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Abstract 9 

Cloud fraction as a vital component of meteorological satellite products plays an 10 

essential role in environmental monitoring, disaster detection, climate analysis, and 11 

other research areas. A random forest machine learning algorithm is used in this paper 12 

to retrieve the cloud fraction of AGRI (Advanced Geosynchronous Radiation Imager) 13 

onboard FY-4A satellite based on its full-disc level-1 radiance observation. Corrections 14 

has been made subsequently to the retrieved cloud fraction in areas where solar glint 15 

occurs using a correction curve fitted with sun-glint angle as weight. The algorithm 16 

includes two steps: the cloud detection is conducted firstly for each AGRI field of view 17 

to identify whether it is clear sky, partly cloudy or overcast within the observation field. 18 

Then the cloud fraction is retrieved for the scene identified as partly cloudy. The 2B-19 

CLDCLASS-LIDAR cloud fraction product from Cloudsat& CALIPSO active remote 20 

sensing satellite is employed as the truth to assess the accuracy of the retrieval algorithm. 21 
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Comparison with the operational AGRI level 2 cloud fraction product is also conducted 22 

at the same time. During daytime, the probability of detection (POD) for clear sky, 23 

partly cloudy, and overcast scenes in the operational cloud detection product were 24 

0.5359, 0.7041, and 0.7826, respectively. The POD for cloud detection using the 25 

random forest algorithm were 0.6984, 0.8971, and 0.8613. While the operational 26 

product often misclassified clear sky scenes as cloudy, the random forest algorithm 27 

improved the discrimination of clear sky scenes. For partly cloudy scenes, the mean 28 

error (ME) and root-mean-square error (RMSE) of the operational product were 0.2374 29 

and 0.3269. The random forest algorithm exhibited lower ME (0.1457) and RMSE 30 

(0.2022) than the operational product. The large reflectance in the sun-glint region 31 

resulted in significant cloud fraction retrieval errors using the random forest algorithm. 32 

However, after applying the correction, the accuracy of cloud cover retrieval in this 33 

region gets greatly improved. During nighttime, the random forest model demonstrated 34 

improved POD for clear sky and partly cloudy scenes compared to the operational 35 

product, while maintaining a similar POD value for overcast scenes and a lower FAR. 36 

For partly cloudy scenes at night, the operational product exhibited a positive mean 37 

error, indicating an overestimation of cloud cover, whereas the random forest model 38 

showed a negative mean error, indicating an underestimation of cloud cover. The 39 

random forest model also exhibited a lower RMSE compared to the operational product. 40 

Key words: Cloud detection, cloud fraction, FY-4A AGRI, Random Forest.  41 
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Introduction 42 

 Clouds occupy a significant proportion within satellite remote sensing data 43 

acquired for Earth observation. According to the statistics from the International 44 

Satellite Cloud Climatology Project (ISCCP), the annual average global cloud coverage 45 

within satellite remote sensing data is around 66% with even higher cloud coverage in 46 

specific regions (such as the tropics) (Zhang, et al., 2004). The impact of clouds on the 47 

radiation balance of the Earth's atmospheric system is influenced by the optical 48 

properties of clouds. Cloud detection, as a vital component of remote sensing image 49 

data processing, is considered a critical step for the subsequent identification, analysis, 50 

and interpretation of remote sensing images. Therefore, accurately determining cloud 51 

coverage is essential in various research domains, such as environmental monitoring, 52 

disaster surveillance and climate analysis. 53 

Fengyun-4A (FY-4A) is a comprehensive atmospheric observation satellite 54 

launched by China in 2016. The uploaded AGRI (Advanced Geosynchronous Radiation 55 

Imager) has 14 channels and captures full-disk observation every 15 minutes. In 56 

addition to observing clouds, water vapor, vegetation and the Earth's surface, it also 57 

possesses the capability to capture aerosols and snow. Moreover, it can clearly 58 

distinguish different phases and particle size of clouds and obtain high- to mid-level 59 

water vapor content. It is particularly suitable for cloud detection due to its 60 

simultaneous use of visible, near-infrared, and long-wave infrared channels for 61 
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observation with 4km spatial resolution. 62 

Numerous cloud detection algorithms have been provided based on observations 63 

from satellite-borne imagers. The threshold method has been widely employed by 64 

researchers, including the early ISCCP (International Satellite Cloud Climatology 65 

Project) method (Rossow, 1993) and the proposed threshold methods based on different 66 

spectral features or underlying surfaces(Kegelmeyer,1994; Solvsteen,1995; Baum and 67 

