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Abstract. Marine planetary boundary layer (MPBL) water vapor amount and gradient impact the global energy transport

through directly affecting the sensible and latent heat exchange between the ocean and atmosphere. Yet, it is a well-known

challenge for satellite remote sensing to profile MABL water vapor, especially when cloud or sharp gradient of water vapor

are present. Wu et al. (2022) identified good correlations between Global Navigation Satellite System (GNSS) deep refraction

signals (SNR) and the global MPBL water vapor specific humidity when the radio occultation (RO) signal is ducted by the5

moist PBL layer, and they laid out the underlying physical mechanisms to explain such a correlation. In this work, we apply a

machine-learning/artificial intelligence (ML/AI) technique to realize pixel-level MPBL water vapor profiling. A convolutional

neural network (CNN) model is trained using 20 months of global collocated hourly ERA-5 reanalysis and COSMIC1 1 Hz

SNR observations between 975 – 850 hPa with 25 hPa vertical resolution, and then the model is applied to both COSMIC1

and COSMIC2 in other time ranges for independent retrieval and validation. Monte Carlo Dropout method was employed for10

the uncertainty estimation. Comparison against multiple field campaign radiosonde/dropsonde observations globally suggests

SNR-retrieved water vapor consistently outperforms ERA-5 reanalysis and the Level-2 standard retrieval product at all six

pressure levels between 975 hPa and 850 hPa, indicating real and useful information is gained from the SNR signal albeit

training was performed against the reanalysis. The only exception is in the deep tropics where the fundamental assumption

for SNR-retrieval to work is invalidated frequently by interactions among ocean surface, MPBL and shallow convections.15

Climatology and diurnal cycle of MPBL structure constructed from the ML-SNR technique is studied and compared to the

reanalysis. Disparities of climatology suggest ERA-5 may systematically produces dry biases at high-latitudes, and wet biases

in marine stratocumulus regions. The diurnal cycle amplitudes are too weak and off-phase in ERA-5, especially in Arctic and

stratocumulus regions. These areas are particularly prone to PBL processes where this GNSS-SNR water vapor product may

contribute the most.20
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1 Introduction

As a key component of Earth’s lower atmosphere, the planetary boundary layer (PBL) water vapor plays a pivotal role in

Earth’s energy budget, exerting profound influence on weather and climate processes. It is an essential factor of the Earth’s

energy budget, influencing radiative forcing and consequently climate variability and long-term change. Furthermore, PBL

water vapor is instrumental in modulating local and regional weather patterns by affecting cloud formation, precipitation25

and temperature. Therefore, study of PBL water vapor stands as a vital element in advancing our comprehension of Earth’s

atmosphere and its broader implications for our planet’s climate system.

70% of the Earth’s surface is covered by water. The sensible and latent heat exchange between ocean boundary and the

marine PBL (MPBL) happens at different spatial and temporal scales, which is determined by not only ocean surface properties

(e.g., wind speed, sea surface temperature) but also MPBL thermodynamic structures. For example, under the context of polar30

proneness to the climate change, Boisvert et al. (2015) found Arctic PBL humidity and temperature biases in the reanalysis

are the major error sources for the evaporation estimation compared to satellite observations. Cloud-cimate feedback is another

motivation highlighted by NASA’s PBL incubation study (Teixeira et al. (2021)). As another example, Milan et al. (2019)

found strong correlation between MPBL cloud top height and below-cloud water vapor amount using two joint satellite retrieval

products.35

Data sparsity is a critical problem for advancing MPBL science. Satellite remote sensing undoubtedly provides the best

solution in terms of global coverage, but it is very difficult to retrieve MPBL WV and its vertical distribution when cloud or sea

ice are present. When clouds are present in the scene, it often overwhelms the emission signal from the MPBL water vapor and

prevents passive instruments sensing the below-cloud atmosphere. When sea ice is present in the scene, scattering or surface

emission from the sea ice are often inseparable from water vapor emission signals and distort the retrieval result. Taking the40

aforementioned two research as examples, Boisvert et al. (2015) uses Level 2 AIRS water vapor and temperature retrieval

products, which are only available for clear or partially-cloudy sky situations, so it inherently contains a sampling bias. Milan

et al. (2019) derived MPBL total WV amount from subtracting MODIS above-cloud water vapor from AMSU-A total column

water vapor, which couldn’t be used to gain vertical information of WV in the MPBL.

