-1 radiance 14 

observation. Correction has been made subsequently to the retrieved cloud fraction in 15 

areas where solar glint occurs using a correction curve fitted with sun-glint angle as 16 

weight. The algorithm includes two steps: the cloud detection is conducted firstly for 17 

each AGRI field of view to identify whether it is clear sky, partial cloud or overcast 18 

cloud coverage within the observation field. Then the cloud fraction is retrieved for the 19 

scene identified as partly cloudy. The 2B-CLDCLASS-LIDAR cloud fraction product 20 

from Cloudsat& CALIPSO active remote sensing satellite is employed as the truth to 21 
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assess the accuracy of the retrieval algorithm. Comparison with the operational AGRI 22 

level 2 cloud fraction product is also conducted at the same time. During daytime, the 23 

probability of detection (POD) for clear sky, partly cloudy, and overcast scenes in the 24 

official operational cloud detection product were 0.5359, 0.7041, and 0.7826, 25 

respectively. The POD for cloud detection using the LSTM algorithm were 0.8294, 26 

0.7223, and 0.8435. While the operational product often misclassified clear sky scenes 27 

as cloudy, the LSTM algorithm improved the discrimination of clear sky scenes, albeit 28 

with a higher false alarm rate compared to the operational product. For partly cloudy 29 

scenes, the mean error (ME) and root-mean-square error (RMSE) of the operational 30 

product were 0.2374 and 0.3269. The LSTM algorithm exhibited lower ME (0.1134) 31 

and RMSE (0.1897) than the operational product. The large reflectance in the sun-glint 32 

region resulted in significant cloud fraction retrieval errors using the LSTM algorithm. 33 

However, after applying the correction, the accuracy of cloud cover retrieval in this 34 

region greatly improved. During nighttime, the LSTM model demonstrated improved 35 

POD for clear sky and partly cloudy scenes compared to the operational product, while 36 

maintaining a similar POD value for overcast scenes and a lower false alarm rate. For 37 

partly cloudy scenes at night, the operational product exhibited a positive mean error, 38 

indicating an overestimation of cloud cover, whereas the LSTM model showed a 39 

negative mean error, indicating an underestimation of cloud cover. The LSTM model 40 

also exhibited a lower RMSE compared to the operational product. 41 

Key words: Cloud detection, cloud fraction, FY-4A AGRI, LSTM neural network.  42 
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Introduction 43 

 Clouds occupy a significant proportion within satellite remote sensing data 44 

acquired for Earth observation. According to the statistics from the International 45 

Satellite Cloud Climatology Project (ISCCP), the annual average global cloud coverage 46 

within satellite remote sensing data is around 66% with even higher cloud coverage in 47 

specific regions (such as the tropics) (Zhang , et al., 2004). The impact of clouds on the 48 

radiation balance of the Earth's atmospheric system is determined by the optical 49 

properties of clouds. Cloud detection, as a vital component of remote sensing image 50 

data processing, is considered a critical step for the subsequent identification, analysis, 51 

and interpretation of remote sensing images. Therefore, accurately determining cloud 52 

coverage is essential in various research domains, such as environmental monitoring, 53 

disaster surveillance and climate analysis. 54 

Fengyun-4A (FY-4A) is a comprehensive atmospheric observation satellite 55 

launched by China in 2016. The uploaded AGRI (Advanced Geosynchronous Radiation 56 

Imager) has 14 channels and captures full-disk observation every 15 minutes. In 57 

addition to observing clouds, water vapor, vegetation and the Earth's surface, it also 58 

possesses the capability to capture aerosols and snow. Moreover, it can clearly 59 

distinguish different phases and particle size of clouds and obtain high- to mid-level 60 

water vapor content. It is particularly suitable for cloud detection due to its 61 

simultaneous use of visible, near-infrared and long-wave infrared channels for 62 
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observation with high spatial resolution. 63 

Numerous cloud detection algorithms have been provided based on observations 64 

from satellite-borne imagers. The threshold method has been widely employed by 65 

researchers, encompassing the early ISCCP (International Satellite Cloud Climatology 66 

Project) method (Rossow, 1993) and the proposed threshold methods based on different 67 

spectral features or underlying surfaces. Kegelmeyer (1994) used a straightforward 68 

cloud pixel as threshold for cloud detection with Whole Sky Imaging Cameras. 69 

Solvsteen (1995) distinguished cold water pixels and cloud pixels by analyzing the 70 

correlation between different channels based on AVHRR (Advanced Very High 71 

Resolution Radiometer) images. A grouping threshold method based on AVHRR 72 

images has been developed by Baum and Trepte (1996) to classify scenes as clouds, 73 

fires, smoke or snow. LI and Zhang (2006) proposed a multispectral integrated cloud 74 

detection algorithm based on the characteristics of MODIS instrument channels and the 75 

spectral characteristics of different objects (clouds, snow, land, etc.). Zhang et al. (2020) 76 

used a multi-temporal cloud detection method based on FY-4A AGRI data to identify 77 

observations on the Qinghai-Tibet Plateau. However, there is a significant subjectivity 78 

in selection of thresholds whether it is the single and fixed threshold in the early days, 79 

multiple thresholds, dynamic thresholds, or adaptive thresholds. These thresholds are 80 

highly influenced by factors such as season and climate. 81 

The other category of cloud detection algorithms is the based on statistical 82 

probability theory. Such as the principal component discriminant analysis and quadratic 83 
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discriminant analysis methods were used to SEVIRI (Spinning Enhanced Visible and 84 

