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Abstract. Anthropogenic and biomass burning emissions are the major sources of ambient air pollution. India has 

experienced a dramatic deterioration in air quality over the past few decades, but no systematic assessment has been made to 15 

investigate the individual contributions of anthropogenic and biomass burning emissions. In this study, we conducted a 

pioneering comprehensive analysis of the long-term trends of particulate matter with aerodynamic diameters < 2.5 μm (PM2.5) 

and ozone (O3) in India and their mortality burden changes from 1995 to 2014, using a state-of-the-art high-resolution global 

chemical transport model (CAM-chem). Our simulations revealed a substantial nationwide increase in annual mean PM2.5 

(6.71 μg m-3 decade-1) and O3 (7.08 ppbv decade-1), with the Indo-Gangetic Plain (IGP) and eastern central India as hotspots 20 

for PM2.5 and O3 trend changes individually. Noteworthy substantial O3 decreases were observed in the northern IGP which 

were potentially linked to NO titration due to a surge in NOx emissions. Sensitivity analyses highlighted anthropogenic 

emissions as primary contributors to rising PM2.5 and O3, while biomass burning played a prominent role in winter and 

spring. In years with high biomass burning activity, the contributions from BB on both PM2.5 and O3 changes were 

comparable with or even exceeding anthropogenic emissions in specific areas. The elevated air pollutants were associated 25 

with increased premature mortality attributable to PM2.5 and O3, leading to 97.83 K and 73.91 K per decade. Despite a per 

capita decrease in the IGP region, the increased population offset its effectiveness. 

1 Introduction 

Air pollution is among the most detrimental environmental factors to human health. According to the World Health 

Organization (WHO) database, 99 % of the global population lives in areas where air quality surpasses WHO guideline 30 

limits (WHO database). The two most concerned pollutants, particulate matter with aerodynamic diameters < 2.5 μm (PM2.5) 
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and ozone (O3), can cause significant damage to the human heart and lungs (Hoek et al., 2013; Hystad et al., 2013; 

Villeneuve et al., 2015), potentially leading to premature death when exposed over extended periods (Dedoussi et al., 2020; 

Fuller et al., 2022). The latest Global Burden Disease (GBD2019) study estimated that exposure to air pollution, including 

both household and ambient pollution, led to 6.7 million premature deaths (95 % confidence interval [CI], 5.9 to 7.5 million) 35 

worldwide in 2019 (Murray et al., 2020). Thus, the urgency of dealing with air pollution has become one of the most 

pressing global challenges. 

It is well-known that surface air pollution is usually unequally distributed in space, with higher levels in developing 

countries than in developed countries (Forouzanfar et al., 2016). For example, India was ranked as the most polluted country 

in the world in 2021, with 63 of the world's 100 most polluted cities (IQAir, 2022). Previous modeling studies indicated that 40 

districts exceeding India’s annual ambient standard of 40 μg m−3 rose from 200 to 385 out of 640 from 1998 to 2020 

(Guttikunda and Ka, 2022). The GBD2019 study estimated that premature deaths attributed to ambient PM2.5 and O3 

pollution accounted for 10.4 % (8.4-12.3) and 1.8 % (0.9-2.7) of the total deaths in India in 2019, respectively, and the death 

rate per 100,000 people increased by 115.3 % (28.3-344.4) and 139.2 % (96.5-195.8) from 1990 to 2019, respectively 

(Pandey et al., 2021). Meanwhile, the faster chemical reaction rates in India due to the strong convection, sunlight, and warm 45 

temperatures, making it a hot spot for accumulating major air pollutants compared with other regions and easily affecting the 

air quality in downwind regions (Zhang et al., 2016, 2021a). 

As seen from the Community Emissions Data System (CEDS) inventory (Hoesly et al., 2018), the increasing trends of 

anthropogenic (ANTHRO) emissions of major air pollutants, such as nitrogen oxides (NOx), carbon monoxide (CO), and 

non-methane volatile organic compound (NMVOC), are significantly higher in India than those in other regions (Wang et al., 50 

2022). Meanwhile, crop yields in India have significantly enhanced since the mid-1960s after the Green Revolution, 

contributing to increased biomass burning (BB) emissions (Huang et al., 2022). The study showed that from 1950–51 to 

2017–18, the crop residue burning in India increased from 18 million tonnes to 116 million tonnes in terms of total biomass 

burned (Venkatramanan et al., 2021). The frequency and intensity of forest fires in India have also increased in recent years 

due to persistent warmer temperatures and climate extremes (Vadrevu et al., 2019; Jain et al., 2021). These in turn could 55 

pose significant threats to ambient air quality and human health because large amounts of compounds are emitted into the 

atmosphere, namely carbon dioxide (CO2), NOx, particulate matter (PM), and other chemical species (Crutzen and Andreae, 

1990; Carvalho et al., 2011; Lan et al., 2022; Miranda et al., 2005). 

