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Abstract 8 

Cloud fraction as a vital component of meteorological satellite products plays an 9 

essential role in environmental monitoring, disaster detection, climate analysis, and 10 

other research areas. Random Forest(RF) and Multilayer Perceptron(MLP) algorithms 11 

were used in this paper to retrieve the cloud fraction of AGRI (Advanced 12 

Geosynchronous Radiation Imager) onboard FY-4A satellite based on its full-disc level-13 

1 radiance observation. Corrections has been made subsequently to the retrieved cloud 14 

fraction in areas where solar glint occurs using a correction curve fitted with sun-glint 15 

angle as weight. The algorithm includes two steps: the cloud detection is conducted 16 

firstly for each AGRI field of view to identify whether it is clear sky, partly cloudy or 17 

overcast within the observation field. Then the cloud fraction is retrieved for the scene 18 

identified as partly cloudy. The 2B-CLDCLASS-LIDAR cloud fraction product from 19 

Cloudsat& CALIPSO active remote sensing satellite is employed as the truth to assess 20 

the accuracy of the retrieval algorithm. Comparison with the operational AGRI level 2 21 

cloud fraction product is also conducted at the same time. The results indicate that both 22 

the Random Forest (RF) and Multi-Layer Perceptron (MLP) cloud detection models 23 

achieved high accuracy, surpassing that of operational products. However, both 24 

algorithms demonstrated weaker discrimination capabilities for partly cloudy 25 

conditions compared to clear sky and overcast situations. Specifically, they tended to 26 

misclassify fields of view with low cloud fractions (e.g., cloud fraction = 0.16) as clear 27 
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sky and those with higher cloud fractions (e.g., cloud fraction = 0.83) as overcast. 28 

Between the two models, RF exhibited higher overall accuracy. Both RF and MLP 29 

models performed well in cloud fraction retrieval, showing lower mean error (ME), 30 

mean absolute error (MAE), and root mean square error (RMSE) compared to 31 

operational products. The ME for both RF and MLP cloud fraction retrieval models was 32 

close to zero, while RF had slightly lower MAE and RMSE than MLP. During daytime, 33 

the high reflectance in sun-glint areas led to larger retrieval errors for both RF and MLP 34 

algorithms. However, after correction, the retrieval accuracy in these regions improved 35 

significantly. At night, the absence of visible light observations from the AGRI 36 

instrument resulted in lower classification accuracy compared to daytime, leading to 37 

higher cloud fraction retrieval errors during nighttime. 38 

Key words: Cloud detection; cloud fraction retrieval; FY-4A AGRI; CloudSat & 39 

CALIPSO; machine learning; deep learning.  40 

Introduction 41 

 Clouds occupy a significant proportion within satellite remote sensing data 42 

acquired for Earth observation. According to the statistics from the International 43 

Satellite Cloud Climatology Project (ISCCP), the annual average global cloud coverage 44 

within satellite remote sensing data is around 66% with even higher cloud coverage in 45 

specific regions (such as the tropics) (Zhang, et al., 2004). The impact of clouds on the 46 

radiation balance of the Earth's atmospheric system is influenced by the optical 47 

properties of clouds. Cloud detection, as a vital component of remote sensing image 48 

data processing, is considered a critical step for the subsequent identification, analysis, 49 

and interpretation of remote sensing images. Therefore, accurately determining cloud 50 

coverage is essential in various research domains, such as environmental monitoring, 51 

disaster surveillance and climate analysis. 52 

Fengyun-4A (FY-4A) is a comprehensive atmospheric observation satellite 53 
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launched by China in 2016. The uploaded AGRI (Advanced Geosynchronous Radiation 54 

Imager) has 14 channels and captures full-disk observation every 15 minutes. In 55 

addition to observing clouds, water vapor, vegetation and the Earth's surface, it also 56 

possesses the capability to capture aerosols and snow. Moreover, it can clearly 57 

distinguish different phases and particle size of clouds and obtain high- to mid-level 58 

water vapor content. It is particularly suitable for cloud detection due to its 59 

simultaneous use of visible, near-infrared, and long-wave infrared channels for 60 

observation with 4km spatial resolution. 61 

Numerous cloud detection algorithms have been provided based on observations 62 

from satellite-borne imagers. The threshold method has been widely employed by 63 

researchers, including the early ISCCP (International Satellite Cloud Climatology 64 

Project) method (Rossow, 1993) and the proposed threshold methods based on different 65 

spectral features or underlying surfaces (Kegelmeyer,1994; Solvsteen,1995; Baum and 66 

Trepte,1996). However, there is a significant subjectivity in selection of thresholds 67 

whether it is the single and fixed threshold in the early days, multiple thresholds, 68 

dynamic thresholds, or adaptive thresholds. The selection of thresholds is influenced 69 

by season and climate. Surface reflectance varies significantly between different 70 

seasons, such as increased reflectance from snow in winter and vegetation flourishing 71 

in summer affecting reflectance. As a result, changes in surface features during different 72 

seasons lead to variations in the distribution of grayscale values in images, requiring 73 

adjustments to thresholds based on seasonal characteristics. Climate conditions like 74 

cloud cover, atmospheric humidity, etc., impact the distinguishability of clouds and 75 

other features. For instance, in humid or cloudy climates, the reflectance of the surface 76 

and clouds may be similar, necessitating stricter thresholds for differentiation. 77 

