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Abstract 9 

Cloud fraction as a vital component of meteorological satellite products plays an 10 

essential role in environmental monitoring, disaster detection, climate analysis, and 11 

other research areas. Random Forest(RF) and Multilayer Perceptron(MLP) algorithms 12 

were used in this paper to retrieve the cloud fraction of AGRI (Advanced 13 

Geosynchronous Radiation Imager) onboard FY-4A satellite based on its full-disc level-14 

1 radiance observation. Corrections has been made subsequently to the retrieved cloud 15 

fraction in areas where solar glint occurs using a correction curve fitted with sun-glint 16 

angle as weight. The algorithm includes two steps: the cloud detection is conducted 17 

firstly for each AGRI field of view to identify whether it is clear sky, partly cloudy or 18 

overcast within the observation field. Then the cloud fraction is retrieved for the scene 19 
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identified as partly cloudy. The 2B-CLDCLASS-LIDAR cloud fraction product from 25 

Cloudsat& CALIPSO active remote sensing satellite is employed as the truth to assess 26 

the accuracy of the retrieval algorithm. Comparison with the operational AGRI level 2 27 

cloud fraction product is also conducted at the same time. The results indicate that both 28 

the Random Forest (RF) and Multi-Layer Perceptron (MLP) cloud detection models 29 

achieved high accuracy, surpassing that of operational products. However, both 30 

algorithms demonstrated weaker discrimination capabilities for partly cloudy 31 

conditions compared to clear sky and overcast situations. Specifically, they tended to 32 

misclassify fields of view with low cloud fractions (e.g., cloud fraction = 0.16) as clear 33 

sky and those with higher cloud fractions (e.g., cloud fraction = 0.83) as overcast. 34 

Between the two models, RF exhibited higher overall accuracy. Both RF and MLP 35 

models performed well in cloud fraction retrieval, showing lower mean error (ME), 36 

mean absolute error (MAE), and root mean square error (RMSE) compared to 37 

operational products. The ME for both RF and MLP cloud fraction retrieval models was 38 

close to zero, while RF had slightly lower MAE and RMSE than MLP. During daytime, 39 

the high reflectance in sun-glint areas led to larger retrieval errors for both RF and MLP 40 

algorithms. However, after correction, the retrieval accuracy in these regions improved 41 

significantly. At night, the absence of visible light observations from the AGRI 42 

instrument resulted in lower classification accuracy compared to daytime, leading to 43 

higher cloud fraction retrieval errors during nighttime. 44 

Key words: Cloud detection; cloud fraction retrieval; FY-4A AGRI; CloudSat & 45 

删除了: During daytime, the probability of detection (POD) 46 

for clear sky, partly cloudy, and overcast scenes in the 47 

operational cloud detection product were 0.5359, 0.7041, and 48 

0.7826, respectively. The POD for cloud detection using the 49 

random forest algorithm were 0.6984, 0.8971, and 0.8613. 50 

While the operational product often misclassified clear sky 51 

scenes as cloudy, the random forest algorithm improved the 52 

discrimination of clear sky scenes. For partly cloudy scenes, 53 

the mean error (ME) and root-mean-square error (RMSE) of 54 

the operational product were 0.2374 and 0.3269. The random 55 

forest algorithm exhibited lower ME (0.1457) and RMSE 56 

(0.2022) than the operational product. The large reflectance in 57 

the sun-glint region resulted in significant cloud fraction 58 

retrieval errors using the random forest algorithm. However, 59 

after applying the correction, the accuracy of cloud cover 60 

retrieval in this region gets greatly improved. During 61 

nighttime, the random forest model demonstrated improved 62 

POD for clear sky and partly cloudy scenes compared to the 63 

operational product, while maintaining a similar POD value 64 

for overcast scenes and a lower FAR. For partly cloudy 65 

scenes at night, the operational product exhibited a positive 66 

mean error, indicating an overestimation of cloud cover, 67 

whereas the random forest model showed a negative mean 68 

error, indicating an underestimation of cloud cover. The 69 

random forest model also exhibited a lower RMSE compared 70 

to the operational product.71 
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CALIPSO; machine learning; deep learning.  72 

Introduction 73 

 Clouds occupy a significant proportion within satellite remote sensing data 74 

acquired for Earth observation. According to the statistics from the International 75 

Satellite Cloud Climatology Project (ISCCP), the annual average global cloud coverage 76 

within satellite remote sensing data is around 66% with even higher cloud coverage in 77 

specific regions (such as the tropics) (Zhang, et al., 2004). The impact of clouds on the 78 

radiation balance of the Earth's atmospheric system is influenced by the optical 79 

properties of clouds. Cloud detection, as a vital component of remote sensing image 80 

data processing, is considered a critical step for the subsequent identification, analysis, 81 

and interpretation of remote sensing images. Therefore, accurately determining cloud 82 

coverage is essential in various research domains, such as environmental monitoring, 83 

disaster surveillance and climate analysis. 84 

Fengyun-4A (FY-4A) is a comprehensive atmospheric observation satellite 85 

launched by China in 2016. The uploaded AGRI (Advanced Geosynchronous Radiation 86 

Imager) has 14 channels and captures full-disk observation every 15 minutes. In 87 

addition to observing clouds, water vapor, vegetation and the Earth's surface, it also 88 

possesses the capability to capture aerosols and snow. Moreover, it can clearly 89 

distinguish different phases and particle size of clouds and obtain high- to mid-level 90 

删除了: Cloud detection, cloud fraction, FY-4A AGRI, 91 

Random Forest.92 
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water vapor content. It is particularly suitable for cloud detection due to its 93 

simultaneous use of visible, near-infrared, and long-wave infrared channels for 94 

observation with 4km spatial resolution. 95 

Numerous cloud detection algorithms have been provided based on observations 96 

from satellite-borne imagers. The threshold method has been widely employed by 97 

researchers, including the early ISCCP (International Satellite Cloud Climatology 98 