In this study, we aim to improve our understanding of the spatial-temporal distribution of major air pollutants, mainly 

surface PM2.5 and O3, and the related mortality burden in India from 1995-2014 using a state-of-the-art global chemistry 60 

transport model. In addition, the individual contributions of changes in ANTHRO and BB emissions were further separated 

to better understand the causes of worsening air quality and escalating health risks in India. The selected period encompasses 

a dynamic phase of rapid changes in both anthropogenic and biomass burning activities in India, thereby providing an ideal 

context for investigating their respective contributions to air pollution. 
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2 Methods 65 

2.1 CAM-chem model configuration 

We simulated surface PM2.5 and O3 concentrations over India between 1995 and 2014 using the global chemistry model 

CAM-chem, which is based on version 6 of the Community Atmosphere Model (CAM6), the atmospheric component of the 

Community Earth System Model (CESM2), as detailed by Danabasoglu et al. (2020) and Emmons et al. (2020). Following 

Emmons et al. (2020) the original model was run at 1.25° (longitude) × 0.9° (latitude) horizontal resolution with 32 vertical 70 

levels reaching ~45 km. We configured the Model of Ozone and Related Chemical Tracers Tropospheric and Stratospheric 

(MOZART-TS1) chemistry mechanism with various complexity choices for tropospheric and stratospheric chemistry 

(Emmons et al., 2020). The aerosol module adopted the four-mode version of the Modal Aerosol Model (MAM4), including 

sulfate, black carbon, primary organic matter, secondary organic aerosols, sea salt, and mineral dust. The first level of the 

model outputs was considered the surface level, and all the model outputs were then regridded to a finer resolution 0.5° × 0.5° 75 

to match the grid-cell population and baseline mortality rates datasets in performing the health impact assessment. 

Global historical ANTHRO emissions were adopted from CEDS (version 2017-05-18), which provides monthly 

emissions of anthropogenic aerosol and precursor compounds at 0.5° × 0.5° from 1750 to 2014 and were used in the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) experiments (Emmons et al., 2020; Hoesly et al., 2018). The air pollutants 

from the CEDS inventory, especially the NMVOC, were then re-speciated to match the chemical species in the latest 80 

CESM2 model, following the steps introduced by Emmons et al. (2020). BB emissions were sourced from van Marle et al. 

(2017) at 0.5° native resolution and were all emitted at the surface. 

2.2 Numerical experiments designs 

The standard simulation (BASE) was driven by year-varying ANTHRO and BB emissions from 1995 to 2014, as 

described above. To separate the contributions from these two emission sources, we then conducted two sensitivity 85 

simulations in which ANTHRO emissions (FixAN) and BB emissions (FixBB) were fixed at 1995 levels individually, while 

all other parameters were kept consistent with the BASE (Table 1). Subtracting the BASE from each sensitivity enables 

quantifying the influences of changes in ANTHRO and BB emissions on air quality and its associated health burden in India, 

respectively. 

Table 1. Model simulations performed in this study 90 

Simulation Anthropogenic emissions Biomass burning emissions 

BASE V V 

FixAN 1995 V 

FixBB V 1995 
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"V" indicates that particular input is subject to interannual variation in the simulation during the period 1995-2014, "FixAN" 

indicates that only global ANTHRO emissions were set to 1995 conditions in the simulation. "FixBB", indicates that only 

global BB emissions were set to 1995 level. 

