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Abstract. Marine Atmosphere Boundary layer (MABL) water vapor amount and gradient impact the global energy transport

through directly affecting the sensible and latent heat exchange between the ocean and atmosphere. Yet, it is a well-known chal-

lenge for satellite remote sensing to profile MABL water vapor, especially when cloud or sharp vertical gradient of water vapor

are present. Wu et al. (2022) identified good correlations between Global Navigation Satellite System (GNSS) deep refraction

signal-to-noise-ratio (SNR) signal and the global MABL water vapor specific humidity when the radio occultation (RO) signal5

is ducted by the moist planetary boundary layer (PBL), and they laid out the underlying physical mechanisms to explain such a

correlation. In this work, we apply a machine-learning/artificial intelligence (ML/AI) technique to demonstrate the feasibility

for profile-by-profile MABL water vapor retrieval using the SNR signal. Three convolutional neural network (CNN) models

are trained using multi-months of global collocated hourly ERA-5 reanalysis and COSMIC-1, METOP-A and METOP-B 1

Hz SNR observations between 975 – 850 hPa with 25 hPa vertical resolution. The COSMIC-1 ML model is then applied to10

both COSMIC-1 and COSMIC-2 in other time ranges for independent retrieval and validation. Monte Carlo Dropout method

was employed for the uncertainty estimation. Comparison against multiple field campaign radiosonde/dropsonde observations

globally suggests SNR-ML method retrieved water vapor consistently outperforms the wetPrf/wetPf2 standard retrieval prod-

uct at all six pressure levels between 975 hPa and 850 hPa, and either outperforms or achieves similar performance against

ERA-5, indicating real and useful information is gained from the SNR signal albeit training was performed against the reanaly-15

sis. Climatology and diurnal cycle of MABL structure constructed from the SNR-ML technique is studied and compared to the

reanalysis. Disparities of climatology suggest ERA-5 may systematically produces dry biases at high-latitudes, and wet biases

in marine stratocumulus regions. The diurnal cycle amplitudes are too weak and sometimes off-phase in ERA-5, especially in

Arctic and stratocumulus regions. These areas are particularly prone to PBL processes where this GNSS SNR-ML water vapor

product may contribute the most.20
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1 Introduction

As a key component of Earth’s lower atmosphere, the planetary boundary layer (PBL) water vapor plays a pivotal role in

Earth’s energy budget, exerting profound influence on weather and climate processes. It is an essential factor of the Earth’s

energy budget, influencing radiative forcing and consequently climate variability and long-term changes. Furthermore, PBL

water vapor is instrumental in modulating local and regional weather patterns by affecting cloud formation, precipitation25

and temperature. Therefore, study of PBL water vapor stands as a vital element in advancing our comprehension of Earth’s

atmosphere and its broader implications for our planet’s climate system.

70% of the Earth’s surface is covered by water. The sensible and latent heat exchange between ocean boundary and the marine

atmosphere boundary layer (MABL) happens at different spatial and temporal scales, which is determined by not only ocean

surface properties (e.g., wind speed, sea surface temperature) but also MABL thermodynamic structures. For example, under30

the context of proneness of polar area to the climate change, Boisvert et al. (2015) found Arctic PBL humidity and temperature

biases in the reanalysis are the major error sources for the evaporation estimation compared to satellite observations. Cloud-

cimate feedback is another motivation highlighted by NASA’s PBL incubation study (Teixeira et al. (2021)). As another

example, Milan et al. (2019) found strong correlation between MABL cloud top height and below-cloud water vapor amount

using two joint satellite retrieval products.35

Data sparsity is a critical problem for advancing MABL science. Satellite remote sensing undoubtedly provides the best

solution in terms of global coverage, but it is very difficult to retrieve MABL WV and its vertical distribution when cloud or

sea ice are present. When clouds are present in the scene, emissions from clouds often overwhelms the emission signal from the

MABL water vapor and prevents passive instruments sensing the below-cloud atmosphere. When sea ice is present, scattering

or surface emission from the sea ice are often inseparable from water vapor emission signals and distort the retrieval result.40

Taking the aforementioned two research as examples, Boisvert et al. (2015) uses Level 2 AIRS water vapor and temperature

retrieval products, which are only available for clear or partially-cloudy sky situations, so it inherently contains a sampling

bias. Milan et al. (2019) derived MABL total WV amount from subtracting MODIS above-cloud water vapor from AMSU-A

total column water vapor, which still lacks the vertical information of WV in the MABL.

Using low-frequeny microwave L-band to transmit signals along the limb path, the Global Navigation Satellite System45

(GNSS) satellite overcomes the two above difficulties and provide high vertical resolution (100-200 m) of the MABL water

vapor under all-sky conditions. GNSS Radio Occultation (GNSS-RO) retrieves temperature and water vapor profiles using

the 1D-Var approach routinely from the Level 2 bending angle product (referred as "standard L2 product" or "operational L2

product" hereafter), the latter of which is used operationally in numerical weather data assimilation systems to improve weather

forecasts (e.g.,Kuo et al. (2000)). Because of the rapid growth of SmallSat/CubeSat constellations from both the commercial50

and non-profit sectors, GNSS-RO technique provides a promising future for the needed global spatial-temporal sampling of

MABL WV and its variability. Like other limb sounders, the disadvantage of GNSS-RO is its relatively coarse horizontal

resolution (several hundred kilometers) that smears out horizontally inhomgeneous signals. This is typically not a big concern

in MABL as vertical gradient is much sharper than horizontal gradient and harder to characterize.
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However, GNSS-RO WV retrieval profiles have excessively high failure rate in the MABL. That is because the GNSS-RO55

signal-to-noise ratio (SNR) decreases with decreasing altitude due to the atmospheric defocusing effect, and the Level-2 radio-

occultation (RO) signal hence often does not meet the SNR threshold near the surface. As a result, the GNSS-RO 1D-Var

based retrievals often fail in the MABL due to weak RO signal. Fig. 1 gives an example of the success statistics (%) as a

function of height for temperature (Fig. 1a) and water vapor (Fig. 1b) over the tropical ocean. Using 0.5km and 1km above the

ocean surface as the reference lines, we can see although the COSMIC-2 (Constellation Observing System for Meteorology,60

Ionosphere, and Climate-2) has significantly improved its SNR compared to its predecessor COSMIC-1, the success rate is

about 60% at 0.5km and slightly over 70% at 1km for the GNSS-RO WV retrieval, while this number is only 40% and 55%

for COSMIC-1 at respective altitudes. The low SNR widely exists for commercial GNSS satellites especially in the lowest

500 m above the surface (Ganeshan et al. (2024)). Moreover, even passed the SNR threshold, some bending angle profiles are

significantly biased in the PBL when ducting happens because the refractivity index becomes negative, which leads to biases65

in the operational water vapor retrievals (Feng et al. (2020)).