Project) method (Rossow, 1993) and the proposed threshold methods based on different 99 

spectral features or underlying surfaces (Kegelmeyer,1994; Solvsteen,1995; Baum and 100 

Trepte,1996). However, there is a significant subjectivity in selection of thresholds 101 

whether it is the single and fixed threshold in the early days, multiple thresholds, 102 

dynamic thresholds, or adaptive thresholds. The selection of thresholds is influenced 103 

by season and climate. Surface reflectance varies significantly between different 104 

seasons, such as increased reflectance from snow in winter and vegetation flourishing 105 

in summer affecting reflectance. As a result, changes in surface features during different 106 

seasons lead to variations in the distribution of grayscale values in images, requiring 107 

adjustments to thresholds based on seasonal characteristics. Climate conditions like 108 

cloud cover, atmospheric humidity, etc., impact the distinguishability of clouds and 109 

other features. For instance, in humid or cloudy climates, the reflectance of the surface 110 

and clouds may be similar, necessitating stricter thresholds for differentiation. 111 

Therefore, climate conditions also influence threshold selection. 112 

The other category of cloud detection algorithms is based on statistical probability 113 
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theory. For example the principal component discriminant analysis and quadratic 114 

discriminant analysis methods were used to SEVIRI (Spinning Enhanced Visible and 115 

Infrared Imager) cloud detection (Amato et al., 2008). The cloud detection algorithm 116 

for Thermal Infrared (TIR) sensor was based on the Bayesian theory of total probability 117 

(Merchant et al., 2010) and the naive Bayes algorithm for AGRI (Yan , et al., 2022). 118 

The unsupervised clustering cloud detection algorithms for MERIS (Medium 119 

Resolution Imaging Spectrometer) (GomezChova , et al., 2007) and the fuzzy C-means 120 

clustering algorithms for MODIS (Pan, et al., 2009) all have achieved high accuracy in 121 

cloud detection. 122 

More and more machine learning algorithms are being utilized by researchers in 123 

cloud detection studies with the development of machine learning. For instance, the 124 

probabilistic neural networks, especially radial basis function networks was used for 125 

AVHRR cloud detection (Zhang, et al., 2001). The utilization of convolutional neural 126 

network methods (Hu, et al., 2020) offers important perspectives for cloud detection 127 

research. 128 

Currently, there is limited research literature on cloud detection and cloud fraction 129 

retrieval algorithms for FY-4A/4B AGRI. The operational cloud fraction product of FY-130 

4A AGRI utilized a threshold method with 4 km spatial resolution. Differences in 131 

climatic and environmental factors lead to varying albedo and brightness temperature 132 

observations for the instrument at different times and locations. Therefore, the choice 133 

of thresholds is easily influenced by factors such as season, latitude and land surface 134 
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type (Gao and Jing, 2019). Using multiple sets of thresholds for discrimination would 136 

significantly slow down the cloud detection process. Moreover, most algorithms focus 137 

solely on cloud detection, which classified the observed scenes into cloud or clear-sky 138 

without providing the specific cloud fraction information for the scenes. The use of 139 

active remote sensing instruments carried by Cloudsat & Calypso is not influenced by 140 

thresholds when retrieving cloud fraction, enabling a more accurate cloud fraction 141 

retrieval. However, due to Cloudsat & Calypso being polar-orbiting satellites, the cloud 142 

fraction over the full disk cannot be obtained. Utilizing the Cloudsat & Calypso Level 143 

2 product 2B-CLDCLASS-LIDAR as the reference truth, a random forest model trained 144 

based on FY4A AGRI full disk radiation data can address the shortcomings of threshold 145 

methods and achieve a high accuracy of cloud fraction over the full disk.  146 

In summary, this paper established cloud detection and cloud fraction retrieval 147 

models using a Multi-Layer Perceptron (MLP) and Random Forest (RF), based on FY-148 

4A AGRI full-disk level 1 observed radiance data. The cloud fraction from the CloudSat 149 

& CALIPSO level 2 product 2B-CLDCLASS-LIDAR was used as the label. The results 150 

were compared with the 2B-CLDCLASS-LIDAR product and the official AGRI 151 

operational products for validation. 152 

删除了: Moreover, the parallel processing during training, 153 

randomness in feature selection, and random sampling of 154 

samples in random forest make it have a faster training speed 155 

compared to other algorithms with similar performance. 156 

删除了: In summary, a random forest machine learning 157 

algorithm for cloud fraction retrieval was established using 158 

level-1 radiation observations from FY-4A AGRI full-disk 159 

scanning in this paper. The cloud fraction of the level-2 160 

product 2B-CLDCLASS-LIDAR from Cloudsat&CALIPSO 161 

was used as the reference label. The retrievals were compared 162 

against with the cloud fraction of 2B-CLDCLASS-LIDAR 163 

and the AGRI operational products to verify the algorithm 164 

accuracy165 
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1 Research Data and Preprocessing  166 

1.1 FY-4A data 167 

FY-4A was successfully launched on December 11, 2016. Starting from May 25, 2017, 168 

FY-4A drifted to a position near the main business location of the Fengyun 169 

geostationary satellite at 104.7 degrees east longitude on the equator. Its successful 170 

launch marked the beginning of a new era for China's next-generation geostationary 171 

meteorological satellites as an advanced comprehensive atmospheric observation 172 

satellite. The Advanced Geosynchronous Radiation Imager (AGRI), one of the main 173 

payloads of the Fengyun-4 series geostationary meteorological satellites, can perform 174 

large-disk scans and rapid regional scans at a minute level. It has 14 observation 175 

channels in total with the main task of acquiring cloud images. The channel parameters 176 

and main uses of AGRI are detailed in Table 1 177 

(https://www.nsmc.org.cn/nsmc/cn/instrument/AGRI.html). The first six visible light 178 

channels have no values at night, meaning that channels with a central wavelength less 179 

than or equal to 2.225μm are unavailable during nighttime. FY-4A AGRI data was 180 

downloaded from the official website of the China national satellite meteorological 181 

center (http://satellite.nsmc.org.cn), including level-1 full disk radiation observation 182 

data preprocessed through quality control, geolocation and radiation calibration as well 183 

as level-2 cloud fraction product (CFR). The spatial resolution of these data is all 4 km 184 

at nadir and the temporal resolution is 15 minutes. 185 
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Table 1 FY-4A AGRI channel parameters 186 