Therefore, climate conditions also influence threshold selection. 78 

The other category of cloud detection algorithms is based on statistical probability 79 

theory. For example the principal component discriminant analysis and quadratic 80 
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discriminant analysis methods were used to SEVIRI (Spinning Enhanced Visible and 81 

Infrared Imager) cloud detection (Amato et al., 2008). The cloud detection algorithm 82 

for Thermal Infrared (TIR) sensor was based on the Bayesian theory of total probability 83 

(Merchant et al., 2010) and the naive Bayes algorithm for AGRI (Yan , et al., 2022). 84 

The unsupervised clustering cloud detection algorithms for MERIS (Medium 85 

Resolution Imaging Spectrometer) (GomezChova , et al., 2007) and the fuzzy C-means 86 

clustering algorithms for MODIS (Pan, et al., 2009) all have achieved high accuracy in 87 

cloud detection. 88 

More and more machine learning algorithms are being utilized by researchers in 89 

cloud detection studies with the development of machine learning. For instance, the 90 

probabilistic neural networks, especially radial basis function networks was used for 91 

AVHRR cloud detection (Zhang, et al., 2001). The utilization of convolutional neural 92 

network methods (Chai, et al., 2024) offers important perspectives for cloud detection 93 

research. 94 

Currently, there is limited research literature on cloud detection and cloud fraction 95 

retrieval algorithms for FY-4A/4B AGRI. The operational cloud fraction product of FY-96 

4A AGRI utilized a threshold method with 4 km spatial resolution. Differences in 97 

climatic and environmental factors lead to varying albedo and brightness temperature 98 

observations for the instrument at different times and locations. Therefore, the choice 99 

of thresholds is easily influenced by factors such as season, latitude and land surface 100 

type (Gao and Jing, 2019). Using multiple sets of thresholds for discrimination would 101 

significantly slow down the cloud detection process. Moreover, most algorithms focus 102 

solely on cloud detection, which classified the observed scenes into cloud or clear-sky 103 

without providing the specific cloud fraction information for the scenes. The use of 104 

active remote sensing instruments carried by Cloudsat & Calypso is not influenced by 105 

thresholds when retrieving cloud fraction, enabling a more accurate cloud fraction 106 

retrieval. However, due to Cloudsat & Calypso being polar-orbiting satellites, the cloud 107 
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fraction over the full disk cannot be obtained. Utilizing the Cloudsat & Calypso Level 108 

2 product 2B-CLDCLASS-LIDAR as the reference truth, a random forest model trained 109 

based on FY4A AGRI full disk radiation data can address the shortcomings of threshold 110 

methods and achieve a high accuracy of cloud fraction over the full disk.  111 

In summary, this paper established cloud detection and cloud fraction retrieval 112 

models using a Multi-Layer Perceptron (MLP) and Random Forest (RF), based on FY-113 

4A AGRI full-disk level 1 observed radiance data. The cloud fraction from the CloudSat 114 

& CALIPSO level 2 product 2B-CLDCLASS-LIDAR was used as the label. The results 115 

were compared with the 2B-CLDCLASS-LIDAR product and the official AGRI 116 

operational products for validation. 117 

1 Research Data and Preprocessing  118 

1.1 FY-4A data 119 

FY-4A was successfully launched on December 11, 2016. Starting from May 25, 2017, 120 

FY-4A drifted to a position near the main business location of the Fengyun 121 

geostationary satellite at 104.7 degrees east longitude on the equator. Its successful 122 

launch marked the beginning of a new era for China's next-generation geostationary 123 

meteorological satellites as an advanced comprehensive atmospheric observation 124 

satellite. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main 125 

payloads of the Fengyun-4 series geostationary meteorological satellites, can perform 126 

large-disk scans and rapid regional scans at a minute level. It has 14 observation 127 

channels in total with the main task of acquiring cloud images. The channel parameters 128 

and main uses of AGRI are detailed in Table 1 129 

(https://www.nsmc.org.cn/nsmc/cn/instrument/AGRI.html). The first six visible light 130 

channels have no values at night, meaning that channels with a central wavelength less 131 

than or equal to 2.225μm are unavailable during nighttime. FY-4A AGRI data was 132 

downloaded from the official website of the China national satellite meteorological 133 
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center (http://satellite.nsmc.org.cn), including level-1 full disk radiation observation 134 

data preprocessed through quality control, geolocation and radiation calibration as well 135 

as level-2 cloud fraction product (CFR). The spatial resolution of these data is all 4 km 136 