Trepte,1996). However, there is a significant subjectivity in selection of thresholds 68 

whether it is the single and fixed threshold in the early days, multiple thresholds, 69 

dynamic thresholds, or adaptive thresholds. The selection of thresholds is influenced 70 

by season and climate. Surface reflectance varies significantly between different 71 

seasons, such as increased reflectance from snow in winter and vegetation flourishing 72 

in summer affecting reflectance. As a result, changes in surface features during different 73 

seasons lead to variations in the distribution of grayscale values in images, requiring 74 

adjustments to thresholds based on seasonal characteristics. Climate conditions like 75 

cloud cover, atmospheric humidity, etc., impact the distinguishability of clouds and 76 

other features. For instance, in humid or cloudy climates, the reflectance of the surface 77 

and clouds may be similar, necessitating stricter thresholds for differentiation. 78 

Therefore, climate conditions also influence threshold selection. 79 

The other category of cloud detection algorithms is based on statistical probability 80 

theory. For example the principal component discriminant analysis and quadratic 81 

discriminant analysis methods were used to SEVIRI (Spinning Enhanced Visible and 82 
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Infrared Imager) cloud detection (Amato et al., 2008). The cloud detection algorithm 83 

for Thermal Infrared (TIR) sensor was based on the Bayesian theory of total probability 84 

(Merchant et al., 2010) and the naive Bayes algorithm for AGRI (Qu , et al., 2022). The 85 

unsupervised clustering cloud detection algorithms for MERIS (Medium Resolution 86 

Imaging Spectrometer) (GomezChova , et al., 2007) and the fuzzy C-means clustering 87 

algorithms for MODIS (Pan, et al., 2009) all have achieved high accuracy in cloud 88 

detection. 89 

More and more machine learning algorithms are being utilized by researchers in 90 

cloud detection studies with the development of machine learning. For instance, the 91 

probabilistic neural networks, especially radial basis function networks was used for 92 

AVHRR cloud detection (Zhang, et al., 2001). The utilization of convolutional neural 93 

network methods (Hu, et al., 2020) offers important perspectives for cloud detection 94 

research. 95 

Currently, there is limited research literature on cloud detection and cloud fraction 96 

retrieval algorithms for FY-4A/4B AGRI. The operational cloud fraction product of FY-97 

4A AGRI utilized a threshold method with 4 km spatial resolution. Differences in 98 

climatic and environmental factors lead to varying albedo and brightness temperature 99 

observations for the instrument at different times and locations. Therefore, the choice 100 

of thresholds is easily influenced by factors such as season, latitude and land surface 101 

type (Gao and Jing, 2019). Using multiple sets of thresholds for discrimination would 102 

significantly slow down the cloud detection process. Moreover, most algorithms focus 103 



 

 6 

 

solely on cloud detection, which classified the observed scenes into cloud or clear-sky 104 

without providing the specific cloud fraction information for the scenes. The use of 105 

active remote sensing instruments carried by Cloudsat & Calypso is not influenced by 106 

thresholds when retrieving cloud fraction, enabling a more accurate cloud fraction 107 

retrieval. However, due to Cloudsat & Calypso being polar-orbiting satellites, the cloud 108 

fraction over the full disk cannot be obtained. Utilizing the Cloudsat & Calypso Level 109 

2 product 2B-CLDCLASS-LIDAR as the reference truth, a random forest model trained 110 

based on FY4A AGRI full disk radiation data can address the shortcomings of threshold 111 

methods and achieve a high accuracy of cloud fraction over the full disk. Moreover, the 112 

parallel processing during training, randomness in feature selection, and random 113 

sampling of samples in random forest make it have a faster training speed compared to 114 

other algorithms with similar performance.  115 

In summary, a random forest machine learning algorithm for cloud fraction 116 

retrieval was established using level-1 radiation observations from FY-4A AGRI full-117 

disk scanning in this paper. The cloud fraction of the level-2 product 2B-CLDCLASS-118 

LIDAR from Cloudsat&CALIPSO was used as the reference label. The retrievals were 119 

compared against with the cloud fraction of 2B-CLDCLASS-LIDAR and the AGRI 120 

operational products to verify the algorithm accuracy. 121 
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1 Research Data and Preprocessing  122 

1.1 FY-4A data 123 

FY-4A was successfully launched on December 11, 2016. Starting from May 25, 2017, 124 