Channel 

Number 
Band Range /μm 

Central 

Wavelength /μm 
Spatial resolution/km Main Applications 

1 0.45 ~ 0.49 0.47 1 clouds, dust, aerosols 

2 0.55 ~ 0.75 0.65 0.5 
clouds, sand dust, 

snow 

3 0.75 ~ 0.90 0.825 1 vegetation 

4 1.36 ~ 1.39 1.375 2 cirrus 

5 1.58 ~ 1.64 1.61 2 clouds、snow 

6 2.10 ~ 2.35 2.225 2 cirrus、aerosols 

7 3.50 ~ 4.00 3.75H 2 
fire point, the intense 

solar reflection signal 

8 3.50 ~ 4.00 3.75L 4 low clouds, fog 

9 5.80 ~ 6.70 6.25 4 
upper-level water 

vapor 

10 6.90 ~ 7.30 7.1 4 mid-level water vapor 

11 8.00 ~ 9.00 8.5 4 
subsurface water 

vapor 

12 
10.30 ~ 

11.30 
10.8 4 

surface and cloud-top 

temperatures 

13 
11.5 0~ 

12.50 
12.0 4 

surface and cloud-top 

temperatures 

14 13.2 ~ 13.8 13.5 4 cloud-top height 

 187 

1.2 CloudSat & Calipso Cloud Product 188 

CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 189 

is a satellite jointly launched by NASA and CNES (the French National Center for 190 

Space Studies) in 2006. It is a member of the A-Train satellite observation system. 191 

CALIPSO is equipped with three payloads, among which CALIOP (the Cloud and 192 

Aerosol Lidar with Orthogonal Polarization) is a primary observational instrument. 193 

Observing with dual wavelengths (532 nm and 1064 nm) CALIOP can provide high-194 

resolution vertical profiles of clouds and aerosols with 30 m vertical resolution. As the 195 

first satellite designed to observe global cloud characteristics in a sun-synchronous orbit 196 
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CloudSat is also among NASA's A-Train series satellites. The CPR (Cloud Profile 197 

Radar) installed on it operates at 94 GHz millimeter-wave and is capable of detecting 198 

the vertical structure of clouds and providing vertical profiles of cloud parameters. The 199 

scanning wavelengths of CPR and CALIOP are different. CALIOP is capable of 200 

observing the top of mid-to-high level clouds, whereas CPR can penetrate optically 201 

thick clouds. Combining the strengths of these two instruments enables the acquisition 202 

of precise and detailed information on cloud layers and cloud fraction. 203 

The joint level 2 product 2B-CLDCLASS-LIDAR is mainly utilizing in this study.   204 

It provides the cloud fraction at different heights with horizontal resolution 2.5 km 205 

(along-track) × 1.4 km (cross-track) through combining the observations from CPR and 206 

CALIOP. Since the two instruments have different spatial domain such as vertical 207 

resolution, spatial resolution and spatial frequency, the spatial domain of the output 208 

products is defined in terms of the spatial grid of the CPR. In the algorithm, the cloud 209 

fraction is calculated using a weighted scheme based on the spatial probability of 210 

overlap between the radar and lidar observations. The calculation of the lidar cloud 211 

fraction within a radar footprint is represented by the equation 1(Mace, G. G., et al, 212 

2007): 213 

𝐶𝑙 =  
∑ 𝑤𝑖𝛿𝑖

# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

∑ 𝑤𝑖
# 𝑜𝑓 𝑙𝑖𝑑𝑎𝑟 𝑜𝑏𝑠
𝑖=1

                       (1) 214 

Where: 215 

𝐶𝑙 represents the lidar cloud fraction within a radar footprint. 216 

𝑤𝑖 is the spatial probability of overlap for a particular lidar observation. 217 
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𝛿𝑖 indicates the lidar hydrometeor occurrence, where a value of 1 signifies the 218 

presence of hydrometeor and 0 indicates the absence. 219 

i counts the lidar profile in a specific radar observational domain. 220 

This calculation considers the contributions of multiple lidar observations within 221 

a radar resolution volume to determine the cloud fraction within that volume.The 222 

CloudSat product manual (Wang, 2019) can be referred for more detailed information 223 

on 2B-CLDCLASS-LIDAR. The data used is available to download from the ICARE 224 

data and services center (https://www.icare.univ-lille.fr/data-access/data-archive-225 

access/). 226 

1.3 Establishment of Training Data 227 

The crucial aspect of establishing a training data in machine learning algorithms 228 

is how to obtain the cloud fraction values (ground truth) as labels. The error in cloud 229 

fraction retrieved solely from passive remote sensing instruments is significant. Using 230 

active remote sensing data can provide more accurate cloud fraction information in the 231 

vertical direction. Therefore, the spatiotemporally matched 2B-CLDCLASS-LIDAR 232 

cloud fraction are utilized as output labels in this paper. 233 

The FY-4A AGRI and 2B-CLDCLASS-LIDAR data with a spatial difference 234 

between fields of view within 1.5 km and a time difference within 15 minutes are 235 

spatiotemporal matched. To make the 2B-CLDCLASS-LIDAR cloud fraction data 236 

collocated within AGRI pixels more effective, at least two 2B-CLDCLASS-LIDAR 237 
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pixels are required within each AGRI field of view. The cloud fraction average of these 238 

pixels is used as the cloud fraction for that AGRI pixel. However, the errors in the 239 

matched dataset are unavoidable. The AGRI scanning method operates from left to right 240 

and top to bottom. Each complete scan of the full disk takes 15 minutes and generates 241 

a dataset. It is impossible to determine the exact moment of a specific point within the 242 

full disk. This limits the time range for matching datasets to within 15 minutes. 243 