at nadir and the temporal resolution is 15 minutes. 137 

Table 1 FY-4A AGRI channel parameters 138 

Channel 

Number 
Band Range /μm 

Central 

Wavelength /μm 
Spatial resolution/km Main Applications 

1 0.45 ~ 0.49 0.47 1 clouds, dust, aerosols 

2 0.55 ~ 0.75 0.65 0.5 
clouds, sand dust, 

snow 

3 0.75 ~ 0.90 0.825 1 vegetation 

4 1.36 ~ 1.39 1.375 2 cirrus 

5 1.58 ~ 1.64 1.61 2 clouds、snow 

6 2.10 ~ 2.35 2.225 2 cirrus、aerosols 

7 3.50 ~ 4.00 3.75H 2 
fire point, the intense 

solar reflection signal 

8 3.50 ~ 4.00 3.75L 4 low clouds, fog 

9 5.80 ~ 6.70 6.25 4 
upper-level water 

vapor 

10 6.90 ~ 7.30 7.1 4 mid-level water vapor 

11 8.00 ~ 9.00 8.5 4 
subsurface water 

vapor 

12 
10.30 ~ 

11.30 
10.8 4 

surface and cloud-top 

temperatures 

e 
11.5 0~ 

12.50 
12.0 4 

surface and cloud-top 

temperatures 

14 13.2 ~ 13.8 13.5 4 cloud-top height 

1.2 CloudSat & Calipso Cloud Product 139 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 140 

is a satellite jointly launched by NASA and CNES (the French National Center for 141 

Space Studies) in 2006. It is a member of the A-Train satellite observation system. 142 

CALIPSO is equipped with three payloads, among which CALIOP (the Cloud and 143 

Aerosol Lidar with Orthogonal Polarization) is a primary observational instrument. 144 

Observing with dual wavelengths (532 nm and 1064 nm) CALIOP can provide high-145 

resolution vertical profiles of clouds and aerosols with 30 m vertical resolution. As the 146 

first satellite designed to observe global cloud characteristics in a sun-synchronous orbit 147 

CloudSat is also among NASA's A-Train series satellites. The CPR (Cloud Profile 148 

Radar) installed on it operates at 94 GHz millimeter-wave and is capable of detecting 149 

the vertical structure of clouds and providing vertical profiles of cloud parameters. The 150 
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scanning wavelengths of CPR and CALIOP are different. CALIOP is capable of 151 

observing the top of mid-to-high level clouds, whereas CPR can penetrate optically 152 

thick clouds. Combining the strengths of these two instruments enables the acquisition 153 

of precise and detailed information on cloud layers and cloud fraction. 154 

The joint level 2 product 2B-CLDCLASS-LIDAR is mainly utilizing in this study.   155 

It provides the cloud fraction at different heights with horizontal resolution 2.5 km 156 

(along-track) × 1.4 km (cross-track) through combining the observations from CPR and 157 

CALIOP. Since the two instruments have different spatial domain such as vertical 158 

resolution, spatial resolution and spatial frequency, the spatial domain of the output 159 

products is defined in terms of the spatial grid of the CPR. In the algorithm, the cloud 160 

fraction is calculated using a weighted scheme based on the spatial probability of 161 

overlap between the radar and lidar observations. The calculation of the lidar cloud 162 

fraction within a radar footprint is represented by the equation 1(Mace, G. G., et al, 163 

2007): 164 

𝐶𝑙 =  
∑ 𝑤𝑖𝛿𝑖

# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

∑ 𝑤𝑖
# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

                       (1) 165 

Where: 166 

𝐶𝑙 represents the lidar cloud fraction within a radar footprint. 167 

𝑤𝑖 is the spatial probability of overlap for a particular lidar observation. 168 

𝛿𝑖 indicates the lidar hydrometeor occurrence, where a value of 1 signifies the 169 

presence of hydrometeor and 0 indicates the absence. 170 

i counts the lidar profile in a specific radar observational domain. 171 

This calculation considers the contributions of multiple lidar observations within 172 

a radar resolution volume to determine the cloud fraction within that volume.The 173 

CloudSat product manual (Wang, 2019) can be referred for more detailed information 174 

on 2B-CLDCLASS-LIDAR. The data used is available to download from the ICARE 175 

data and services center (https://www.icare.univ-lille.fr/data-access/data-archive-176 

access/). 177 

https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://www.icare.univ-lille.fr/data-access/data-archive-access/
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1.3 Establishment of Training Data 178 

The crucial aspect of establishing a training data in machine learning algorithms 179 

is how to obtain the cloud fraction values (ground truth) as labels. The error in cloud 180 

fraction retrieved solely from passive remote sensing instruments is significant. Using 181 

active remote sensing data can provide more accurate cloud fraction information in the 182 

vertical direction. Therefore, the spatiotemporally matched 2B-CLDCLASS-LIDAR 183 

cloud fraction are utilized as output labels in this paper. 184 

The FY-4A AGRI and 2B-CLDCLASS-LIDAR data with a spatial difference 185 

between fields of view within 1.5 km and a time difference within 15 minutes are 186 

spatiotemporal matched. To make the 2B-CLDCLASS-LIDAR cloud fraction data 187 

collocated within AGRI pixels more effective, at least two 2B-CLDCLASS-LIDAR 188 

pixels are required within each AGRI field of view. The cloud fraction average of these 189 

pixels is used as the cloud fraction for that AGRI pixel. However, the errors in the 190 

matched dataset are unavoidable. The AGRI scanning method operates from left to right 191 

and top to bottom. Each complete scan of the full disk takes 15 minutes and generates 192 

a dataset. It is impossible to determine the exact moment of a specific point within the 193 

full disk. This limits the time range for matching datasets to within 15 minutes. 194 

