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Abstract. It is crucial to improve global precipitation estimates for a better understanding on water-related disasters and water 

resources. This study proposes a new methodology to interpolate global precipitation fields from ground rain gauge 10 

observations using the algorithm of the local ensemble transform Kalman filter (LETKF) in which the first guess and its error 

covariance are developed based on the reanalysis data of precipitation from the European Center for Medium-Range Forecasts 

(ERA5). For the estimation of each date, the climatological ensembles are constructed using the ERA5 data 10 years before 

and after that date, and thereafter are utilized to obtain the first guess and its error covariance. Additionally, the global rain 

gauge observations provided by the National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA 15 

CPC) are used for observation inputs in the LETKF algorithm.  

Our estimates have better agreements against independent rain gauge observations compared to the existing precipitation 

estimates of the NOAA CPC in general. Because we utilized the same rain gauge observations for the inputs of our estimation 

as those used in the NOAA CPC product, it is indicated that the proposed estimation method is superior to that of the NOAA 

CPC (i.e., the Optimal Interpolation). Our proposed method took the advantage of constructing a physically guaranteed first 20 

guess and its error variance using reanalysis data for interpolating precipitation fields. Furthermore, the method of this study 

is shown to be particularly beneficial for mountainous or rain-gauge-sparse regions.  

1 Introduction 

Improving the accuracy of global precipitation fields is crucial for predicting water-related disasters such as floods and 

droughts, and for long-term water resource management. Ground rain gauge observations play an essential role in estimating 25 

global precipitation fields, because it is considered to be more accurate relative to other estimates by numerical weather 

prediction (NWP) models or satellite-borne sensors, especially in mountainous areas (Sun et al. 2018). On the other hand, rain 

gauge observations can only be acquired at a limited number of locations. The National Oceanic and Atmospheric 

Administration Climate Prediction Center (NOAA CPC) provides the CPC Unified Gauge-based Analysis of Global Daily 

Precipitation (hereafter, CPC_est) (Xie et al. 2007; Chen et al., 2008), which is spatially interpolated precipitation data based 30 

https://doi.org/10.5194/egusphere-2024-960
Preprint. Discussion started: 23 April 2024
c© Author(s) 2024. CC BY 4.0 License.

Reviewer
Inserted Text
The title needs to be revised, as the large contribution of improved estimate comes from EAR5 dataset, if I understand it correctly from the author.



2 

 

on rain gauge observations. Such global precipitation data are important not only as input data to analyze the hydrological 

water cycle, but as a reference data for validating or adjusting NWPs and satellite-based precipitation estimates. For example, 

the satellite-based Global Satellite Mapping of Precipitation (GSMaP), which is provided by the Japan Aerospace Exploration 

Agency (Kubota et al., 2020), is adjusted to CPC_est (Mega et al., 2019). Thus, even with the advancements in satellite 

observations and numerical weather forecasting, the methodology to improve global precipitation fields by utilizing precise 35 

ground rain gauge observations is demanding. 

There have been many methodological studies to estimate precipitation fields from sparsely located rain gauge 

observations (e.g., Cressman, 1959; Barnes, 1964; Gandin, 1965; Shepard, 1968). Among them, a widely used interpolation 

method is the Optimal Interpolation (OI) (Gandin, 1965), which provides a weighted average of the first guess on each grid 

point and the surrounding observations. Because the OI determines the weights of the first guess and observations by 40 

considering the error variance and covariance as well as the distance with respect to the surrounding observation points, this 

method was suggested to be superior to the other inverse-distance weighting methods of Cressman (1959) and Shepard (1968) 

(Chen et al, 2002). Consequently, the operational global precipitation fields of CPC_est uses the OI to the present day (Xie et 

al. 2007).  

In recent years, more sophisticated interpolation methods have been introduced from the field of data assimilation. 45 

For example, Kumar et al. (2021) applied a data assimilation approach to combine the satellite-based GSMaP and rain gauge 

observations in India, using GSMaP and rain gauge observations as the first guess and the observation inputs, respectively. 