2.3 Trend estimation 

In this study, we applied the Theil-Sen estimator (Theil, 1992; Sen, 1968) to calculate the magnitude of trends in 95 

surface PM2.5 and O3 concentrations and the attributed mortality burden spanning from 1995 to 2014. The Theil-Sen 

estimator is a robust non-parametric method for trend analysis based on the median slope, which is insensitive to outliers and 

highly competent in identifying the slope of non-normally distributed data, as described in eq 1. This method has been 

widely used to analyse temporal trends in air pollutants that are always non-normally distributed (e.g., Munir et al., 2013; 

Sarkar et al., 2019; Vanem and Walker, 2013; Wan et al., 2023). 100 

 𝑆𝑙𝑜𝑝𝑒 𝑀𝑒𝑑𝑖𝑎𝑛
𝑥 𝑥
𝑡 𝑡

 1  

Where 𝑥  and 𝑥  represent the PM2.5 and O3 concentrations or attributed premature mortality at time 𝑡  and 𝑡  (𝑖 > 𝑗), 

respectively. 𝑆𝑙𝑜𝑝𝑒 > 0 indicates an increasing trend; 𝑆𝑙𝑜𝑝𝑒 < 0 indicates a decreasing trend. 

In complement to the Theil-Sen estimator, we used the nonparametric Mann-Kendall test to assess the significance of 

temporal trends within the data series (Zhang et al., 2022a, b). According to previous studies, p-value less than 0.05 is most 

commonly treated as the absolute threshold of statistical significance (Christiansen et al., 2020; Wang et al., 2021; Zhou et 105 

al., 2017). The above methods were completed by implementing a Python program with the package “pymannkendall”, as 

detailed at https://pypi.org/project/pymannkendall/, last accessed on March 20, 2024. We will discuss the air quality and 

mortality burden changes in six Indian regions based on meteorological conditions and aerosol variability (Fig. S1). 

2.4 Mortality burdens of surface PM2.5 and O3 in India 

Based on an integrated exposure-response function utilized in the most recent GBD studies, we estimated the mortality 110 

burden associated with long-term exposure to ambient annual PM2.5 and 6-month running average of daily maximum 8-hr 

average (MDA 8) O3 in India spanning from 1995 to 2014, as described in eq 2. 

 ∆𝑀𝑜𝑟𝑡 𝑦 𝐴𝐹 𝑝𝑜𝑝 𝑦
𝑅𝑅 1
𝑅𝑅

𝑝𝑜𝑝 2  

Where ∆𝑀𝑜𝑟𝑡 refers to the annual mortality burden attributed to long-term PM2.5 or O3 exposure, and 𝑦  is the baseline 

mortality rate for a specific cause of disease. 𝐴𝐹 is the attributable fraction measuring the PM2.5 or O3 exposure attributable 

disease burden, which is represented by  (𝑅𝑅 refers to relative risk). 𝑝𝑜𝑝 represents the exposed population above the 115 

age of 25 for each grid cell in the domain. 
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Following our previous work (Zhang et al., 2021b), we obtained the baseline mortality rate (𝑦 ) for each country and 5-

year age group from 1995-2014 from the GBD2017 project (Stanaway et al., 2018). The 𝑅𝑅 of long-term PM2.5 exposure 

associated with mortality burden due to specific disease was estimated using an integrated exposure-response model (IER) 

constructed by Burnett et al. (2014) and updated in GBD2017. The 𝑅𝑅 for long-term O3 exposure was obtained from Turner 120 

et al. (2016) which indicated an 𝑅𝑅 of 1.12 (95 % confidence interval (CI): 1.08, 1.16) for respiratory disease. The recent 

GBD2019 reported a relatively lower 𝑅𝑅  for the chronic obstructive pulmonary disease (COPD), a subcategory of 

respiratory disease (1.06, with 95 % CI: 1.03, 1.10). To be comparable with the GBD2019 results, we also estimated the O3-

related mortality burden for the COPD in India during the same period. Population distribution with age stratification data 

(𝑝𝑜𝑝) was retrieved from the GBD2017. The population-weighted average of specific air pollutants discussed in the results 125 

was calculated by weighting the population of all grid cells inside each administrative region or country. Additionally, we 

calculated mortality rates per capita (avoid deaths per 100,000 people) in each administrative region to exclude the influence 

of varying populations.  