Using low-frequeny MW L-band to transmit signals along the limb path, the Global Navigation Satellite System (GNSS)45

satellite overcomes the two above difficulties and provide superb vertical resolution of the MPBL water vapor under all-sky

conditions. GNSS Radio Occultation (GNSS-RO) retrieves temperature and water vapor profiles routinely from the Level 2

bending angle product, the latter of which is used operationally in numerical weather data assimilation systems to improve

weather forecasts (e.g.,Kuo et al. (2000)). Because of the rapid growth of SmallSat/CubeSat constellations from both the

commercial and non-profit sectors, GNSS-RO technique provides a promising future for the needed global spatial-temporal50

sampling of MPBL WV and its variability. Like other limb sounders, the disadvantage of GNSS-RO is its relatively coarse

horizontal resolution (several hundred kilometers) that smears out horizontally inhomgeneous signals. This is typically not a

big conern in MPBL as vertical gradient is much sharper and harder to characterize if not using in-situ measurements (e.g.,

shipborne radiosonde).
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However, GNSS-RO WV retrieval profiles have excessively high failure rate in the MPBL. That is because the GNSS-55

RO signal-to-noise ratio (SNR) decreases with height due to the atmospheric defocusing effect, and the Level-2 refractivity

retrievals which require a high SNR drops subsequently in the MPBL as the signal becomes noisy. As a result, the GNSS-

RO water vapor retrievals that rely on the refractivity profiles often fail to converge. Fig. 1 gives an example of the success

statistics (%) as a function of height for temperature (Fig. 1a) and water vapor (Fig. 1b) over the tropical ocean. Using 0.5km

and 1km above the ocean surface as the reference line, we can see although the COSMIC-2 (Constellation Observing System60

for Meteorology, Ionosphere, and Climate-2) has significantly improved its SNR compared to its predecessor COSMIC-1, the

success rate is still less than 60% at 0.5km and slightly over 70% at 1km for the GNSS-RO WV retrieval, while this number

is only 25% and 60% for COSMIC-1 at respective altitudes. The low SNR widely exists for commercial GNSS satellites

especially in the lowest 500 m above the surface (Maneshan et al. (2024)).

(a) AtmPrf success rate (b) WetPrf success rate

Figure 1. Level 2 atmPrf (temperature) and wetPrf (water vapor) successful retrieval rate (%) as a function of height from COSMIC-1 during

January 2008 (blue) and COSMIC-2 during January 2020 (red). Success rate is calculated by dividing number of valid Level-2 retrieval files

over number of Level-1B file at a certain height. The grey dashed lines mark the reference at 0.5 km from the tropical ocean surface.

Wu et al. (2022) found out that the Level-1B deep SNR from the straight-line height (HSL) is statistically significantly65

correlated with the MPBL water vapor amount in the European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalysis v5 (ERA5) after averaging over a month and a 2.5◦X2.5◦ grid box. The averaging is necessary to effectively

beat down the random noise. This paper attributed such a positive correlation to the strong refraction from a horizontally
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stratiform and dynamically quiet MPBL water vapor layer that acts to enhance the SNR amplitude at deep HSL through

ducting and diffraction/interference. Some caveats of this work limit its application to weather phenomena. First, it builds upon70

a single level regression statistics, which was found the highest at HSL =−100km in the tropics, and HSL =−80km at high

latitudes. Hence, any simple linear regression-based retrieval algorithm will understandably suffer from arbitrary latitudinal

discontinuities. As a matter of fact, SNR at different HSL levels are found correlated with MPBL water vapor with different

signs and magnitudes (e.g., Fig. 2), which should be used together to enhance the information content. Secondly, the robust

relationship is only found for monthly averages in Wu et al. (2022), because the profile-by-profile noise is usually too high75

for yielding a meaningful retrieval from SNR, and only through averaging large amount of profiles can the noise be lowered

down to the level where signal stands out. These are all caveats of traditional statistical approach. Machine learning approach,

however, is suitable at picking up weak signals through large amount of training data.

Artificial Intelligence/Machine learning (AI/ML) technique is trending in the past decade. It is more and more appreciated by

the satellite remote sensing field in recent years. Traditionally physics-based radiative transfer (RT) theories and modelings are80

used to link the remote sensing measurements (e.g., GNSS radio occultation signal) to the physical quantities (e.g., temperature

and water vapor profiles). They are often highly non-linear and involve many assumptions/simplifications, which propagate into

part of the retrieval errors subsequently. Given the fact that satellite measurements usually contain large amount of data, and

the association is highly non-linear between the measurement space and the physical space, the retrieval process becomes an

ideal testbed for ML capabilities. Some pioneer works had attempted this approach to retrieve PBL atmosphere profiles and85

achieved notable success. For example, Ye et al. (2021) used the routine radiosonde measurement at a Atmospheric Radiation

Measurement (ARM) site as the ground truth to train a ground-based infrared spectrometer to predict the PBL height. The

capability is limited to only the stations where both observations are routinely available. Milestein and Blackwell (2016)

employed a neural network (NN) framework on retrieving the temperature and water vapor profiles from the spaceborne

Atmospheric Infrared Sounder (AIRS) observations (AIRS Version 7 product). The training "truth" was from the ECMWF90

analysis fields. It is worth mentioning that Milstein (2022), as a follow-up work, pointed out the ML-only retrieval framework

tends to smooth out sharp gradient features in proximity to the PBL top. To mitigate this caveat, Milstein et al. (2023) employs

the 3D deep neural network training on the AIRS granule image against ERA-5 reanalysis that helps PBL height recognition

from passive imagers.