Infrared Imager) cloud detection (Amato et al., 2008). The cloud detection algorithm 85 

for Thermal Infrared (TIR) sensor was based on the Bayesian theory of total probability 86 

(Merchant et al., 2010) and the naive Bayes algorithm for AGRI (Qu , et al., 2022). The 87 

unsupervised clustering cloud detection algorithms for MERIS (Medium Resolution 88 

Imaging Spectrometer) (GomezChova , et al., 2007) and the fuzzy C-means clustering 89 

algorithms for MODIS (Pan, et al., 2009) all have achieved high accuracy in cloud 90 

detection. 91 

More and more machine learning algorithms are being utilized by researchers in 92 

cloud detection studies with the development of machine learning. For instance, the 93 

probabilistic neural networks, especially radial basis function networks was used for 94 

AVHRR cloud detection (Zhang, et al., 2001). The utilization of convolutional neural 95 

network methods (Hu, et al., 2020) offers important perspectives for cloud detection 96 

research. 97 

Currently, there is limited research literature on cloud detection and cloud fraction 98 

retrieval algorithms for FY-4A/4B AGRI. The operational cloud fraction product of FY-99 

4A AGRI utilized a threshold method with 4 km spatial resolution. Differences in 100 

climatic and environmental factors lead to varying albedo and brightness temperature 101 

observations for the instrument at different times and locations. Therefore, the choice 102 

of thresholds is easily influenced by factors such as season, latitude and land surface 103 

type (Gao and Jing, 2019). Using multiple sets of thresholds for discrimination would 104 
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significantly slow down the cloud detection process. Moreover, most algorithms focus 105 

solely on cloud detection, which classified the observed scenes into cloud or clear-sky 106 

without providing the specific cloud fraction information for the scenes. 107 

In summary, a LSTM (Long Short-Term Memory) machine learning algorithm for 108 

cloud fraction retrieval was established using level-1 radiation observations from FY-109 

4A AGRI full-disk scanning in this paper. The cloud fraction of the level-2 product 2B-110 

CLDCLASS-LIDAR from Cloudsat&CALIPSO was used as the reference label. The 111 

retrievals were compared against with the cloud fraction of 2B-CLDCLASS-LIDAR 112 

and the AGRI operational products to verify the algorithm accuracy. 113 

1 Research Data and Preprocessing  114 

1.1 FY-4A data 115 

FY-4A was successfully launched on December 11, 2016. Starting from May 25, 2017, 116 

FY-4A drifted to a position near the main business location of the Fengyun 117 

geostationary satellite at 104.7 degrees east longitude on the equator. Its successful 118 

launch marked the beginning of a new era for China's next-generation geostationary 119 

meteorological satellites as an advanced comprehensive atmospheric observation 120 

satellite. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main 121 

payloads of the Fengyun-4 series geostationary meteorological satellites, can perform 122 

large-disk scans and rapid regional scans at a minute level. It has total 14 observation 123 

channels with the main task of acquiring cloud images. The channel parameters and 124 
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main uses of AGRI are detailed in Table 1. FY-4A AGRI data was downloaded from 125 

the official website of the China national satellite meteorological center 126 

(http://satellite.nsmc.org.cn), including level-1 full disk radiation observation data 127 

preprocessed through quality control, geolocation and radiation calibration as well as 128 

level-2 cloud fraction product (CFR). The spatial resolution of these data is all 4 km 129 

