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Abstract. It is crucial to improve global precipitation estimates for a better understanding of water-related disasters and water 10 

resources. This study proposes a new methodology to interpolate global precipitation fields from ground rain gauge 

observations using the algorithm of the local ensemble transform Kalman filter (LETKF), a computationally efficient ensemble 

data assimilation method, in which the first guess and its error covariance are developed based on the reanalysis data of 

precipitation from the European Center for Medium-Range Forecasts (ERA5). For the estimation for each date, the 

climatological ensembles are constructed using the ERA5 data 10 years before and after that date, and thereafter are utilized 15 

to obtain the first guess and its error covariance. Additionally, the global rain gauge observations provided by the National 

Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) are used for observation inputs in the 

LETKF algorithm.  

Our estimates have better agreements against independent rain gauge observations compared to the existing precipitation 

estimates of the NOAA CPC in general. Because we utilized the same rain gauge observations for the inputs of our estimation 20 

as those used in the NOAA CPC product, it is indicated that the proposed estimation method is superior to that of the NOAA 

CPC (i.e., the Optimal Interpolation). Our proposed method took the advantage of constructing a physically guaranteed first 

guess and its error variance using reanalysis data for interpolating precipitation fields. Furthermore, validations against 

independent rain gauge observations showed that our estimates are largely improved in mountainous or rain-gauge-sparse 

regions compared to the CPC estimates, indicating strong benefits of the proposed method for such regions.  25 

1 Introduction 

Improving the accuracy of global precipitation fields is crucial for predicting water-related disasters such as floods and 

droughts, long-term water resource management, and validations of forecasted precipitation by numerical weather prediction 

(NWP) models. Ground rain gauge observations play an essential role in estimating global precipitation fields, because they 

are considered to be more accurate relative to other estimates by NWP models or satellite-borne sensors, especially in 30 

mountainous areas (Sun et al. 2018). On the other hand, rain gauge observations can only be acquired at a limited number of 

locations. The National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) provides the CPC 

Unified Gauge-based Analysis of Global Daily Precipitation (hereafter, CPC_est) (Xie et al. 2007; Chen et al., 2008), which 

is spatially interpolated precipitation data based on rain gauge observations. Such global precipitation data are important not 

only as input data to analyze the hydrological water cycle, but as a reference data for validating or adjusting NWPs and satellite-35 

based precipitation estimates. For example, the satellite-based Global Satellite Mapping of Precipitation (GSMaP), which is 

provided by the Japan Aerospace Exploration Agency (Kubota et al., 2020), is adjusted to CPC_est (Mega et al., 2019). Thus, 

although rain-gauge-based global precipitation data are especially important for periods when no or few satellite observations 

were available, the methodology to improve global precipitation fields by utilizing precise ground rain gauge observations is 

valuable even with the advancements in satellite observations and numerical weather forecasting. 40 

mailto:yukamuto@chiba-u.jp
mailto:shunji.kotsuki@chiba-u.jp


2 

 

There have been many methodological studies to estimate precipitation fields from sparsely located rain gauge 

observations (e.g., Cressman, 1959; Barnes, 1964; Gandin, 1965; Shepard, 1968). Among them, a widely used interpolation 

method is the Optimal Interpolation (OI) (Gandin, 1965), which provides a weighted average of the first guess on each grid 

point and the surrounding observations. Because the OI determines the weights of the first guess and observations by 

considering the error variance and covariance as well as the distance with respect to the surrounding observation points, this 45 

method was suggested to be superior to the other inverse-distance weighting methods of Cressman (1959) and Shepard (1968) 

(Chen et al, 2002). Consequently, the operational global precipitation fields of CPC_est uses the OI (Xie et al. 2007), allowing 

this product to be the rain-gauge-based global precipitation estimates with the highest spatiotemporal resolution (0.5˚ × 0.5˚ 

pixel daily data) to the present day (Sun et al. 2018). However, CPC_est was reported to smooth extreme values especially in 

rain-gauge-sparse regions (Shen and Xiong, 2016), and hence a better interpolation method would be beneficial. 50 

In recent years, more sophisticated interpolation methods have been introduced from the field of data assimilation. 

For example, Kumar et al. (2021) applied a data assimilation approach to combine the satellite-based GSMaP and rain gauge 

observations in India, using GSMaP and rain gauge observations as the first guess and the observation inputs, respectively. 

The proposed method in Kumar et al. (2021) constructs a flow-dependent background error covariance by implementing the 

Kalman filter (Kalman, 1960) to propagate the background error covariance. Furthermore, the accuracy of NWPs has improved 55 

rapidly over the past few decades (Pu and Kalnay, 2018). Because NWP-based data capture dynamical relationships between 

locations and variables, rain-gauge-based precipitation estimates would be further improved by using NWP-based data for the 

first guess and background error covariance. Here, ensemble data assimilation (EnDA) can be used to obtain the daily 

climatological error covariance by regarding NWP-based precipitation fields as an ensemble (Kretschmer et al. 2015; Kotsuki 

and Bishop 2022). In particular, the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) is a computationally 60 

efficient EnDA method which extracts the observations close to the grid point by a localization method, and has been 

implemented in many previous studies on NWPs (e.g., Hamrud et al., 2015; Terasaki et al., 2015; Schraff et al., 2016). Hence, 

this study aims to propose a new estimation method for historical global precipitation fields by spatial interpolation from rain 

gauge observations, utilizing the LETKF algorithm and NWP-based data. Furthermore, we will verify the superiority of our 

estimation method in comparison to the OI used in CPC_est.  65 

The rest of the paper is organized as follows. Section 2 describes the proposed interpolation method, followed by the 

validation methods with respect to independent rain gauge observation data. Section 3 presents the precipitation fields 

estimated by the proposed method as well as the results of the validations. The advantage of the proposed method are discussed 

in Section 4, followed by a conclusion in Section 5.  