3 Results and discussion 

3.1 CAM-chem evaluation 130 

We performed a comprehensive model evaluation by comparing our simulated monthly concentrations from the BASE 

with multiple datasets, including ground-based observations in India, historical multi-model simulation from the CMIP6 

project, and different versions of multi-year reanalysis data from the Atmospheric Composition Analysis Group (ACAG) at 

Washington University in St. Louis, hereinafter referred as 'Wustl Extracts' (van Donkelaar et al., 2021). We also compared 

our simulated PM2.5 and O3 with previously published studies in India using either global or regional chemical transport 135 

models (CTMs), as well as the concentration reported from the GBD2019. We selected available ground-level PM2.5 

observations over India from previous studies (Latha and Badarinath, 2005; Panwar et al., 2013; Reddy et al., 2012; Saradhi 

et al., 2008; Tiwari et al., 2009, 2013), which were also collected by the ACAG. Figure S2 indicates that the model exhibits 

good performance in capturing seasonal variations of surface PM2.5 observations, especially during the peak months, with 

correlation coefficients (R) ranging from 0.59 to 0.91. Two exceptions are Mumbai (with R of -0.16), where the model 140 

shows a contrasting trend for the seasonal PM2.5 characteristics (Fig. S2b), and Mukteshwar (with R of 0.45). One possible 

explanation is the potential underestimation of emission inventories, especially during early periods for developing regions, 

such as India (McDuffie et al., 2020; Wang et al., 2022; Agarwal et al., 2024). For O3, our model shows an even higher R 

when compared with the available surface observation sites in India from 1997 to 2011 (Fig. S3). Unlike the 

underestimations of surface PM2.5 in India, the CAM-chem model tends to overestimate surface O3, which was not very 145 

uncommon for global CTM and also frequently discussed in previous studies (Hou et al., 2023; Tilmes et al., 2015; Young et 

al., 2018; Zhang et al., 2021b). The overestimation was partly caused by the coarse resolution, which leads to diluted 
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emissions of O3 precursors and then simulated high O3 production. Figure 1 compared our study with several previous 

studies and other publicly available PM2.5 and O3 datasets, as detailed in Tables S1 and S2. The comparisons indicate our 

simulated results using the CAM-chem agree very well with previous studies for both PM2.5 and O3, based on either the 150 

various metrics (such as annual average and 6-month MDA8 O3) or the population-weighted averages, consistent with the 

findings within the multiple CMIP6 models (Turnock et al., 2020). Figure S4 further compares the long-term trend of annual 

surface PM2.5 concentrations from 1998 to 2014 in the BASE and Wustl Extracts dataset. A consistent increasing trend was 

found in both datasets, with temporal R of 0.86 and lower estimations in our model. The model performs better in eastern 

India than in western India, with R usually being larger than 0.9 and NMB lower than -25 %. Similarly, compared to the 155 

simulated trend in our study with different versions of Wustl Extracts and the GBD2019, our simulated PM2.5 concentration 

is lower, and the simulated O3 is higher (Fig. S5). The underestimation of the surface PM2.5 was partly caused by the missing 

model representation of nitrate and ammonium (Ren et al., 2023) and the secondary organic aerosol (Liu et al., 2021). 

 

Figure 1. Comparison of annual PM2.5 and O3 concentrations in India with previous studies. Note that the metrics vary depending 160 
on the study. 

3.2 Spatial and temporal distribution of air pollution changes in India from 1995 to 2014 

3.2.1 Historical emissions in India from 1995 to 2014 

We first assessed the interannual variation of ANTHRO and BB emissions of CO, NOx, NMVOC, sulfur dioxide (SO2), 

ammonia (NH3), black carbon (BC), and organic carbon (OC) in India between 1995 and 2014 from the CEDS. Figure S6 165 

indicates an overall increase in ANTHRO emissions before slowly falling after 2011. Significant inter-annual variations for 

BB emissions, such as in 1999, 2006, and 2009, were mainly caused by climate change-induced hot and arid conditions 

(Sahu et al., 2015). Figure S7 shows that ANTHRO emissions occurred predominately in IGP and central India, significantly 

increasing across all regions. Unlike other administrative regions, northern and eastern India, such as Punjab and Manipur, 

features higher BB emissions and lower ANTHRO emissions. 170 
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3.2.2 The long-term trends of PM2.5 and O3 in India from 1995 to 2014 

From the BASE simulation, we estimated that the annual mean population-weighted PM2.5 and O3 in India were 29.88 

μg m−3 and 67.41 ppbv from 1995 to 2014. Figure 2a, b shows that PM2.5 concentrations gradually rise from the south to the 

north, with high levels predominantly found in the IGP, mainly caused by high ANTHRO emissions (Fig. S7) and reduced 

ventilation due to obstruction by the Tibetan Plateau (Gao et al., 2018). Unlike PM2.5, surface O3 concentrations gradually 175 

increase from west to east and south to north, with the highest levels concentrated in northern India. The spatial patterns of 

the PM2.5 and O3 distribution in India were also seen in several previous studies, though they only discussed one or several 

specific years (Jia et al., 2021; Pandey et al., 2021). 