In this paper, we will thoroughly explore the ML capability at retrieving the MPBL WV information from the deep SNR95

signal at profile-by-profile basis (i.e., Level-2 standard). Section 2 introduce the training and validation datasets as well as the

model structure; Section 3 presents the retrieval results and independent validation; Section 4 will expand the discussion to the

usage of this product in studying MPBL water vapor climatology and diurnal variabilities; Section 5 summarizes the major

findings and shortcomings of the current work that may be improved in the future.

2 Data and Model100

This section introduces the training, validation and independent validation datasets, as well as the ML model architecture.
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2.1 Training and Validation Datasets

The definition of SNR follows Wu et al. (2022) which uses the normalized SNR (SRO):

SRO = (SNR−σ)/(SNR0−σ) (1)

σ2
S = V AR(SRO −SRO) (2)

SNR0 is the free atmosphere SNR. In practice, we use averaged SNR between 35 and 65 km altitude range as the SNR0.105

σ is the instrument-specific noise determined for each individual instrument from very deep HSL. The value for σ used in this

work is an updated version from Table A1 in Wu et al. (2022) and shown in the Appendix A. Wu et al. (2022) also found

an instrument-dependent shift of the mean SRO profile as a function HSL. Luckily, such an issue can be resolved to use the

excessive phase at L1 as the vertical coordinate. In practice, the raw calculated SRO and σ2
S are mapped to a fixed 52-level

Log10(ϕL1) vertical grid. It is roughly linearly correlated with HSL. The value for the vertical grid is listed in Table A2 in the110

Appendix A.

The ERA-5 reanalysis is so far the best global reanalysis dataset in terms of PBL water vapor amount and distribution.

Johnston et al. (2021) compared specific humidity from ERA-5 and MERRA-2 reanalysis against collocated and coincident

GNSS-RO Level-2 wetPrf specific humidity retrieval profiles, and found ERA-5 outperforms MERRA-2 everywhere in the

PBL. They both exhibit consistent dry biases with larger bias from mid-high latitudes. However, ERA-5 percentage bias is115

roughly 1/2 of that from the MERRA-2 reanalysis. Given that many previous works used ERA-5 reanalysis or ECMWF

analysis for training or validating the satellite retrievals for water vapors (e.g., Milestein and Blackwell (2016), Milstein et al.

(2023)), especially some recent ones using it as the standard to evaluate recent GNSS-RO missions (e.g., Chang et al. (2022),

Zhran (2023), Maneshan et al. (2024)) , it is well justified to use ERA-5 hourly reanalysis as the "training" dataset to create a

large sample globally.120

In this work, we created a collocated and coincident ERA-5 - SNR training and validation dataset. The SNR records are

from both COSMIC-1 and COSMIC-2, and the periods for training, independent testing, and prediction are listed in Table 1.

Note that the validation period is independent from training period to avoid potential self-correlation using standard random

splitting procedure. The prediction period however covers both training and validation periods.
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Table 1. Training and validation periods

Training (90% and 10% random-

splitting)

COSMIC-1 2012.01-2012.12, 2016.01-2016.03,

2017.01-2017.03

COSMIC-2 2020.01-2020.05

Testing COSMIC-1 2018.01-2018.03

Prediction COSMIC-1 2012.01-2012.12, 2013.01-2013.12,

2016.01-2016.03, 2017.01-2017.03,

2018.01-2018.03

COSMIC-2 2020.01-2020.12

(a) SRO & MPBL specific humidity (b) σ2
SNR & MPBL specific humidity

Figure 2. Cross-correlation among SRO (left) and σ2
SNR (right) at various SLH levels from one random day for COSMIC1 and their cross-

correlation with collocated ERA5 specific humidity at 975 - 850 hPa (bottom-right corner of each panel). Only grid indices are shown in the

axis titles, and the corresponding Log10(ϕL1) values can be found in Table A2.

Fig. 2 elucidates the linear correlation between SRO at each of the 52 levels and ERA-5 specific humidity at 975, 950, 925,125

900, 875 and 850 hPa over global ocean. The largest positive correlations are found around Level #11 to Level #15, which
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roughly correspond to HSL =−100km to −80km (Table A2). Based on the monthly averages, Wu et al. (2022) found the

highest correlation at HSL =−100km in the tropics and at HSL =−80km for the polar regions, which is consistent with our

profile-by-profile correlation as well. But Fig. 2 also shows positive or negative correlations at different Log10(ϕL1) levels,

which impede methods like multi-variable regression from working. σ2
S also exhibits non-linear patterns with generally weaker130

correlations with MPBL water vapor that are opposite in sign compared to that of SRO. It is worth noting that these relationships

are also instrument dependent, as can be clearly seen in the SRO cross-correlation for Metop-A and Metop-B in the Appendix

Fig. A1. In this work, the target variables are specific humidity at the aforementioned 6 pressure levels (975hPa, 950hPa,

925hPa, 900hPa,875hPa and 850hPa). The input parameters are 52 levels of SRO, 52 levels of σ2
S , latitude, longitude,

month and ascending/descending flag.135

In addition to the independent testing which is standard procedure for ML/AI training, a handful of shipborne radiosonde

campaigns and airborne dropsonde campaigns data are collected for further independent assessment. The campaign names,

location and total number of valid profiles are presented in Fig. 3 and Table 2. We can see from the summary of weather

scenarios during each campaign that this independent validation dataset comprehensively covers major marine weather regimes

from extremely dry Southern Ocean (MARCUS), mid-latitude stratocumulus region (MAGIC), tropical trade cumulus region140

(EUREC4A, ATOMIC), to episodically wet atmospheric river events (ARRecon). This exercise is critical for assessing the

quality of ERA-5, Level 2 retrieval, and Level 1 SNR-based retrieval under different weather scenarios.