FY-4A drifted to a position near the main business location of the Fengyun 125 

geostationary satellite at 104.7 degrees east longitude on the equator. Its successful 126 

launch marked the beginning of a new era for China's next-generation geostationary 127 

meteorological satellites as an advanced comprehensive atmospheric observation 128 

satellite. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main 129 

payloads of the Fengyun-4 series geostationary meteorological satellites, can perform 130 

large-disk scans and rapid regional scans at a minute level. It has 14 observation 131 

channels in total with the main task of acquiring cloud images. The channel parameters 132 

and main uses of AGRI are detailed in Table 1 133 

(https://www.nsmc.org.cn/nsmc/cn/instrument/AGRI.html). FY-4A AGRI data was 134 

downloaded from the official website of the China national satellite meteorological 135 

center (http://satellite.nsmc.org.cn), including level-1 full disk radiation observation 136 

data preprocessed through quality control, geolocation and radiation calibration as well 137 

as level-2 cloud fraction product (CFR). The spatial resolution of these data is all 4 km 138 

at nadir and the temporal resolution is 15 minutes. 139 

Table 1 FY-4A AGRI channel parameters 140 

Channel 

Number 
Band Range /μm 

Central 

Wavelength /μm 
Spatial resolution/km Main Applications 

1 0.45 ~ 0.49 0.47 1 clouds, dust, aerosols 
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2 0.55 ~ 0.75 0.65 0.5 
clouds, sand dust, 

snow 

3 0.75 ~ 0.90 0.825 1 vegetation 

4 1.36 ~ 1.39 1.375 2 cirrus 

5 1.58 ~ 1.64 1.61 2 clouds、snow 

6 2.10 ~ 2.35 2.225 2 cirrus、aerosols 

7 3.50 ~ 4.00 3.75H 2 
fire point, the intense 

solar reflection signal 

8 3.50 ~ 4.00 3.75L 4 low clouds, fog 

9 5.80 ~ 6.70 6.25 4 
upper-level water 

vapor 

10 6.90 ~ 7.30 7.1 4 mid-level water vapor 

11 8.00 ~ 9.00 8.5 4 
subsurface water 

vapor 

12 
10.30 ~ 

11.30 
10.8 4 

surface and cloud-top 

temperatures 

13 
11.5 0~ 

12.50 
12.0 4 

surface and cloud-top 

temperatures 

14 13.2 ~ 13.8 13.5 4 cloud-top height 

 141 

1.2 CloudSat & Calipso Cloud Product 142 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 143 

is a satellite jointly launched by NASA and CNES (the French National Center for 144 

Space Studies) in 2006. It is a member of the A-Train satellite observation system. 145 

CALIPSO is equipped with three payloads, among which CALIOP (the Cloud and 146 

Aerosol Lidar with Orthogonal Polarization) is a primary observational instrument. 147 

Observing with dual wavelengths (532 nm and 1064 nm) CALIOP can provide high-148 

resolution vertical profiles of clouds and aerosols with 30 m vertical resolution. As the 149 

first satellite designed to observe global cloud characteristics in a sun-synchronous orbit 150 

CloudSat is also among NASA's A-Train series satellites. The CPR (Cloud Profile 151 

Radar) installed on it operates at 94 GHz millimeter-wave and is capable of detecting 152 
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the vertical structure of clouds and providing vertical profiles of cloud parameters. The 153 

scanning wavelengths of CPR and CALIOP are different. CALIOP is capable of 154 

observing the top of mid-to-high level clouds, whereas CPR can penetrate optically 155 

thick clouds. Combining the strengths of these two instruments enables the acquisition 156 

of precise and detailed information on cloud layers and cloud fraction. 157 

The joint level 2 product 2B-CLDCLASS-LIDAR is mainly utilizing in this study.   158 

It provides the cloud fraction at different heights with horizontal resolution 2.5 km 159 

(along-track) × 1.4 km (cross-track) through combining the observations from CPR and 160 

CALIOP. Since the two instruments have different spatial domain such as vertical 161 

resolution, spatial resolution and spatial frequency, the spatial domain of the output 162 

products is defined in terms of the spatial grid of the CPR. In the algorithm, the cloud 163 

fraction is calculated using a weighted scheme based on the spatial probability of 164 

overlap between the radar and lidar observations. The calculation of the lidar cloud 165 

fraction within a radar footprint is represented by the equation 1(Mace, G. G., et al, 166 

2007): 167 

𝐶𝑙 =  
∑ 𝑤𝑖𝛿𝑖

# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

∑ 𝑤𝑖
# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

                       (1) 168 

Where: 169 

𝐶𝑙 represents the lidar cloud fraction within a radar footprint. 170 

𝑤𝑖 is the spatial probability of overlap for a particular lidar observation. 171 

𝛿𝑖 indicates the lidar hydrometeor occurrence, where a value of 1 signifies the 172 

presence of hydrometeor and 0 indicates the absence. 173 
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i counts the lidar profile in a specific radar observational domain. 174 

This calculation considers the contributions of multiple lidar observations within 175 

a radar resolution volume to determine the cloud fraction within that volume.The 176 