However, in areas with higher wind speeds, clouds can move a significant distance 244 

within that 15-minute window. Therefore, errors arising from timing issues cannot be 245 

avoided. 246 

Cloud detection and cloud fraction label generation for 2B-CLDCLASS-LIDAR 247 

are as follows. There may be multiple layers of clouds in each field of view. If there is 248 

at least one layer cloud with cloud fraction of 1 in the 2B-CLDCLASS-LIDAR profile, 249 

then the scene is labeled as overcast with a cloud fraction of 1. If all layers in the profile 250 

are cloud-free, the scene is labeled as clear sky. The scene between the above two 251 

situations is labeled as partly cloudy and the cloud fraction is the average of cloud 252 

fractions at different layers. 253 

The algorithm includes two steps: the cloud detection is conducted firstly for each 254 

AGRI field of view to identify whether it is clear sky, partly cloudy or overcast within 255 

the observation field. Then the cloud fraction is retrieved for the scene identified as 256 

partly cloudy. So the training data include A dataset used for cloud detection and B 257 

dataset for cloud fraction retrieval.  The input variables in A dataset are the FY-4A 258 
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AGRI level-1 radiative observations from 14 channels and the output variable is the 259 

temporally and spatially matched 2B-CLDCLASS-LIDAR cloud detection label. The 260 

output is categorized into three types: overcast, partly cloudy and clear sky with values 261 

1, 2 and 3 respectively. The cloud fraction product from 2B-CLDCLASS-LIDAR 262 

consists of discrete values: 0, 0.16, 0.33, 0.50, 0.66, 0.83, and 1. Here, 0 indicates clear 263 

sky, values from 0 to 1 represent varying cloud fractions for partly cloudy conditions, 264 

and 1 signifies overcast. To ensure the balance and representativeness of the samples, 265 

the proportions of different cloud fraction samples in dataset A are set at 5:1:1:1:1:1:5. 266 

Regarding the samples for partly cloudy type in dataset A, the collocated 2B-267 

CLDCLASS-LIDAR cloud fraction products serve as output labels for cloud fraction 268 

retrieval model B. The input of training dataset B remains the FY-4A AGRI level-1 269 

radiative observations.  270 

Due to the instrument's limited lifespan, only 2B-CLDCLASS-LIDAR data up to 271 

August 2019 can be obtained. The sample time range used in this paper is from August 272 

2018 to July 2019. Five days were randomly selected each month as daytime samples 273 

and five days as nighttime samples. A total of 120 days of time and space matched FY-274 

4A AGRI full-disk observations and 2B-CLDCLASS-LIDAR data were used as 275 

training and testing samples. Among them, 80% of the data was used for training, and 276 

20% was used for testing. The total number of daytime samples in dataset A is 91,073, 277 

while dataset B contains 30,358 samples. The total number of nighttime samples in 278 

dataset A is 95,493, and dataset B includes 31,831 samples. 279 

删除了: To ensure diversity and representativeness of the 280 

samples, the three conditions of overcast, partly cloudy, and 281 

clear sky each account for one-third of the sample size in 282 

dataset A.283 

删除了: Additionally, the latitude range for a single 284 

observation of FY-4A AGRI is -83.3~83.3. Within this 285 

latitude range, data from different seasons, climates, and 286 

surface types are included. In the training samples matched in 287 

space-time with 2B-CLDCLASS-LIDAR, seasons and 288 

climates vary with latitude. Therefore, there is no need to 289 

include data from a larger time range as training samples. The 290 

FY-4A AGRI observations and 2B-CLDLASS-LIDAR 291 

matched in time and space in May 2019 are used as training 292 

samples to build the algorithm model. The paired samples of 293 

whole June 2019 are served as the testing samples to assess 294 

the model's retrieval accuracy. The number of training 295 

samples in May are 12,420 for dataset A and 4140 for B. 296 

Testing samples in June are 15,459 for A and 5,153 for B.297 
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Although the model was trained and tested using data from 2018 to 2019, to test 298 

the universality of the algorithm, it was applied to real-time observations from FY-4A 299 

and FY-4B AGRI in 2023. 300 

 301 

2 Algorithms 302 

Our preliminary experiments involved multiple algorithms, including LibSvm, 303 

MLP, BP neural network, and Random Forest. These experiments highlighted that, 304 

among the baselines, Random Forest and MLP achieved the highest overall accuracy. 305 

For this reason, we selected them to perform additional experiments. 306 

2.1 Random Forest (RF)  307 

This algorithm integrates multiple trees based on the Bagging idea of ensemble 308 

learning, with the basic element being the decision tree (Breiman, 1999). When building 309 

a decision tree, N sets of independent and dependent variables are randomly sampled 310 

with replacement from the original training samples to create a new training sample set; 311 

m variables are randomly sampled without replacement from all independent variables, 312 

the dependent variable data is split into two parts using the selected variables, and the 313 

purity of the subsets is calculated for each split method. The variable utilized by the 314 

split method with the highest purity is used to partition the data, completing the decision 315 

at that node. This process of binary splitting continues to grow the decision tree until 316 

删除了: Although the retrieval model was trained and tested 317 

using 2019 data, the algorithm was also applied to real-time 318 

observations of FY-4A and FY-4B AGRI in 2023 to verify its 319 

universality.320 
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stopping criteria are met, completing the construction of a single decision tree. These 323 

steps are repeated Ntree times to build a random forest model consisting of Ntree 324 

decision trees (Breiman, 2001). Random Forest adopts ensemble algorithms, with the 325 

advantage of high accuracy. It can handle both discrete and continuous data, without 326 

the need for normalization, making it more efficient compared to other algorithms. 327 