 

Figure 2. Spatial distributions of PM2.5 (top panel) and O3 (bottom panel) for annual average in 1995 (a, f) and 2014 (b, g), with the 180 
trends from 1995 to 2004 (c, h), 2005 to 2014 (d, i), and 1995 to 2014 (e, j). The black dot denotes the areas where the trend is 
statistically significant (p < 0.05). The units are μg m-3 for PM2.5 (a,b) and ppbv for O3 in (f, g), and μg m-3 per decade (μg m-3 

decade-1) for PM2.5 trends (c,d,e), and ppbv per decade (ppbv decade-1) for O3 trends (h,i,j). 

From Figure 2, we also find that both PM2.5 and O3 showed a statistically significant increasing trend all over the 

country from 1995 to 2014, with a nation-wide increasing rate of 6.71 μg m-3 decade -1 (p < 0.01) for pop-weighted PM2.5 185 

and 7.08 ppbv decade-1 (p < 0.01) for pop-weighted O3, respectively (Fig. S8), which was mainly driven by rapid 

industrialization and substantial economy development (Pandey et al., 2014; Sadavarte and Venkataraman, 2014). However, 

distinct spatial heterogeneity for the increasing trend was observed for the two air pollutants. The PM2.5 exhibited varying 

degrees of increase across India, with the most distinctive increase occurring in the IGP, where the maximum trend reached 

12.60 μg m-3 decade-1. This notable rise can be attributed to the increased regional ANTHRO emissions (Fig. S7). For O3, 190 
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eastern central India experienced the highest O3 increases, with an obvious increase in the eastern and the lowest increases in 

western India. One thing needs to be pointed out that in northern IGP, including New Delhi, significant O3 decreases were 

also observed, which could be caused by the inhibited O3 production due to NO titration as a result of dramatic increase in 

NOx emissions, as discussed in Karambelas et al. (2018). Splitting the trend into two periods (from 1995 to 2004 and from 

2005 to 2014), we found a larger increasing trend in the latter period than that in the previous one for both PM2.5 and O3, 195 

which may be due to the rapid urbanization and growing transportation activities over populous regions (Fig. S9) in recent 

years in India (Gao et al., 2018). 

3.3 Driving factor analysis for the air pollution changes in India 

3.3.1 Contributions to the annual and seasonal trends 

Figure 3 shows the contributions of ANTHRO and BB emissions changes on area-weighted PM2.5 and O3 trends from 200 

1995 to 2014. Not surprisingly that ANTHRO emission changes dominate the PM2.5 and O3 deterioration in India. Changes 

in ANTHRO emissions alone increased area-weighted concentration of PM2.5 by 5.46 μg m-3 decade-1 (p < 0.01) and area-

weighted concentration of O3 by 2.71 ppbv decade-1 (p < 0.01), accounting for 102.21 % and 104.11 % of the total changes, 

respectively. The contributions of changes in BB emissions were relatively minor, with distinct interannual variations. 

Spatially, we find that both the long-term PM2.5 and O3 trends are mostly dominated by the ANTHRO emission changes all 205 

over India (Fig. S10a, c). Changes in BB emissions lead to a slight increasing trend of PM2.5 in most of India and a 

decreasing trend in eastern India, though neither of these trends is statistically significant. BB emissions seem to increase O3 

in IGP and central India and decrease O3 in western India, but the trends are insignificant either (Fig. S10b, d). 
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Figure 3. Drivers for trends of area-weighted (a-c) PM2.5 and (d-f) O3 in India in 1995-2014. The yellow shadings in (a, d) show the 210 
evolution of model-simulated PM2.5 and O3 concentrations in the FixAN simulation, with the red shadings illustrating the 
estimation of the PM2.5 and O3 concentrations resulting from changes in ANTHRO emissions compared to the 1995 level. (b, e) as 
for (a, d), but for impacts of changes in BB emissions. (c, f) denotes the estimated PM2.5 and O3 trends in India derived from the 
BASE simulation and impacts of ANTHRO and BB emissions, respectively. 