However, in areas with higher wind speeds, clouds can move a significant distance 195 

within that 15-minute window. Therefore, errors arising from timing issues cannot be 196 

avoided. 197 

Cloud detection and cloud fraction label generation for 2B-CLDCLASS-LIDAR 198 

are as follows. There may be multiple layers of clouds in each field of view. If there is 199 

at least one layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-LIDAR profile, 200 

then the scene is labeled as overcast with a cloud fraction of 1. If all layers in the profile 201 

are cloud-free, the scene is labeled as clear sky. The scene between the above two 202 

situations is labeled as partly cloudy and the cloud fraction is the average of cloud 203 

fractions at different layers. 204 
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The algorithm includes two steps: the cloud detection is conducted firstly for each 205 

AGRI field of view to identify whether it is clear sky, partly cloudy or overcast within 206 

the observation field. Then the cloud fraction is retrieved for the scene identified as 207 

partly cloudy. So the training data include dataset A used for cloud detection and dataset 208 

B for cloud fraction retrieval.  The input variables in dataset A are the FY-4A AGRI 209 

level-1 radiative observations from 14 channels and the output variable is the 210 

temporally and spatially matched 2B-CLDCLASS-LIDAR cloud detection label. The 211 

output is categorized into three types: overcast, partly cloudy and clear sky with values 212 

1, 2 and 3 respectively. The cloud fraction product from 2B-CLDCLASS-LIDAR 213 

consists of discrete values: 0, 0.16, 0.33, 0.50, 0.66, 0.83, and 1. According to the result 214 

statistics, the cloud fractions of 2B-CLDCLASS-LIDAR pixels within the AGRI field 215 

of view are mostly the same. After averaging, the proportions of cloud fractions of [0.16, 216 

0.33, 0.5, 0.67, 0.83] are extremely high. Therefore, other cloud fraction situations with 217 

extremely small proportions can be ignored. Doing so can also better balance the 218 

training samples. Here, 0 indicates clear sky, values from 0 to 1 represent varying cloud 219 

fractions for partly cloudy conditions, and 1 signifies overcast. To ensure the balance 220 

and representativeness of the samples, the proportions of different cloud fraction 221 

samples in dataset A are set at 5:1:1:1:1:1:5. Regarding the samples for partly cloudy 222 

type in dataset A, the collocated 2B-CLDCLASS-LIDAR cloud fraction products serve 223 

as output labels for cloud fraction retrieval model B. The input of training dataset B 224 

remains the FY-4A AGRI level-1 radiative observations.  225 

Due to the instrument's limited lifespan, only 2B-CLDCLASS-LIDAR data up to 226 

August 2019 can be obtained. The sample time range used in this paper is from August 227 

2018 to July 2019. Five days were randomly selected each month as daytime samples 228 

and five days as nighttime samples. A total of 120 days of time and space matched FY-229 

4A AGRI full-disk observations and 2B-CLDCLASS-LIDAR data were used as 230 

training and testing samples. Among them, 80% of the data was used for training, and 231 
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20% was used for testing. The total number of daytime samples in dataset A is 91,073, 232 

while dataset B contains 30,358 samples. The total number of nighttime samples in 233 

dataset A is 95,493, and dataset B includes 31,831 samples. 234 

Although the model was trained and tested using data from 2018 to 2019, to test 235 

the universality of the algorithm, it was applied to real-time observations from FY-4A 236 

and FY-4B AGRI in 2023. 237 

2 Algorithms 238 

Our preliminary experiments involved multiple algorithms, including LibSvm, 239 

MLP, BP neural network, and Random Forest. These experiments highlighted that, 240 

among the baselines, Random Forest and MLP achieved the highest overall accuracy. 241 

For this reason, we selected them to perform additional experiments. Using RF and 242 

MLP algorithms to train the model with the established sample set, the overall process 243 

is shown in the Figure 1. 244 

 245 
Figure 1: Method workflow. The input consists of 14 channel observation values 246 

for each pixel from FY4A AGRI, and the ground truth labels or outputs are sourced 247 

from the CloudSat&CALIPSO cloud fraction products. The cloud detection 248 

classification model and the cloud fraction retrieval model are established separately. 249 

2.1 Random Forest (RF)  250 

This algorithm integrates multiple trees based on the Bagging idea of ensemble 251 

learning, with the basic element being the decision tree (Breiman, 1999). When building 252 
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a decision tree, N sets of independent and dependent variables are randomly sampled 253 

with replacement from the original training samples to create a new training sample set; 254 

m variables are randomly sampled without replacement from all independent variables, 255 

the dependent variable data is split into two parts using the selected variables, and the 256 

purity of the subsets is calculated for each split method. The variable utilized by the 257 

split method with the highest purity is used to partition the data, completing the decision 258 

at that node. This process of binary splitting continues to grow the decision tree until 259 

stopping criteria are met, completing the construction of a single decision tree. These 260 

steps are repeated Ntree times to build a random forest model consisting of Ntree 261 

decision trees (Breiman, 2001). Random Forest adopts ensemble algorithms, with the 262 

advantage of high accuracy. It can handle both discrete and continuous data, without 263 

the need for normalization, making it more efficient compared to other algorithms. 264 

2.2 Multilayer Perceptron (MLP)  265 

This algorithm consists of a fully connected artificial neural network(Duda, et al., 266 