2.2 Multilayer Perceptron (MLP)  328 

This algorithm consists of a fully connected artificial neural network(Duda, et al., 329 

2001). The classifier/regressor takes feature vectors or tensors as input. The input is 330 

mapped through multiple fully connected hidden layers containing hidden weights, 331 

which produce classifications/regressions at the output layer. A nonlinear activation 332 

function (such as sigmoid or rectified linear unit (ReLU)) is applied in each hidden 333 

layer to facilitate a nonlinear model. For classifiers, the output of the final hidden layer 334 

is combined and passed through a softmax function to generate class predictions. The 335 

model's weights are trained in a supervised manner, utilizing stochastic gradient descent 336 

and backpropagation to achieve the desired classification/regression. 337 

2.3 Hyperparameters 338 

In this paper, a total of eight models were established, including daytime/nighttime 339 

random forest classification/regression models and daytime/nighttime MLP 340 

classification/regression models. For the random forest, we first conducted experiments 341 
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the model. Each decision tree independently predicts the 345 

outcome, with a majority vote determining the final 346 

classification category of overcast, partly cloudy, or clear 347 

sky. For regression tree models, the average of all tree 348 

outputs is taken as the final output, representing the specific 349 

cloud fraction. 350 

带格式的: 标题 2, 缩进: 首行缩进:  0 厘米

设置了格式: 字体颜色: 着色 1

带格式的: 标题 2, 缩进: 首行缩进:  0 厘米



 

 15 

 

using the following Hyperparameters ranges: Trees: [200, 300, 400, 500, 600,700], 351 

minleaf: [1, 2, 5, 10], criterion: [Gini, entropy]. Ultimately, the best selections were: (1) 352 

Daytime RF classification model: Trees=500, minleaf=1, criterion=gini; (2) Nighttime 353 

RF classification model: Trees=600, minleaf=1, criterion=gini; (3) Daytime RF 354 

regression model: Trees=400, minleaf=1, criterion=gini; (4) Nighttime RF regression 355 

model: Trees=500, minleaf=1, criterion=gini. 356 

For the MLP, experiments were conducted using the following hyperparameter 357 

ranges: Hidden layer size: [2,3,4,5,6,7,8,9], Hidden layer neuron count: 358 

[8,16,32,64,128], Activation hyperparameter: [logistic, tanh, relu], MaxEpochs: 359 

[30,50,100], MiniBatchSize: [300,400,...,1500,1600], Solver hyperparameter: [lbfgs, 360 

sgd, adam]. The optimal parameters found are as follows: (1) MLP classification model 361 

for daytime: hidden layer size = 5, MiniBatchSize = 1500. (2) MLP classification model 362 

for nighttime: hidden layer size = 7, MiniBatchSize = 800. (3) MLP regression model 363 

for daytime: hidden layer size = 4, MiniBatchSize = 600. (4) MLP regression model for 364 

nighttime: hidden layer size = 6, MiniBatchSize = 500. All four models have hidden 365 

layer neuron count = 64, activation = relu, MaxEpochs = 50, solver = adam, 366 

InitialLearnRate = 0.01, LearnRateSchedule = piecewise, LearnRateDropFactor = 0.1, 367 

LearnRateDropPeriod = 10. 368 
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3 Results and Analysis 369 

To assess the accuracy and stability of the retrieval model, two types of validation 370 

methods are utilized. One way involves a direct comparison from images, qualitatively 371 

comparing the model's retrieval results and official cloud fraction products with AGRI 372 

observed cloud images. Another approach uses 2B-CLDCLASS-LIDAR as the ground 373 

truth and introduces five parameters for quantitative comparison: recall, false alarm rate 374 

(FAR), mean error (ME), mean absolute error (MAE), and root mean square error 375 

(RMSE). To evaluate the ability of operational products, RF, and MLP cloud detection 376 

models to distinguish overcast, partly cloudy, and clear sky, the recall is calculated using 377 

the formula POD=TP/(TP+FN), and the false alarm rate is calculated using the formula 378 

FAR=FP/(TP+FP). Taking the overcast scene as an example, TP represents the number 379 

of correctly identified overcast conditions, FN represents the number of overcast 380 

conditions misidentified as partly cloudy or clear sky, and FP represents the number of 381 

clear sky or partly cloudy conditions misidentified as overcast. When assessing the 382 

accuracy of operational products and cloud fraction models for the cloud fraction 383 

retrieval results of partly cloudy scenes, mean error (ME), mean absolute error (MAE), 384 

and root mean square error (RMSE) are used. 385 

3.1 Objective Analysis of Cloud Fraction Retrievals 386 

First, using the 2B-CLDCLASS-LIDAR cloud fraction product as the ground truth, 387 
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load, with minimal performance improvement beyond a 396 

certain threshold. Typically, setting Mtry to √M, where M 397 

represents the number of input variables, results in the 398 

lowest model error. For daytime models, M is 14, while 399 

for nighttime, it is 8. Mtry is set at 3 for daytime cloud 400 

detection and cloud fraction retrieval models, and at 2 for 401 

nighttime models. When determining the size of Ntree, it 402 

is necessary to do so through cross-validation. The dataset 403 

is divided into training and validation sets, using a 404 

different number of trees in each training iteration, and 405 

then evaluating the model's performance on the validation 406 

set. The best number of trees is selected by comparing the 407 

performance of the model with different numbers of trees. 408 

Both daytime and nighttime cloud detection models are 409 

configured with Ntree set to 380, while cloud fraction 410 

retrieval models have Ntree set to 300 for both daytime 411 

and nighttime scenarios.412 
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identified overcast, FN represents the number of overcast 436 

scenes wrongly identified as partly cloudy or clear sky, and 437 

FP represents the number of clear sky or partly cloudy scenes 438 

wrongly identified as overcast. The ME (mean error) and 439 

RMSE (root mean square error) are utilized to assess the 440 

accuracy of the random forest cloud fraction model in 441 ...
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we calculated the accuracy of the operational cloud detection products. The results are 442 

shown in Table 2. The samples used for this statistic are the same as those for testing 443 

the model below (20% of dataset A). 444 

Table 2: Recall Rate and FAR of Operational Cloud Detection Products 445 

 Sky Classification Daytime Product Nighttime Product 

POD 

Clear Sky 0. 6359 0.5781 

Partly cloudy 0.7174 0.7449 

Overcast 0.7736 0.7384 

FAR 

Clear Sky 0.1778 0.0934 

Partly cloudy 0.1819 0.2117 

Overcast 0.2499 0.2683 

Based on the cloud detection model trained above, cloud detection experiments 446 

were conducted using the test samples from Dataset A. The time-space matched 2B 447 