It is well recognized that BB emissions usually feature a distinct seasonal trend, especially in India, where they are 215 

influenced by the monsoon. Hence, here we quantified the seasonal trend of PM2.5 and O3 from ANTHRO and BB emissions 

for DJF (December-January-February), MAM (March-April-May), JJA (June-July-August, monsoon season), and SON 

(September-October-November, post-monsoon season) from 1995 to 2014. From Fig. 4a-h, we find that the contributions of 

ANTHRO had consistent spatial patterns for the seasonal PM2.5 trend, with larger influences in the post-monsoon seasons 

(DJF and SON), which was estimated to be responsible for PM2.5 enhancement by as high as 17.08 μg m−3 decade-1 because 220 

of decreased vertical dispersion and diffusion of aerosol caused by lower solar radiation during winter and surface wind 

speeds (Bran and Srivastava, 2017). The contributions of ANTHRO emissions during the MAM and JJA were modulated as 

a result of increased precipitation, strong air convergence, and uplift strong air convergence during the presence of the 

summer monsoon, which impeded the accumulation of PM2.5 concentrations at ground level (Bran and Srivastava, 2017; Gao 

et al., 2020; Lu et al., 2018). Unlike PM2.5, the contributions of ANTHRO changes on surface O3 trend in India had a distinct 225 

spatial pattern across seasons (Fig. 4i-p). The ANTHRO had a much stronger positive influence on the O3 increases in 

northern, eastern central, and eastern India during JJA and SON, while it had the largest increases in southern India in the 

pre-monsoon season (MAM, Fig. 4j). It was reported that the stronger solar radiation and higher temperature in MAM were 
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attributed to an increase in the photochemical efficiency of O3 in the presence of NOx (Doherty et al., 2013; Jacob and 

Winner, 2009; Pusede et al., 2015). The decreased O3 in the IGP was most pronounced in the DJF season (Fig. 4i), which 230 

was mainly attributed to lower solar radiation and titration of O3 by higher NOx levels (Kumar et al., 2012). Additionally, 

the occurrence of winter monsoon led to extensive air subsidence in northern India, resulting in low net O3 production and 

strong horizontal export, which ultimately leads to relatively low O3 levels (Lu et al., 2018). 
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Figure 4. Seasonal patterns of (a-d) ANTHRO and (e-h) BB emissions contributions for the trends of PM2.5 in India from 1995 to 235 
2014 and (i-p) for O3. The units are μg m−3 per decade and ppbv per decade. 
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3.3.2 Contributions to the seasonal air quality changes 

Figure 5 shows the spatial distributions of BB contributions for seasonal PM2.5 and O3 changes between 1995 and 2014, 

respectively, as detailed in Table S3. The changes in BB emissions from 1995 to 2014 contributed significantly to the PM2.5 

increases in eastern India (over 20 μg m−3) with a high incidence of forest fires (Jena et al., 2015). It also resulted in an 240 

increase of O3 by more than 4 ppbv in eastern India in MAM. Contributions to seasonal PM2.5 and O3 changes from BB were 

comparable or even exceeding the those from ANTHRO in some regions, such as Manipur and Nagaland (Fig. S11). With a 

higher BB fraction in other years, such as 1999, these contributions could even be even higher, reaching up to 46.03 μg m-3 

and 6.46 ppbv for PM2.5 and O3, respectively (Fig. S12). Therefore, we conclude that the BB emissions in India poses a great 

threat to the air quality and thus cannot be overlooked. 245 

 

Figure 5. Spatial distributions of the BB contribution for seasonal (a-d) PM2.5 and (e-h) O3 changes from 1995 to 2014 for DJF, 
MAM, JJA, and SON. The contributions from BB were calculated as the differences between BASE and FixBB in 2014. The units 
are μg m−3 and ppbv. 