Table 2. Campaign Information

Campaign Name Period used for

validation

Location Weather Regime Type Reference

MARCUS 2017.11-2018.03 Southern Ocean Mixed-Phase

PBL cloud

Radiosonde Evan et al. (2022)

ATOMIC 2020.01-2020.02 Tropical North

Atlantic

Tropical trade

wind zone

Radiosonde and

Dropsonde

George et al.

(2021)

EUREC4A 2020.01-2020.02 Tropical North

Atlantic

Tropical trade

wind zone

Radiosonde Stephan et al.

(2021)

MAGIC 2012.10-2013.09 Eastern North Pa-

cific Ocean

Subtropical

MPBL

Radiosonde Evan et al. (2022)

ARRecon 2018.02;

2020.01-2020.02

Northeast Pacific

off the coast of

California

Atmospheric

River

Dropsonde Zheng et al.

(2024)
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Figure 3. Map for radiosonde/dropsonde locations from different shipborne or airborne campaigns.

2.1.1 Machine Learning Model Selection

The Convolutional Neural Network (CNN) model is chosen as our regression ML model. Compared to some old-fashioned

ML models (e.g., random forest, gradient boosting), CNN learns also the vertical cross-correlation within the 52-layer input145

SNR profiles, as well as within the targeted 6-layers of specific humidity profiles. We conducted a comprehensive search of

best hyperparameters using the root-mean-square-error (RMSE) as the loss function. The final selected architecture contains

one 1-D convolutional block consisting of a Conv1d layer, a MaxPool1d layer, a BatchNorm1d, two dense layers, and a ReLU

activation function. The Kernel size is selected to be 5, and a dropout layer of rate = 0.1 is added between layers. 100 epochs

suffice the needs for quick convergence for both training and validation.150

In the prediction step, 30 predictions were carried out given each input set of variables, the mean and standard deviation of

which were used as the final prediction and errorbar. Note that the dropout layers were designed in ML as a standard technique

to regularize model over-fitting (Srivastava et al. (2013)), but were also employed widely as a Bayesian-approximation to

quantify model uncertainties(Gal and Ghahramani (2016)). Admittedly the current method only provides a quantification for
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ML model errors. There is no consideration of SNR measurement errors nor propagation of the error to the final retrievals at155

this moment, although this is certainly some procedure to be in place in the future works.

We also tried some old-fashioned ML models, e.g., random forest (RF), gradient boosting (GB), logistic regression (LR),

support vector machine (SVM) and one deep learning model multilayer perceptron (MLP). The model performances are actu-

ally very close in terms of evaluating the RMSE except for the LR and SVM, the latter of which performed discernibly worse

than the rest ML models. It is not a surprise finding as this is a relatively simple and straightforward task that ML models160

should handle easily, but not the case for multi-variable linear regression type of logistic models (hence, it explains the poor

performance of LR and SVM). As the main focus of this paper is science and new information content embedded in SNR

signals, we will not deviate the attention to spend more time discussing these model results. The semi-transparency of RF and

GB models is appreciated by us though. We compared the feature importance rankings with Wu et al. (2022) findings, and

find high consistencies (e.g., high ranking of SNR at HSL =−100 km in the tropics, and SNR at HSL =−80 km ranks the165

top in the polar region).

3 Results

3.1 Retrieval Performance Evaluation

As the first comparison, Fig. 4 and Fig. 5 showcase the statistical closeness to the 1 : 1 line and the resemblance of geograph-

ical distributions for the three independent testing months: January - March, 2018, for COSMIC-1. All 6 pressure levels are170

compiled together to make Fig. 4, but were otherwise look extremely similar if plotting layer-by-layer. The only deviation from

1 : 1 line occurs at very small specific humidity values (ERA-5 specific humidity < 1g/kg), i.e., very dry conditions, normally

occurs at high-latitudes.

Such a discrepancy reveals itself more clearly when we map out the percentage difference (Fig. 5b). The largest percentage

differences indeed are shown at polar regions as well as near the coastal lines with SNR-retrieved humidity tends to be larger175

than ERA-5. Note that to satisfy ducting conditions in order to use SNR signal at deep HSL, the surface is required to be flat.