CLDCLASS-LIDAR cloud fraction product served as the ground truth to assess the 448 

accuracy of cloud detection. Figure 1 shows the results: (a) Random Forest model 449 

results during the day, (b) MLP model results during the day, (c) Random Forest model 450 

results during the night, and (d) MLP model results during the night. The x-axis 451 

represents the model predictions, while the y-axis represents the ground truth. A value 452 

of 1 on both axes indicates clear skies, 2 indicates partly cloudy, and 3 indicates overcast. 453 

The blue area on the right side of each plot shows the recall rate for each type, while 454 

the light-colored area at the bottom represents the False Alarm Rate (FAR). During the 455 
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day, the Random Forest model achieved an overall accuracy of 94.2%, while the MLP 456 

model had an overall accuracy of 93.4%. The Random Forest model exhibited slightly 457 

higher recall rates for clear skies, partly cloudy, and overcast conditions compared to 458 

the MLP model, and its FAR was lower as well. Both models performed poorly in 459 

recognizing partly cloudy conditions, as the models tended to classify true cloud 460 

fractions of 0.16 as clear skies and those of 0.83 as overcast. At night, the Random 461 

Forest model achieved an overall accuracy of 89.4%, while the MLP model had an 462 

accuracy of 87.7%. The Random Forest model had higher recall rates for clear skies 463 

and partly cloudy conditions compared to the MLP, while the recall rates for overcast 464 

conditions were similar for both models. The FAR for the Random Forest model was 465 

lower than that of the MLP. Overall, both the Random Forest and MLP models showed 466 

higher classification accuracy for clear skies, partly cloudy, and overcast conditions 467 

compared to operational products, with the Random Forest model performing better. 468 

 469 
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 470 

Figure 1 Model Cloud Detection Accuracy: (a) Daytime RF, (b) Daytime MLP, 471 

(c) Nighttime RF, (d) Nighttime MLP (In the axis, 1 represents clear sky, 2 represents 472 

partly cloudy, and 3 represents overcast.) 473 

Based on the previous model's assessment of the field of view as partly cloudy, the 475 

cloud fraction in this AGRI field of view is retrieved using the cloud fraction model 476 

established earlier. For model evaluation, both the operational product and the 2B-477 

CLDCLASS-LIDAR cloud fraction product are classified as partly cloudy, with the 478 

matched 2B-CLDCLASS-LIDAR cloud fraction product considered as the ground truth. 479 

The average error, mean absolute error, and root mean square error for both daytime 480 

and nighttime operational products (Table 3) and cloud fraction model retrieval (Table 481 

4) are calculated. It can be observed that the average errors of both models are close to 482 

0 during both daytime and nighttime. The errors are smaller during the day than at night, 483 

with the RF model exhibiting lower errors than the MLP model. In summary, the errors 484 

of both models are smaller than those of the operational products, and the RF model 485 

performs better in the cloud fraction retrieval task.  486 

Table 3: Errors of Operational Product Cloud Fraction 487 
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Daytime Operational 

Product 

Nighttime Operational 

Product 

ME 0.1987 0.2121 

MAE 0.2279 0.2441 

RMSE 0.2776 0.2938 

Table 4:Model Retrieval Error 556 

 

Daytime 

RF 

Daytime 

MLP 

Nighttime 

RF 

Nighttime 

MLP 

ME 0.0006 -0.0009 -0.0028 -0.0032 

MAE 0.1011 0.1053 0.1221 0.1322 

RMSE 0.1285 0.1332 0.151 0 0.1623 

Based on the experiments mentioned above, the performance of RF in cloud 557 

detection and cloud fraction retrieval slightly outperforms that of MLP. Therefore, 558 

subsequent experiments will utilize the RF algorithm. 559 

3.2 Cloud fraction correction in sun glint regions 560 

Sun glint refers to the bright areas created by the reflection of sunlight to the 561 

sensors of observation systems (satellites or aircrafts). This phenomenon usually occurs 562 

on extensive water surfaces, such as oceans lakes or rivers. This specular reflection of 563 

sunlight will cause an increase in the reflected solar radiation received by onboard 564 

sensors, manifested as an enhancement of white brightness in visible images. The 565 
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increase in visible channel observation albedo will affect various subsequent 568 

applications of data, including cloud detection and cloud cover retrieval, etc.  569 

The position of Sun glint area can be determined using the SunGlintAngle value 570 

in the FY-4A GEO file. SunGlintAngle is defined as the angle between the satellite 571 

observation direction or reflected radiation direction and the mirror reflection direction 572 

on a calm surface (horizontal plane). It is generally accepted that the range of 573 

SunGlintAngle < 15° is easily affected by sun glint (Kay S, et al., 2009). The positions 574 

of the SunGlintAngle contour lines at 5 and 15° are marked in Figure 1(a). It can be 575 

observed that the edge of sun glint in Figure 1(a) essentially overlaps with the position 576 

of SunGlintAngle = 15°. Thus, the region where SunGlintAngle < 15° is defined as the 577 

sun glint range in this paper and only the cloud fraction within this range will be 578 

adjusted in the subsequent correction. 579 

To correct the cloud fraction in the sun-glint areas, we first identified the fields of 580 

view (FOVs) where sun-glint occurred during FY-4A AGRI observations from August 581 