CloudSat product manual (Wang, 2019) can be referred for more detailed information 177 

on 2B-CLDCLASS-LIDAR. The data used is available to download from the ICARE 178 

data and services center (https://www.icare.univ-lille.fr/data-access/data-archive-179 

access/). 180 

1.3 Establishment of Training Data 181 

The crucial aspect of establishing a training data in machine learning algorithms 182 

is how to obtain the cloud fraction values (ground truth) as labels. The error in cloud 183 

fraction retrieved solely from passive remote sensing instruments is significant. Using 184 

active remote sensing data can provide more accurate cloud fraction information in the 185 

vertical direction. Therefore, the spatiotemporally matched 2B-CLDCLASS-LIDAR 186 

cloud fraction are utilized as output labels in this paper. 187 

The FY-4A AGRI and 2B-CLDCLASS-LIDAR data with a spatial difference 188 

between fields of view within 1.5 km and a time difference within 15 minutes are 189 

spatiotemporal matched. To make the 2B-CLDCLASS-LIDAR cloud fraction data 190 

collocated within AGRI pixels more effective, at least two 2B-CLDCLASS-LIDAR 191 

pixels are required within each AGRI field of view. The cloud fraction average of these 192 

pixels is used as the cloud fraction for that AGRI pixel. 193 

https://www.icare.univ-lille.fr/data-access/data-archive-access/
https://www.icare.univ-lille.fr/data-access/data-archive-access/
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Cloud detection and cloud fraction label generation for 2B-CLDCLASS-LIDAR 194 

are as follows. There may be multiple layers of clouds in each field of view. If there is 195 

at least one layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-LIDAR profile, 196 

then the scene is labeled as overcast with a cloud fraction of 1. If all layers in the profile 197 

are cloud-free, the scene is labeled as clear sky. The scene between the above two 198 

situations is labeled as partly cloudy and the cloud fraction is the average of cloud 199 

fractions at different layers. 200 

The algorithm includes two steps: the cloud detection is conducted firstly for each 201 

AGRI field of view to identify whether it is clear sky, partly cloudy or overcast within 202 

the observation field. Then the cloud fraction is retrieved for the scene identified as 203 

partly cloudy. So the training data include A dataset used for cloud detection and B 204 

dataset for cloud fraction retrieval.  The input variables in A dataset are the FY-4A 205 

AGRI level-1 radiative observations from 14 channels and the output variable is the 206 

temporally and spatially matched 2B-CLDCLASS-LIDAR cloud detection label. The 207 

output is categorized into three types: overcast, partly cloudy and clear sky with values 208 

1, 2 and 3 respectively. To ensure diversity and representativeness of the samples, the 209 

three conditions of overcast, partly cloudy, and clear sky each account for one-third of 210 

the sample size in dataset A. Regarding the samples for partly cloudy type in dataset A, 211 

the collocated 2B-CLDCLASS-LIDAR cloud fraction products serve as output labels 212 

for cloud fraction retrieval model B. The input of training dataset B remains the FY-4A 213 

AGRI level-1 radiative observations.  214 
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Due to the instrument's limited lifespan, only 2B-CLDCLASS-LIDAR data up to 215 

August 2019 can be obtained. Additionally, the latitude range for a single observation 216 

of FY-4A AGRI is -83.3~83.3. Within this latitude range, data from different seasons, 217 

climates, and surface types are included. In the training samples matched in space-time 218 

with 2B-CLDCLASS-LIDAR, seasons and climates vary with latitude. Therefore, there 219 

is no need to include data from a larger time range as training samples. The FY-4A 220 

AGRI observations and 2B-CLDLASS-LIDAR matched in time and space in May 2019 221 

are used as training samples to build the algorithm model. The paired samples of whole 222 

June 2019 are served as the testing samples to assess the model's retrieval accuracy. The 223 

number of training samples in May are 12,420 for dataset A and 4140 for B. Testing 224 

samples in June are 15,459 for A and 5,153 for B. 225 

Although the retrieval model was trained and tested using 2019 data, the algorithm 226 

was also applied to real-time observations of FY-4A and FY-4B AGRI in 2023 to verify 227 

its universality. 228 

 229 

2. Random Forest Algorithm 230 

The random forest algorithm integrates multiple trees based on the Bagging idea 231 

of ensemble learning, with the basic element being the decision tree (Breiman, 1999). 232 

When building a decision tree, N sets of independent and dependent variables are 233 
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randomly sampled with replacement from the original training samples to create a new 234 

training sample set; m variables are randomly sampled without replacement from all 235 

independent variables, the dependent variable data is split into two parts using the 236 

selected variables, and the purity of the subsets is calculated for each split method. The 237 

variable utilized by the split method with the highest purity is used to partition the data, 238 

completing the decision at that node. This process of binary splitting continues to grow 239 

the decision tree until stopping criteria are met, completing the construction of a single 240 

decision tree. These steps are repeated Ntree times to build a random forest model 241 

consisting of Ntree decision trees (Quesada-Ruiz et al., 2022). Random Forest adopts 242 

ensemble algorithms, with the advantage of high accuracy. It can handle both discrete 243 

and continuous data, without the need for normalization, making it more efficient 244 