3.4 Long-term trends of premature mortality due to PM2.5 and O3 in India 250 

We estimated that the national mortality burden attributable to ambient PM2.5 exposure rose significantly from 698.29 

thousand in 1995 to 893.33 thousand in 2014, at a rate of 97.83 thousand per decade (p < 0.01, Figure 6a). Similarly, the 
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mortality burden attributable to O3 exposure also notably rose from 414.50 thousand in 1995 to 580.03 thousand in 2014, 

being 73.91 thousand per decade (p < 0.01). We observed that the hotspots of premature mortality attributable to PM2.5 and 

O3 exposure occurred in New Delhi and IGP regions in 1995 and 2014 (Fig. 6b-e), coincidently with the dense population 255 

(Fig. S9). We found that Uttar Pradesh, Bihar, West Bengal, and Haryana, four states within the IGP region, accounted for 

41.00 % and 39.77 % of the national premature mortality due to PM2.5 and O3 in 2014, respectively. Considering this 

heterogeneous spatial distribution, it is imperative for the IGP region to implement stronger air pollution control policies to 

safeguard human health, as discussed in Jia et al. (2021). Our estimations for the O3-related mortality burden were higher 

than those reported from the GBD2019 (Fig. S13) since we applied a higher RR and used larger baseline mortality rates (see 260 

Methods section 2.4). After recalculating the O3-related mortality burden using the GBD2019 metrics, we reported an 

increasing trend of 29.74 thousand deaths per decade-1 for O3-related mortality, comparable to the GBD2019 estimation of 

33.24 thousand deaths per decade-1. However, our estimated mortality burdens are still slightly higher than the GBD2019 

due to the O3 overestimation in our model (Fig. 1 and Fig. S5). 

 265 

Figure 6. Spatial-temporal change of mortality burden attributable to PM2.5 and O3. (a) interannual variation from 1995 to 2014. 
The shaded area indicates the range of 95 % confidence interval (gray indicates half of the range). (b-e) spatial distributions of the 
average annual premature mortality attributable to (b-c) PM2.5 and (d-e) O3 in 1995 and 2014. 

To isolate the effects of population heterogeneous among regions, we also quantified the mortality burden changes per 

capita (avoided deaths per 100,000 people) from 1995 to 2014 (Fig. 7). PM2.5-attributable premature mortality per capita was 270 

higher in the IGP and eastern India, with the highest in Chandigarh (427.2), followed by Sikkim (153.6), Meghalaya (140.3), 

and NCT of Delhi (126.1) in 1995 (Fig. S14). The spatial distribution of O3-attributable premature mortality per capita 

resembled that of PM2.5, but the values are relatively smaller, with the maximum value also appearing in Chandigarh (288.0), 

followed by Sikkim (120.2), Meghalaya (68.6), and NCT of Delhi (68.0) in 1995 (Fig. S14). Over the period from 1995 to 
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2014, PM2.5- and O3- attributable premature mortality per capita decreased in the north and increased in the south (Fig. 7), 275 

indicating that the increasing trend of premature mortality attributable to PM2.5 and O3 in the IGP region was mainly driven 

by the increased population (Fig. S9). 

 

Figure 7. Spatial distributions of premature mortality attributable to PM2.5 or O3 per capita (avoid deaths per 100,000 people) in 
(a, d) 1995, (b, e) 2014, and (c, f) changes from 1995 to 2014 in the state of India. 280 

Figure 8 shows that changes in ANTHRO emissions from 1995 to 2014 increased premature mortality per capita 

attributable to PM2.5, with the higher values located mainly in eastern IGP and central India. Changes in BB emissions 

increased premature mortality attributable to PM2.5 per capita in eastern, western, and southern India and decreased in IGP 

and central India. The state with the largest increase was Manipur (2.55), followed by Nagaland (2.06), which was associated 

with the high incidence of wildfires in these regions. The state that experienced the largest decrease was Jharkhand (-1.71), 285 

with Bihar (-1.02) followed behind. In order to explore contribution changes from ANTHRO and BB emissions, we 

estimated the premature mortality attributable to PM2.5 per capita in 2000, 2005, and 2010-2014 in Table S4, respectively. 

There was a sharp rise in contributions to premature mortality attributable to PM2.5 from changes in ANTHRO emissions 

from 1995 to 2014. Not surprisingly the premature mortality attributable to PM2.5 from changes in BB emissions fluctuated 

greatly from 1995 to 2014. In 2000, a year with high BB emissions (Fig. S8), the contributions of changes in BB emissions 290 

to the premature mortality attributable to PM2.5 in the states of Mizoram, Nagaland, Arunachal Pradesh, and Tripura reached 

5.14, 4.90, 4.86, and 4.17, respectively, which exceeding the contributions of changes in ANTHRO emissions in that year 

(Table S4). 
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Figure 8. Spatial distributions of contributions to premature mortality attributable to PM2.5 per capita (avoided deaths per 100,000 295 
people) from changes in (a) ANTHRO and (b) BB emissions from 1995 to 2014. 