The proposed method in Kumar et al. (2021) constructs a flow-dependent background error covariance by implementing the 

Kalman filter (Kalman, 1960) to propagate the background error covariance. Furthermore, the accuracy of NWPs has improved 

rapidly over the past few decades (Pu and Kalnay, 2018). Because NWP-based data capture dynamical relationships between 50 

locations and variables, rain-gauge-based precipitation estimates would be further improved by using NWP-based data for the 

first guess and background error covariance. Here, ensemble data assimilation (EnDA) can be used to obtain the climatological 

error covariance by regarding NWP-based precipitation records as an ensemble (Kretschmer et al. 2015; Kotsuki and Bishop 

2022). In particular, the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) is a computationally efficient 

EnDA method which extracts the observations close to the grid point by a localization method, and has been implemented in 55 

many previous studies on NWPs (e.g., Hamrud et al., 2015; Terasaki et al., 2015; Schraff et al., 2016). Hence, this study aims 

to propose a new estimation method for global precipitation fields by spatial interpolation from rain gauge observations, 

utilizing the LETKF algorithm and NWP-based data. Furthermore, we will verify the superiority of our estimation method 

with comparison to the OI used in CPC_est.  

The rest of the paper is organized as follows. Section 2 describes the proposed interpolation method, followed by the 60 

validation methods with respect to independent rain gauge observation data. Section 3 presents the precipitation fields 

estimated by the proposed method as well as the results of the validations. The advantage of the proposed method are discussed 

in Section 4, followed by a conclusion in Section 5.  
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2 Methods  

2.1 Interpolation method 65 

This section describes the interpolation method whose schematic image is shown in Fig. 1.  

 

Figure 1: The schematic image of the interpolation method of this study using ensemble data assimilation. The rain 

gauge observations from the CPC product are used for the observation 𝐲𝑡
𝑜. The ensemble 𝐗𝑡

𝑏 is obtained from the daily 

precipitation data from the fifth generation ECMWF reanalysis (ERA5) before and after the interpolation date, and 70 

the ensemble mean is used as the first guess 𝐱𝑡
𝑏 . 𝐑𝑡  is the observation error covariance. 𝐻𝑡  denotes an observation 

operator that maps the first guess values to the observed values, and 𝐇𝑡 is the Jacobi matrix of 𝐻𝑡(𝐱𝑡
𝑏). The background 

error covariance 𝐏𝑡
𝑏  is also approximated from the ensemble. Finally, the interpolated daily global precipitation field 

is computed as the analysis 𝐱𝑡
𝑎. 

2.1.1 Input Data 75 

This study uses the rain gauge data utilized in CPC_est for the observation input for the interpolations. These rain gauge data 

are collected by NOAA CPC from approximately 16,000 stations, including daily summary files from the Global 

Telecommunication System (GTS) and the CPC unified daily precipitation data sets over the contiguous United States, Mexico 

and South America (Chen et al., 2008). Since CPC_est is published as a 0.5˚ × 0.5˚ pixel data, we only use the precipitation at 

pixels in which more than one rain gauge station is included (hereafter, CPC_gauge), and also assume that the rain gauge(s) is 80 

(are) located at the center of each pixel. 
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For the construction of the first guess and background error covariance, we use the “Total precipitation” data from 

the fifth generation ECMWF reanalysis (ERA5) (Hersbach et al., 2023). ERA5 is a 0.25˚ × 0.25˚ gridded hourly data based on 

the Integrated Forecast System (version Cy41r2), and combined with various conventional and satellite observations related 

to atmosphere, land and ocean by data assimilation (Hersbach et al., 2020). We computed the total precipitation on a daily 85 

basis from the original ERA5 data. Although the original ERA5 data cover both land and sea areas, this study focused on 

estimating the precipitation fields only over land, where rain gauge observations are available. 

2.1.2 Ensemble data assimilation 

The daily precipitation in the same grid points as ERA5 over land is estimated using CPC_gauge as observation inputs 

according to Equation (1), which is the equation of the Kalman filter (Kalman, 1960): 90 

𝐱𝑡
𝑎 = 𝐱𝑡

𝑏 + 𝐏𝑡
𝑏𝐇𝑡

T[𝐇𝑡𝐏𝑡
𝑏𝐇𝑡

T + 𝐑𝑡]
−1 (𝐲𝑡

𝑜 − 𝐻𝑡(𝐱𝑡
𝑏)) , (1) 

where 𝐱𝑡
𝑎 ∈ ℝ𝑁, 𝐱𝑡

𝑏 ∈ ℝ𝑁, 𝐲𝑡
𝑜 ∈ ℝ𝑃 denote the analysis, first guess, and observation values at time 𝑡, respectively. Superscripts 

a, b and o denote the analysis, first guess, and observation, respectively.  𝐏𝑡
𝑏 ∈ ℝ𝑁×𝑁 and 𝐑𝑡 ∈ ℝ

𝑃×𝑃 represent the background 

and observation error covariance. The scalers 𝑁 and 𝑃 denote the number of grid points of ERA5 over land, and that of 

CPC_gauge pixels, respectively. 𝐻𝑡 denotes an observation operator that maps the first guess to the observed values, and 𝐇𝑡 ∈95 

ℝ𝑃×𝑁 is the Jacobi matrix of 𝐻𝑡(𝐱𝑡
𝑏). 