2 Methods  70 

2.1 Interpolation method 

2.1.1 Input Data 

This study uses the rain gauge data utilized in CPC_est for the observation input for the interpolations. These rain gauge data 

are collected by NOAA CPC from approximately 30,000 stations from multiple data sources such as daily summary files from 

the Global Telecommunication System (GTS) and the CPC unified daily precipitation data sets over the contiguous United 75 

States, Mexico and South America (Chen et al., 2008, NCARS, 2022). Although CPC_est defines the daily precipitation by 

local time, we assume that the daily precipitation in CPC_est represents the 24-hour precipitation from 00:00 UTC, provided 

that open information on the local time used for each pixel is limited and inaccurate. Since CPC_est is published as a 0.5˚ × 

0.5˚ pixel data, we only use the precipitation at pixels in which more than one rain gauge station is included (hereafter, 

CPC_gauge) for the observation inputs in our estimation, and also assume that the rain gauge(s) is (are) located at the center 80 

of each pixel. Since CPC_est is estimated by also using the rain gauge observations of CPC_gauge and thereafter interpolating 
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the precipitation field using the OI (Xie et al. 2007), we can to compare the interpolation methods of the CPC product and our 

method by comparing the precipitation estimates themselves. 

For the construction of the first guess and background error covariance, we use the “Total precipitation” data from 

the fifth generation ECMWF reanalysis (ERA5) (Hersbach et al., 2023). ERA5 is a 0.25˚ × 0.25˚ gridded hourly data based on 85 

the Integrated Forecasting System (version Cy41r2), and combined with various conventional and satellite observations related 

to atmosphere, land and ocean by data assimilation (Hersbach et al., 2020). We computed the total precipitation on a daily 

basis (i.e., 24-hour precipitation from 00:00 UTC) from the original ERA5 data. Although the original ERA5 data cover both 

land and sea areas, this study focused on estimating the precipitation fields only over land, where rain gauge observations are 

available. 90 

2.1.2 Ensemble data assimilation 

The schematic image of the interpolation method of this study is shown in Fig. 1. 

 

Figure 1: The schematic image of (a) the interpolation method and (b) the construction of an ensemble in this study 

using ensemble data assimilation. The rain gauge observations from the CPC product are used for the observation 𝐲𝑡
𝑜. 95 

The ensemble 𝐗𝑡
𝑏 is obtained from the daily precipitation data from the fifth generation ECMWF reanalysis (ERA5) 

before and after the interpolation date, and the ensemble mean is used as the first guess 𝐱𝑡
𝑏. 𝐑𝑡 is the observation error 

covariance. 𝐻𝑡 denotes an observation operator that maps the first guess values to the observed values, and 𝐇𝑡 is the 

Jacobi matrix of 𝐻𝑡(𝐱𝑡
𝑏). The background error covariance 𝐏𝑡

𝑏  is also approximated from the ensemble. Finally, the 

interpolated daily global precipitation field is computed as the analysis 𝐱𝑡
𝑎. 100 

 

The daily precipitation in the same grid points as ERA5 over land is estimated using CPC_gauge as observation inputs 

according to Equation (1), which is the equation of the Kalman filter (Kalman, 1960): 

𝐱𝑡
𝑎 = 𝐱𝑡

𝑏 + 𝐏𝑡
𝑏𝐇𝑡

T[𝐇𝑡𝐏𝑡
𝑏𝐇𝑡

T + 𝐑𝑡]
−1 (𝐲𝑡

𝑜 − 𝐻𝑡(𝐱𝑡
𝑏)) , (1) 

where 𝐱𝑡
𝑎 ∈ ℝ𝑁, 𝐱𝑡

𝑏 ∈ ℝ𝑁, 𝐲𝑡
𝑜 ∈ ℝ𝑃 denote the analysis, first guess, and observation values at time 𝑡, respectively. Superscripts 105 

a, b and o denote the analysis, first guess, and observation, respectively.  𝐏𝑡
𝑏 ∈ ℝ𝑁×𝑁 and 𝐑𝑡 ∈ ℝ

𝑃×𝑃 represent the background 

and observation error covariance matrices. The scalars 𝑁 and 𝑃 denote the number of grid points of ERA5 over land, and that 

of CPC_gauge pixels, respectively. 𝐻𝑡 denotes an observation operator that maps the first guess to the observed values, and 
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𝐇𝑡 ∈ ℝ
𝑃×𝑁 is the Jacobi matrix of 𝐻𝑡( ). Since we assume that the observation sites are located at the center of the 0.5-degree 

pixels, each observation site exactly corresponds to one 0.25-degree grid point of the first guess. Hence, in our study, the 110 

observation operator  𝐻𝑡( ) is simply a linear function which extracts the first guess data at grid points where the observation 

exists, and 𝐇𝑡 is equivalent to 𝐻𝑡( ). 