(a) AtmPrf success rate (b) WetPf2 success rate

Figure 1. Level 2 atmPrf (temperature) and wetPf2 (water vapor) successful retrieval rate (%) as a function of height above sea-level from

COSMIC-1 during January 2008 (blue) and COSMIC-2 during January 2020 (red). Success rate is calculated by dividing number of valid

GNSS-RO retrieval files over number of Level-1B file at a certain height. The grey dashed lines mark the reference at 0.5 km from the tropical

ocean surface.
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Wu et al. (2022) found out that the Level-1B deep SNR from the straight-line height (HSL) is statistically significantly

correlated with the MABL water vapor amount in the European Centre for Medium-Range Weather Forecasts (ECMWF)

Reanalysis v5 (ERA-5) after averaging over a month at 2.5◦X2.5◦ grid resolution. The averaging is necessary to effectively

beat down the random noise. This paper attributed such a positive correlation to the strong refraction from a horizontally70

stratiform and dynamically quiet MABL water vapor layer that acts to enhance the SNR amplitude at deep HSL through

ducting and diffraction/interference (a summary recapitulation of the physical mechanism can be found in Section 2.3). Some

caveats of this work limit its application to weather phenomena. First, it builds upon a single level regression statistics, the

correlation coefficient of which was found the highest at HSL =−100km in the tropics, and HSL =−80km at high latitudes.

Hence, any simple linear regression-based retrieval algorithm will suffer from arbitrary latitudinal discontinuities. As a matter75

of fact, SNR at different HSL levels are found correlated with MABL water vapor with different signs and magnitudes (e.g.,

Fig. 2), which should be used together to enhance the information content. Secondly, the robust relationship is only found for

monthly averages in Wu et al. (2022), because the profile-by-profile noise is usually too high to yield a meaningful retrieval

from SNR, and only through averaging large amount of profiles can the noise be lowered down to the level where signal stands

out. These are all caveats of traditional statistical approach. Machine learning approach, however, is suitable at picking up80

weak signals through large amount of training data. As such, the scopes of this paper are to demonstrate the feasibility of using

the ML method to extract MABL WV information from the GNSS SNR signals, and to demonstrate the scientific value of this

new product over the existing operational water vapor retrievals.

Artificial Intelligence/Machine learning (AI/ML) applications in remote sensing field is trending in the past decade. It has

been increasingly used in remote sensing fields in recent years. Traditionally physics-based radiative transfer (RT) theories85

and modelings are used to link the remote sensing measurements (e.g., GNSS radio occultation signal) to the physical quan-

tities (e.g., temperature and water vapor profiles). They are often highly non-linear, computationally expensive and involve

many explicit or embedded assumptions/simplifications, which may or may not propagate properly into part of the retrieval

errors eventually. Given the fact that satellite measurements usually contain large amount of data, and the association is highly

non-linear between the measurement space and the physical space, the retrieval process becomes an ideal testbed for ML ca-90

pabilities. Some pioneer works had attempted this approach to retrieve PBL atmosphere profiles and achieved notable success.

For example, Ye et al. (2021) used the routine radiosonde measurement at a Atmospheric Radiation Measurement (ARM) site

as the ground truth to train a ground-based infrared spectrometer to predict the PBL height. The capability is limited to only

the stations where both observations are routinely available. Milestein and Blackwell (2016) employed a neural network (NN)

framework on retrieving the temperature and water vapor profiles from the spaceborne Atmospheric Infrared Sounder (AIRS)95

observations (AIRS Version 7 product). The training "truth" was from the ECMWF analysis fields. It is worth mentioning that

Milstein (2022), as a follow-up work, pointed out the ML-only retrieval framework tends to smooth out sharp gradient features

in proximity to the PBL top. To mitigate this caveat, Milstein et al. (2023) employs the 3D deep neural network training on

the AIRS granule image against ERA-5 reanalysis that helps PBL height recognition from passive imagers.

In this paper, we will explore the ML capability at retrieving the MABL WV information from the deep SNR signal at100

profile-by-profile basis (i.e., Level-2 standard). Section 2 introduce the training and validation datasets as well as the model

4



structure; Section 3 presents the retrieval results and independent validation; Section 4 will expand the discussion to the usage

of this product in studying MABL water vapor climatology and diurnal variabilities; Section 5 summarizes the major findings

and shortcomings of the current work that may be improved in the future.

2 Data and Model105

This section introduces the training, validation and independent validation datasets, as well as the ML model architecture and

the underlying physical foundations for the ML technique to root upon.

2.1 Training and Validation Datasets

The definition of SNR follows Wu et al. (2022) which uses the normalized SNR (SRO):

SRO = (SNR−σ)/(SNR0 −σ) (1)

σ2
S = V AR(SRO −SRO) (2)

110

SNR0 is the free atmosphere SNR. In practice, we use averaged SNR between 35 and 65 km altitude range as the SNR0,

and any profile with SNR0 < 200 or σ2
SNR0

> 0.05 is considered "low-signal" and is filtered out. σ is the instrument-specific

noise determined for each individual instrument from very deep HSL. The value for σ used in this work is an updated version

from Table A1 in Wu et al. (2022) and shown in the Appendix A (Table B1). Wu et al. (2022) also found an instrument-

dependent shift of the mean SRO profile as a function HSL. Luckily, such an issue can be resolved to use the excess phase at115

L1 (ϕL1) as the vertical coordinate. In practice, the raw calculated SRO and σ2
S are mapped to a fixed 52-level Log10(ϕL1)

vertical grid. It is roughly linearly correlated with HSL. The value for the vertical grid is listed in Table B1 in the Appendix A.

In practice, we also filtered out bad open-loop profiles, profiles with data gap greater than 2 km, and profiles with outlier SRO

or σ2
S values.