and the temporal resolution is 15 minutes. 130 

Table 1 FY-4A AGRI channel parameters 131 

Channel 

Number 
Band Range /μm 

Central 

Wavelength /μm 
Spatial resolution/km Main Applications 

1 0.45 ~ 0.49 0.47 1 clouds, dust, aerosols 

2 0.55 ~ 0.75 0.65 0.5 
clouds, sand dust, 

snow 

3 0.75 ~ 0.90 0.825 1 vegetation 

4 1.36 ~ 1.39 1.375 2 cirrus 

5 1.58 ~ 1.64 1.61 2 clouds、snow 

6 2.10 ~ 2.35 2.225 2 cirrus、aerosols 

7 3.50 ~ 4.00 3.75H 2 
fire point, the intense 

solar reflection signal 

8 3.50 ~ 4.00 3.75L 4 low clouds, fog 

9 5.80 ~ 6.70 6.25 4 
upper-level water 

vapor 

10 6.90 ~ 7.30 7.1 4 mid-level water vapor 

11 8.00 ~ 9.00 8.5 4 
subsurface water 

vapor 

12 
10.30 ~ 

11.30 
10.8 4 

surface and cloud-top 

temperatures 

13 
11.5 0~ 

12.50 
12.0 4 

surface and cloud-top 

temperatures 

14 13.2 ~ 13.8 13.5 4 cloud-top height 

 132 

1.2 CloudSat & Calipso Cloud Product 133 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 134 

is a satellite jointly launched by NASA and CNES (the French National Center for 135 
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Space Studies) in 2006. It is a member of the A-Train satellite observation system. 136 

CALIPSO is equipped with three payloads, among which CALIOP (the Cloud and 137 

Aerosol Lidar with Orthogonal Polarization) is a primary observational instrument. 138 

Observing with dual wavelengths (532 nm and 1064 nm) CALIOP can provide high-139 

resolution vertical profiles of clouds and aerosols with 30 m vertical resolution. As the 140 

first satellite designed to observe global cloud characteristics in a sun-synchronous orbit 141 

CloudSat is also among NASA's A-Train series satellites. The CPR (Cloud Profile 142 

Radar) installed on it operates at 94 GHz millimeter-wave and is capable of detecting 143 

the vertical structure of clouds and providing vertical profiles of cloud parameters. The 144 

scanning wavelengths of CPR and CALIOP are different. CALIOP is capable of 145 

observing the top of mid-to-high level clouds, whereas CPR can penetrate optically 146 

thick clouds. Combining the strengths of these two instruments enables the acquisition 147 

of precise and detailed information on cloud layers and cloud fraction. 148 

The joint level 2 product 2B-CLDCLASS-LIDAR is mainly utilizing in this study.   149 

It provides the cloud fraction at different heights with horizontal resolution 2.5 km 150 

(along-track) × 1.4 km (cross-track) through combining the observations from CPR and 151 

CALIOP (Zhen, et al., 2018). The CloudSat product manual (Wang, 2019) can be 152 

referred for more detailed information on 2B-CLDCLASS-LIDAR. The data used is 153 

available for download from the ICARE data and services center 154 

(https://www.icare.univ-lille.fr/data-access/data-archive-access/). 155 
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1.3 Establishment of Training Data 156 

The crucial aspect of establishing a training data in machine learning algorithms 157 

is how to obtain the cloud fraction values (ground truth) as labels. The error in cloud 158 

fraction retrieved solely from passive remote sensing instruments is significant. Using 159 

active remote sensing data can provide more accurate cloud fraction information in the 160 

vertical direction. Therefore, the spatiotemporally matched 2B-CLDCLASS-LIDAR 161 

cloud fraction are utilized as output labels in this paper. 162 

The FY-4A AGRI and 2B-CLDCLASS-LIDAR data with a distance difference 163 

between fields of view within 1.5 km and a time difference within 15 minutes are 164 

spatiotemporal matched. To make the 2B-CLDCLASS-LIDAR cloud fraction data 165 

collocated within AGRI pixels more effective, at least two 2B-CLDCLASS-LIDAR 166 

pixels are required within each AGRI field of view. The cloud fraction average of these 167 

pixels is used as the cloud fraction for that AGRI pixel. 168 

Cloud detection and cloud fraction label generation for 2B-CLDCLASS-LIDAR 169 

are as follows. There may be multiple layers of clouds in each field of view. If there is 170 

at least one layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-LIDAR profile, 171 

then the scene is labeled as overcast with a cloud fraction of 1. If all layers in the profile 172 

are cloud-free, the scene is labeled as clear sky. The scene between the above two 173 

situations is labeled as partly cloudy and the cloud fraction is the average of cloud 174 

fractions at different layers. 175 
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The algorithm includes two steps: the cloud detection is conducted firstly for each 176 

AGRI field of view to identify whether it is clear sky, partial cloud or overcast cloud 177 

coverage within the observation field. Then the cloud fraction is retrieved for the scene 178 

identified as partly cloudy. So the training data include A dataset used for cloud 179 

detection and B dataset for cloud fraction retrieval.  The input variables in A dataset 180 

are the FY-4A AGRI level-1 radiative observations from 14 channels and the output 181 

variable is the temporally and spatially matched 2B-CLDCLASS-LIDAR cloud 182 

detection label. The output is categorized into three types: overcast, partly cloudy and 183 

clear sky with values 1, 2 and 3 respectively. To ensure diversity and representativeness 184 

of the samples, the three conditions of overcast, partly cloudy, and clear sky each 185 

account for one-third of the sample size in dataset A. Regarding the samples for partly 186 

cloudy type in dataset A, the collocated 2B-CLDCLASS-LIDAR cloud fraction 187 

products serve as output labels for cloud fraction retrieval model B. The input of 188 

training dataset B remains the FY-4A AGRI level-1 radiative observations.  189 

Due to the lifespan of the instrument only 2B-CLDCLASS-LIDAR data before 190 

July 2019 can be obtained. So, the FY-4A AGRI observations and 2B-CLDLASS-191 

LIDAR matched in time and space in May 2019 are used as training samples to build 192 

the algorithm model. The paired samples of whole June 2019 are served as the testing 193 

samples to assess the model's retrieval accuracy. The number of training samples in 194 