2001). The classifier/regressor takes feature vectors or tensors as input. The input is 267 

mapped through multiple fully connected hidden layers containing hidden weights, 268 

which produce classifications/regressions at the output layer. A nonlinear activation 269 

function (such as sigmoid or rectified linear unit (ReLU)) is applied in each hidden 270 

layer to facilitate a nonlinear model. For classifiers, the output of the final hidden layer 271 

is combined and passed through a softmax function to generate class predictions. For 272 

the loss function, the cloud detection model is cross-entropy, and the cloud fraction 273 

model is MSE. The model’s weights are trained in a supervised manner using 274 

backpropagation. 275 

2.3 Hyperparameters 276 

In this paper, a total of eight models were established, including daytime/nighttime 277 
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random forest classification/regression models and daytime/nighttime MLP 278 

classification/regression models. For the random forest, we first conducted experiments 279 

using the following Hyperparameters ranges: Trees: [200, 300, 400, 500, 600,700], 280 

minleaf: [1, 2, 5, 10], criterion: [Gini, entropy]. Ultimately, the best selections were: (1) 281 

Daytime RF classification model: Trees=500. (2) Nighttime RF classification model: 282 

Trees=600. (3) Daytime RF regression model: Trees=400. (4) Nighttime RF regression 283 

model: Trees=500. All four models have minleaf=1, criterion=gini. 284 

For the MLP, experiments were conducted using the following hyperparameter 285 

ranges: Number of hidden layers: [2,3,4,5,6,7,8,9], Hidden layer size: [8,16,32,64,128], 286 

Epochs: [30,50,100], Solver hyperparameter: [lbfgs, sgd, adam]. The optimal 287 

parameters found are as follows: (1) MLP classification model for daytime: number of 288 

hidden layers = 5. (2) MLP classification model for nighttime: number of hidden layers 289 

= 5. (3) MLP regression model for daytime: number of hidden layers = 4. (4) MLP 290 

regression model for nighttime: number of hidden layers = 6. All four models have 291 

Hidden layer size = 64, Epochs = 50, solver = adam, BatchSize = 1500, Initial learning 292 

rate = 0.01, Learning rate schedule = piecewise, Factor for dropping the learning rate = 293 

0.1, Number of epochs for dropping the learning rate = 10. 294 

3 Results and Analysis 295 

To assess the accuracy and stability of the retrieval model, two types of validation 296 

methods are utilized. One way involves a direct comparison from images, qualitatively 297 

comparing the model's retrieval results and official cloud fraction products with AGRI 298 

observed cloud images. Another approach uses 2B-CLDCLASS-LIDAR as the ground 299 

truth and introduces five parameters for quantitative comparison: recall, false alarm rate 300 

(FAR), mean error (ME), mean absolute error (MAE), and root mean square error 301 

(RMSE). To evaluate the ability of operational products, RF, and MLP cloud detection 302 

models to distinguish overcast, partly cloudy, and clear sky, the recall is calculated using 303 
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the formula POD=TP/(TP+FN), and the false alarm rate is calculated using the formula 304 

FAR=FP/(TP+FP). Taking the overcast scene as an example, TP represents the number 305 

of correctly identified overcast conditions, FN represents the number of overcast 306 

conditions misidentified as partly cloudy or clear sky, and FP represents the number of 307 

clear sky or partly cloudy conditions misidentified as overcast. When assessing the 308 

accuracy of operational products and cloud fraction models for the cloud fraction 309 

retrieval results of partly cloudy scenes, mean error (ME), mean absolute error (MAE), 310 

and root mean square error (RMSE) are used. 311 

3.1 Objective Analysis of Cloud Fraction Retrievals 312 

First, using the 2B-CLDCLASS-LIDAR cloud fraction product as the ground truth, 313 

we calculated the accuracy of the operational cloud detection products. The results are 314 

shown in columns 3-4 of Table 2. The samples used for this statistic are the same as 315 

those for testing the model below (20% of dataset A). 316 

Based on the cloud detection model trained above, cloud detection experiments 317 

were conducted using the test samples from dataset A. The time-space matched 2B 318 

CLDCLASS-LIDAR cloud fraction product served as the ground truth to assess the 319 

accuracy of cloud detection. The results are shown in columns 5-8 of Table 2. During 320 

the day, the Random Forest model achieved an overall accuracy of 94.2%, while the 321 

MLP model had an overall accuracy of 93.7%. The Random Forest model exhibited 322 

slightly higher recall rates for clear skies, partly cloudy, and overcast conditions 323 

compared to the MLP model, and its FAR was lower as well. Both models performed 324 

poorly in recognizing partly cloudy conditions, as the models tended to classify true 325 

cloud fractions of 0.16 as clear skies and those of 0.83 as overcast. At night, the Random 326 

Forest model achieved an overall accuracy of 89.4%, while the MLP model had an 327 

accuracy of 88.7%. The Random Forest model had higher recall rates for clear skies 328 

and partly cloudy conditions compared to the MLP, while the recall rates for overcast 329 
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conditions were similar for both models. The FAR for the Random Forest model was 330 

lower than that of the MLP. Overall, both the Random Forest and MLP models showed 331 

higher classification accuracy for clear skies, partly cloudy, and overcast conditions 332 

compared to operational products, with the Random Forest model performing better. 333 