The ERA-5 reanalysis is so far the best global reanalysis dataset in terms of PBL water vapor amount and distribution.120

Johnston et al. (2021) compared specific humidity from ERA-5 and MERRA-2 reanalysis against collocated and coincident

GNSS-RO wetPf2 specific humidity retrieval profiles, and found ERA-5 outperforms MERRA-2 everywhere in the PBL. They

both exhibit consistent dry biases with larger bias from mid-high latitudes. However, ERA-5 percentage bias is roughly 1/2 of

that from the MERRA-2 reanalysis in the PBL and tropopause layers. Given that many previous works used ERA-5 reanalysis

or ECMWF analysis for training or validating the satellite retrievals for water vapors (e.g., Milestein and Blackwell (2016),125

Milstein et al. (2023)), especially some recent ones using it as the standard to evaluate recent GNSS-RO missions (e.g., Chang

et al. (2022), Zhran (2023), Ganeshan et al. (2024)) , it is well justified to use ERA-5 hourly reanalysis as the "training"

dataset to create a large sample globally. However, it is also warned in Johnston et al. (2021) that GNSS-RO retrievals tend to

have its own biases especially in MABL, and in fact some other research suggested wet biases in certain regions (e.g., Virman

et al. (2021).)130

In this work, we created a collocated and coincident ERA-5 - SNR training and validation dataset. The SNR records are

from four satellite series: COSMIC-1, COSMIC-2, METOP-A and METOP-B. The periods for training, independent test-
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ing, and prediction are listed in Table 1. Note that the testing period is independent from training period to avoid potential

self-correlation using standard random splitting procedure. The prediction period however covers both training and valida-

tion periods. The target variables are specific humidity at the aforementioned 6 pressure levels (975hPa, 950hPa, 925hPa,135

900hPa,875hPa and 850hPa). The input parameters are 52 levels of SRO, 52 levels of σ2
S , latitude, longitude, month and

Rising/Setting flag.

Table 1. Training, testing and prediction periods

Training (90% and 10% random-splitting) COSMIC-1 2012.01-2012.12, 2016.01-2016.03,

2017.01-2017.03

METOP-A 2017.01-2017.03

METOP-B 2017.01-2017.03

Testing COSMIC-1 2018.01-2018.03

METOP-A 2018.01-2018.03

METOP-B 2018.01-2018.03

Prediction COSMIC-1 2012.01-2012.12, 2013.01-2013.12,

2016.01-2016.03, 2017.01-2017.03,

2018.01-2018.03

COSMIC-2 2020.01-2020.12

METOP-A 2012.01-2011.12, 2013.01-2013.12

METOP-B 2012.01-2011.12, 2013.01-2013.12

Fig. 2 elucidates the linear correlation between COSMIC-1 SRO at each of the 52 levels and ERA-5 specific humidity at

975, 950, 925, 900, 875 and 850 hPa over global ocean. The largest positive correlations are found around Level #40 to Level

#45, which roughly correspond to HSL =−100km to −80km (Table B1). Based on the monthly averages, Wu et al. (2022)140

found the highest correlation at HSL =−100km in the tropics and at HSL =−80km for the polar regions, which is consistent

with our profile-by-profile correlation as well. But Fig. 2 also shows positive or negative correlations at different Log10(ϕL1)

levels, which impede methods like multi-variable regression from working. σ2
SNR also exhibits non-linear patterns with slightly

weaker correlations with MABL water vapor that are opposite in sign compared to that of SRO. It is worth noting that these

relationships are also instrument dependent, as can be clearly seen in the SRO cross-correlation for Metop-A and Metop-B145

in the Appendix Fig. A1 and A2. Considering the instrument-dependent correlation patterns, three ML models are developed

separately for COSMIC, METOP-A and METOP-B satellites, although it probably redundant to build two separate ML models

for METOP-A and METOP-B separately as their correlation patterns are nearly identical. For the COSMIC series, we observed

similar pattern from COSMIC-2 compared to Fig. 2 after downsampling the frequency to 1 Hz (not shown). Therefore, the
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Figure 2. Correlation between collocated ERA-5 specific humidity at 975 - 850 hPa and SRO (top) and σ2
SNR (bottom) at various excess

phase levels from the training COSMIC-1-ERA-5 dataset). Only grid indices are shown in the axis titles, and the corresponding Log10(ϕL1)

values can be found in Table B1

.

ML model developed using COSMIC-1 observations is applied directly to the downsampled COSMIC-2 SNR observations.150

Through this practice we can also test the transferred learning among similar satellite series for the hope of stitching them

together for longer record in the future research.

The correlation holds with the same slope at piece-wise level using individual profiles. For example, between SNR at

HSL =−100km and ERA-5 specific humidity at 950hPa, Wu et al. (2022) observed the near linear correlation with monthly

averaged and gridded data, while we can see that the same slope is preserved at profile-by-profile level in Fig. 3. While this155

robust correlation proves that developing a Level-2 MABL specific humidity retrieval product using SNR profiles is feasible,

the discernible larger noise at individual profile level versus month averages (Fig. 3d) suggests it is a challenging task. ML

method is hence introduced to tackle this highly complex regression problem.

GNSS-RO operational water vapor retrieval product provided by the University Corporation for Atmospheric Research

(UCAR) is employed to evaluate the quality of the SNR-ML retrievals. This operational product is called "wetPf2". Compared160

to an old 2013 processed "wetPrf" version, "wetPf2" has better penetration depth (Wee et al. (2022)) and is used for construct-

ing Fig. 1, but "wetPrf" product is used for the MAGIC campaign comparison because of data availability constraints at the

time when this research was conducted. We’ve compared the success rate in the MABL between wetPrf and wetPf2 during

Jan. 2008 (Fig. 1b) and only found very marginal improvements for COSMIC-1. Note that the key Level-2 profile to enable

the 1D-VAR retrieval used by the wetPrf/wetPf2 product is the bending angle, which is assimilated in the ERA-5 reanalysis.165

Therefore, this is not an independent evaluation dataset. The purpose of this comparison is to identify the merits and caveats of

the SNR-ML retrievals against an existing mature product.
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Figure 3. Density plots of the SNR-specific humidity relationship for (a) Metop-A, (b) Metop-B, (c) COSMIC-1 constructed from the entire

training dataset between 45◦S and 45◦N . The SNR value is taken from HSL =−100km while the specific humidity value is taken at

950hPa. Fig. 9c from Wu et al. (2022) is reproduced here as (d) to demonstrate that the same relationship with the same slope holds at

individual profile level.