May are 12,420 for dataset A and 4140 for B. Testing samples in June are 15,459 for A 195 

and 5,153 for B. 196 
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Although the retrieval model was trained and tested using 2019 data, the algorithm 197 

was also applied to real-time observations of FY-4A and FY-4B AGRI in 2023 to verify 198 

its universality. 199 

 200 

2. Long Short-Term Memory (LSTM) Algorithm 201 

LSTM is an improved algorithm based on RNN (Recurrent Neural Network) with 202 

the ability to retain long-term memory. and demonstrates improved performance in 203 

longer sequences data comparing to ordinary RNNs (Sarker, 2001).  It can effectively 204 

address the challenges of gradient explosion and gradient vanishing over time in 205 

models., LSTM network has been extensively applied in diverse domains owing to its 206 

distinctive features, such as meteorology and environmental prediction and so on (Bao, 207 

et al., 2024; Bai and Shen. 2019). The structure of the LSTM unit is depicted in Figure 208 

1. The update and transmission of historical information is facilitated through the 209 

internal control of three states: the Forget Gate, the Input Gate and the Output Gate. 210 

The pertinent mathematical expressions are: 211 

𝑓𝑡 = 𝜎(𝑊𝑓
𝑇 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                     (1) 212 

where 𝑓𝑡  denotes the output of the Forget Gate, 𝜎  signifies the Sigmoid 213 

activation function; 𝑊𝑓
𝑇 and 𝑏𝑓 correspond to the weight and bias of the Forget Gate, 214 

respectively, 𝑥𝑡  stands for the current input, ℎ𝑡−1  represents the output from the 215 
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previous time step. 216 

𝑖𝑡 = 𝜎(𝑊𝑖
𝑇 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                      (2) 217 

where 𝑖𝑡  represents the information updated after 𝜎  activation, 𝑊𝑖
𝑇  and 𝑏𝑖 218 

denote the weight and bias, respectively. 219 

𝐶�̂� = 𝜎(𝑊𝑐
𝑇 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                      (3) 220 

 𝐶�̂� signifies the information updated after tanh activation, 𝑊𝑐
𝑇 and 𝑏𝑐 denote 221 

the weight and bias, respectively. 222 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶�̂�                                           (4) 223 

𝐶𝑡  is the current information of the LSTM structure, 𝐶𝑡−1  denotes the 224 

information of the LSTM structure from the previous time step. 225 

𝑂𝑡 = 𝜎(𝑊𝑂
𝑇 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂)                                     (5) 226 

𝑂𝑡 is the current output information, 𝑊𝑂
𝑇 and 𝑏𝑂 denote the weight and bias, 227 

respectively. 228 

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)                                              (6) 229 

ℎ𝑡 denotes the current output result. 230 
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 231 

Figure 1 LSTM cell structure (Kong, et al., 2018) 232 

In a neural network, the hidden layer is a layer or multiple layers located between 233 

the input layer and the output layer. Each hidden layer consists of multiple nodes, which 234 

process the input data and generate outputs through connection weights and activation 235 

functions. Increasing the size of the hidden layer can enhance the network's 236 

representational capacity and learning ability, as more nodes can capture additional data 237 

patterns and features. However, having a hidden layer that is too large may lead to 238 

overfitting, making the network overly complex and difficult to train. Typically, the 239 

optimal size of the hidden layer is determined by trying different sizes and evaluating 240 

their performance on a validation set. The hidden layer sizes for both the cloud 241 

classification model and the cloud fraction retrieval model in this paper are set to 3. 242 

The key model parameter ‘batch size’ has two main impacts on training network: 243 
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(1) A larger batch size typically reduces the training time per epoch as more samples 244 

are processed with each parameter update. On the contrary, a smaller batch size may 245 

slow down the training speed since more iterations are needed to complete an epoch. 246 

(2) Model Performance: Different batch sizes can impact the model performance. 247 

Generally, a larger batch size may lead to quicker model convergence, yet it could 248 

increase the risk of overfitting at times; whereas a smaller batch size could aid in the 249 

model's generalization ability but might result in a less stable training process. In this 250 

paper, the batch size of the model is set to 500.The optimizer is configured with the 251 

Adam gradient descent algorithm, and the loss function used is cross-entropy. 252 