Here, we define  𝐑𝑡 as a diagonal matrix owing to the assumption that the errors of the observations are independent 

from each other. The error variance of each observation (i.e., the diagonal components of 𝐑𝑡) is given by Equation (2), which 

is determined based on preliminary sensitivity experiments: 

error variance =  {
log(2)              (𝑦𝑙,𝑡

𝑜 ≤ 1.0 mm day−1)

log(𝑦𝑙,𝑡
𝑜 + 1)  (𝑦𝑙,𝑡

𝑜 > 1.0 mm day−1)
, (2) 100 

where log is the natural logarithm and 𝑦𝑙,𝑡
𝑜  denotes the observation at the 𝑙th pixel and 𝑡th time step from CPC_gauge. 

The first guess values of 𝐱𝑡
𝑏 and the background error covariance 𝐏𝑡

𝑏  are given by the daily precipitation of ERA5. 

For each estimation date, the data of the 10 years before and after that date is extracted. Then, we extract the data of the same 

day of year as the estimation date and also the surrounding 7 days within those 20 years, and utilize them as an ensemble 𝐗𝑡
𝑏 

(cf. Fig. 1). We do not extract the ERA5 data in the exact year of the estimation date, because we compare our precipitation 105 

estimates with ERA5 itself for validation (details are explained in Section 2.2.2). Thereafter, the first guess 𝐱̅𝑡
𝑏 is given by the 

mean of the ensemble. Additionally, 𝐏𝑡
𝑏  is approximated by the ensemble (Evensen,1994), given by:  

𝐏𝑡
𝑏 ≈ 𝐙𝑡

𝑏(𝐙𝑡
𝑏)T, (3) 

𝐙𝑡
𝑏 =

𝛿𝐗𝑡
𝑏

√𝑀 − 1
, (4) 

where 𝛿𝐗𝑡
𝑏 ∈ ℝ𝑁×𝑀 denotes the ensemble perturbation between the respective ensemble and the ensemble mean for each grid, 110 

and 𝑀 denotes the number of ensembles (𝑀 = 15 days × 20 yrs).  
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Ensemble data assimilation usually requires the localization so that the observation values are weighted according to 

their distance from the analysis grid point using the localization function. When the distance between a grid point in the first 

guess and an observation site is 𝑑 km, the localization function 𝐿(𝑑) is expressed by Equation (5): 

𝐿(𝑑) = {
exp (−

𝑑2

2𝜎2
)         𝑑 < 2√10 3⁄ 𝜎

0                                else

, (5) 115 

where σ denotes the localization scale (km). Localization is performed by dividing the diagonal component of 𝐑𝑡 by 𝐿(𝑑) for 

each grid point and observation site, so that observations distant from the analysis grid point have less weights. Here, we 

determine the value of σ based on the method of Schraff et al. (2016), known as the Observation Number Limit technique. 

First, a certain distance 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖  km is set, followed by the maximum number of observation sites (𝑃𝑙𝑜𝑐

𝑚𝑎𝑥) to be used for the 

estimation. Next, the localization scale σ is determined by Equation (6): 120 

𝜎 =

{
  
 

  
 
𝑑𝑚𝑎𝑥
𝑖𝑛𝑖

2√10 3⁄

    𝑃𝑙𝑜𝑐
𝑖𝑛𝑖 < 𝑃𝑙𝑜𝑐

𝑚𝑎𝑥 

𝑑𝑚𝑎𝑥
𝑓𝑖𝑥

2√10 3⁄

                 else             

 , (6) 

where 𝑃𝑙𝑜𝑐
𝑖𝑛𝑖 denotes the number of observation sites within the 𝑑𝑚𝑎𝑥

𝑖𝑛𝑖  km radius from the grid point, and  𝑑𝑚𝑎𝑥
𝑓𝑖𝑥

 is the distance 

(in km) between the grid point and the (𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 + 1)th nearest observation site. The tunable parameters 𝑑𝑚𝑎𝑥

𝑖𝑛𝑖  and 𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 are set 

to 1,000 km and 10 respectively, owing to the authors’ preliminary experiments. 