Here, we define  𝐑𝑡 as a diagonal matrix owing to the assumption that the errors of the observations are independent 

from each other. The error variance of each observation (i.e., the diagonal components of 𝐑𝑡) is given by Equation (2), based 

on Lien et al. (2016)’s suggestion about the effectiveness of logarithm transformation on precipitation variables: 115 

error variance =  {
log(2)              (𝑦𝑙,𝑡

𝑜 ≤ 1.0 mm day−1)

log(𝑦𝑙,𝑡
𝑜 + 1)  (𝑦𝑙,𝑡

𝑜 > 1.0 mm day−1)
, (2) 

where log is the natural logarithm and 𝑦𝑙,𝑡
𝑜  denotes the observation at the 𝑙th pixel and 𝑡th time step from CPC_gauge. As 

described in Equation (2), there is a minimum limit (log(2)) to the error variance, which prevents the inverse of 𝐑𝑡 from 

diverging in Equations (7), (9) and (10) mentioned below. We also performed sensitivity experiments for a coefficient that 

multiplies the logarithm transformed value in Equation (2), and consequently the value 1.0 was selected as the coefficient (i.e., 120 

equivalent to placing no coefficient). An example of the spatial distribution of the error variances are shown in Appendix 1.  

The first guess values of 𝐱𝑡
𝑏 and the background error covariance 𝐏𝑡

𝑏  are given by the daily precipitation of ERA5. 

For each estimation date, the data of the 10 years before and after that date is extracted, considering that CPC_est uses the 20-

year average daily precipitation as the first guess for estimations (Xie et al., 2007). Then, we extract the data of the same day 

of year as the estimation date and also the surrounding 7 days within those 20 years, and utilize them as an ensemble 𝐗𝑡
𝑏 (cf. 125 

Fig. 1 b) that represents the daily climatology of that date. We do not extract the ERA5 data in the exact year of the estimation 

date, because we compare our precipitation estimates with ERA5 itself for validation (details are explained in Section 2.2.2). 

Thereafter, the first guess �̅�𝑡
𝑏  is given by the mean of the ensemble. Additionally, 𝐏𝑡

𝑏  is approximated by the ensemble 

(Evensen,1994), given by:  

𝐏𝑡
𝑏 ≈ 𝐙𝑡

𝑏(𝐙𝑡
𝑏)T, (3) 130 

𝐙𝑡
𝑏 =

𝛿𝐗𝑡
𝑏

√𝑀 − 1
, (4) 

where 𝛿𝐗𝑡
𝑏 ∈ ℝ𝑁×𝑀 denotes the ensemble perturbation between the respective ensemble and the ensemble mean for each grid, 

and 𝑀 denotes the number of ensemble members (𝑀 = 15 days × 20 yrs).  

Ensemble data assimilation usually requires localization so that the observation values are weighted according to their 

distance from the analysis grid point using the localization function. When the distance between a grid point in the first guess 135 

and an observation site is 𝑑 km, the localization function 𝐿(𝑑) is expressed by the Gaussian function, which is widely used for 

localization in the LETKF algorithm (e.g., Miyoshi and Yamane, 2007): 

𝐿(𝑑) = {
exp (−

𝑑2

2𝜎2
)         𝑑 < 2√10 3⁄ 𝜎

0                                else

, (5) 

where σ denotes the localization scale (km). Localization is performed by dividing the diagonal component of 𝐑𝑡 by 𝐿(𝑑) for 

each grid point and observation site (i.e., the center of a 0.5˚ × 0.5˚ pixel), so that observations distant from that grid point 140 

have less weights. The second row of Equation (5) truncates the observations where 𝑑 ≥ 2√10 3⁄ 𝜎, based on Miyoshi et al. 

(2007). Here, we determine the value of σ based on the method of Schraff et al. (2016), known as the Observation Number 

Limit technique. First, a certain distance 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖  in km is set, followed by setting the maximum number of observation sites 

(𝑃𝑙𝑜𝑐
𝑚𝑎𝑥) to be used for the estimation. Next, the localization scale σ is determined by Equation (6): 
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𝜎 =

{
  
 

  
 
𝑑𝑚𝑎𝑥
𝑖𝑛𝑖

2√10 3⁄

    𝑃𝑙𝑜𝑐
𝑖𝑛𝑖 < 𝑃𝑙𝑜𝑐

𝑚𝑎𝑥 

𝑑𝑚𝑎𝑥
𝑓𝑖𝑥

2√10 3⁄

                 else             

 , (6) 145 

where 𝑃𝑙𝑜𝑐
𝑖𝑛𝑖 denotes the number of observation sites within the 𝑑𝑚𝑎𝑥

𝑖𝑛𝑖  km radius from the grid point, and  𝑑𝑚𝑎𝑥
𝑓𝑖𝑥

 is the distance 

(in km) between the grid point and the (𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 + 1)th nearest observation site. The tunable parameters 𝑑𝑚𝑎𝑥

𝑖𝑛𝑖  and 𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 are set 

to 1,000 km and 10 respectively, owing to the authors’ preliminary experiments explained in Appendix 2. Additionally, 

examples of 𝐿(𝑑) values with difference 𝜎 values are shown in Appendix 3. 