The training dataset A was used to construct the LSTM cloud detection model. For 253 

daytime, the inputs are the radiation observations from 14 channels of FY-4A AGRI 254 

with ‘input size’ 14. However, during nighttime, as there are no observations in the 255 

visible light channels (channels 1 to 6) of AGRI, the inputs consisted of the radiance 256 

observations of channels 7 to 14 of FY-4A AGRI with ‘input size’ 8. The output label 257 

is the classification of field of view, including overcast, partly cloudy and clear sky.  258 

To derive the specific cloud fraction for AGRI scenes identified as partly cloudy 259 

in the previous cloud mask step, an LSTM cloud fraction retrieval model needs to be 260 

constructed. The training dataset B was used to train the cloud fraction retrieval model. 261 

For daytime, the input is the observed radiances for all channels of AGRI (input 262 

size=14), while during nighttime, the input comprises the observed radiance values of 263 

channels 7 to 14 of AGRI (input size = 8). The output label is the value of cloud fraction 264 
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in the scene ranging from 0 to 1. When selecting parameters for the LSTM cloud 265 

fraction model, a batch size of 60 is chosen due to the limited sample number in dataset 266 

B. The optimizer is also configured with the Adam gradient descent algorithm. The loss 267 

function used is mean square error. 268 

3. Results and Analysis 269 

To assess the accuracy and stability of the retrieval model, two types of validation 270 

methods are utilized. One way involves a direct comparison from images, qualitatively 271 

comparing the model's retrieval results and official cloud fraction products with AGRI 272 

observed cloud images. Another way is quantitative comparison using 2B-273 

CLDCLASS-LIDAR as the true value. Four quantitative parameters, including 274 

possibility of detection(POD), alse alarm rate(FAR), mean error (ME) and root mean 275 

square error (RMSE) are introduced. ‘Possibility of detection’ is calculated using the 276 

formula POD=TP/(TP+FN), and false alarm rate is calculated using the formula 277 

FAR=FP/(TP+FP). Taking the covercast scenes as an example, TP represents the 278 

number of correctly identified overcast, FN represents the number of overcast scenes 279 

wrongly identified as partly cloudy or clear sky, and FP represents the number of clear 280 

sky or partly cloudy scenes wrongly identified as overcast.The ME (mean error) and 281 

RMSE (root mean square error) are utilized to assess the accuracy of the LSTM cloud 282 

fraction model in retrieving cloud fraction for partly cloudy scenes. 283 
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3.1 Objective Analysis of Cloud Fraction Retrievals 284 

The test samples from dataset A (i.e., June data) are used to perform cloud 285 

detection experiments based on the cloud detection model mentioned above. The 286 

temporally and spatially matched 2B CLDCLASS-LIDAR cloud mask products are 287 

used as reference to evaluate the accuracy of cloud detection. The POD and FAR for 288 

different view field classifications are shown in Table 2. Columns 2 and 4 represent the 289 

operational cloud detection products for daytime and nighttime respectively, for the 290 

same time and pixel. Columns 3 and 5 represent the LSTM cloud detection results for 291 

daytime and nighttime respectively. The table indicates that during daytime, operational 292 

cloud detection products have a relatively low possibility of detection for clear sky view 293 

fields. However, the LSTM model increases the possibility of detection for clear sky 294 

from 0.54 to 0.83. Moreover, for some partly cloudy and overcast view fields, the 295 

possibilities of detection is higher than those of operational cloud detection products. 296 

During nighttime, compared to operational cloud detection products, the LSTM model 297 

increases the POD for clear sky from 0.51 to 0.73, with slightly higher possibilities of 298 

detection for partial cloud view fields than the operational products, while the 299 

possibility of detection for full cloud view fields is lower. During the day, the 300 

Operational product has a lower false alarm rate for clear sky compared to the LSTM 301 

model, while the LSTM model has a lower false alarm rate for partly cloudy and 302 

overcast conditions than the Operational product. At night, the LSTM model 303 
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significantly reduces the false alarm rate for overcast conditions compared to the 304 

Operational product. 305 

Table 2 POD and FAR of Cloud Detection 306 

 
Sky 

Classification 

Daytime 

Operational 

Cloud 

Detection 

Product 

Daytime 

LSTM 

Results 

Nighttime 

Operational 

Cloud 

Detection 

Product 

Nighttime 

LSTM 

Results 

POD 

Clear Sky 0. 5359 0.8294 0.5136 0.7341 

Partly cloudy 0.7041 0.7223 0.6957 0.7101 

Overcast 0.7826 0.8435 0.7984 0.7523 

FAR 

Clear Sky 0.2174 0.3633 0.1789 0.1983 

Partly cloudy 0.2959 0.1677 0.3107 0.3488 

Overcast 0.4641 0.2358 0.5543 0.2105 

 307 

For the view fields judged as partly cloudy by the aforementioned model, the cloud 308 

amount in the AGRI view field was inverted using the LSTM cloud amount model 309 

established earlier in this text. For samples classified as partly cloudy by the model, 310 

operational products and 2B-CLDCLASS-LIDAR cloud amount products, the mean 311 

error and root mean square error (RMSE) of the cloud amount retrieval were calculated 312 

based on the matched 2B-CLDCLASS-LIDAR cloud amount product as ground truth, 313 

separately for daytime and nighttime operational cloud amount products (columns 2 314 

and 4) and the LSTM-inverted cloud amount (columns 3 and 5), as shown in Table 3. 315 