compared to other algorithms. 245 

In this study, when using the trained model for prediction, observations from 14 246 

channels are inputted into the model. Each decision tree independently predicts the 247 

outcome, with a majority vote determining the final classification category of overcast, 248 

partly cloudy, or clear sky. For regression tree models, the average of all tree outputs is 249 

taken as the final output, representing the specific cloud fraction.  250 

Two crucial parameters in the random forest model are the node splitting 251 

frequency Mtry and the number of decision trees Ntree, which directly impact the 252 

model's performance. A high Mtry value can increase model complexity, leading to 253 

overfitting; conversely, a low Mtry can result in a model that is too simple and underfits 254 
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the data. A small Ntree value can result in underfitting, while a large Ntree significantly 255 

increases computational load, with minimal performance improvement beyond a 256 

certain threshold. Typically, setting Mtry to √M, where M represents the number of 257 

input variables, results in the lowest model error. For daytime models, M is 14, while 258 

for nighttime, it is 8. Mtry is set at 3 for daytime cloud detection and cloud fraction 259 

retrieval models, and at 2 for nighttime models. When determining the size of Ntree, it 260 

is necessary to do so through cross-validation. The dataset is divided into training and 261 

validation sets, using a different number of trees in each training iteration, and then 262 

evaluating the model's performance on the validation set. The best number of trees is 263 

selected by comparing the performance of the model with different numbers of trees. 264 

Both daytime and nighttime cloud detection models are configured with Ntree set to 265 

380, while cloud fraction retrieval models have Ntree set to 300 for both daytime and 266 

nighttime scenarios. 267 

3. Results and Analysis 268 

To assess the accuracy and stability of the retrieval model, two types of validation 269 

methods are utilized. One way involves a direct comparison from images, qualitatively 270 

comparing the model's retrieval results and official cloud fraction products with AGRI 271 

observed cloud images. Another way is quantitative comparison using 2B-272 

CLDCLASS-LIDAR as the true value. Four quantitative parameters, including 273 
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possibility of detection (POD), alse alarm rate (FAR), mean error (ME), and root mean 274 

square error (RMSE) are introduced. The POD is calculated using the formula 275 

POD=TP/(TP+FN), and the FAR is calculated using the formula FAR=FP/(TP+FP). 276 

Taking the covercast scenes as an example, TP represents the number of correctly 277 

identified overcast, FN represents the number of overcast scenes wrongly identified as 278 

partly cloudy or clear sky, and FP represents the number of clear sky or partly cloudy 279 

scenes wrongly identified as overcast. The ME (mean error) and RMSE (root mean 280 

square error) are utilized to assess the accuracy of the random forest cloud fraction 281 

model in retrieving cloud fractions for partly cloudy scenes. 282 

3.1 Objective Analysis of Cloud Fraction Retrievals 283 

The test samples from dataset A (i.e., June data) are used to perform cloud 284 

detection experiments based on the cloud detection model mentioned above. The 285 

temporally and spatially matched 2B CLDCLASS-LIDAR cloud mask products are 286 

used as reference to evaluate the accuracy of cloud detection. The POD and FAR for 287 

different view field classifications are shown in Table 2. Columns 2 and 4 represent the 288 

operational cloud detection products for daytime and nighttime respectively, for the 289 

same time and pixel. Columns 3 and 5 represent the random forest cloud detection 290 

results for daytime and nighttime respectively. The table indicates that during daytime, 291 

operational cloud detection products have a relatively low possibility of detection for 292 

clear sky view fields. However, the random forest model increases the possibility of 293 
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detection for clear sky from 0.54 to 0.70. Moreover, for partly cloudy and overcast view 294 

fields, the POD is higher than operational cloud detection products. During nighttime, 295 

compared to operational cloud detection products, the random forest model increases 296 

the POD for clear sky from 0.51 to 0.67, with higher POD for partly cloudy view fields 297 

compared to the operational products, while the POD for overcast view fields is lower. 298 

During the day, the Operational product has a lower FAR for clear sky compared to the 299 

random forest model, while the random forest model has a lower FAR for partly cloudy 300 

and overcast conditions compared to the operational product. At night, the random 301 

forest model significantly reduces the FAR for overcast conditions compared to the 302 

Operational product. 303 

Table 2 POD and FAR of Cloud Detection 304 

 