Our study applies the LETKF algorithm, in which the ensemble mean of the analyses �̅�𝑡
𝑎 is computed by Equation (7) 150 

(Hunt et al, 2007): 

�̅�𝑡
𝑎 = �̅�𝑡

𝑏 + 𝐙𝑡
𝑏�̃�𝑡

𝑎(𝐇𝑡𝐙𝑡
𝑏)T𝐑𝑡 𝑙𝑜𝑐

−1 (𝐲𝑡
𝑜 − 𝐻𝑡(𝐱𝑡

𝑏)) , (7) 

where 𝐑𝑡 𝑙𝑜𝑐
−1 ∈ ℝ𝑃𝑙𝑜𝑐×𝑃𝑙𝑜𝑐  denote the inverse of 𝐑𝑡  with the localization, and 𝐈 denote the identity matrix. The scaler 𝑃𝑙𝑜𝑐 

denotes the number of observations within the localization cut-off radius. Here, we compute �̃�𝑡
𝑎 using the following equations 

proposed by Kotsuki and Bishop (2022): 155 

�̃�𝑡
𝑎 = 𝐂(𝐈 + 𝚪)−1𝐂T, (8) 

𝐂 = (𝐇𝑡𝐙𝑡
𝑏)T𝐑𝑡 𝑙𝑜𝑐

−1
2⁄ 𝐄𝚪

−1
2⁄ , (9) 

where the eigenvalue decomposition is solved for a 𝑃𝑙𝑜𝑐 × 𝑃𝑙𝑜𝑐 matrix given by: 

𝐑𝑡 𝑙𝑜𝑐
−1

2⁄ 𝐇𝑡𝐙𝑡
𝑏(𝐇𝑡𝐙𝑡

𝑏)T𝐑𝑡 𝑙𝑜𝑐
−1

2⁄ = 𝐄𝚪𝐄T. (10) 

Because the number of local observations 𝑃𝑙𝑜𝑐(≤ 10)  is smaller than the ensemble size 𝑀 (= 300) , the 160 

computational cost is smaller than the original LETKF algorithm, in which the eigenvalue decomposition is solved for an 

𝑀 ×𝑀 matrix (�̃�𝑡
𝑎)
−1

. 

Consequently, �̅�𝑡
𝑎 is the interpolated daily global precipitation field, and is used as the final estimate of this study 

(hereafter, LETKF_est). Based on the method explained above, we estimated the daily global precipitation field for ten years 

(1981−1990). Note that we skip the estimation for 23 days during the estimation period when no valid rain gauge observations 165 

are available in either Africa, Eurasia or Canada. 

2.2 Validation methods 

2.2.1 Data used for the validations 

Rain gauge observation data from two precipitation products are used for validations. The first data is APHRODITE (Yatagai 

et al., 2012), which is also a daily precipitation dataset constructed by applying interpolation based on rain gauge observations. 170 

In addition to the rain gauge data from the GTS, APHRODITE uses rain gauge data precompiled by other projects or 

organizations and those originally collected from national hydrological and meteorological services. The use of such rain gauge 

data enables validations against rain gauge observations independent from those used in CPC_est. Here, we use the 0.5˚ × 0.5˚ 

pixel data of the latest version of APHRODITE (V1101) covering Monsoon Asia (MA) (Fig. 2 a), where particularly dense 

rain gauge data other than those from the GTS are available in the APHRODITE product.  175 
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Figure 2: An example of (a) the distribution of the daily rain gauge observations used in APHRODITE v1101 and the 

CPC product in Monsoon Asia (on Nov. 15th, 1988), and (b) the monthly rain gauge observations used in the GPCC 

FD product v2022 and the CPC product (in Nov., 1988). The black pixels include more than one rain gauge stations 

which are independent from the stations used in the CPC product, and the light blue pixels include more than one rain 180 

gauge stations used in the CPC product. 

 

Secondly, the monthly precipitation product of the Global Precipitation Climatology Centre (GPCC) is used. The Full 

Data Reanalysis (FD) product of the GPCC is constructed based on rain gauge observations from > 40,000 stations throughout 

the globe, including not only the observations used in CPC_est, but also data provided from other sources such as the national 185 

data by the World Meteorological Organization or the collection of the Global Historical Climatology Network (Becker et al., 

2013). Thus, although on a monthly basis, the GPCC provides rain gauge observations independent from CPC_gauge in a 

global scale (Fig. 2 b). In this study, we use the latest version of the 0.5˚ × 0.5˚ pixel FD product (v2022) (Schneider et al., 

2022). 

The objective of this study is to improve the accuracy of rain-gauge-based precipitation fields in a global scale. 190 

Considering that the MA APHRODITE product in the MA has a limitation in area, and that the GPCC product has that in the 

temporal resolution, we perform validations against both of the data for more comprehensive evaluations. 

For both the APHRODITE and GPCC products, we use the data samples of the pixels in which more than one rain 

gauge is included (APHRODITE_gauge and GPCC_gauge), and assume that the rain gauge(s) is (are) located at the center of 

each pixel, similar to CPC_gauge. Prior to the validations, the 0.25˚ × 0.25˚ gridded LETKF_est and ERA5 data are converted 195 

into 0.5˚ × 0.5˚ pixel data so as to be equivalent to the spatial resolution of CPC_est, APHRODITE_gauge and GPCC_gauge. 