In addition to the independent testing which is a standard procedure for ML/AI training and evaluation against the wet-

Prf/wetPf2 operational product, a handful of shipborne radiosonde campaigns and airborne dropsonde campaigns data are

collected for further independent assessment. The campaign names, location and total number of valid profiles are presented in170

Fig. 4 and Table 2. We can see from the summary of weather scenarios during each campaign that this independent validation
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dataset comprehensively covers major marine weather regimes from extremely dry Southern Ocean (MARCUS), mid-latitude

stratocumulus region (MAGIC), tropical trade cumulus region (EUREC4A, ATOMIC), to episodically wet atmospheric river

events (ARRecon). This exercise is critical for assessing the quality of ERA-5, Level 2 retrieval, and Level 1 SNR-based

retrieval under different weather scenarios. Moreover, as the ML model trained solely on COSMIC-1 SNR data are then ap-175

plied to the COSMIC-2 data, the independent validation using the three campaigns in 2020 (ARRecon-2020, EUREC4A and

ATOMIC) provides some solid evidences to evaluate the robustness of the "transferred learning".

Table 2. Campaign Information

Campaign Name Period used for val-

idation

Location Weather Regime Type Reference

MARCUS 2017.11-2018.03 Southern Ocean Mixed-Phase PBL

cloud

Radiosonde Evan et al. (2022)

ATOMIC 2020.01-2020.02 Tropical North At-

lantic

Tropical trade wind

zone

Radiosonde and

Dropsonde

George et al.

(2021)

EUREC4A 2020.01-2020.02 Tropical North At-

lantic

Tropical trade wind

zone

Radiosonde Stephan et al.

(2021)

MAGIC 2012.10-2013.09 Eastern North Pa-

cific Ocean

Subtropical MABL Radiosonde Evan et al. (2022)

ARRecon 2018.02; 2020.01-

2020.02

Northeast Pacific

off the coast of

California

Atmospheric River Dropsonde Zheng et al. (2024)

Figure 4. Maps for radiosonde/dropsonde locations from different shipborne or airborne campaigns in (a) tropics; (b) mid-latitudes; (c)

southern ocean. Detailed campaign information can be found in Table 2. The total number of valid radiosonde/dropsonde profiles are listed

in the parentheses in the legends.
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2.2 Machine Learning Model Selection

The Convolutional Neural Network (CNN) model (LeCun et al. (2015)) is chosen as our regression ML model. The model

internal architecture is illustrated in Fig. 5. There are a total of 109 input parameters, including one dimensional array of SR0180

of 52 elements, one dimensional array of σ2
S of 52 elements, both interpolated to a fixed excess phase grid (Table B1), and

latitude, longitude, month and Rising/Setting flag. The output parameters are specific humidity at 6 pressure level between 975

and 850 hPa with cadence of 25 hPa.

Figure 5. CNN model internal structure for this work. The numbers on top of the right-pointing arrow is the Monte Carlo dropout value

applied between each layer. Numbers inside the parentheses of Conv1D layer indicate filter size and pool size, while numbers inside the

parentheses of the Dense layer indicate number of the fully-connected nodes. The training takes 100 epochs, which suffice the needs for

quick convergence.

Compared to some earlier ML models (e.g., random forest, gradient boosting), CNN learns also the vertical cross-correlation

within the 52-layer input SNR profiles, as well as within the targeted 6-layers of specific humidity profiles. We conducted a185

comprehensive search of best hyperparameters using the root-mean-square-error (RMSE) as the loss function.

In the prediction step, 30 predictions were carried out given each input set of variables, the mean and standard deviation

of which were used as the final prediction and estimated uncertainty. It is worth highlighting that in each convolutional and

fully-connected layer, a dropout rate of 0.25 is applied to generate the variation, which is then used to calculate the standard
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deviation of the "ensemble prediction" as a way to measure the retrieval uncertainty. This so-called "Monte Carlo" dropout190

method was designed in ML as a standard technique to regularize model over-fitting (Srivastava et al. (2013)), but were also

employed widely as a Bayesian-approximation to quantify model uncertainties(Gal and Ghahramani (2016)). Admittedly the

current method only provides a quantification for ML model errors. There is no consideration of SNR measurement errors nor

propagation of the error to the final retrievals at this moment, although this is certainly some procedure to be in place in the

future works.195

We also tried some earlier ML models, e.g., random forest (RF), gradient boosting (GB), logistic regression (LR), support

vector machine (SVM) and one deep learning model multilayer perceptron (MLP). The model performances are actually very

close in terms of evaluating the RMSE except for the LR and SVM, the latter of which performed discernibly worse than the

rest ML models. It is not a surprise finding as this is a relatively simple and straightforward task that ML models should handle

easily, but not the case for multi-variable linear regression type of logistic models (hence, it explains the poor performance200

of LR and SVM). As the main focus of this paper is science and new information content embedded in SNR signals, we will

not deviate the attention to spend more time discussing these model results. The semi-transparency of RF and GB models

is appreciated by us though. We compared the feature importance rankings with Wu et al. (2022) findings, and find high

consistencies (e.g., high ranking of SNR at HSL =−100 km in the tropics, and SNR at HSL =−80 km ranks the top in the

polar region).205

2.3 Underlying Physical Mechanisms

It is necessary to provide a summary of the underlying physics to emphasize the solid physical ground for this product, so

readers would not misunderstand this as a pure statistics-based ad-hoc finding. The underlying physical mechanisms to explain

the observed high-correlation between MABL water vapor and the GNSS SNR signal remain to be an active research area.

Wu et al. (2022) articulated that the diffractive effect on the RO signal under the condition of limb sounding through a sharp210

MABL can extend the signal below the sharp edge of the obstacle with a limited depth.

Both diffractive and refractive processes are required to happen along the radio wave propagation to produce the RO signal

at deep HSL. Another example ( Sokolovskiy et al. (2024)) found enhancement of SNR when super-reflection happens. In

reality, complex MABL can produce a mixed effect in the soundings from a combination of conditions that include normal

bending, grazing reflection, super-reflection, ducting or diffraction (Sokolovskiy et al. (2014)). As a result, sophisticated215

physical radiation transfer models (e.g., radiohologram, canonical transform) can in principle be used but at the expense of high

computational costs and hence impractical operationally. Moreover, the retrieval itself is essentially still an under-constraint

problem, which commonly occur for satellite retrievals and assumptions (no matter physically making sense or not) need to be

made to fully constrain the physical model. As the quasi-linear relationship is preserved at profile-by-profile level with larger

noise compared to the monthly gridded and smoothed data (Fig. 3), and the height-dependency of the regression coefficient is220

highly non-linear (Fig. 2), a ML model is simply the best choice to extract the signal.
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3 Results

3.1 Retrieval Performance Evaluation

As the first comparison, Fig. 6 and Fig. 7 showcase the statistical closeness to the 1 : 1 line and the resemblance of geograph-

ical distributions for the three independent testing months: January - March, 2018, for COSMIC-1. All 6 pressure levels are225

compiled together to make Fig. 6, but were otherwise look extremely similar if plotting layer-by-layer. The only deviation from

1 : 1 line occurs at very small specific humidity values (ERA-5 specific humidity < 1g/kg), i.e., very dry conditions, normally

occurs at high-latitudes.