Sky 

Classificatio

n 

Daytime 

Operational 

Product 

Daytime 

RF Results 

Nighttime 

Operational 

Product 

Nighttime 

RF Results 

PO

D 

Clear Sky 0. 5359 0.6984 0.5136 0.6733 

Partly 

cloudy 
0.7041 0.8971 0.6957 0.7438 

Overcast 0.7826 0.8613 0.7984 0.7979 

FAR 

Clear Sky 0.2174 0.2431 0.1789 0.2016 

Partly 

cloudy 
0.2959 0.1754 0.3107 0.2847 

Overcast 0.4641 0.2766 0.5543 0.3331 

 305 

For the field identified as partly cloudy by the previous model, the random forest 306 

cloud fraction model established in the preceding text is used to retrieve the cloud 307 

fraction in the AGRI field. For samples classified as partly cloudy by the model, and 308 
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operational products, and 2B-CLDCLASS-LIDAR cloud fraction products, the mean 309 

error and root mean square error (RMSE) of the cloud fraction retrieval were calculated 310 

based on the matched 2B-CLDCLASS-LIDAR cloud fraction product as ground truth, 311 

separately for daytime and nighttime operational cloud fraction products (columns 2 312 

and 4) and the random forest- retrieved cloud fraction (columns 3 and 5), as shown in 313 

Table 3. It can be observed that during daytime, compared to the FY-4A operational 314 

cloud fraction product, the random forest cloud fraction retrieval model shows 315 

significant improvement in both ME and RMSE. The ME decreases from 0.23 to 0.11, 316 

and the RMSE decreases from 0.32 to 0.15, indicating that the random forest cloud 317 

fraction retrieval model provides more accurate estimates of cloud fraction. For 318 

nighttime, the ME of the operational cloud fraction product is positive, indicating an 319 

overall overestimation of cloud fraction. In contrast, the ME of the random forest model 320 

is negative, indicating an overall underestimation of cloud fraction. The RMSE of the 321 

random forest model retrieval results during nighttime is lower than that of the 322 

operational cloud fraction product. 323 

Table 3 Errors in cloud fraction retrieval 324 

 
Daytime 

Operational 

Product 

Daytime RF 

Results 

Nighttime 

Operational 

Product 

Nighttime RF 

Results 

ME 0.2374 0.1457 0.2488 -0.1984 

RMSE 0.3269 0.2022 0.3374 0.2434 
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3.2 Cloud fraction correction in sun glint regions 325 

Sun glint refers to the bright areas created by the reflection of sunlight to the 326 

sensors of observation systems (satellites or aircrafts). This phenomenon usually occurs 327 

on extensive water surfaces, such as oceans lakes or rivers. This specular reflection of 328 

sunlight will cause an increase in the reflected solar radiation received by onboard 329 

sensors, manifested as an enhancement of white brightness in visible images. The 330 

increase in visible channel observation albedo will affect various subsequent 331 

applications of data, including cloud detection and cloud cover retrieval, etc.  332 

The position of Sun glint area can be determined using the SunGlintAngle value 333 

in the FY-4A GEO file. SunGlintAngle is defined as the angle between the satellite 334 

observation direction or reflected radiation direction and the mirror reflection direction 335 

on a calm surface (horizontal plane). It is generally accepted that the range of 336 

SunGlintAngle < 15° is easily affected by sun glint (Kay S, et al., 2009). The positions 337 

of the SunGlintAngle contour lines at 5 and 15° are marked in Figure 1(a). It can be 338 

observed that the edge of sun glint in Figure 1(a) essentially overlaps with the position 339 

of SunGlintAngle = 15°. Thus, the region where SunGlintAngle < 15° is defined as the 340 

sun glint range in this paper and only the cloud fraction within this range will be 341 

adjusted in the subsequent correction. 342 

To correct the cloud fraction in the sun glint region, we initially identified 672 343 

fields of view where sun glint occurred in the FY-4A AGRI observations between 1 344 
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June and 31 July 2019.  Subsequently, a direct least squares fitting was conducted 345 

between the retrieved cloud fraction and the collocated 2B-CLDCLASS-LIDAR cloud 346 

fraction (ground truth). The scatter plot is illustrated in Figure 1(b), where x-axis is the 347 

2B-CLDCLASS-LIDAR cloud fraction and y-axis is the model-retrieved cloud fraction. 348 

The blue line represents the curve (namely Eq.2) fitted by the least squares method 349 

between the retrievals and the truths. The thin dash line is the x=y line. It is evident that 350 

the retrieved cloud fraction is generally slightly overestimated.  351 

Taking observations at 04:00 on 5 June 2019 as an example, Figure 1(c) presents 352 

the distribution of SunGlintAngle and the flight trajectory of the Cloudsat&Calypso 353 

satellite. White circles denote the sun glint region with SunGlintAngle < 15° and the 354 

white line represents the satellite flight track. As depicted in the figure, the majority of 355 

Cloudsat&Calypso flight trajectories do not pass through the central position of sun 356 

glint area but instead traverse locations with larger SunGliantAngle values. The 357 

intensity of sun glint effect decreases with the increase of SunGliantAngle. This 358 

suggests that the true values for spatial and temporal matching mostly do not fall within 359 

the strongest sun glint region. From Figure 1(d), it can be seen that the impact of sun 360 

glint becomes stronger as SunGlintAngle decreasing, which results in a higher 361 

observation albedo. This further leads to the overestimated cloud fraction values in the 362 

retrieval. It is evident that the cloud fraction error is related to the value of 363 