Table 2: Recall Rate , FAR of Operational Cloud Detection Products and multiple 334 

models. 335 

 
Sky 

Classification 

Daytime

Product 

Nighttime 

Product 

Daytime 

RF 

Nighttime 

RF 

Daytime 

MLP 

Nighttime 

MLP 

POD 

Clear Sky 0. 6359 0.5781 0.964 0.919 0.959 0.905 

Partly 

cloudy 
0.7174 0.7449 0.914 0.845 0.895 0.808 

Overcast 0.7736 0.7384 0.959 0.919 0.957 0.920 

FAR 

Clear Sky 0.1778 0.0934 0.047 0.102 0.064 0.131 

Partly 

cloudy 
0.1819 0.2117 0.078 0.153 0.085 0.172 

Overcast 0.2499 0.2683 0.038 0.061 0.039 0.063 

 336 

Based on the previous model's assessment of the field of view as partly cloudy, the 337 

cloud fraction in this AGRI field of view is retrieved using the cloud fraction model 338 

established earlier. For model evaluation, both the operational product and the 2B-339 

CLDCLASS-LIDAR cloud fraction product are classified as partly cloudy, with the 340 

matched 2B-CLDCLASS-LIDAR cloud fraction product considered as the ground truth. 341 

The average error, mean absolute error, and root mean square error for both daytime 342 

and nighttime operational products and cloud fraction model retrieval (Table 3) are 343 

calculated. It can be observed that the average errors of both models are close to 0 344 

during both daytime and nighttime. The errors are smaller during the day than at night, 345 

with the RF model exhibiting lower errors than the MLP model. In summary, the errors 346 

of both models are smaller than those of the operational products, and the RF model 347 

performs better in the cloud fraction retrieval task.  348 

Table 3: Errors of Cloud Fraction 349 

 
Daytime 

Product 

Nighttime 

Product 

Daytime 

RF 

Daytime 

MLP 
Nighttime RF 

Nighttime 

MLP 



 

 15 

 

ME 0.1987 0.2121 0.0006 -0.0009 -0.0028 -0.0032 

MAE 0.2279 0.2441 0.1011 0.1053 0.1221 0.1322 

RMSE 0.2776 0.2938 0.1285 0.1332 0.1510 0.1623 

 350 

Based on the experiments mentioned above, the performance of RF in cloud 351 

detection and cloud fraction retrieval slightly outperforms that of MLP. Therefore, 352 

subsequent experiments will utilize the RF algorithm. 353 

3.2 Cloud fraction correction in sun glint regions 354 

Sun glint refers to the bright areas created by the reflection of sunlight to the 355 

sensors of observation systems (satellites or aircrafts). This phenomenon usually occurs 356 

on extensive water surfaces, such as oceans lakes or rivers. This specular reflection of 357 

sunlight will cause an increase in the reflected solar radiation received by onboard 358 

sensors, manifested as an enhancement of white brightness in visible images. The 359 

increase in visible channel observation albedo will affect various subsequent 360 

applications of data, including cloud detection and cloud cover retrieval, etc.  361 

The position of Sun glint area can be determined using the SunGlintAngle value 362 

in the FY-4A GEO file. SunGlintAngle is defined as the angle between the satellite 363 

observation direction or reflected radiation direction and the mirror reflection direction 364 

on a calm surface (horizontal plane). It is generally accepted that the range of 365 

SunGlintAngle < 15° is easily affected by sun glint (Kay S, et al., 2009). The positions 366 

of the SunGlintAngle contour lines at 5 and 15° are marked in Figure 1(a). It can be 367 

observed that the edge of sun glint in Figure 1(a) essentially overlaps with the position 368 

of SunGlintAngle = 15°. Thus, the region where SunGlintAngle < 15° is defined as the 369 

sun glint range in this paper and only the cloud fraction within this range will be 370 
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adjusted in the subsequent correction. 371 

To correct the cloud fraction in the sun-glint areas, we first identified the fields of 372 

view (FOVs) where sun-glint occurred during FY-4A AGRI observations from August 373 

2018 to July 2019, totaling 1,476 FOVs. When matching the sample set of the sun glint 374 

area, two issues need to be explained. 1) Cloud fraction is the average of cloud fractions 375 

of different layers: Among the matched pixels, only one-layer cloud and two-layer 376 

cloud appear. When there are two layers of cloud, there is always one layer with a cloud 377 

fraction of 1. According to the previous description, when there is one layer with a cloud 378 

fraction of 1, this pixel should be regarded as fully cloudy. 2) The average cloud fraction 379 

of at least two CloudSat & CALIPSO pixels is taken as the cloud fraction of the AGRI 380 

pixel: Due to the very small area of the sun glint area, the matching is very difficult. If 381 

at least two CloudSat & CALIPSO pixels within an AGRI pixel are required, this will 382 

make the available sample size very small. Therefore, when making the sample set of 383 

the sun glint area, only one CloudSat & CALIPSO pixel within an AGRI pixel is 384 

required.Due to the above two reasons, the true cloud fraction in the sample is a discrete 385 

value. Subsequently, a direct least squares fitting was conducted between the retrieved 386 

cloud fraction and the collocated 2B-CLDCLASS-LIDAR cloud fraction (ground truth). 387 

The scatter plot is illustrated in Figure 2(b), where x-axis is the 2B-CLDCLASS-388 