Such a discrepancy reveals itself more clearly when we map out the percentage difference (Fig. 7b). The largest percentage

differences indeed are shown at polar regions as well as near the coastal lines with SNR-ML retrieved humidity tends to be230

larger than ERA-5. Note that to satisfy ducting or other diffraction conditions in order to use SNR signal at deep HSL, the

surface is required to be flat. Therefore, the discrepancies around the coastal line are believed to be related to issues with

SNR-ML retrievals when topography starts to play a role. However, as we will show later in Fig. 10, ERA-5 indeed shows

consistent dry-bias at high-latitudes compared to independent radiosonde measurements. So SNR-ML retrieval might produce

a closer-to-truth results as will be seen later as well. Moreover, one can visually discern discrepancies in the tropical deep235

convection/ITCZ zones with ERA-5 in general wetter than SNR-retrieved values. Such a discrepancy is not conspicuous in

Fig. 7b simply because of the large value in the denominator. We will also show later that none of the three datasets we will

evaluate (SNR-ML retrieval, GNSS-RO Level 2 retrieval and ERA-5 reanalysis) capture well the tropical MABL structures.

For the SNR-ML method, it is probably because the ducting assumption is easily and frequently violated in the tropical MABL.

3.2 Uncertainty Quantification240

Unfortunately, for the very dry conditions, SNR-retrieved specific humidity also inherently comes along with large uncertain-

ties, as can be clearly seen in Fig. 8. The SNR signal is too weak in this situation to yield any robust retrievals even with

powerful ML models. Although we still believe the SNR-ML retrievals might be "more correct" than ERA-5 for very dry

conditions, in practice we mark any retrieval with greater than 50% uncertainty with a quality flag in the published product,

and those data do not pass the the quality control to be used later in this paper for independent validation nor constructing the245

climatologies. This threshold only filters out about 2% of the data with very weak SNR signals. If we would apply a threshold

of 20%, about 16% of data would be filtered out. In the later section when the diurnal cycle is compared using multi-year

regional averaged data, we found that heavy-averaging effectively beat down the noise so to reveal a visible diurnal signal in

the extremely dry polar region, whereas ERA-5 is essentially a fixed value (Fig. 14b). We can also see from Fig. 8 that almost

all SNR-ML retrievals greater than 2g/kg passes the quality control. Readers should keep in mind that our current uncertainty250

estimation approach under-estimates the real uncertainty because it does not take into account SNR errors.
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Figure 6. Heatmap for independent validation from January - March 2018 for COSMIC-1 combining all 6 levels together.

Figure 7. Geographic distribution of the (a) predicted values using COSMIC-1 SNR observations versus (c) ERA-5 validation values at 950

hPa for January - March, 2018. The middle panel is the percentage difference between (a) and (c).Only ERA-5 samples that collocate and

coincident with COSMIC-1 SNR-ML retrievals are selected for this comparison

3.3 Comparison to Independent Radiosondes

In order to find collocation samples in every campaign, the collocation criteria are slightly different given the consideration

of (1) the abundance of radiosonde/dropsonde profiles; (2) the typical spatial and temporal homogeneity of the local weather
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Figure 8. Percentage uncertainty distribution as a function of predicted value.

regime; (3) the availability of daily COSMIC-1, COSMIC-2, Metop-A and Metop-B profiles. In practice, for EUREC4A and255

ATOMIC, collocation is defined as longitude difference within 2◦, latitude difference within 1.5◦, and time difference within

1 hr. For the Southern Ocean campaign, the thresholds become 4◦,2.5◦ and 2 hr correspondingly. For ARRecon and MAGIC

campaigns, the thresholds are 4◦,1.5◦ and 2 hr.

Fig. 9 shows the level-by-level comparison for all collocated samples from all campaigns. SNR-ML retrieval results are

shown in filled colors while wetPrf/wetPf2 retrievals are shown in open symbols. In addition, the averages from each cam-260

paign collocation subsets are connected together for better visual comparison against the 1 : 1 line. We can see both SNR-ML

retrievals and wetPrf/wetPf2 retrievals demonstrate close agreement with ground "truth" for different weather regimes. In gen-

eral, better correlation are found when the MABL is relatively dry or moderately-wet. Taken the ARRecon campaign as an

example, SNR-ML retrieval has an overall better agreement compared to the wetPrf/wetPf2 retrievals (black lines versus black

14



Figure 9. Scatter plots of collocated specific humidity [g/kg] comparison between radiosonde "truth" and retrievals from SNR (closed

symbols) and wetPrf/wetPf2 standard retrieval (open symbols) for each pressure level. Black thin diagonal lines are the 1:1 lines for reference.

The mean and standard deviation from the SNR-ML retrieval from each campaign are shown as bigger grey symbols. In addition, the mean

retrieved values from each campaign as opposed to the mean from radiosonde "truth" are shown as the bold black lines for SNR-ML retrievals,

bold black dash-dotted lines for wetPrf/wetPf2 retrievals, and brown dashed-dotted lines for ERA-5 from the subset where collocations are

found for SNR-ML and radiosonde data samples.

dash-dotted lines, and orange solid triangles versus orange open triangles), and the few extremely large specific humidity val-265

ues (> 12g/kg) are well captured by the SNR-ML retrieval but not the wetPrf/wetPf2 retrievals. The mean of all ARRecon

collocated samples also suggest SNR-ML retrieval is the only one that doesn’t produce a bias, while GNSS wetPrf/wetPf2

retrievals are slightly dry-biased in atmospheric rivers. Such a close agreement appears to become noisier at 850 hPa, again

demonstrated that signals at sharp boundaries (i.e., PBL top) are hard to retrieve. ERA-5 from each campaign (only consider-
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ing samples that a SNR-ML retrieval collocation is found) exhibit good agreement to the ground truth too (brown dash-dotted270

lines). For the two deep tropics campaigns ATOMIC and EUREC4A, we can clearly see none of the three datasets capture the

humidity conditions in the MABL. They are all dry-biased, and means from ERA-5 reanalysis are less dry-biased than GNSS

retrieved values at 975 hPa and 950 hPa. SNR-ML method achieves overall comparable performance to ERA-5, which is

expected because model is trained on ERA-5. The operational wetPrf/wetPf2 product is noticeably dry-biased in the MAGIC

campaign (i.e., the large deviation of the black dashed lines). As MAGIC campaign was carried out in the stratocumulus region275

off the California coast, frequent ducting-induced negative biases are probably the main reason that causes such a significant

dry bias (Feng et al. (2020)).