4 Conclusions  

In this study, we applied a state-of-the-art global CTM (CAM-chem) to provide a detailed assessment of long-term 

trends of the ambient PM2.5 and O3 in India and their health burden from 1995 to 2014, as well as the driving factor analysis 

from anthropogenic (ANTHRO) and biomass burning (BB) emission changes. The annual mean area-weighted PM2.5 over 300 

India increased at 5.34 μg m-3 decade-1 (p < 0.01) from 1995 to 2014, dominated by the ANTHRO emissions (5.46 μg m-3 

decade-1, p < 0.01). The highest and fastest PM2.5 growth was in the IGP regions due to the rapid industrialization, 

urbanization, and transportation growth. For annual mean area-weighted O3, the increase was 2.60 ppbv decade-1 (p < 0.01), 

dominated by the ANTHRO emissions as well (2.71 ppbv decade-1, p < 0.01). We found that O3 concentrations were highest 

in northern India, with the fastest growth occurring in northern, central, and eastern India. The contributions from BB 305 

emissions for the long-term trends were not significant for either PM2.5 (0.09 μg m-3 decade-1, p < 0.30) or O3 (-0.01, p < 

0.80), and also showed significant seasonal variations due to large inter-annual variability features. However, when we 

examine the air quality changes in specific years, such as 1999 and 2014, we found that the contributions from BB could be 

comparable to or even exceed those from ANTHRO during winter (December-January-February) and spring (March-April-

May), reaching over 46.03 μg m−3 and 6.46 ppbv for PM2.5 and O3, respectively. 310 

Further estimation of mortality burden showed a 27.93 % (698.29 to 893.33 thousand) increase in premature mortality 

attributable to PM2.5 between 1995 and 2014 (22.94 % for 2005-2014), and a 39.93 % (414.50 to 580.03 thousand) increase 

for O3 (44.54 % increasing during 2005-2014). Changes in ANTHRO and BB emissions were responsible for an 

enhancement of premature mortality attributable to PM2.5 by 88.78 % (97.83 thousand per decade, p < 0.01) and 0.02 % 

(2.38 thousand per decade, p < 0.10). After removing the effect of population growth, our analysis revealed a notable higher 315 
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mortality burden per capita attributable to PM2.5 in the IGP regions. However, it is noteworthy that the mortality burden per 

capita in these regions exhibited a significant decline over the period of 1995-2014, despite the increasing trend of premature 

mortality. This suggests that population growth is the primary factor driving the trend of premature mortality. 

Our study is subject to several uncertainties and limitations. First of all, the coarser resolution in the global model (0.9 

× 1.25) is frequently found to be unable to realistically represent the complex physical and chemical processes of regional-320 

scale air pollution, especially for O3 (Yue et al., 2023). Moreover, missing chemical mechanisms in the model, such as the 

lack of representations of nitrate and ammonium (Ren et al., 2023) and the secondary organic aerosol (Liu et al., 2021), 

prevents the model from accurately simulating PM2.5 concentration, especially during heavily polluted regions, such as China 

and India (Turnock et al., 2020). Another major uncertainty originates from the inaccurate emission inventory, especially for 

developing regions in early periods, as reported by the global datasets (Paulot et al., 2018; Wang et al., 2022). Zhang et al. 325 

(2021b) revealed that model performance with global CEDS inventory tends to predict lower bias for surface PM2.5 and 

higher bias for surface O3 compared with a regional emission inventory (MEIC) in China due to disparities in spatial 

allocation. Xie et al. (2024) also highlighted a significant underestimation of agricultural fires in the inventory. Moreover, 

the uncertainty from health functions ranging from the choice of the exposure-response functions (Ostro et al., 2018; Giani et 

al., 2020) and the uncertainties of the baseline mortality rates both have different impacts on human health (Lelieveld et al., 330 

2015; Pozzer et al., 2023). Finally, other limitation included in our experimental design was that we set global fixed 

emissions for both anthropogenic and biomass burning instead of in India only, resulting in ignoring the impact of 

intercontinental transportation. 
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