The details of the conversion method are described in Appendix 4. 

 

2.2.2 Validation against APHRODITE_gauge 

Here, we use an index that measures correlation based on the rank of the samples rather than the exact magnitude of them, 200 

considering that some studies have suggested the possibility that the APHRODITE precipitation underestimates annual, 

monthly and daily precipitation in South-east Asia (Kotsuki and Tanaka, 2013) and South Asia (Ji et al., 2020).  Such index is 

also less susceptible to low-frequency extreme values, which may occur in daily precipitation data. Hence, Kendall's rank 

correlation coefficient 𝜏𝑏  (Kendall, 1948) is computed against the daily precipitation of APHRODITE_gauge for LETKF_est, 

CPC_est, and ERA5, respectively, using the data during the whole estimation period of this study (1981−1990). When 𝑁𝑎𝑝ℎ𝑟𝑜 205 
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is the number of APHRODITE_gauge pixels, and (𝑢𝑖 , 𝑣𝑖) （𝑖 = 1, … ,𝑁𝑎𝑝ℎ𝑟𝑜）are the pairs of daily precipitation data to be 

compared (i.e., the precipitation estimates and APHRODITE_gauge), 𝜏𝑏  is obtained by Equation (11) and (12): 

𝜏𝑏 =
𝐴 − 𝐵

√𝑆 − 𝑇𝑢√𝑆 − 𝑇𝑣
, (11)

 

𝑆 =
𝑁𝑎𝑝ℎ𝑟𝑜(𝑁𝑎𝑝ℎ𝑟𝑜 − 1)

2
, (12) 

where 𝐴 (𝐵) represent the total number of cases in which the magnitude relationship of 𝑢𝑗 （𝑗 = 1, … , 𝑁𝑎𝑝ℎ𝑟𝑜）and 𝑢𝑘（𝑘 =210 

𝑗 + 1, … , 𝑁𝑎𝑝ℎ𝑟𝑜）is concordant (discordant) with that of 𝑣𝑗  and 𝑣𝑘 . 𝑇𝑢  and 𝑇𝑣  denote the number of ties in 𝑢𝑖  and 𝑣𝑖 , 

respectively.  

The value of  𝜏𝑏  closer to 1.0 (–1.0) indicates stronger positive (negative) correlation between the two types of data. 

Because the computation of 𝜏𝑏  neglects the samples with the completely same values in APHRODITE_gauge (or in the 

precipitation estimates), and because there are more than one no-rain cases in APHRODITE_gauge or the precipitation 215 

estimates, it should be mentioned that 𝜏𝑏  cannot measure the similarity of no-rain cases between the two data.  We exclude the 

samples of the pixels where the input observations from CPC_gauge are available to evaluate only the interpolated precipitation 

in our study. Furthermore, we exclude the samples of the pixels where the precipitation of APHRODITE_gauge is < 0.5 mm 

day–1, considering that precipitation below this value generally cannot be measured precisely by rain gauges.  

2.2.3 Validations against GPCC_gauge 220 

The spatial root mean square difference (RMSD), mean absolute difference (MAD) and Pearson’s correlation coefficient (R) 

are computed for each month during the whole estimation period (1981−1990) against the monthly precipitation of 

GPCC_gauge for LETKF_est and CPC_est following Equations (13) to (15): 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑀𝑆𝐷𝑡 = √
∑ 𝑤𝑖(𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡)

2𝑁𝑔𝑝𝑐𝑐
𝑖=1

∑ 𝑤𝑖
𝑁𝑔𝑝𝑐𝑐
𝑖=1

, (13) 

 225 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑀𝐴𝐷𝑡 =
∑ 𝑤𝑖|𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡|
𝑁𝑔𝑝𝑐𝑐
𝑖=1

∑ 𝑤𝑖
𝑁𝑔𝑝𝑐𝑐
𝑖=1

, (14) 

𝑅𝑡 =

1
𝑁𝑔𝑝𝑐𝑐

∑ (𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑥𝑒𝑠𝑡 𝑖,𝑡 − 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅)
𝑁𝑔𝑝𝑐𝑐
𝑖=1

√
1

𝑁𝑔𝑝𝑐𝑐
∑ (𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 − 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅)

2𝑁𝑔𝑝𝑐𝑐
𝑖=1 √

1
𝑁𝑔𝑝𝑐𝑐

∑ (𝑥𝑒𝑠𝑡 𝑖,𝑡 − 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅)
2𝑁𝑔𝑝𝑐𝑐

𝑖=1

, (15)
 

where 𝑁𝑔𝑝𝑐𝑐 denote the number of GPCC_gauge pixels. 𝑥𝑔𝑝𝑐𝑐 𝑖,𝑡 and 𝑥𝑒𝑠𝑡 𝑖,𝑡 denote the monthly precipitation of GPCC_gauge 

and the estimates (LETKF_est or CPC_est) at the 𝑖th pixel and 𝑡th time step, respectively. Additionally, 𝑥𝑔𝑝𝑐𝑐  𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑥𝑒𝑠𝑡  𝑡̅̅ ̅̅ ̅̅ ̅ 

denote the spatial mean monthly precipitation of GPCC_gauge and the estimates (LETKF_est or CPC_est) at the 𝑡th time step, 230 

respectively. Here, 𝑤𝑖 = cos(𝜃𝑖) is the latitude-dependent weight of the 𝑖th pixel, where 𝜃 is the latitude. 