Our study applies the LETKF algorithm, in which the ensemble mean of the analyses 𝐱̅𝑡
𝑎 is computed by Equation (7) 125 

(Hunt et al, 2007): 

𝐱̅𝑡
𝑎 = 𝐱̅𝑡

𝑏 + 𝐙𝑡
𝑏𝐏̃𝑡

𝑎(𝐇𝑡𝐙𝑡
𝑏)T𝐑𝑡 𝑙𝑜𝑐

−1 (𝐲𝑡
𝑜 − 𝐻𝑡(𝐱𝑡

𝑏)) , (7) 

where 𝐑𝑡 𝑙𝑜𝑐
−1 ∈ ℝ𝑃𝑙𝑜𝑐×𝑃𝑙𝑜𝑐  denote the inverse of 𝐑𝑡  with the localization, and 𝐈 denote the identity matrix. The scaler 𝑃𝑙𝑜𝑐 

denotes the number of observations within the localization cut-off radius. Here, we compute 𝐏̃𝑡
𝑎 using the following equations 

proposed by Kotsuki and Bishop (2022): 130 

𝐏̃𝑡
𝑎 = 𝐂(𝐈 + 𝚪)−1𝐂T, (8) 

𝐂 = (𝐇𝑡𝐙𝑡
𝑏)T𝐑𝑡 𝑙𝑜𝑐

−1
2⁄ 𝐄𝚪

−1
2⁄ , (9) 

where the eigenvalue decomposition is solved for a 𝑃𝑙𝑜𝑐 × 𝑃𝑙𝑜𝑐 matrix given by: 

𝐑𝑡 𝑙𝑜𝑐
−1

2⁄ 𝐇𝑡𝐙𝑡
𝑏(𝐇𝑡𝐙𝑡

𝑏)T𝐑𝑡 𝑙𝑜𝑐
−1

2⁄ = 𝐄𝚪𝐄T. (10) 

Because the number of local observations 𝑃𝑙𝑜𝑐(≤ 10)  is smaller than the ensemble size 𝑀 (= 300) , the 135 

computational cost is smaller than the original LETKF algorithm, in which the eigenvalue decomposition is solved for an 

𝑀 ×𝑀 matrix (𝐏̃𝑡
𝑎)
−1

. 
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Consequently, 𝐱̅𝑡
𝑎 is the interpolated daily global precipitation field, and is used as the final estimate of this study 

(hereafter, LETKF_est). Based on the method explained above, we estimated the daily global precipitation field for ten years 

(1981−1990). Note that we skip the estimation for 23 days during the estimation period when no valid rain gauge observations 140 

are available in either Africa, Eurasia or Canada. 

2.2 Validations 

2.2.1 Data used for the validations 

Two precipitation data are used for the validations. The first data is APHRODITE (Yatagai et al., 2012), which is also a daily 

precipitation dataset constructed by applying interpolation based on rain gauge observations. In addition to the rain gauge data 145 

from the GTS, APHRODITE uses rain gauge data precompiled by other projects or organizations and those originally collected 

from national hydrological and meteorological services, therefore enabling validations against rain gauge observations 

independent from those used in CPC_est. Here, we use the 0.5˚ × 0.5˚ pixel data of the latest version of APHRODITE (V1101) 

in Monsoon Asia (MA) (Fig. 2 a), where particularly dense rain gauge data are available compared to those from the GTS.  

 150 

Figure 2: An example of (a) the distribution of the daily rain gauge observations used in APHRODITE v1101 and the 

CPC product in Monsoon Asia (on Nov. 15th, 1988), and (b) the monthly rain gauge observations used in the GPCC 

FD product v2022 and the CPC product (in Nov., 1988). The black pixels include more than one rain gauge stations 

which are independent from the stations used in the CPC product, and the light blue pixels include more than one rain 

gauge stations used in the CPC product. 155 

 

Secondly, the monthly precipitation product of the Global Precipitation Climatology Centre (GPCC) is used. The Full 

Data Reanalysis (FD) product of the GPCC is constructed based on rain gauge observations from > 40,000 stations throughout 

the globe, including not only the observations used in CPC_est, but also data provided from other sources such as the national 
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data by the World Meteorological Organization or the collection of the Global Historical Climatology Network (Becker et al., 160 

2013). Thus, although in a monthly basis, the GPCC is used as rain gauge observations independent from CPC_gauge in a 

global scale (Fig. 2 b). In this study, we use the latest version of the 0.5˚ × 0.5˚ pixel FD product (v2022) (Schneider et al., 

2022). 

For both the APHRODITE and GPCC products, we use the data samples of the pixels in which more than one rain 

gauge is included (APHRODITE_gauge and GPCC_gauge), and assume that the rain gauge(s) is (are) located at the center of 165 

each pixel, similar to CPC_gauge. Prior to the validations, the 0.25˚ × 0.25˚ gridded LETKF_est and ERA5 data are converted 

into 0.5˚ × 0.5˚ pixel data so as to be equivalent to the spatial resolution of CPC_est, APHRODITE_gauge and GPCC_gauge. 