It can be observed that during daytime, compared to the FY-4A operational cloud 316 

amount product, the LSTM cloud amount retrieval model shows significant 317 

improvement in both mean error (ME) and RMSE. The ME decreases from 0.23 to 0.11, 318 
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and the RMSE decreases from 0.32 to 0.19, indicating that the LSTM cloud amount 319 

retrieval model provides more accurate estimates of cloud amount. For nighttime, the 320 

ME of the operational cloud amount product is positive, indicating an overall 321 

overestimation of cloud amount. In contrast, the ME of the LSTM model is negative, 322 

indicating an overall underestimation of cloud amount. The RMSE of the LSTM model 323 

retrieval results during nighttime is lower than that of the operational cloud amount 324 

product. 325 

Table 3 Errors in cloud fraction retrieval 326 

 

Daytime 

Operational 

Cloud 

Detection 

Product 

Daytime 

LSTM Results 

Nighttime 

Operational 

Cloud 

Detection 

Product 

Nighttime 

LSTM Results 

ME 0.2374 0.1134 0.2488 -0.1911 

RMSE 0.3269 0.1897 0.3374 0.2361 

3.2 Cloud fraction correction in sun glint regions 327 

Sun glint refers to the bright areas created by the reflection of sunlight to the 328 

sensors of observation systems (satellites or aircrafts). This phenomenon usually occurs 329 

on extensive water surfaces, such as oceans lakes or rivers. This specular reflection of 330 

sunlight will cause an increase in the reflected solar radiation received by onboard 331 

sensors, manifested as an enhancement of white brightness in visible images. The 332 

increase in visible channel observation albedo will affect various subsequent 333 

applications of data, including cloud detection and cloud cover retrieval, etc.  334 
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The position of Sun glint area can be determined using the SunGlintAngle value 335 

in the FY-4A GEO file. SunGlintAngle is defined as the angle between the satellite 336 

observation direction or reflected radiation direction and the mirror reflection direction 337 

on a calm surface (horizontal plane). It is generally accepted that the range of 338 

SunGlintAngle < 15° is easily affected by sun glint (Kay S, et al., 2009). The positions 339 

of the SunGlintAngle contour lines at 5 and 15° are marked in Figure 2(a). It can be 340 

observed that the edge of sun glint in Figure 2(a) essentially overlaps with the position 341 

of SunGlintAngle = 15°. Thus, the region where SunGlintAngle < 15° is defined as the 342 

sun glint range in this paper and only the cloud fraction within this range will be 343 

adjusted in the subsequent correction. 344 

To correct the cloud fraction in the sun glint region, we initially identified 672 345 

fields of view where sun glint occurred in the FY-4A AGRI observations between 1 346 

June and 31 July 2019.  Subsequently, a direct least squares fitting was conducted 347 

between the inverted cloud fraction and the collocated 2B-CLDCLASS-LIDAR cloud 348 

fraction (ground truth). The scatter plot is illustrated in Figure 2(b), where x-axis is the 349 

2B-CLDCLASS-LIDAR cloud fraction and y-axis is the model-inverted cloud fraction. 350 

The blue line represents the curve (namely Eq.7) fitted by the least squares method 351 

between the retrievals and the truths. The thin dash line is the x=y line. It is evident that 352 

the inverted cloud fraction is generally slightly overestimated.  353 

Taking observations at 04:00 on 5 June 2019 as an example, Figure 2(c) presents 354 

the distribution of SunGlintAngle and the flight trajectory of the Cloudsat&Calypso 355 
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satellite. White circles denote the sun glint region with SunGlintAngle < 15° and the 356 

white line represents the satellite flight track. As depicted in the figure, the majority of 357 

Cloudsat&Calypso flight trajectories do not pass through the central position of sun 358 

glint area but instead traverse locations with larger SunGliantAngle values. The 359 

intensity of sun glint effect decreases with the increase of SunGliantAngle. This 360 

suggests that the true values for spatial and temporal matching mostly do not fall within 361 

the strongest sun glint region. From Figure 2(d), it can be seen that the impact of sun 362 

glint becomes stronger as SunGlintAngle decreasing, which results in a higher 363 

observation albedo. This further leads to the overestimated cloud fraction values in the 364 

retrieval. It is evident that the cloud fraction error is related to the value of 365 