Smaller RMSD or MAD values (at the minimum of 0.0) indicate that the two data are similar, while the R value closer 

to 1.0 (–1.0) indicates stronger positive (negative) correlation. As explained in Section 2.2.2, we also exclude the samples of 

the pixels where the input observations from CPC_gauge are available for the validations against GPCC_gauge. Additionally, 

the months in which we skipped the estimation for daily precipitation (as noted in Section 2.1.2) were also excluded from the 235 

validations (Jan., 1981; Apr., 1983; Jan., 1984; Jan. –Feb. and Jul. –Aug., 1985.; Jan., Mar., Sep. and Nov., 1986). 
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3 Results 

A first guess precipitation field used in our study, CPC_gauge and LETKF_est on Nov. 15th 1988 are illustrated as an example 

in Fig. 3 a, b and d, respectively. The daily precipitation field of LETKF_est (Fig. 3 d) is interpolated using the smooth and 

averaged climatological first guess (Fig. 3 a) and the sparsely located rain gauge observations (Fig. 3 b), using the methodology 240 

presented in Section 2.1.2. For the same date, the daily precipitation of NOAA’s CPC_est, which is estimated by the OI also 

using the rain gauge observations in CPC_gauge, is depicted in Fig. 3 c for comparison. Although the precipitation patterns of 

CPC_est (Fig. 3 c) and LETKF_est (Fig. 3 d) are overall similar to each other, several differences exist between them. For 

example, broader precipitating areas are seen for LETKF_est than for CPC_est, especially around the central part of Africa, 

South America, and the Indochinese Peninsula. Precipitation areas can be seen around the Himalayas and the Zagros mountains 245 

in LETKF_est, while not in CPC_est. In addition, the precipitation is generally weaker for LETKF_est than CPC_est. 

 

Figure 3: An example of the precipitation fields (mm day–1) for (a) the first guess used in our study, (b) the rain gauge 

observations of CPC_gauge, and the global precipitation estimates of (c) CPC_est and (d) LETKF_est (on Nov. 15th, 

1988). Pixels on the ocean are colored in gray for all subplots, as well as those where no rain gauge observations are 250 

available for subplot (b). Pixels are colored in white when the precipitation is < 0.5 mm day–1. 

 

The scatter plots in Fig. 4 compare the daily precipitation of ERA5, CPC_est and LETKF_est with 

APHRODITE_gauge at pixels in MA, showing that LETKF_est is aligned with APHRODITE_gauge the most compared to 

ERA5 and CPC_est. Furthermore, the 𝜏𝑏  value (described in Section 2.2.2) of LETKF_est computed against 255 

APHRODITE_gauge is the highest (Fig. 4) with statistically significant differences at the P-value of 0.01, notwithstanding 

that LETKF_est was converted to 0.5˚ × 0.5˚ pixel data in advance of this validation. Therefore, it shows that the daily 

precipitation of LETKF_est is more similar to that of APHRODITE_gauge than ERA5 or CPC_est in terms of Kendall's rank 

correlation coefficient. 
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 260 

Figure 4: Scatter plots comparing the daily precipitation (mm day–1) of APHRODITE_gauge with that of (a) ERA5, 

(b) CPC_est and (c) LETKF_est. The colors represent the ratio of samples within each 0.1 mm day-1 × 0.1 mm day-1 bin 

in each 2-dimensional histogram. Kendall’s rank correlation coefficient (𝜏𝑏 ) of (a) ERA5, (b) CPC_est and (c) 

LETKF_est computed against APHRODITE_gauge are listed at the top of each subplot. 

 265 

The spatial RMSD, MAD and R verified against GPCC_gauge (described in Section 2.2.3) indicate that the monthly 

precipitation of LETKF_est shows better agreements with GPCC_gauge (i.e., lower RMSD and MAD values, and higher R 

values) than that of CPC_est for all months throughout the estimation period (Fig. 5). The temporal average of the spatial 

RMSD and MAD of the LETKF_est is lower than those of CPC_est by 14.79 % and 10.96 %, respectively. The spatial MAD 

is also computed separately among the low-latitude region (20˚N–20˚S) and mid- and high-latitude regions (90˚N–20˚N and 270 

20˚S–90˚S) against GPCC_gauge for both LETKF_est and CPC_est for each month. Figure 6 indicates that the MAD values 

in the low-latitude region are generally higher than those of the mid- and high- latitude regions. However, the scatter plots for 

the low-latitude region are more divergent from the 1:1 line upwards, indicating that the MAD values have improved for 

LETKF_est compared to CPC_est particularly in this region. Therefore, it is indicated that our estimation method is more 

beneficial than the OI especially for the low-latitude region, which is highly occupied by the tropical regions with more 275 

precipitation. 
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Figure 5: The time series of (a) the spatial root mean square difference (RMSD; mm month–1), (b) the spatial mean 

absolute difference (MAD; mm month–1) and (c) Pearson’s correlation coefficient (R), verified against the GPCC_gauge. 