 

2.2.2 Validation against APHRODITE_gauge 

Here, we use an index that measures correlation based on the rank of the samples rather than the exact magnitude of them, 170 

considering that some studies have suggested the possibility of the APHRODITE precipitation to be biased (Kotsuki and 

Tanaka, 2013; Ji et al., 2020).  Such index is also less susceptible to low-frequency extreme values, which may occur in daily 

precipitation data. Hence, Kendall's rank correlation coefficient 𝜏𝑏  (Kendall, 1948) is computed against the daily precipitation 

of APHRODITE_gauge for LETKF_est, CPC_est, and ERA5, respectively. When 𝑁𝑎𝑝ℎ𝑟𝑜  is the number of 

APHRODITE_gauge pixels, and (𝑢𝑖 , 𝑣𝑖) （𝑖 = 1, … ,𝑁𝑎𝑝ℎ𝑟𝑜）are the pairs of data to be compared, 𝜏𝑏  is obtained by Equation 175 

(11) and (12): 

𝜏𝑏 =
𝐴 − 𝐵

√𝑆 − 𝑇𝑢√𝑆 − 𝑇𝑣
, (11)

 

𝑆 =
𝑁𝑎𝑝ℎ𝑟𝑜(𝑁𝑎𝑝ℎ𝑟𝑜 − 1)

2
, (12) 

where 𝐴 (𝐵) represent the total number of cases in which the magnitude correlation of 𝑢𝑗 （𝑗 = 1,… , 𝑁𝑎𝑝ℎ𝑟𝑜）and 𝑢𝑘（𝑘 =

𝑗 + 1,… , 𝑁𝑎𝑝ℎ𝑟𝑜）is concordant (discordant) with that of 𝑣𝑗  and 𝑣𝑘 . 𝑇𝑢  and 𝑇𝑣  denote the number of ties in 𝑢𝑖  and 𝑣𝑖 , 180 

respectively.  

The value of  𝜏𝑏  closer to 1.0 (–1.0) indicates stronger positive (negative) correlation between the two types of data. 

We exclude the samples of the pixels where the input observations from CPC_gauge are available to evaluate only the 

interpolated precipitation in our study. Furthermore, we exclude the samples of the pixels where the precipitation of 

APHRODITE_gauge is < 0.5 mm day–1, considering that precipitation under this value generally cannot be measured precisely 185 

by rain gauges. 
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2.2.3 Validations against GPCC_gauge 

The spatial root mean square difference (RMSD), mean absolute difference (MAD) and Pearson’s correlation coefficient (R) 

are computed for each month against the monthly precipitation of GPCC_gauge for LETKF_est and CPC_est following 

Equations (13) to (15): 190 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑀𝑆𝐷𝑡 = √
∑ 𝑤𝑖(𝑥𝑟𝑒𝑓 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡)

2𝑁𝑔𝑝𝑐𝑐
𝑖=1

∑ 𝑤𝑖
𝑁𝑔𝑝𝑐𝑐
𝑖=1

, (13) 

 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑀𝐴𝐷𝑡 =
∑ 𝑤𝑖|𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡|
𝑁𝑔𝑝𝑐𝑐
𝑖=1

∑ 𝑤𝑖
𝑁𝑔𝑝𝑐𝑐
𝑖=1

, (14) 

𝑅𝑡 =

1
𝑁𝑔𝑝𝑐𝑐

∑ (𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑥𝑒𝑠𝑡 𝑖,𝑡 − 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅)
𝑁𝑔𝑝𝑐𝑐
𝑖=1

√
1

𝑁𝑔𝑝𝑐𝑐
∑ (𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)

2𝑁𝑔𝑝𝑐𝑐
𝑖=1 √

1
𝑁𝑔𝑝𝑐𝑐

∑ (𝑥𝑒𝑠𝑡 𝑖,𝑡 − 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅)
2𝑁𝑔𝑝𝑐𝑐

𝑖=1

, (15)
 

where 𝑁𝑔𝑝𝑐𝑐 denote the number of GPCC_gauge pixels. 𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 and 𝑥𝑒𝑠𝑡 𝑖,𝑡 denote the monthly precipitation of GPCC_gauge 195 

and the estimates (LETKF_est or CPC_est) at the 𝑖th pixel and 𝑡th time step, respectively. Additionally, 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅ 

denote the spatial mean monthly precipitation of GPCC_gauge and the estimates (LETKF_est or CPC_est) at the 𝑡th time step, 

respectively. Here, 𝑤𝑖 = cos(𝜃𝑖) is the latitude-dependent weight of the 𝑖th pixel, where 𝜃 is the latitude. 