Figure 10. Same with Fig. 9, except for all available radiosonde/dropsonde samples in all these campaigns with collocated ERA-5 specific

humidity. The bold black solid line connects the mean values from each campaign.
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For the convenience of pinpointing ERA-5 MABL issues, we also make Fig. 10 as each valid radiosonde/dropsonde profile

from all 6 campaigns can always collocate with an ERA-5 reanalysis data sample within 1.5◦ longitude, 1◦ latitude and

1 hr difference. Now we can clearly see ERA-5 didn’t capture the MABL humidity change in the majority time during the280

EUREC4A campaign with large wet-biases. Another discernible bias happens in the Southern Ocean during the MARCUS

campaign, where ERA-5 is consistently dry-biased. Overall ERA-5 shows a small dry-bias globally at all levels, which agrees

with early findings by Johnston et al. (2021) who used wetPf2 GNSS-RO retrievals to identify such a dry bias. Note that some

of the campaign profiles (e.g., ARRecon dropsondes) are actually assimilated in the ERA-5 data, so it is not a completely

independent validation strictly speaking. However, it is also worth noting that some previous publications employed ARRecon285

and EUREC4A radiosonde data as "ground truth" for evaluating ERA-5 accuracy in capturing water vapor variabilities in the

PBLs (e.g.,Cobb et al. (2021), Kruger et al. (2022)).

The violin plots in Fig. 11 and numbers of collocated sample statistics in Table 3 reveal more detailed difference in com-

parison statistics with respect to the radiosonde/dropsonde "truth", which more comprehensively demonstrate the values (and

caveats) of the SNR-ML retrieval. Only correlation coefficients of all collocated samples collected from each campaign are290

displayed in Fig. 11. The ARRecon-2018 and ARRecon-2020 samples are further combined. From Fig. 11a, we can see again

that the MABL specific humidity is not well captured in the tropics by either of the three datasets. SNR-ML method generated

retrievals perform slightly better than the operational wetPf2 product. In the rest three campaigns in the mid- and high-latitudes,

they all agree very well with the radiosonde/dropsonde ground truths. ERA-5 reanalysis does the best job at high-latitude South-

ern ocean, while surprisingly in the atmospheric river regime, SNR-ML retrievals outperform the GNSS operational retrievals295

as well as the ERA-5 reanalysis.

In Fig. 11b, the correlation statistics are binned by different pressure levels. We can see the SNR-ML retrieval and /wetPf2

retrieval are in general comparable in robustness in capturing the entire MABL specific humidity vertical structure, both of

which outperform the ERA-5 slightly in terms of the averaged correlation coefficient magnitude. The correlation coefficients

using the SNR-ML retrievals are consistently slightly higher than that using the wetPrf/wetPf2 retrievals, but the agreement300

between ground truth and SNL-ML retrievals decrease with increasing height, suggesting that the useful information that deep

SNR signal carries is confined in the MABL. Considering the spread is the smallest for the SNR-ML retrievals, we can see that

this method does produce stable robust results at all 6 pressure levels.

Another big advantage of the SNL-ML retrieval is its consistently higher success rate in the MABL compared with the

wetPrf/wetPf2 product. This is clearly seen in Table 3, where the percentage difference between the two are listed in the305

parentheses for each campaign at each pressure level. For stratocumulus region (MAGIC campaign) that ducting or super-

refraction happens frequently, the success rate of SNR-ML method can go up to 700% more than using the wetPrf product

at the lowermost altitude. Although the superiority of success rate of the SNR-ML retrievals gradually vanishes when getting

closer to the MABL top, they are still across-the-board more than wetPrf/wetPf2 products.

To summarize the major findings for comparisons against the limited independent radiosonde/dropsonde datasets available310

over the open ocean, we can draw the following conclusions. Firstly, The quality of the SNR-ML retrievals is comparable to

ERA-5 and the operational wetPrf/wetPf2 product. In atmospheric river weather regime, SNR-ML method even outperforms
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Figure 11. Violin plots of the correlation coefficients calculated from collocated samples for SNR-ML retrievals (blue), Level 2 retrievals

(orange) and ERA-5 (green). (a) is all-level statistics for each campaign; and (b) is all campaign but binned by different pressure levels.

Medium, standard deviation and minimum/maximum values are shown as the white dots, black box and extended vertical thin lines in each

violin, respectively. The number of total samples are listed on top of each violin. For ERA-5, only the subset of samples that SNR-ML

retrieval collocations available are selected to calculate the statistics.

the other two. The robustness and stable performance of SNR-ML retrievals remain the best within the MABL, although its

advantage gradually vanishes with increasing height. Secondly, compared to the operational retrievals, the SNR-ML method

can achieve 10−700% more samples in the MABL, especially over stratocumulus regions where ducting and super-refraction315

frequently occur that cause failure of operational retrievals. This suggests some unique value that the SNR-ML method can
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Table 3. Number of collocated GNSS-radiosonde/dropsonde samples in each campaign. Two numbers in each cell are from SNL-ML method

and wetPrf/wetPf2 product, respectively, and their percentage differences are shown in the parentheses.

Campaign

Name

975 hPa 950 hPa 925 hPa 900 hPa 875 hPa 850 hPa

EUREC4A 50, 19 (160%) 50, 23 (117%) 51, 29 (76%) 51, 31 (65%) 51, 34 (50%) 51, 38 (34%)

ATOMIC 49, 23 (113%) 49, 27 (81%) 49, 29 (69%) 49, 29 (69%) 49, 35 (40%) 49, 44 (11%)

MARCUS 13, 5 (160%) 13, 7 (86%) 13, 7 (86%) 13, 7 (86%) 13, 8 (63%) 13, 9 (44%)

MAGIC 72, 9 (700%) 72, 25 (188%) 72, 34 (112%) 72, 40 (80%) 72, 43 (67%) 72, 46 (57%)

ARRecon 120, 84 (43%) 120, 101 (19%) 120, 101 (19%) 120, 106 (13%) 120, 106 (13%) 120, 106 (13%)

bring to the science community in facilitating understanding the water vapor-stratocumulus coupling mechanisms. Although

some of the "independent validation dataset" is not completely independent as they may have been assimilated in the ERA-5,

the fact that SNR-ML retrieval statistics outperform ER-5 at all 6 pressure levels in diverse weather regimes prove that real

physical information from SNR observations is learnt and kept by the ML model for prediction, admittedly it is impossible to320

quantify how much the real observed information contributes without accurate physics-based model simulations.