Therefore, the discrepancies around the coastal line are believed to be related to issues with SNR-retrievals when topography

starts to play a role. However, as we will show later in Fig. 8, ERA-5 indeed shows consistent dry-bias at high-latitudes

compared to independent radiosonde measurements. So SNR-retrieval might produce a closer-to-truth results as will be seen

later as well. Moreover, one can visually discern discrepancies in the tropical deep convection/ITCZ zones with ERA-5 in180

general wetter than SNR-retrieved values. Such a discrepancy is not conspicuous in Fig. 5b simply because of the large value

in the denominator. We will also show later that none of the three datasets we will evaluate (SNR-retrieval, GPS-RO Level 2

retrieval and ERA-5 reanalysis) capture well the tropical MPBL structures. For the SNR method, it is probably because the

ducting assumption is easily and frequently violated in the tropical MPBL.

9

https://doi.org/10.5194/egusphere-2024-973
Preprint. Discussion started: 20 June 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. Heatmap for independent validation from January - March 2018 for all 6 levels together.

Figure 5. Geographic distribution of the (a) predicted values versus (c) ERA-5 validation values at 950 hPa for January - March, 2018. The

middle panel is the percentage difference between (a) and (c).Only ERA-5 samples that collocate and coincident with COSMIC-1 SNR-

retrievals are selected for this comparison

3.2 Uncertainty Quantification185

Unfortunately, for the very dry conditions, SNR-retrieved specific humidity also inherently comes along with large uncertain-

ties, as can be clearly seen in Fig. 6. The SNR signal is too weak in this situation to yield any robust retrievals even with
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powerful ML models. Although we still believe the SNR-retrievals might be "more correct" than ERA-5 for very dry condi-

tions, in practice we mark any retrieval with greater than 50% uncertainty with a quality flag in the published product, and

those data do not pass the the quality control to be used later in this paper for independent validation nor constructing the cli-190

matologies. We can also see from Fig. 6 that almost all SNR-retrievals greater than 2g/kg passes the quality control. Readers

should keep in mind that our current uncertainty estimation approach under-estimates the real uncertainty because it does not

take into account SNR errors.

Figure 6. Percentage uncertainty distribution as a function of predicted value.

3.3 Comparison to Independent Radiosondes

In order to find collocation samples in every campaign, the collocation criteria are slightly different given the consideration195

of (1) the abundance of radiosonde/dropsonde profiles; (2) the typical spatial and temporal homogeneity of the local weather

regime; (3) the availability of daily COSMIC-1 or COSMIC-2 profiles. In practice, for EUREC4A and ATOMIC, collocation is
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defined as longitude difference within 2◦, latitude difference within 1.5◦, and time difference within 1 hr. For the two Southern

Ocean campaign, the thresholds become 4◦,2.5◦ and 2 hr correspondingly. For ARRecon and MAGIC, the thresholds are

4◦,1.5◦ and 2 hr.200

Fig. 7 shows the layer-by-layer comparison for all collocated samples from all campaigns. SNR-retrieval results are shown

in filled colors while Level-2 retrievals are shown in open symbols. In addition, the averages from each campaign collocation

subsets are connected together for better visual comparison against the 1 : 1 line. We can see both SNR-retrieval and Level-

2 retrieval demonstrate close agreement with ground "truth" for different weather regimes. In general, better correlation are

found when the MPBL is relatively dry or moderately-wet. For the ARRecon campaign specifically, SNR-retrieval has an205

overall better agreement compared to Level-2 retrievals (black lines versus black dash-dotted lines), and the few extremely

large specific humidity values (> 12g/kg) are well captured by the SNR-retrieval but not the Level-2 retrievals. The mean of

all ARRecon collocated samples also suggest SNR-retrieval is the only one that doesn’t produce a bias, while both ERA-5 and

GNSS Level-2 retrievals are slightly dry-biased in atmospheric rivers. Such a close agreement appears to become noisier at

850 hPa, again demonstrated that signals at sharp boundaries (i.e., PBL top) are hard to retrieve. ERA-5 from each campaign210

(only considering samples that SNR-retrieval collocation is found) exhibit good agreement to the ground truth too if only mean

values of each subset is considered (grey dotted lines). However, the scatter plots are much noisier if all collocations are plotted

(Fig. 8). For the two deep tropics campaigns ATOMIC and EUREC4A, we can clearly see none of the three datasets capture

the humidity conditions in the MPBL. They are all dry-biased, and means from ERA-5 reanalysis are less dry-biased than GPS

retrieved values at 975 hPa and 950 hPa.215

For the convenience of pinpointing ERA-5 MPBL issues, we also make Fig. 8 as each valid radiosonde/dropsonde profile

from all 6 campaigns can always collocate an ERA-5 reanalysis data sample within 1.5◦ longitude, 1◦ latitude and 1 hr dif-

ference. Now we can clearly see ERA-5 didn’t capture the MPBL humidity change in the majority time during the EUREC4A

campaign with large wet-biases. Another discernible bias happens in the Southern Ocean during the MARCUS campaign,

where ERA-5 is consistently dry-biased. Overall ERA-5 shows a small dry-bias globally at all levels, which agrees with early220

findings by Johnston et al. (2021) who used Level-2 GPS-RO retrievals to identify such a dry bias. Note that some of the cam-

paign profiles (e.g., ARRecon dropsondes) are actually assimilated in the ERA-5 data, so it is not a completely independent

validation strictly speaking.