2018 to July 2019, totaling 1,476 FOVs.  Subsequently, a direct least squares fitting 582 

was conducted between the retrieved cloud fraction and the collocated 2B-583 

CLDCLASS-LIDAR cloud fraction (ground truth). The scatter plot is illustrated in 584 

Figure 2(b), where x-axis is the 2B-CLDCLASS-LIDAR cloud fraction and y-axis is 585 

the model-retrieved cloud fraction. The blue line represents the curve (namely Eq.2) 586 

fitted by the least squares method between the retrievals and the truths. The thin dash 587 

line is the x=y line. It is evident that the retrieved cloud fraction is generally slightly 588 

删除了: To correct the cloud fraction in the sun glint region, 589 
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occurred in the FY-4A AGRI observations between 1 June 591 

and 31 July 2019.…592 
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overestimated.  594 

Taking observations at 04:00 on 5 June 2019 as an example, Figure 2(c) presents 595 

the distribution of SunGlintAngle and the flight trajectory of the Cloudsat&Calypso 596 

satellite. White circles denote the sun glint region with SunGlintAngle < 15° and the 597 

white line represents the satellite flight track. As depicted in the figure, the majority of 598 

Cloudsat&Calypso flight trajectories do not pass through the central position of sun 599 

glint area but instead traverse locations with larger SunGliantAngle values. The 600 

intensity of sun glint effect decreases with the increase of SunGliantAngle. This 601 

suggests that the true values for spatial and temporal matching mostly do not fall within 602 

the strongest sun glint region. From Figure 2(d), it can be seen that the impact of sun 603 

glint becomes stronger as SunGlintAngle decreasing, which results in a higher 604 

observation albedo. This further leads to the overestimated cloud fraction values in the 605 

retrieval. It is evident that the cloud fraction error is related to the value of 606 

SunGlintAngle and this influence is not considered in Eq. (2). Directly applying 607 

equation (2) to correct the cloud fraction retrievals would result in a too small correction 608 

intensity for the FOVs near the center of sun glint and an excessively large correction 609 

intensity for the FOVs in the Sun-glint edge region (even erroneous clear sky may 610 

appear). Considering this, a correction formula (3)-(4) using SunGlintAngle as weight 611 

is introduced, where 𝑊𝑖 represents the angle weight for a certain pixel i in the sun glint 612 

region, n is the number of pixels within the SunGlintAngle < 15° range, yi is the initial 613 

model retrieval of cloud cover for the field of view i and 𝑥𝑖 is the final corrected cloud 614 
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fraction. 617 

𝑥 = (𝑦 − 0.2441)/0.8092                                       (2) 618 

𝑊𝑖 =
𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

1

𝑛
∑ 𝑔𝑙𝑖𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑖

𝑛
𝑖=0

                                            (3) 619 

𝑥𝑖 = 𝑊𝑖 (
𝑦𝑖−0.2441

0.8092
)                                              (4) 620 

Figure 2(d) shows the distribution of errors with respect to SunGlintAngle, 621 

where the blue dots represent the error distribution corrected using formula 622 

(2), and the orange dots represent the error distribution corrected using 623 

formula (4). It can be seen from Figure 2(d) that after correction by formula 624 

(4), the errors in the smaller range of SunGlintAngle are significantly reduced. 625 

626 

 627 

Figure 2 (a) albedo image of 0.67μm channel (the circles are the contours of the sun-628 
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glint angle), (b) Scatter plot of cloud fraction in sun glint region (The blue line 638 

represents the curve (namely Eq.2) fitted by the least squares method between the 639 

retrievals and the truths.), (c) Distribution of SunGlintAngle and satellite flight track of 640 

CloudSat & Calypso at 4:00 on June 5, 2019, (d) Distribution of cloud fraction retrieval 641 

error with sun-glint angle. 642 

3.3 Algorithm universal applicability testing 643 

Although the retrieval model in this article was built based on data from May 2019 644 

due to the limited lifespan of the instrument, how effective is it in real-time FY-4A 645 

AGRI observations and even subsequent FY-4B AGRI applications? The algorithm's 646 

universal applicability was tested using real-time observations from FY-4A and FY-4B 647 

AGRI in 2023. 648 

Taking the full-disk observation of FY-4A AGRI at 04:00 (UTC, the same below) 649 

on 1 June 2023 as an example, the radiance observations from 14 channels are initially 650 

fed into the random forest cloud detection model to determine the sky classification 651 

(overcast, partly cloudy or clear sky) in each AGRI field. The random forest cloud 652 

fraction retrieval model is utilized to retrieve the cloud fraction in scenes identified as 653 

partly cloudy. Figure 3(a) is the observed albedo at 0.67 μm, where the circles represent 654 

the contours of the sunglint angle, (b) is the cloud fraction retrievals from random forest 655 

algorithm, (c) is the official operational cloud fraction product and (d) is random forest 656 

cloud fraction retrievals with sun-glint correction. It can be seen from Figure 3 that 657 
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many clear-sky scenes are erroneously identified as cloudy by the operational product 660 

and the cloud fraction is generally overestimated with many scenes having a cloud 661 

fraction of 1. The random forest algorithm identifies more regions as clear skies or 662 

partly cloudy than the operational products, matching better with the observations in 663 

the 0.67 μm albedo image. Brighter regions in the visible image correspond to cloud 664 

cover areas and darker areas represent clear sky conditions. The sun glint region in the 665 

central South China Sea (the circled area in Figure 3(a)) is depicted in Figure 3(b), 666 

where the clear-sky scenes over the ocean are misidentified as partly cloudy by random 667 

forest algorithm due to the increase in observed albedo. Although operational product 668 

in this area also suffers from the impact of unremoved sun glint, it identifies more clear-669 

sky scenes and the cloud fraction is relatively low. Thus, it is evident that the random 670 

forest algorithm exhibits significant cloud detection and cloud fraction errors in these 671 

sun glint regions. Correction is necessary for the cloud fraction retrievals in the sun 672 

glint region. 673 

Figure 3(d) shows the cloud fraction distribution after correction using equation 674 