4 Discussions

In the section, we present and discuss some use case examples in order to demonstrate how to use this SNR-ML MBPL specific

humidity product to identify and even quantify model or reanalysis issues.

4.1 Climatology325

Several previous studies suggest that MERRA-2 reanalysis has larger dry-biases in the polar regions compared to ERA-5

(Johnston et al. (2021), Ganeshan and Yang (2019)), while some other studies using in-situ campaign data suggested smaller

dry-bias in the MERRA-2 reanalysis (e.g., Seethala et al. (2021)). Here we map out the climatological distribution of specific

humidity retrieved using the SNR-ML method to track down geographical discrepancies in the Arctic (Fig. 12) and Antarctic

(Fig. 13) with respect to MERRA-2. The coldest months were not selected because of the concern that sea ice induced reflec-330

tometry signal might contaminate our SNR-ML retrieval results, but we didn’t exclude retrievals over possible glaciers that

MERRA-2 do not produce a valid value at 925 hPa because we used a fixed terrain map. Therefore, direct comparison should

not be considered wherever MERRA-2 value is blank.

Overall again we can see the SNR-ML method retrieved polar MABL is much more humid than that from MERRA-2 in

the Arctic during early spring and late fall seasons (> 100% in most areas). If we neglect sampling induced geographical335

inhomogeneities in the SNR-ML retrievals, we can actually see in Fig. 12 that the geographic distribution of highs and lows

and their gradients are in general agreeable. The largest differences are that the wet intrusion along the Bering strait seems
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Figure 12. Monthly averages of 950 hPa specific humidity from COSMIC-1 SNR retrieval (left) compared to MERRA-2 reanalysis (right)

for Arctic during April (top) and November (bottom), 2012 and 2013.

to be too weak during both April and November in MERRA-2, which could account for the dry-bias in the deep Arctic

ocean. Meanwhile, the wet intrusion associated with the North Atlantic overturning circulation seems to be too strong during

November in MERRA-2. These discrepancies connect possible root causes down to the ocean circulation, and up to the Arctic340

front, and should be further investigated in a whole Earth-system point of view.

Although Southern Ocean and South Pole seem lacking geographical variations (Fig. 13), we can actually observe some

interesting potential issues related to topographies. For example, the tip of the Andes mountain effectively blocks MABL water

transport across the mountains, but such a local effect on humidity appears further downstream in MERRA-2. The gradient of
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Figure 13. Same with Fig. 12, except for the Antarctic/Southern Ocean.

water vapor amount from north to south is apparently much weaker compared to MERRA-2, which impacts the latent heat and345

sensible heat flux quantification when considering global energy transport.

4.2 Diurnal Variation

It is well-known that global climate models (GCMs) have serious issues at reproducing the cloud, precipitation and convection

diurnal cycles (e.g., Tian et al. (2004), Yin and Porporato (2017)). Although such a problem is mostly attributed to the issues

with cumulus parameterization schemes, we argue that the diurnal cycle of MABL water vapor also plays a nontrivial role as350

it ties closely to the shallow cumulus and stratocumulus, the latter, for example, is also closely related to the MABL height
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diurnal variation (e.g.,Liu and Liang (2010), Chepfer et al. (2019), Teixeira et al. (2021)). Ground truth of the diurnal variation

of MABL water vapor structures is extremely rare, probably because of the high cost associated with long-duration shipborne

campaign that often only launches radiosondes twice daily and hence cannot capture the diurnal variabilities. Therefore, here

we only aim at showing the discrepancies between ERA-5 and our SNR-ML retrieval generated diurnal cycle rather than355

determining which is right or which is wrong (Fig. 14).

In addition to the Southern Ocean MARCUS campaign and the atmospheric river regime ARRecon campaign that we have

ground truths to compare with, several additional campaign regions and corresponding months are selected motivated by the

observed diurnal variations of the MABL height established in Liu and Liang (2010). These two additional regions include

South Indian ocean (INDOEX campaign, representing deep tropics), and the Arctic open ocean, representing polar winter360

conditions. The last one was added for the sole interest to check if there is any diurnal cycle in the coldest season.

The averaged specific humidity at 875 hPa agrees well between two datasets in the MARCUS and ARRecon campaigns, but

the diurnal cycles in ERA-5 are too weak compared to the ground truths (red asterisks), while the SNR-ML method retrieved

stronger diurnal cycles. It is worth noting that neither SNR-ML nor ERA-5 reproduced a strong peak below 900 hPa around

10 AM local time that both MARCUS and SOCRATES campaigns observed. The latter is another research campaign in the365

vicinity of MARCUS ship routes and season (Vomel and Brown (2018)), but was not employed for independent validation

because of lack of collocations with GNSS observations. This peak is probably associated with the shallow mixed-phase cloud

pocket precipitation that is spatially so small and inhomogenous in scale (Alessandro et al. (2021)) that neither GNSS nor

ERA-5 are able to capture or reproduce. The under-estimation of the diurnal variability in the ARRecon campaign region

is probably associated with the sampling bias, because the campaign "truth" was sampled only during AR events, while the370

SNR-ML and ERA-5 samples the climatology background.

Although we have no ground truth to assess the diurnal cycles of MABL humidity in other two regions, we can tell that

ERA-5 is wetter in the South Indian ocean, and significantly drier in the Arctic ocean. Compared to the SNR-ML method

retrieved diurnal cycle, MABL water vapor diurnal cycle in ERA-5 is too weak in 3 areas but not the INDOEX campaign

region. To put into context of the diurnal cycle of PBL height (Liu and Liang (2010)), in the INDOEX campaign region, the375

diurnal cycle from ERA-5 and SNR-ML method agrees reasonably well, both anti-correlated with the diurnal cycle of PBL

height change observed during that campaign. In the Arctic ocean, ERA-5 apparently has set some arbitrary threshold to keep

the water vapor at a constant low level, while SNR-ML retrievals suggest a weak diurnal variation.