The violin plots in Fig. 9 reveals more detailed difference in comparison statistics with respect to the radiosonde/dropsonde

"truth", which more comprehensively demonstrate the values (and cons) of the SNR-retrieval. Only correlation coefficients225

of all collocated samples collected from each campaign are displayed. The ARRecon-2018 and ARRecon-2020 samples are

further combined. From Fig. 9a, we can see both SNR-retrieval and Level 2 retrieval agree much better with the ground truth

across all extra-tropical campaigns compared to ERA-5. The SNR-retrieval exhibits more robust correlation while Level 2

retrieval are really poor (negative correlations) at some levels. However, for the two deep-tropics campaigns, above statements

do not work anymore. All three work really poor for the ATOMIC campaign with barely any correlation with the ground truth230

or even negative correlation for the Level 2 retrieval. For the EUREC4A campaign, things remain similar for RO retrievals no

matter using Level 1 or Level 2 data, but ERA-5 works much better at capturing the humid MPBL structure in this case albeit
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Figure 7. Scatter plots of collocated specific humidity comparison between radiosonde "truth" and retrievals from SNR (closed symbols)

and Level-2 standard retrieval (open symbols) for each pressure level. The mean and standard deviation from the SNR retrieval are shown as

bigger symbols. In addition, the mean retrieved values from each campaign as opposed to the mean from radiosonde "truth" are shown as the

bold black line for SNR retrieval, bold black dash-dotted line for Level-2 retrievals, and grey dashed line for ERA-5.

it’s still dry-biased (not shown). We achieved 40-50% across-board more collocation samples using the SNR-retrieval versus

the Level 2 wetPrf retrieval, which is consistent with the general success rate shown in Fig. 1.

In Fig. 9b, the correlation statistics are binned by different pressure levels. We can see the SNR-retrieval and Level-2 retrieval235

are in general comparable in robustness in capturing the entire MPBL specific humidity vertical structure, both of which

outperform the ERA-5 significantly. The correlation coefficients are consistently slightly higher than that from the Level-2

retrievals. 975 hPa is the only exception, where ERA-5 seems to outperform the Level-2 retrieval slightly, but SNR-retrieval

is significantly better across-board than ERA-5.
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Figure 8. Same with Fig. 7, except for all available radiosonde/dropsonde samples in all these campaigns with collocated ERA-5 specific

humidity. The bold black solid line connects the mean values from each campaign.

In conclusion, based on the independent comparison against limited radiosonde/dropsonde data available over the open240

ocean, we can draw the conclusions that our SNR-retrieval are the best at capturing the MPBL vertical structure from the

surface (975 hPa) up to 850 hPa globally compared to the ERA-5 reanalysis except at the deep tropics. Compared to the

operational Level-2 retrieval, the SNR method can achieve 50% more samples in the MPBL, and more stable performance

globally. The reason for the poor performance of the SNR retrieval in the deep tropics is probably due to the breakdown

of the original assumption: turbulent and mixing in the tropical PBL by frequent shallow convections constantly disrupt the245

ducting condition, causing SNR reemerging at the deep HSL blending other information and hence are not useful for MPBL

water vapor retrieval. The fact that SNR-retrieval statistics outperform ER-5 at all 6 pressure levels prove that real physical

information from SNR observations is learnt and kept by the ML model for prediction.
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Figure 9. Violin plots of the correlation coefficients calculated from collocated samples for SNR-retrievals (blue), Level 2 retrievals (orange)

and ERA-5 (green). (a) is all-level statistics for each campaign; and (b) is all campaign but binned by different pressure levels. Medium,

standard deviation and minimum/maximum values are shown as the white dots, black box and extended vertical thin lines in each violin,

respectively. The number of total samples are listed on top of each violin. For ERA-5, only the subset of samples that SNR-retrieval colloca-

tions available are selected to calculate the statistics.

4 Discussions

In the section, we present and discuss some use case examples in order to demonstrate how to use this SNR-retrieved MBPL250

specific humidity to identify model or reanalysis issues.
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4.1 Climatology

As suggested in Johnston et al. (2021), MERRA-2 reanalysis has larger dry-biases especially in the polar regions compared

to ERA-5. Here we map out the climatological distribution from our SNR-retrieved water vapor to track down geographical

discrepancies in the Arctic (Fig. 10 and Antarctic (Fig. 11). The coldest months were not selected because of the concern of255

sea ice. Overall again we can see the SNR-retrieved polar MPBL is much more humid than that from MERRA-2 (> 100%

Figure 10. Monthly averages of 950 hPa specific humidity from COSMIC-1 SNR retrieval (left) compared to MERRA-2 reanalysis (right)

for Arctic during April (top) and November (bottom), 2012 and 2013.

in most areas). If we neglect sampling induced geographical inhomogeneities in the SNR-retrievals, we can actually see in
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Fig. 10 that the general patterns and gradients are in general agreeable. The largest differences are that the wet intrusion along

the Bering strait seems to be too weak during both April and November in MERRA-2, and the wet intrusion associated with

the North Atlantic overturning circulation seems to be too strong during November in MERRA-2. These discrepancies connect260

possible root causes down to the ocean circulation, and up to the Arctic front, and should be further investigated in a whole

Earth-system point of view.