(9) in the sun glint region., The correction eliminates the influence of sun glint 675 

comparing to the cloud fraction in sun glint area before correction in Figure 3(b). The 676 

scenes misjudged as partly cloudy are corrected to clear sky and match well with the 677 

actual albedo observations in 3(a), which accurately restores the true cloud coverage 678 

over the South China Sea. 679 

 680 
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 686 

 687 

Figure 3 FY-4A AGRI at 04:00 on 1 June 2023 (a) albedo image of 0.67μm channel 688 

(the circles are the contours of the sun-glint angle), (b) random forest cloud fraction 689 

retrieval without sun-glint correction, (c) operational cloud fraction product, (d) 690 

random forest cloud fraction retrieval with sun-glint correction. 691 

Statistical analysis was conducted on the correction effect using samples with sun 692 

glint in the training data. The POD and FAR in sun glint area is listed in table 5 and the 693 

error is in table 6. It can be seen that after correcting for cloud fraction, the POD for 694 

clear skies has increased from 0.0987 to 0.9023. The FAR for partly cloudy has 695 

带格式的: 两端对齐

删除了: 707 ...

删除了: 706 ...

删除了: 2 700 

删除了: 4 701 

删除了: 5702 

删除了: The 703 

删除了: 11 704 

删除了: 84705 



 

 27 

 

decreased from 0.7943 to 0.0276. Both ME, MAE, and RMSE show significant 708 

reductions, and the results after correction outperform operational products. 709 

Table 5 POD and FAR of Cloud Detection in sun glint area 710 

 
Sky 

Classification 

Operational 

Product 

RF  

RF after 

Correction 

POD 

Clear Sky 0.4120 0.0987 0.9023 

Partly cloudy 0.7371 0.9663 0.9587 

Overcast 0.8856 0.9845 0.9845 

FAR 

Clear Sky 0.1229 0.1633 0.0938 

Partly cloudy 0.3332 0.7943 0.0276 

Overcast 0.2983 0.1321 0.1321 

 711 

Table 6 cloud fraction Errors in sun glint area 712 

 Operational Product RF Retrievals 

RF after 

Correction 

ME 0.2354 0.1741 0.0670 

MAE 0.2511 0.1820 0.0849 

RMSE 0.2771 0.2166 0.1041 

FY-4B launched in 2021 has a total of 15 channels with an additional low-level 713 

water vapor channel at 7.42 μm compared to FY-4A. Taking the full-disk observation 714 

of FY-4B AGRI at 17:00 on April 18, 2023, as an example, The radiance observation 715 
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data of the remaining eight channels (near-infrared and infrared channels) except for 783 

the 7.42 μm channel and the visible light channels were input into the random forest 784 

cloud detection model. Figure 4 (a) shows the brightness temperature distribution 785 

observed in the 10.8 μm channel of FY-4B AGRI, (b) represents the operational cloud 786 

fraction product for FY-4B AGRI and (c) shows the cloud fraction retrieved by this 787 

algorithm. Figure 4 illustrates that the random forest algorithm identifies more regions 788 

as clear skies or partly cloudy than the operational products, aligning better with the 789 

brightness temperature observations in 10.8 μm. Especially in high latitude regions of 790 

the southern hemisphere and areas with strong convection near the equator, the cloud 791 

cover provided by operational products is too high and even misjudged. It can be seen 792 

that the random forest algorithm is also suitable for cloud fraction retrieval of FY-4B 793 

AGRI.  794 

 795 

Figure 4  FY-4B AGRI at 17:00 on 18 April 2023, (a) brightness temperature of 796 

10.8μm channel, (b) operational cloud fraction product, (c) random forest cloud 797 

fraction retrieval. 798 
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4 Conclusion 804 

This paper used the random forest and multi-layer perceptron (MLP) algorithms 805 

to retrieve cloud fraction from FY-4A AGRI full-disk Level-1 radiance observation data, 806 

and verified the accuracy of the algorithms using the Cloudsat & Calypso active remote 807 

sensing satellite's 2B CLDCLASS-LIDAR cloud fraction product. The following 808 

conclusions were drawn: 809 

(1) The random forest and MLP algorithms performed well in cloud detection and 810 

cloud fraction retrieval tasks, and their accuracy was higher than that of operational 811 

products. The accuracy of cloud detection can reach over 93%, and the error of cloud 812 

fraction retrieval is close to zero. Compared with the MLP algorithm, the RF algorithm 813 

has a slightly higher accuracy in cloud detection, and a slightly lower error in cloud 814 

fraction retrieval, showing better performance. 815 

(2) At night, the classification accuracy is lower than during the day due to the lack 816 

of observations in the visible channel of AGRI, resulting in higher cloud fraction errors 817 

at night. 818 

(3) The accuracy of identifying partly cloudy scenes is lower than that of 819 

identifying clear sky and overcast scenes for both RF and MLP algorithms. Scenes with 820 

very low cloud fraction (0.16) are often misclassified as clear sky, while scenes with 821 

high cloud fraction (0.83) are often misclassified as overcast. 822 

(4) The sun-glint area cloud fraction correction curve, fitted with SunGlintAngle 823 
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as the weight, greatly improves the accuracy of cloud fraction retrieval and reduces the 824 

misclassification rate of clear sky scenes as partly cloudy or partly cloudy scenes as 825 

overcast due to increased reflectance. 826 
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the accuracy of the random forest cloud fraction retrievals. 872 

It reduces the misjudgment rate where increased albedo 873 

leads to the identification of clear-sky scene as partly cloudy 874 

or overcast.875 

http://satellite.nsmc.org.cn/
https://www.icare.univ-lille.fr/data-access/data-archive-access/
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