Overall, we can see the diurnal coupling between MABL water vapor, PBL height and clouds are vastly different from

area to area. However, ERA-5 likely under-produces the diurnal cycle amplitude of MABL water vapor globally. For SNR-ML380

retrievals, day-to-day variability often overwhelms the signal of diurnal cycle, yet the amplitude of diurnal cycle is still stronger

and matches better with the limited ground truth. Ultimately, the lack of MABL water vapor ground "truth" measurements

will continuously make observing and verifying the true diurnal cycle difficult. Other shipborne measurements, e.g., upward

pointing radiometers, might be helpful to disentangle this mystery in the future.

22



Figure 14. Multi-year mean diurnal variation of 875 hPa specific humidity retrieved from all four missions (black with errorbars in grey) and

from ERA-5 hourly reanalysis (dash-dotted blue) during November - March for (a) MARCUS campaign region, 60◦E− 150◦E, 60◦S−

40◦S; (b) Arctic ocean, 180◦W −180◦E, 70◦N −90◦N ; (c) ARRecon campaign region, 160◦W −120◦W , 20◦N −50◦N ; (d) INDOEX

campaign region, 55◦E− 75◦E, 25◦S− 15◦S. The MARCUS radiosonde and ARRecon dropsonde "truths" are overlaid in (a) and (c) as

asterisks with standard deviations shown in pink vertical bars.

5 Conclusions385

Marine planetary boundary layer (MABL) water vapor amount and vertical gradient are among the key factors to couple

the ocean and atmosphere cloud, precipitation and convection together, but meanwhile it is also among the hardest objects

to retrieve from satellite remote sensing perspective. Given the penetration capability of GNSS signal through clouds, we

proposed a novel way in Wu et al. (2022) to utilize the GNSS signal-to-noise (SNR) ratio in the deep HSL to retrieve MABL

water vapor profiles. In this paper, we demonstrated it is workable at profile-by-profile level, leveraging the power of machine390

learning (ML) in capturing weak and non-linear signals. The surprising and novel findings in this paper, is that the ML-trained

model can make better predictions that outperforms the training dataset (i.e., ERA-5) in some places, which demonstrates that
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the real information content in the SNR signal is learnt which would otherwise not be harnessed using traditional statistical

methods. The new SNR-ML retrieval has more stable performance against the operational wetPrf/wetPf2 GNSS-RO retrievals,

and it can produce 20− 700% more successful retrievals in the lowest 1 km where observations are critical to understand395

ocean-atmosphere coupling.

We then showed two use cases to demonstrate possible ways to use this dataset. There is no conclusive results because of

lack of ground "truth" to validate, but we do find both reanalyses tend to systematically produce dry biases at high-latitudes, and

too weak diurnal cycles over global oceans. This SNR-ML retrieval dataset also has its own caveats. Whenever the "ducting"

condition is violated (e.g., coastal topography, convective tower, mixing and turbulence in the MABL), the fundamental as-400

sumption breaks down, resulting in poor performances. More extensive comparisons and validations against other high-quality

ground measurements are needed in the future.

Based on results from this work, one can see that deepSNR can complement the current GNSS-RO operational bending

angle product for retrieving PBL information for different PBL conditions. A merged product is certainly of interest to future

investigations, but fully understanding the physical mechanisms behind the reemerged deepSNR signal is the foundation for405

other downstream applications (e.g., data assimilation). Right now this can be considered as a stand-alone observational product

for independent comparison or validation against model simulations or other observations.

Data availability. The Level 2 SNR-ML retrieval product for the prediction period (see Table 1) has been published on zenodo (Gong et al.

(2024)). We welcome use and feedbacks.

COSMIC-1 and COSMIC-2 Level 1 and Level 2 data are downloaded from https://data.cosmic.ucar.edu/gnss-ro/. Metop-A and Metop-B410

data are downloaded from https://gpsmet.umd.edu/gnssro/download.php. ATOMIC data are downloaded from https://psl.noaa.gov/atomic/

data/. EUREC4A data are downloaded from https://doi.org/10.25326/137. SOCRATES data are downloaded from https://data.eol.ucar.edu/

master_lists/generated/socrates/. MARCUS data are downloaded from ARM data request portal. MAGIC data are downloaded from ARM

data request portal. ARRecon data are downloaded from https://ARRecon.ucsd.edu/arrecon_data/ specially processed to fit the needs of this

research. Interested users are encouraged to contact the last author for assistance of post-processed data.415
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Appendix A: A

Table A1. Summary of GNSS-RO instrument noise (σ) used in this work, separated by rising and setting modes.

Instrument Name Orbit Noise (σ)

COSMIC-1/C1 Rising 10.1

Setting 10.9

COSMIC-1/C2 Rising 10.2

Setting 10.9

COSMIC-1/C3 Rising 9.6

Setting 10.4

COSMIC-1/C4 Rising 10.6

Setting 11.2

COSMIC-1/C5 Rising 10.1

Setting 11.1

COSMIC-1/C6 Rising 9.2

Setting 10.7

COSMIC-2/E1 Rising 17.0

Setting 17.5

COSMIC-2/E2 Rising 17.5

Setting 17.8

COSMIC-2/E3 Rising 17.2

Setting 17.9

COSMIC-2/E4 Rising 17.5

Setting 17.7

COSMIC-2/E5 Rising 17.4

Setting 17.8

COSMIC-2/E6 Rising 17.5

Setting 17.8
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Table B1. Excess Phase L1 grid for this work

Parmeter Grid values

Log10(ϕL1) 1.26245, 1.33846, 1.41162, 1.48144, 1.54777, 1.62428,

1.69679, 1.76530, 1.82995, 1.89098, 1.94866, 1.97000,

2.00325, 2.02000, 2.05500, 2.08000, 2.10415, 2.13000,

2.15091, 2.17000, 2.19548, 2.23805, 2.27875, 2.30103,

2.32222, 2.37000, 2.41497, 2.44000, 2.55630, 2.59000,

2.63000, 2.69020, 2.75000, 2.81291, 2.86000, 2.92428,

2.95000, 3.02531, 3.10000, 3.11727, 3.15000, 3.20140,

3.22000, 3.25000, 3.27875, 3.30000, 3.32000, 3.35025,

3.41664, 3.47857, 3.53656, 3.59106

Rough corresponding HSL [km] -150, -140, -130, -120, -110, -108, -106, -104, -102, -100,

-98, -96, -94, -92, -90, -80, -70, -60, -50, -40, -37, -33, -30,

-26, -23, -20, -19, -17, -15, -13, -11, -9, -7, -5, -3, -2, -1, 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19

Figure A1. Same with Fig. 2, except for Metop-A training dataset.
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Figure A2. Same with Fig. 2, except for Metop-B training dataset.
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