SunGlintAngle and this influence is not considered in Eq. (7). Directly applying 366 

equation (7) to correct the cloud fraction retrievals would result in a too small correction 367 

intensity for the FOVs near the center of sun glint and an excessively large correction 368 

intensity for the FOVs in the Sun-glint edge region (even erroneous clear sky may 369 

appear). Considering this, a correction formula (8)-(9) using SunGlintAngle as weight 370 

is introduced, where 𝑊𝑖 represents the angle weight for a certain pixel i in the sun glint 371 

region, n is the number of pixels within the SunGlintAngle < 15° range, yi is the initial 372 

model retrieval of cloud cover for the field of view i and 𝑥𝑖 is the final corrected cloud 373 

fraction. 374 

𝑥 = (𝑦 − 0.2562)/0.8428                                       (7) 375 
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𝑊𝑖 =
𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

1

𝑛
∑ 𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖
𝑛
𝑖=0

                                            (8) 376 

𝑥𝑖 = 𝑊𝑖 (
𝑦𝑖−0.2526

0.8428
)                                              (9) 377 

Figure2(d) shows thedistributionof errorswith respect to SunGlintAngle,378 

wherethebluedotsrepresenttheerrordistributioncorrectedusingformula379 

(7), and the orange dots represent the error distribution corrected using380 

formula(9).ItcanbeseenfromFigure2(d)thataftercorrectionbyformula381 

(9),theerrorsinthesmallerrangeofSunGlintAnglearesignificantlyreduced. 382 

383 

 384 

Figure 2 (a) albedo image of 0.67μm channel (the circles are the contours of the sun-385 

glint angle), (b) Scatter plot of cloud fraction in sun glint region, (c) Distribution of 386 

SunGlintAngle and satellite flight track of CloudSat & Calypso at 4:00 on June 5, 2019, 387 
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(d) Distribution of cloud fraction retrieval error with sun-glint angle. 388 

3.3 Algorithm universal applicability testing 389 

Although the retrieval model in this article was built based on data from May 2019 390 

due to the limited lifespan of the instrument, how effective is it in real-time FY-4A 391 

AGRI observations and even subsequent FY-4B AGRI applications? The algorithm's 392 

universal applicability was tested using real-time observations from FY-4A and FY-4B 393 

AGRI in 2023. 394 

Taking the full-disk observation of FY-4A AGRI at 04:00 (UTC, the same below) 395 

on 1 June 2023 as an example, the radiance observations from 14 channels are initially 396 

fed into the LSTM cloud detection model to determine the sky classification (overcast, 397 

partly cloudy or clear sky) in each AGRI field. The LSTM cloud fraction retrieval 398 

model is utilized to estimate the cloud fraction in scenes identified as partly cloudy. 399 

Figure 3(a) is the observed albedo at 0.67 μm, where the circles represent the contours 400 

of the sunglint angle, (b) is the cloud fraction retrievals from LSTM algorithm, (c) is 401 

the official operational cloud fraction product and (d) is LSTM cloud fraction retrievals 402 

with sun-glint correction. It can be seen from Figure 3 that many clear-sky scenes are 403 

erroneously identified as cloudy by the operational product and the cloud fraction is 404 

generally overestimated with many scenes having a cloud fraction of 1. The LSTM 405 

algorithm identifies more regions as clear skies or partly cloudy than the operational 406 

products, matching better with the observations in the 0.67 μm albedo image. Brighter 407 
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regions in the visible image correspond to cloud cover areas and darker areas represent 408 

clear sky conditions. The sun glint region in the central South China Sea (the circled 409 

area in Figure 3(a)) is depicted in Figure 3(b), where the clear-sky scenes over the ocean 410 

are misidentified as partly cloudy by LSTM algorithm due to the increase in observed 411 

albedo. Although operational product in this area also suffers from the impact of 412 

unremoved sun glint, it identifies more clear-sky scenes and the cloud fraction is 413 

relatively low. Thus, it is evident that the LSTM algorithm exhibits significant cloud 414 

detection and cloud fraction errors in these sun glint regions. Correction is necessary 415 

for the cloud fraction retrievals in the sun glint region. 416 

Figure 3(d) shows the cloud fraction distribution after correction using equation 417 

(9) in the sun glint region., The correction eliminates the influence of sun glint 418 

comparing to the cloud fraction in sun glint area before correction in Figure 3(b). The 419 

scenes misjudged as partly cloudy are corrected to clear sky and match well with the 420 

actual albedo observations in 3(a), which accurately restores the true cloud coverage 421 

over the South China Sea. 422 

 423 
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 424 

 425 

Figure 3 FY-4A AGRI at 04:00 on 1 June 2023 (a) albedo image of 0.67μm channel 426 

(the circles are the contours of the sun-glint angle), (b) LSTM cloud fraction 427 

retrieval without sun-glint correction, (c) operational cloud fraction product, (d) 428 