Smaller RMSD or MAD values (at the minimum of 0.0) indicate that the two data are similar, while the R value closer 

to 1.0 (–1.0) indicates stronger positive (negative) correlation. As explained in Section 2.2.2, we also exclude the samples of 200 

the pixels where the input observations from CPC_gauge are available for the validations against GPCC_gauge. Additionally, 

the months in which we skipped the estimation for daily precipitation (as noted in Section 2.1.2) were also excluded from the 

validations (Jan., 1981; Apr., 1983; Jan., 1984; Jan. –Feb. and Jul. –Aug., 1985.; Jan., Mar., Sep. and Nov., 1986). 

3 Results 

A first guess precipitation field used in our study, CPC_gauge and LETKF_est on Nov. 15th in1988 is illustrated as an example 205 

in Fig. 3 a, b and d, respectively. The daily precipitation field of LETKF_est (Fig. 3 d) is interpolated using the smooth and 

averaged climatological first guess (Fig. 3 a) and the sparsely located rain gauge observations (Fig. 3 b), using the methodology 

presented in Section 2.1.2. For the same date, the daily precipitation of NOAA’s CPC_est, which is estimated by the OI also 

using the rain gauge observations in CPC_gauge, is depicted in Fig. 3 c for comparison. Although the precipitation patterns of 

CPC_est (Fig. 3 c) and LETKF_est (Fig. 3 d) are overall similar to each other, several differences exist between them. For 210 

example, broader precipitating areas are seen for LETKF_est than for CPC_est, especially around the central part of Africa, 
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the Himalayas, the Zagros mountains, and the Indochina Peninsula. In addition, the precipitation is generally weaker for 

LETKF_est than CPC_est. 

 

Figure 3: An example of the precipitation fields (mm day–1) for (a) the first guess used in our study, (b) the rain gauge 215 

observations of CPC_gauge, and the global precipitation estimates of (c) CPC_est and (d) LETKF_est (on Nov. 15th, 

1988). Pixels on the ocean are colored in gray for all subplots, as well as those where no rain gauge observations are 

available for Subplot (b). Pixels are colored in white when the precipitation is < 0.5 mm day–1. 

 

The scatter plots in Fig. 4 compare the daily precipitation of ERA5, CPC_est and LETKF_est with 220 

APHRODITE_gauge at pixels in MA, showing that LETKF_est is aligned with APHRODITE_gauge the most compared to 

ERA5 and CPC_est. Furthermore, the 𝜏𝑏  value of LETKF_est computed against APHRODITE_gauge is the highest (Fig. 4), 

notwithstanding that LETKF_est was converted to 0.5˚ × 0.5˚ pixel data in advance of this validation. Therefore, it shows that 

the daily precipitation of LETKF_est is more similar to that of APHRODITE_gauge than ERA5 or CPC_est in terms of 

Kendall's rank correlation coefficient. 225 
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Figure 4: Scatter plots comparing the daily precipitation (mm day–1) of APHRODITE_gauge with that of (a) ERA5, 

(b) CPC_est and (c) LETKF_est. The colors represent the ratio of samples within each 0.1 mm day-1 bin. Kendall’s 

rank correlation coefficient (𝝉𝒃) of (a) ERA5, (b) CPC_est and (c) LETKF_est computed against APHRODITE_gauge 

are listed at the top of each subplot. 230 

 

The spatial RMSD, MAD and R verified against GPCC_gauge indicate that the monthly precipitation of LETKF_est 

shows better agreements with GPCC_gauge (i.e., lower RMSD and MAD values, and higher R values) than that of CPC_est 

for all months throughout the estimation period (Fig. 5). The temporal average of the spatial RMSD and MAD of the 

LETKF_est is lower than those of CPC_est by 14.79 % and 10.96 %, respectively. The spatial MAD is also computed 235 

separately among the low-latitude region (20˚N–20˚S) and mid- and high-latitude regions (90˚N–20˚N and 20˚S–90˚S) against 

GPCC_gauge for both LETKF_est and CPC_est for each month. Figure 6 indicates that the MAD values in the low-latitude 

region are generally higher than those of the mid- and high- latitude regions. However, the scatter plots for the low-latitude 

region are more divergent from the 1:1 line upwards, indicating that the MAD values have improved for LETKF_est compared 

to CPC_est particularly in this region. Therefore, it is indicated that our estimation method is more beneficial than the OI 240 

especially for the low-latitude region, which is highly occupied by the tropical regions with more precipitation. 
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Figure 5: The time series of (a) the spatial root mean square difference (RMSD; mm month–1), (b) the spatial mean 

absolute difference (MAD; mm month–1) and (c) Pearson’s correlation coefficient (R), verified against the GPCC_gauge. 