LIDAR cloud fraction and y-axis is the model-retrieved cloud fraction. The blue line 389 

represents the curve (namely Eq.2) fitted by the least squares method between the 390 

retrievals and the truths. The thin dash line is the x=y line. It is evident that the retrieved 391 

cloud fraction is generally slightly overestimated.  392 

Taking observations at 04:00 on 5 June 2019 as an example, Figure 2(c) presents 393 

the distribution of SunGlintAngle and the flight trajectory of the Cloudsat&Calypso 394 

satellite. White circles denote the sun glint region with SunGlintAngle < 15° and the 395 

white line represents the satellite flight track. As depicted in the figure, the majority of 396 

Cloudsat&Calypso flight trajectories do not pass through the central position of sun 397 
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glint area but instead traverse locations with larger SunGliantAngle values. The 398 

intensity of sun glint effect decreases with the increase of SunGliantAngle. This 399 

suggests that the true values for spatial and temporal matching mostly do not fall within 400 

the strongest sun glint region. From Figure 2(d), it can be seen that the impact of sun 401 

glint becomes stronger as SunGlintAngle decreasing, which results in a higher 402 

observation albedo. This further leads to the overestimated cloud fraction values in the 403 

retrieval. It is evident that the cloud fraction error is related to the value of 404 

SunGlintAngle and this influence is not considered in Eq. (2). Directly applying 405 

equation (2) to correct the cloud fraction retrievals would result in a too small correction 406 

intensity for the FOVs near the center of sun glint and an excessively large correction 407 

intensity for the FOVs in the Sun-glint edge region (even erroneous clear sky may 408 

appear). Considering this, a correction formula (3)-(4) using SunGlintAngle as weight 409 

is introduced, where 𝑊𝑖 represents the angle weight for a certain pixel i in the sun glint 410 

region, n is the number of pixels within the SunGlintAngle < 15° range, yi is the initial 411 

model retrieval of cloud cover for the field of view i and 𝑥𝑖 is the final corrected cloud 412 

fraction. 413 

𝑥 = (𝑦 − 0.2441)/0.8092                                       (2) 414 

𝑊𝑖 =
𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

1

𝑛
∑ 𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

𝑛
𝑖=0

                                            (3) 415 

𝑥𝑖 = 𝑊𝑖 (
𝑦𝑖−0.2441

0.8092
)                                              (4) 416 

Figure 2(d) shows the distribution of errors with respect to SunGlintAngle, 417 

where the blue dots represent the error distribution corrected using formula 418 

(2), and the orange dots represent the error distribution corrected using 419 

formula (4). It can be seen from Figure 2(d) that after correction by formula 420 

(4), the errors in the smaller range of SunGlintAngle are significantly reduced. 421 
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 423 

Figure 2: (a) albedo image of 0.67μm channel (the circles are the contours of the sun-424 

glint angle), (b) Scatter plot of cloud fraction in sun glint region (The blue line 425 

represents the curve (namely Eq.2) fitted by the least squares method between the 426 

retrievals and the truths.), (c) Distribution of SunGlintAngle and satellite flight track of 427 

CloudSat & Calypso at 4:00 on June 5, 2019, (d) Distribution of cloud fraction retrieval 428 

error with sun-glint angle. 429 

3.3 Algorithm universal applicability testing 430 

Although the retrieval model in this article was built based on data from May 2019 431 

due to the limited lifespan of the instrument, how effective is it in real-time FY-4A 432 

AGRI observations and even subsequent FY-4B AGRI applications? The algorithm's 433 

universal applicability was tested using real-time observations from FY-4A and FY-4B 434 

AGRI in 2023. 435 

Taking the full-disk observation of FY-4A AGRI at 04:00 (UTC, the same below) 436 

on 1 June 2023 as an example, the radiance observations from 14 channels are initially 437 

fed into the random forest cloud detection model to determine the sky classification 438 
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(overcast, partly cloudy or clear sky) in each AGRI field. The random forest cloud 439 

fraction retrieval model is utilized to retrieve the cloud fraction in scenes identified as 440 

partly cloudy. Figure 3(a) is the observed albedo at 0.67 μm, where the circles represent 441 

the contours of the sunglint angle, (b) is the cloud fraction retrievals from random forest 442 

algorithm, (c) is the official operational cloud fraction product and (d) is random forest 443 

cloud fraction retrievals with sun-glint correction. It can be seen from Figure 3 that 444 

many clear-sky scenes are erroneously identified as cloudy by the operational product 445 

and the cloud fraction is generally overestimated with many scenes having a cloud 446 

fraction of 1. The random forest algorithm identifies more regions as clear skies or 447 

partly cloudy than the operational products, matching better with the observations in 448 

the 0.67 μm albedo image. Brighter regions in the visible image correspond to cloud 449 

cover areas and darker areas represent clear sky conditions. The sun glint region in the 450 

central South China Sea (the circled area in Figure 3(a)) is depicted in Figure 3(b), 451 

where the clear-sky scenes over the ocean are misidentified as partly cloudy by random 452 

forest algorithm due to the increase in observed albedo. Although operational product 453 

in this area also suffers from the impact of unremoved sun glint, it identifies more clear-454 

sky scenes and the cloud fraction is relatively low. Thus, it is evident that the random 455 

forest algorithm exhibits significant cloud detection and cloud fraction errors in these 456 

sun glint regions. Correction is necessary for the cloud fraction retrievals in the sun 457 

glint region. 458 

Figure 3(d) shows the cloud fraction distribution after correction using equation 459 