The blue solid and red dashed lines represent the CPC_est and LETKF_est, respectively. The validations are not 280 

performed for the months in which we skipped the estimation for daily precipitation (Jan., 1981; Apr., 1983; Jan., 1984; 

Jan. –Feb. and Jul. –Aug., 1985.; Jan., Mar., Sep. and Nov., 1986). 
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Figure 6: Scatter plots comparing the spatial mean absolute difference (MAD; mm month–1) of CPC_est and 

LETKF_est verified against the monthly precipitation of GPCC_gauge. Dark-red circles and light-red cross marks 285 

represent the low-latitude region (20˚N–20˚S) and mid- and high-latitude regions (90˚N–20˚N and 20˚S–90˚S), 

respectively. 

4 Discussion 

The main reason for the improvement in the accuracy of LETKF_est compared to CPC_est is presumably owing to the 

interpolation method that uses the dynamically consistent first guess and background error covariance constructed from the 290 

ERA5 data. This would have led to the improvement in the accuracy of the first guess, as well as the variance of each grid 

point and the covariance between paired grid points. For example, our first guess would take into account the orographic 

effects. Here, we first investigate the difference in South Asian precipitation, showing an example on an arbitrarily selected 

date in the Monsoon season. 

Figure 7 depicts the first guess used for this study and the daily precipitation of CPC_gauge, ERA5, CPC_est and 295 

LETKF_est on Jun. 27th, 1985. It should be noted that the precipitation of LETKF_est (Fig. 7 f) is the one converted into a 

0.5˚ × 0.5˚ pixel data, for the comparison with that of CPC_est (Fig. 7 e). LETKF_est succeeds in reproducing the orographic 

changes in precipitation around the Himalayas (Fig. 7 f) despite the lack of observation inputs in the surrounding area (Fig. 7 

c), while CPC_est fails to do so (Fig. 7 e). Although the first guess of CPC_est also adjusts the first guess considering 

orographic effects prior to interpolation by the OI (Xie et al., 2007), Fig. 7 e indicates that this adjustment would be insufficient. 300 

The first guess constructed by ERA5 (Fig. 7 b) is presumed to contribute to these precipitation patterns of LETKF_est, since 

it clearly reflects orographic features, similar to the original ERA5 (Fig. 7 d). On the other hand, as explained in Section 3, the 

precipitation of LETKF_est has better agreement with APHRODITE_gauge than that of ERA5 itself, suggesting that not only 

the first guess, but also the climatological background error covariance constructed from ERA5 contributes to the improvement 

in our estimates. It should be noted that orographic effects in a finer scale may be sub optimal in our estimation method in 305 

which the rain gauge sites are assumed to locate at the center of 0.5˚ × 0.5˚ pixels. Furthermore, the performance of our 

proposed method may also differ if a different reanalysis data is used, because reanalysis data with better quality would provide 

a better first guess and error covariance.  



12 

 

 

Figure 7: (a) The elevation (m) and an example (b) the first guess constructed in our study (mm day–1), (c) the rain 310 

gauge observations of CPC_gauge (mm day–1), and the global precipitation estimates (mm day–1) of (d) ERA5, (e) 

CPC_est and (f) LETKF_est (on Jun. 27th, 1985) around India. Pixels on the ocean are colored in gray for all subplots, 

as well as those where no rain gauge observations are available for subplot (c). The precipitation of LETKF_est (subplot 

(f)) is the one converted into a 0.5˚ × 0.5˚ pixel data. Pixels are colored in white when the precipitation is < 0.5 mm day-

1. 315 

 

To investigate whether the precipitation of LETKF_est is more accurate than that of CPC_est around mountainous 

areas such as the Himalayas not only on a specific date but for the whole estimation period, Kendall’s rank correlation 

coefficient (𝜏𝑏) was computed for LETKF_est and CPC_est against the daily precipitation of APHRODITE_gauge for each 

pixel where more than 1,800 samples of APHRODITE_gauge are available during the whole estimation period (1981–1990)  320 

in MA. The results in Fig. 8 show that the 𝜏𝑏  values of LETKF_est are higher than that of CPC_est by > 0.05 especially around 

the Himalayas, indicating that the method of this study improves the daily precipitation largely around this area during the 

estimation period. 
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Figure 8: Kendall’s rank correlation coefficient (𝝉𝒃) computed against the daily precipitation of APHRODITE_gauge 325 

for (a) CPC_est and (b) LETKF_est at each pixel. Subplot (c) represents the difference between (b) and (a). Darker 

colors in (a–b) indicate that the precipitation estimates are more similar to APHRODITE_gauge. Warm colors in (c) 

indicate that LETKF_est is more similar to APHRODITE_gauge than CPC_est, and cold colors indicate otherwise. 𝝉𝒃 

is computed only at pixels where more than 1,800 samples from APHRODITE_gauge are available, and the pixels are 

colored in gray if they do not match this condition. 330 

 

Additionally, the temporal MAD values of LETKF_est and CPC_est are computed for the global area against the 

monthly precipitation of GPCC_gauge at each pixel where more than 50 samples of GPCC_gauge are available, using Equation 

(16): 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑀𝐴𝐷𝑖 =
∑ |𝑥𝑟𝑒𝑓 𝑖,𝑡 − 𝑥𝑒𝑠𝑡 𝑖,𝑡|
𝑇
𝑡=1

𝑇
, (16) 335 

where  𝑇  is the total number of monthly time steps during the whole estimation period (1981–1990). The spatial MAD 

(described in Section 2.2.3) shows the similarity between two data in the global scale for each month, whereas the temporal 

MAD shows the similarity between two data for the whole period at each pixel.  