The blue solid and red dashed lines represent the CPC_est and LETKF_est, respectively. The validations are not 245 

performed for the months in which we skipped the estimation for daily precipitation (Jan., 1981; Apr., 1983; Jan., 1984; 

Jan. –Feb. and Jul. –Aug., 1985.; Jan., Mar., Sep. and Nov., 1986). 
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Figure 6: Scatter plots comparing the spatial mean absolute difference (MAD; mm month–1) of CPC_est and 

LETKF_est verified against the monthly precipitation of GPCC_gauge. Light-red cross marks and dark-red circles 250 

represent the low-latitude region (20˚N–20˚S) and mid- and high-latitude regions (90˚N–20˚N and 20˚S–90˚S), 

respectively. 

4 Discussion 

The main reason for the improvement in the accuracy of LETKF_est compared to CPC_est is presumably owing to the 

interpolation method that uses the dynamically guaranteed first guess and background error covariance constructed from the 255 

ERA5 data. This would have led to the improvement in the accuracy of the first guess, as well as the variance of each grid 

point and the covariance between paired grid points. For example, our first guess would take into account the orographic 

effects. Here, we investigate the difference in Southeast Asian precipitation. 

Figure 7 depicts the first guess used for this study and the daily precipitation of CPC_gauge, ERA5, CPC_est and 

LETKF_est on Jun. 7th, 1985. It should be noted that the precipitation of LETKF_est (Fig. 7 f) is the one converted into a 0.5˚ 260 

× 0.5˚ pixel data, for the comparison with that of CPC_est (Fig. 7 e). LETKF_est succeeds in reproducing the orographic 

changes in precipitation around the Himalayas (Fig. 7 f), while CPC_est fails to do so (Fig. 7 e). The first guess constructed 

by ERA5 (Fig. 7 b) is presumed to contribute to these precipitation patterns of LETKF_est, since it clearly reflects orographic 

features, similar to the original ERA5 (Fig. 7 d). On the other hand, as explained in Section 3, the precipitation of LETKF_est 
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has better agreement with APHRODITE_gauge than that of ERA5 itself, suggesting that not only the first guess, but also the 265 

climatological background error covariance constructed from ERA5 contributes to the improvement in our estimates.  

 

Figure 7: (a) The elevation (m) and an example (b) the first guess constructed in our study (mm day–1), (c) the rain 

gauge observations of CPC_gauge (mm day–1), and the global precipitation estimates (mm day–1) of (d) ERA5, (e) 

CPC_est and (f) LETKF_est (on Jun. 27th, 1985) around India. Pixels on the ocean are colored in gray for all subplots, 270 

as well as those where no rain gauge observations are available for Subplot (c). The precipitation of LETKF_est 

(Subplot (f)) is the one converted into a 0.5˚ × 0.5˚ pixel data. Pixels are colored in white when the precipitation is < 0.5 

mm day-1. 

 

To investigate whether the precipitation of LETKF_est is more accurate than that of CPC_est around mountainous 275 

areas such as the Himalayas in general, Kendall’s rank correlation coefficient (𝜏𝑏) was computed for LETKF_est and CPC_est 

against the daily precipitation of APHRODITE_gauge for each pixel where more than 1,800 samples of APHRODITE_gauge 
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are available. The results in Fig. 8 show that the 𝜏𝑏  values of LETKF_est are higher than that of CPC_est by > 0.05 especially 

around the Himalayas, indicating that the method of this study improves the daily precipitation significantly around this area 

during the estimation period in general. 280 

Additionally, the temporal MAD values of LETKF_est and CPC_est are computed against the monthly precipitation 

of GPCC_gauge for each pixel where more than 50 samples of GPCC_gauge are available, using Equation (16): 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑀𝐴𝐷𝑖 =
∑ |𝑥𝑟𝑒𝑓 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡|
𝑇
𝑡=1

𝑇
, (16) 

where  𝑇 is the total number of time steps. 