(9) in the sun glint region., The correction eliminates the influence of sun glint 460 

comparing to the cloud fraction in sun glint area before correction in Figure 3(b). The 461 

scenes misjudged as partly cloudy are corrected to clear sky and match well with the 462 

actual albedo observations in 3(a), which accurately restores the true cloud coverage 463 

over the South China Sea. 464 
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 465 

466 

Figure 3: FY-4A AGRI at 04:00 on 1 June 2023 (a) albedo image of 0.67μm channel 467 

(the circles are the contours of the sun-glint angle), (b) random forest cloud fraction 468 

retrieval without sun-glint correction, (c) operational cloud fraction product, (d) random 469 

forest cloud fraction retrieval with sun-glint correction. 470 

Statistical analysis was conducted on the correction effect using samples with sun 471 

glint in the training data. The POD and FAR in sun glint area is listed in table 5 and the 472 

error is in table 6. It can be seen that after correcting for cloud fraction, the POD for 473 

clear skies has increased from 0.0987 to 0.9023. The FAR for partly cloudy has 474 

decreased from 0.7943 to 0.0276. Both ME, MAE, and RMSE show significant 475 

reductions, and the results after correction outperform operational products. 476 

Table 5 POD and FAR of Cloud Detection in sun glint area 477 

 Sky 

Classification 

Operational 

Product 
RF  

RF after 

Correction 
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POD 

Clear Sky 0.4120 0.0987 0.9023 

Partly cloudy 0.7371 0.9663 0.9587 

Overcast 0.8856 0.9845 0.9845 

FAR 

Clear Sky 0.1229 0.1633 0.0938 

Partly cloudy 0.3332 0.7943 0.0276 

Overcast 0.2983 0.1321 0.1321 

 478 

Table 6 cloud fraction Errors in sun glint area 479 

 Operational Product RF Retrievals 
RF after 

Correction 

ME 0.2354 0.1741 0.0670 

MAE 0.2511 0.1820 0.0849 

RMSE 0.2771 0.2166 0.1041 

FY-4B launched in 2021 has a total of 15 channels with an additional low-level 480 

water vapor channel at 7.42 μm compared to FY-4A. Taking the full-disk observation 481 

of FY-4B AGRI at 17:00 on April 18, 2023, as an example, The radiance observation 482 

data of the remaining eight channels (near-infrared and infrared channels) except for 483 

the 7.42 μm channel and the visible light channels were input into the random forest 484 

cloud detection model. Figure 4 (a) shows the brightness temperature distribution 485 

observed in the 10.8 μm channel of FY-4B AGRI, (b) represents the operational cloud 486 

fraction product for FY-4B AGRI and (c) shows the cloud fraction retrieved by this 487 

algorithm. Figure 4 illustrates that the random forest algorithm identifies more regions 488 

as clear skies or partly cloudy than the operational products, aligning better with the 489 

brightness temperature observations in 10.8 μm. Especially in high latitude regions of 490 

the southern hemisphere and areas with strong convection near the equator, the cloud 491 

cover provided by operational products is too high and even misjudged. It can be seen 492 

that the random forest algorithm is also suitable for cloud fraction retrieval of FY-4B 493 

AGRI.  494 
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 495 

Figure 4: FY-4B AGRI at 17:00 on 18 April 2023, (a) brightness temperature of 10.8μm 496 

channel, (b) operational cloud fraction product, (c) random forest cloud fraction 497 

retrieval. 498 

4 Conclusion 499 

This paper used the random forest and multi-layer perceptron (MLP) algorithms 500 

to retrieve cloud fraction from FY-4A AGRI full-disk Level-1 radiance observation data, 501 

and verified the accuracy of the algorithms using the Cloudsat & Calypso active remote 502 

sensing satellite's 2B CLDCLASS-LIDAR cloud fraction product. The following 503 

conclusions were drawn: 504 

(1) The random forest and MLP algorithms performed well in cloud detection and 505 

cloud fraction retrieval tasks, and their accuracy was higher than that of operational 506 

products. The accuracy of cloud detection can reach over 93%, and the error of cloud 507 

fraction retrieval is close to zero. Compared with the MLP algorithm, the RF algorithm 508 

has a slightly higher accuracy in cloud detection, and a slightly lower error in cloud 509 

fraction retrieval, showing better performance. 510 

(2) At night, the classification accuracy is lower than during the day due to the lack 511 

of observations in the visible channel of AGRI, resulting in higher cloud fraction errors 512 

at night. 513 

(3) The accuracy of identifying partly cloudy scenes is lower than that of 514 

identifying clear sky and overcast scenes for both RF and MLP algorithms. Scenes with 515 

very low cloud fraction (0.16) are often misclassified as clear sky, while scenes with 516 

high cloud fraction (0.83) are often misclassified as overcast. 517 
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(4) The sun-glint area cloud fraction correction curve, fitted with SunGlintAngle 518 

as the weight, greatly improves the accuracy of cloud fraction retrieval and reduces the 519 

misclassification rate of clear sky scenes as partly cloudy or partly cloudy scenes as 520 

overcast due to increased reflectance. 521 
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