LSTM cloud fraction retrieval with sun-glint correction. 429 

Statistical analysis was conducted on the correction effect using samples with sun 430 

glint in the training data. The possibility of detection and false alarm rate in sun glint 431 

area is listed in table 4 and the error is in table 5. The possibility of detection for clear 432 

skies has increased from 0.09 to 0.83. The false alarm rate for partly cloudy has 433 

decreased from 0.89 to 0.17. The mean error of cloud fraction retrievals decreased from 434 
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0.176 to 0.09. These all indicate that the positive effect of the sun glint correction. 435 

Table 4 The cloud mask recall rate in sun glint area 436 

 
Sky 

Classification 

Operational 

Product 

LSTM  

LSTM after 

Correction 

POD 

Clear Sky 0.5535 0.0900 0.8301 

Partly cloudy 0.6738 0.8279 0.7436 

Overcast 0.8505 0.9744 0.9744 

FAR 

Clear Sky 0.1437 0.0063 0.3142 

Partly cloudy 0.3742 0.8972 0.1719 

Overcast 0.5545 0.1324 0.1324 

 437 

Table 5 cloud fraction Errors in sun glint area 438 

 Operational Product LSTM Retrievals 

LSTM after 

Correction 

ME 0.2691 0.2760 0.1634 

RMSE 0.3458 0.1948 0.1883 

FY-4B launched in 2021 has a total of 15 channels with an additional low-level 439 

water vapor channel at 7.42 μm compared to FY-4A. Taking the full-disk observation 440 

of FY-4B AGRI at 17:00 on April 18, 2023, as an example, The radiance observation 441 

data of the remaining eight channels (near-infrared and infrared channels) except for 442 

the 7.42 μm channel and the visible light channels were input into the LSTM cloud 443 

detection model. Figure 4 (a) shows the brightness temperature distribution observed 444 
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in the 10.8 μm channel of FY-4B AGRI, (b) represents the operational cloud fraction 445 

product for FY-4B AGRI and (c) shows the cloud fraction retrieved by this algorithm. 446 

Figure 4 illustrates that the LSTM algorithm identifies more regions as clear skies or 447 

partly cloudy than the operational products, aligning better with the brightness 448 

temperature observations in 10.8 μm. Especially in high latitude regions of the southern 449 

hemisphere and areas with strong convection near the equator, the cloud cover provided 450 

by operational products is too high and even misjudged. It can be seen that the LSTM 451 

algorithm is also suitable for cloud fraction retrieval of FY-4B AGRI.  452 

 453 

Figure 4  FY-4B AGRI at 17:00 on 18 April 2023, (a) brightness temperature of 454 

10.8μm channel, (b) operational cloud fraction product, (c) LSTM cloud fraction 455 

retrieval. 456 

 457 

4 Conclusion 458 

The long short-term memory (LSTM) machine learning algorithm based on FY-459 

4A AGRI full-disc level-1 radiance observations is developed to retrieve the cloud 460 

https://doi.org/10.5194/egusphere-2024-977
Preprint. Discussion started: 10 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 27 

 

fraction for each field of view in this paper. The accuracy of the algorithm is validated 461 

using the 2B CLDCLASS-LIDAR cloud fraction product from the Cloudsat&Calypso 462 

active remote sensing satellite and FY-4A AGRI level 2 operational product. The 463 

following conclusions are drawn: 464 

(1) Not only the cloud detection but also the cloud fraction within each FY-4A 465 

AGRI field of view can be retrieved by the LSTM machine learning algorithm. 466 

(2) The operational product has a relatively high false alarm rate for clear sky 467 

scenes, while the LSTM algorithm improves the probability of detection (POD) 468 

for clear sky scenes during the daytime from 0.54 to 0.83. However, the false 469 

alarm rate (FAR) is higher compared to the operational product. The POD for 470 

clear sky scenes at night increases from 0.51 to 0.73, and the POD for partially 471 

cloudy and fully cloudy scenes is comparable to the operational product. 472 

(3) For partly cloudy fields, during the day, the mean error and root-mean-square 473 

error of the operational product are 0.2374 and 0.3269, respectively, while this 474 

algorithm exhibits lower mean error (0.1134) and RMSE (0.1897) than the 475 

operational product. At night, the operational product tends to overestimate 476 

cloud cover, while this algorithm underestimates cloud cover, with a lower 477 

RMSE compared to the operational product. 478 

(4)  The cloud fraction correction curve for sun glint region fitted with 479 

SunGlintAngle as weight significantly improves the accuracy of the LSTM 480 

cloud fraction retrievals. It reduces the misjudgment rate where increased 481 
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albedo leads to the identification of clear-sky scene as partly cloudy or overcast. 482 

 483 

Data availability 484 

FY-4A AGRI data is available at http://satellite.nsmc.org.cn and the 2B-CLDCLASS-485 
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