The temporal MAD of LETKF_est is smaller than that of CPC_est by > 10 mm month–1 at many pixels around 285 

mountainous areas such as the Himalayas (Fig. 9 c) and the Zagros Mountains (Fig. 9 f), indicating that the estimation method 

of this study is beneficial for these areas in general. Furthermore, the temporal MAD of LETKF_est decreased by > 10 mm 

month–1 compared to that of CPC_est in regions where rain gauge stations are especially sparse, such as South-east Asia (Fig. 

9 c) or the central part of Africa (Fig. 9 f). In both the mountainous and rain-gauge-sparse regions, the temporal MAD is 

relatively high compared to other regions (Fig. 9 a–b and d–e). Therefore, although interpolating precipitation fields in such 290 

areas is especially difficult, it is presumed that the proposed method succeeded in improving the accuracy of the estimates 

compared to the conventionally used OI method.  

 

Figure 8: Kendall’s rank correlation coefficient (𝝉𝒃) computed against the daily precipitation of APHRODITE_gauge 

for (a) CPC_est and (b) LETKF_est at each pixel. Subplot (c) represents the difference between (b) and (a). Darker 295 

colors in (a–b) indicate that the precipitation estimates are more similar to APHRODITE_gauge. Warm colors in (c) 

indicate that LETKF_est is more similar to APHRODITE_gauge than CPC_est, and cold colors indicate otherwise. 𝝉𝒃 

is computed only at pixels where more than 1,800 samples from APHRODITE_gauge are available, and the pixels are 

colored in gray if they do not match this condition. 
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 300 

Figure 9: The temporal mean absolute difference (MAD) (mm month–1) of (a, d) CPC_est and (b, e) LETKF_est 

computed against the monthly precipitation of GPCC_gauge at each pixel. Subplots (c, f) represent the differences (mm 

month–1) between (a, d) and (b, e), respectively. Lighter colors in (a–b, d–e) indicate that the precipitation estimates are 

more similar to GPCC_gauge. Warm colors in (c, f) indicate that LETKF_est is more similar to GPCC_gauge than 

CPC_est, and cold colors indicate otherwise. The temporal MAD is computed only at pixels where more than 50 samples 305 

from GPCC_gauge are available, and the pixels are colored in gray if they do not match this condition. 
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5 Conclusions 

This study proposed a new estimation method for daily global precipitation fields from rain gauge observations using the 

algorithm of the LETKF in which the first guess and its error covariance are developed based on the precipitation from the 

reanalyzed precipitation of ERA5. Our findings can be summarized as follows. 310 

Our estimates showed better agreements against rain gauge observations compared to the existing product of the 

NOAA CPC. Because we utilized the same rain gauge observations for the inputs of our estimation as those used for the 

NOAA CPC product, it is indicated that the proposed estimation method outperformed that of the NOAA CPC (i.e., the OI). 

Our proposed method took the advantage of constructing a dynamically guaranteed first guess and background error variance 

using reanalysis data for interpolating precipitation fields. Additionally, the method of this study was shown to be particularly 315 

beneficial for mountainous or rain-gauge-sparse regions.  

There are some remaining limitations for this study that should be dealt with in the future. Firstly, our study has not 

applied any transformation based on probability distributions for the daily precipitation prior to the estimation, even though 

the precipitation variable is known to be less Gaussian. Many previous studies have pointed out that the analysis may not 

match the solution of the Bayesian estimation when we apply data assimilation based on minimum variance estimation on a 320 

state variable that is non-Gaussian, making it difficult to obtain the optimal analysis (e.g., Posselt and Bishop, 2012). This 

problem may occur significantly for regions where the precipitation amount is small, considering the fact that the ensemble 

used in the estimation of this study may contain many samples near 0.0 mm day-1 for such regions. Although the proposed 

method outperformed the OI in general, there is a possibility that the accuracy of the precipitation estimates will be further 

improved by applying the transformation methods such as the Gaussian transformation to the daily precipitation data (Lien et 325 

al., 2013; Kotsuki et al., 2017) in the future experiments. Another limitation is the lack of sites where validation can be 

performed in specific regions. For example, the density of rain gauges used in CPC_gauge is especially high in North America, 

making it difficult to perform validations against rain gauge observations independent from the observation inputs of the 

estimation (Fig. 2 b) in this region. On the other hand, both the rain gauges in CPC_gauge and other independent rain gauges 

used in GPCC_gauge  are lacking in the central part of Australia and the Arabian Peninsula (Fig. 2 b). Therefore, there is a 330 

possibility that the validations performed in this study may be biased by the results of the regions with a large number of rain 

gauges independent from CPC_gauge. 

Despite the limitations noted above, the present study succeeded in improving the accuracy of precipitation fields 

estimated from rain gauge observations, which will lead to a more effective use of these observations. 
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