SunGlintAngle and this influence is not considered in Eq. (2). Directly applying 364 

equation (2) to correct the cloud fraction retrievals would result in a too small correction 365 
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intensity for the FOVs near the center of sun glint and an excessively large correction 366 

intensity for the FOVs in the Sun-glint edge region (even erroneous clear sky may 367 

appear). Considering this, a correction formula (3)-(4) using SunGlintAngle as weight 368 

is introduced, where 𝑊𝑖 represents the angle weight for a certain pixel i in the sun glint 369 

region, n is the number of pixels within the SunGlintAngle < 15° range, yi is the initial 370 

model retrieval of cloud cover for the field of view i and 𝑥𝑖 is the final corrected cloud 371 

fraction. 372 

𝑥 = (𝑦 − 0.2744)/0.8342                                       (2) 373 

𝑊𝑖 =
𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

1

𝑛
∑ 𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

𝑛
𝑖=0

                                            (3) 374 

𝑥𝑖 = 𝑊𝑖 (
𝑦𝑖−0.2744

0.8342
)                                              (4) 375 

Figure 1(d) shows the distribution of errors with respect to SunGlintAngle, 376 

where the blue dots represent the error distribution corrected using formula 377 

(2), and the orange dots represent the error distribution corrected using 378 

formula (4). It can be seen from Figure 1(d) that after correction by formula 379 

(4), the errors in the smaller range of SunGlintAngle are significantly reduced. 380 

381 
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 382 

Figure 1 (a) albedo image of 0.67μm channel (the circles are the contours of the sun-383 

glint angle), (b) Scatter plot of cloud fraction in sun glint region (The blue line 384 

represents the curve (namely Eq.2) fitted by the least squares method between the 385 

retrievals and the truths.), (c) Distribution of SunGlintAngle and satellite flight track of 386 

CloudSat & Calypso at 4:00 on June 5, 2019, (d) Distribution of cloud fraction retrieval 387 

error with sun-glint angle. 388 

3.3 Algorithm universal applicability testing 389 

Although the retrieval model in this article was built based on data from May 2019 390 

due to the limited lifespan of the instrument, how effective is it in real-time FY-4A 391 

AGRI observations and even subsequent FY-4B AGRI applications? The algorithm's 392 

universal applicability was tested using real-time observations from FY-4A and FY-4B 393 

AGRI in 2023. 394 

Taking the full-disk observation of FY-4A AGRI at 04:00 (UTC, the same below) 395 

on 1 June 2023 as an example, the radiance observations from 14 channels are initially 396 

fed into the random forest cloud detection model to determine the sky classification 397 
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(overcast, partly cloudy or clear sky) in each AGRI field. The random forest cloud 398 

fraction retrieval model is utilized to retrieve the cloud fraction in scenes identified as 399 

partly cloudy. Figure 2(a) is the observed albedo at 0.67 μm, where the circles represent 400 

the contours of the sunglint angle, (b) is the cloud fraction retrievals from random forest 401 

algorithm, (c) is the official operational cloud fraction product and (d) is random forest 402 

cloud fraction retrievals with sun-glint correction. It can be seen from Figure 2 that 403 

many clear-sky scenes are erroneously identified as cloudy by the operational product 404 

and the cloud fraction is generally overestimated with many scenes having a cloud 405 

fraction of 1. The random forest algorithm identifies more regions as clear skies or 406 

partly cloudy than the operational products, matching better with the observations in 407 

the 0.67 μm albedo image. Brighter regions in the visible image correspond to cloud 408 

cover areas and darker areas represent clear sky conditions. The sun glint region in the 409 

central South China Sea (the circled area in Figure 2(a)) is depicted in Figure 2(b), 410 

where the clear-sky scenes over the ocean are misidentified as partly cloudy by random 411 

forest algorithm due to the increase in observed albedo. Although operational product 412 

in this area also suffers from the impact of unremoved sun glint, it identifies more clear-413 

sky scenes and the cloud fraction is relatively low. Thus, it is evident that the random 414 

forest algorithm exhibits significant cloud detection and cloud fraction errors in these 415 

sun glint regions. Correction is necessary for the cloud fraction retrievals in the sun 416 

glint region. 417 

Figure 2(d) shows the cloud fraction distribution after correction using equation 418 
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(9) in the sun glint region., The correction eliminates the influence of sun glint 419 

comparing to the cloud fraction in sun glint area before correction in Figure 2(b). The 420 

scenes misjudged as partly cloudy are corrected to clear sky and match well with the 421 

actual albedo observations in 2(a), which accurately restores the true cloud coverage 422 

over the South China Sea. 423 

 424 

 425 

 426 

Figure 2 FY-4A AGRI at 04:00 on 1 June 2023 (a) albedo image of 0.67μm channel 427 