Figure 11. Same with Fig. 10, except for the Antarctic/Southern Ocean.

Although Southern Ocean and South Pole seem more boring (Fig. 11), we can actually observe some interesting potential

issues related to topographies. For example, the tip of the Andes mountain effectively blocks MPBL water transport across the

mountains, but such a local effect on humidity is further downstream in MERRA-2. The gradient of water vapor amount from265
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north to south is apparently much weaker compared to MERRA-2, which impacts the latent heat and sensible heat computation

when considering global energy transport.

4.2 Diurnal Variation

It is well-known that global climate models (GCMs) have serious issues at reproducing the cloud, precipitation and convection

diurnal cycles. Although such a notorious problem is mostly attributed to the issues with cumulus parameterization schemes,270

we argue that the diurnal cycle of MPBL water vapor also plays a nontrivial role as it ties closely to the shallow cumulus

and stratocumulus, the latter, for example, is also closely related to the MPBL height diurnal variation (e.g.,Liu and Liang

(2010),Teixeira et al. (2021)). Ground truth of the diurnal variation of MPBL water vapor structures is extremely rare, probably

because of the high cost associated with long-duration shipborne campaign that often only launches radiosondes twice daily

and hence cannot capture the diurnal variabilities. Therefore, here we only aim at showing the discrepancies between ERA-5275

and our SNR-retrieval generated diurnal cycle rather than determining which is right.

Several campaign regions and corresponding months are selected motivated by the observed diurnal variations of the MPBL

height established in Liu and Liang (2010). These 4 regions include tropical east Pacific (EPIC campaign), stratocumulus

region off the coast of Chile (VOCALS campaign), South Indian ocean (INDOEX campaign), and the Arctic open ocean. The

last one was added for the sole interest to check if there is any diurnal cycle in the coldest season.280

The averaged specific humidity at 950 hPa agrees well between two dataset in the two Pacific campaigns, but ERA-5 is

wetter in the South Indian ocean, and significantly drier in the Arctic ocean. Compared to the SNR-retrieved diurnal cycle,

MPBL water vapor diurnal cycle in ERA-5 is too weak in 3 areas but not the INDOEX campaign region. They seem to be

slightly off-phase as well. To put into context of the diurnal cycle of PBL height (Liu and Liang (2010)), in the EPIC campaign

region, the SNR-retrieved water vapor show a dip in the morning (8-9 am local time), coinciding with the dip of PBL height285

in this region. Then the water vapor continues to build up throughout the day, while the PBL height reaches maximum at local

noon and then drops down. In the VOCALS campaign stratocumulus region, the water vapor diurnal cycle derived from the

SNR method echos the PBL height change very well (Liu and Liang (2010), Fig. 10), indicating the important role water vapor

plays in driving the diurnal cycle of stratocumulus, but ERA-5 barely shows any diurnal signature. In the INDOEX campaign

region, the diurnal cycle from ERA-5 and SNR method agrees reasonably well, both anti-correlated with the diurnal cycle of290

PBL height change observed during that campaign. In the Arctic ocean, ERA-5 apparently has set some arbitrary threshold to

keep the water vapor at a constant low level, while SNR-retrievals suggest a weak diurnal variation.

Overall from this exercise, we can see the diurnal coupling between MPBL water vapor, PBL height and clouds are vastly

different from area to area. However, ERA-5 likely under-produced the diurnal cycle of MPBL water vapor globally. For SNR-

retrievals, day-to-day variability is overwhelmingly large, making it harder to interpret or trust a diurnal cycle. Ultimately,295

the lack of MPBL water vapor ground "truth" measurements will keep this topic foggy. Other shipborne measurements, e.g.,

upward pointing radiometers, might be helpful to dientangle this mystery in the future.
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Figure 12. Multi-year mean diurnal variation of 950 hPa specific humidity retrieved from COSMIC-1 and COSMIC-2SNR (black with

errorbar in grey) and from ERA-5 hourly reanalysis (dash-dotted blue) during December - February for (a) EPIC campaign region, 130◦W−
120◦W , 15◦N−30◦N ; (b) Arctic ocean, 180◦W −180◦E, 70◦N−90◦N ; (c) VOCALS campaign region, 90◦W −74◦W , 28◦S−24◦S;

(d) INDOEX campaign region, 55◦E− 75◦E, 25◦S− 15◦S.

5 Conclusions

Marine planetary boundary layer (MPBL) water vapor amount and gradient are among the key factors to couple the ocean and

atmosphere cloud, precipitation and convection together, but meanwhile it is also among the hardest object to retrieve from300

satellite remote sensing perspective. Given the penetration capability of GNSS signal through clouds, we proposed a novel way

in Wu et al. (2022) to utilize the GNSS signal-to-noise (SNR) ratio in the deep HSL to retrieve MPBL water vapor profiles.

In this paper, we demonstrated it is workable at profile-by-profile level, leveraging the power of machine learning (ML) in

capturing weak and non-linear signals. The surprising and novel findings in this paper, is that the ML-trained model can make

better predictions that outperforms the training dataset (i.e., ERA-5), which demonstrates the real information content in the305

SNR signal which would otherwise not be harnessed using traditional statistical methods. The new SNR-retrievals has more
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stable performance against the operational Level-2 GNSS-RO retrievals, and it can produce 50% more successful retrievals in

the lowest 1 km where observations are critical to understand ocean-atmosphere coupling.

We then showed two use cases to demonstrate possible ways to use this dataset. There is no conclusive results because of lack

of ground "truth" to validate, but we do find both reanalysis tend to systematically produces dry biases at high-latitudes, and too310

weak diurnal cycles over global oceans. This SNR-retrieval dataset also has its own caveats. Whenever the "ducting" condition

is violated (e.g., coastal topography, convective tower, mixing and turbulence in the MPBL), the fundamental assumption

breaks down, resulting in poor performances. More extensive comparisons and validations against other high-quality ground

measurements are needed in the future.

Data availability. The Level 2 SNR-retrieval product for the prediction period (see Table 1) has been published on zenodo (Gong et al.315

(2024)). We welcome use and feedbacks.

COSMIC1, COSMIC2, Metop-A and Metop-B Level 1 and Level 2 atmPrf and wetPrf data are downloaded from https://data.cos

mic.ucar.edu/gnss-ro/. ATOMIC data are downloaded from https://psl.noaa.gov/atomic/data/. EUREC4A data are downloaded from

https://doi.org/10.25326/137. SOCRATES data are downloaded from https://data.eol.ucar.edu/master_lists/generated/socrates/.

MARCUS data are downloaded from ARM data request portal. MAGIC data are downloaded from ARM data request portal. ARRecon data320

are downloaded from https://ARRecon.ucsd.edu/arrecon_data/ specially processed to fit the needs of this research. Interested users are

encouraged to contact the last author for assistants of post-processed data.
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Appendix A: A

Table A1. Summary of GNSS-RO instrument noise (σ) used in this work

Instrument Name Orbit Noise (σ)

COSMIC-1/C1 Ascending 10.1

Descending 10.9

COSMIC-1/C2 Ascending 10.2

Descending 10.9

COSMIC-1/C3 Ascending 9.6

Descending 10.4

COSMIC-1/C4 Ascending 10.6

Descending 11.2

COSMIC-1/C5 Ascending 10.1

Descending 11.1

COSMIC-1/C6 Ascending 9.2

Descending 10.7

COSMIC-2/E1 Ascending 17.0

Descending 17.5

COSMIC-2/E2 Ascending 17.5

Descending 17.8

COSMIC-2/E3 Ascending 17.2

Descending 17.9

COSMIC-2/E4 Ascending 17.5

Descending 17.7

COSMIC-2/E5 Ascending 17.4

Descending 17.8

COSMIC-2/E6 Ascending 17.5

Descending 17.8
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Table B1. Excessive Phase L1 grid for this work

Parmeter Grid values

Log10(ϕL1) 1.26245, 1.33846, 1.41162, 1.48144, 1.54777, 1.62428,

1.69679, 1.76530, 1.82995, 1.89098, 1.94866, 1.97000,

2.00325, 2.02000, 2.05500, 2.08000, 2.10415, 2.13000,

2.15091, 2.17000, 2.19548, 2.23805, 2.27875, 2.30103,

2.32222, 2.37000, 2.41497, 2.44000, 2.55630, 2.59000,

2.63000, 2.69020, 2.75000, 2.81291, 2.86000, 2.92428,

2.95000, 3.02531, 3.10000, 3.11727, 3.15000, 3.20140,

3.22000, 3.25000, 3.27875, 3.30000, 3.32000, 3.35025,

3.41664, 3.47857, 3.53656, 3.59106

Rough corresponding HSL [km] -150, -140, -130, -120, -110, -108, -106, -104, -102, -100,

-98, -96, -94, -92, -90, -80, -70, -60, -50, -40, -37, -33, -30,

-26, -23, -20, -19, -17, -15, -13, -11, -9, -7, -5, -3, -2, -1, 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19
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(a) Metop-A SRO & MPBL specific humidity (b) Metop-B SRO & MPBL specific humidity

Figure A1. Cross-correlation among SRO (left) and σ2
SNR (right) at various SLH levels from one random day for COSMIC1 and their

cross-correlation with collocated ERA5 specific humidity at 975 - 850 hPa (bottom-right corner of each panel). Only grid indices are shown

in the axis titles, and the corresponding Log10(ϕL1) values can be found in Table A2.
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