(the circles are the contours of the sun-glint angle), (b) random forest cloud fraction 428 

retrieval without sun-glint correction, (c) operational cloud fraction product, (d) 429 
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random forest cloud fraction retrieval with sun-glint correction. 430 

Statistical analysis was conducted on the correction effect using samples with sun 431 

glint in the training data. The POD and FAR in sun glint area is listed in table 4 and the 432 

error is in table 5. The POD for clear skies has increased from 0.11 to 0.84. The FAR 433 

for partly cloudy has decreased from 0.9 to 0.2. The mean error of cloud fraction 434 

retrievals decreased from 0.398 to 0.136. These all indicate that the positive effect of 435 

the sun glint correction. 436 

Table 4 POD and FAR of Cloud Detection in sun glint area 437 

 
Sky 

Classification 

Operational 

Product 

RF  

RF after 

Correction 

POD 

Clear Sky 0.5535 0.1137 0.8443 

Partly cloudy 0.6738 0.8342 0.7677 

Overcast 0.8505 0.9498 0.9498 

FAR 

Clear Sky 0.1437 0.0120 0.2354 

Partly cloudy 0.3742 0.9077 0.2019 

Overcast 0.5545 0.0745 0.0745 

 438 

Table 5 cloud fraction Errors in sun glint area 439 

 Operational Product RF Retrievals 

RF after 

Correction 

ME 0.2691 0.3987 0.1365 

RMSE 0.3458 0.3774 0.1639 
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FY-4B launched in 2021 has a total of 15 channels with an additional low-level 440 

water vapor channel at 7.42 μm compared to FY-4A. Taking the full-disk observation 441 

of FY-4B AGRI at 17:00 on April 18, 2023, as an example, The radiance observation 442 

data of the remaining eight channels (near-infrared and infrared channels) except for 443 

the 7.42 μm channel and the visible light channels were input into the random forest 444 

cloud detection model. Figure 3 (a) shows the brightness temperature distribution 445 

observed in the 10.8 μm channel of FY-4B AGRI, (b) represents the operational cloud 446 

fraction product for FY-4B AGRI and (c) shows the cloud fraction retrieved by this 447 

algorithm. Figure 3 illustrates that the random forest algorithm identifies more regions 448 

as clear skies or partly cloudy than the operational products, aligning better with the 449 

brightness temperature observations in 10.8 μm. Especially in high latitude regions of 450 

the southern hemisphere and areas with strong convection near the equator, the cloud 451 

cover provided by operational products is too high and even misjudged. It can be seen 452 

that the random forest algorithm is also suitable for cloud fraction retrieval of FY-4B 453 

AGRI.  454 

 455 

Figure 3  FY-4B AGRI at 17:00 on 18 April 2023, (a) brightness temperature of 456 

10.8μm channel, (b) operational cloud fraction product, (c) random forest cloud 457 



 

 26 

 

fraction retrieval. 458 

 459 

4 Conclusion 460 

The random forest machine learning algorithm based on FY-4A AGRI full-disc 461 

level-1 radiance observations is developed to retrieve the cloud fraction for each field 462 

of view in this paper. The accuracy of the algorithm is validated using the 2B 463 

CLDCLASS-LIDAR cloud fraction product from the Cloudsat&Calypso active remote 464 

sensing satellite and FY-4A AGRI level 2 operational product. The following 465 

conclusions are drawn: 466 

(1) Not only the cloud detection but also the cloud fraction within each FY-4A 467 

AGRI field of view can be retrieved by the random forest machine learning 468 

algorithm. 469 

(2) The operational product has a relatively low POD for clear sky scenes, while 470 

the random forest algorithm improves the POD for clear sky scenes during the 471 

daytime from 0.54 to 0.69. The POD for clear sky scenes at night increases 472 

from 0.51 to 0.67, and the POD for partly cloudy and overcast scenes is 473 

comparable to the operational product. 474 

(3) For partly cloudy fields, during the day, the ME and RMSE of the operational 475 

product are 0.2374 and 0.3269, respectively, while this algorithm exhibits 476 
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lower ME (0.1475) and RMSE (0.2022) compared to the operational product. 477 

At night, the operational product tends to overestimate cloud cover, while this 478 

algorithm underestimates cloud cover, with a lower RMSE compared to the 479 

operational product. 480 

(4)  The cloud fraction correction curve for sun glint region fitted with 481 

SunGlintAngle as weight significantly improves the accuracy of the random 482 

forest cloud fraction retrievals. It reduces the misjudgment rate where increased 483 

albedo leads to the identification of clear-sky scene as partly cloudy or overcast. 484 

 485 
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