Figure 9 depicts the temporal MAD computed in the Asian and African regions. The results for the global area are 

also shown in Appendix 5. The temporal MAD of LETKF_est is smaller than that of CPC_est by > 10 mm month–1 at many 340 

pixels around mountainous areas such as the Himalayas (Fig. 9 c) and the Zagros Mountains (Fig. 9 f), indicating that the 

estimation method of this study is beneficial for these areas throughout the estimation period. Furthermore, the temporal MAD 

of LETKF_est decreased by > 10 mm month–1 compared to that of CPC_est in regions where rain gauge stations are especially 

sparse, such as some regions in Southeast Asia (Fig. 9 c) or in 0˚S–20˚S of Africa (Fig. 9 f). In both the mountainous and rain-

gauge-sparse regions, the temporal MAD is relatively high compared to other regions (Fig. 9 a–b and d–e). Therefore, although 345 

interpolating precipitation fields in such areas is especially difficult, it is presumed that the proposed method succeeded in 

improving the accuracy of the estimates compared to the conventionally used OI method. Moreover, the 10-year experiment 

of our study is completed in < 12 hours (i.e., < 12 seconds to estimate a daily global precipitation field) using 20 cores in the 

computer processing unit AMD EPYC Rome 7402, indicating the expected computational efficiency of the LETKF algorithm, 

as mentioned in Section 1. Since reanalysis data covers various variables other than precipitation, there is also a possibility 350 

that our proposed method is applicable to other variables such as soil moisture, depending on the accuracy, frequency and 

spatial density of its observations. 
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Figure 9: The temporal mean absolute difference (MAD) (mm month–1) of (a, d) CPC_est and (b, e) LETKF_est 

computed against the monthly precipitation of GPCC_gauge at each pixel. Subplots (c, f) represent the differences (mm 355 

month–1) between (a, d) and (b, e), respectively. Lighter colors in (a–b, d–e) indicate that the precipitation estimates are 

more similar to GPCC_gauge. Warm colors in (c, f) indicate that LETKF_est is more similar to GPCC_gauge than 

CPC_est, and cold colors indicate otherwise. The temporal MAD is computed only at pixels where more than 50 samples 

from GPCC_gauge are available, and the pixels are colored in gray if they do not match this condition. 

 360 

There are some remaining limitations for this study that should be dealt with in the future. Firstly, our study has 

applied no transformation for the probability distributions of daily precipitation prior to the estimation, even though the 

precipitation variable can be less Gaussian. Many previous studies have pointed out that the analysis may not match the solution 

of the Bayesian estimation when data assimilation based on minimum variance estimation is applied to variables that are 

known to diverge from Gaussian, making it difficult to obtain the optimal analysis (e.g., Posselt and Bishop, 2012; Kotsuki et 365 

al., 2017). This problem may occur significantly for regions where the precipitation amount is small, considering the fact that 

the ensemble used in the estimation may contain many samples near 0.0 mm day-1 for such regions. As such, although the 

proposed method outperformed the OI in general, there is a possibility that the accuracy of the precipitation estimates would 

be further improved by applying treatments on non-Gaussianity such as by the Gaussian transformation (Lien et al., 2013; 

Kotsuki et al., 2017) or the Gamma-Inverse-Gamma-Gaussian ensemble Kalman filtering (Bishop, 2016).  370 
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Another limitation is the lack of validation sites in specific regions. For example, the density of rain gauges used in 

CPC_gauge is especially high in North America, making it difficult to perform validations against rain gauge observations 

independent from the observation inputs of the estimation (Fig. 2 b) in this region. On the other hand, both the rain gauges in 

CPC_gauge and other independent rain gauges used in GPCC_gauge are sparse in the central part of Australia and the Arabian 

Peninsula (Fig. 2 b). Therefore, validations may be biased by the results of the regions with a large number of rain gauges 375 

independent from CPC_gauge. 

5 Conclusions 

This study proposed a new estimation method for daily global precipitation fields from rain gauge observations using the 

algorithm of the LETKF in which the first guess and its error covariance are developed based on the precipitation from the 

reanalyzed precipitation of ERA5. We succeeded in estimating the daily global precipitation fields with high computational 380 

efficiency (i.e., < 12 seconds per day). Our findings can be summarized as follows. 

Our estimates showed better agreements against rain gauge observations compared to the existing product of the 

NOAA CPC. Because we utilized the same rain gauge observations for the inputs of our estimation as those used for the 

NOAA CPC product, it is indicated that the proposed estimation method outperformed that of the NOAA CPC (i.e., the OI). 

Our proposed method took advantage of constructing a dynamically consistent first guess and background error variance using 385 

reanalysis data for interpolating precipitation fields. Additionally, the method of this study was shown to be particularly 

beneficial for mountainous or rain-gauge-sparse regions.  

There are some remaining limitations for this study such as treatments on the less-Gaussian distribution of the 

precipitation variable, and the bias among regions in the density of validation sites. Despite such limitations, the present study 

succeeded in improving the accuracy of precipitation fields estimated from rain gauge observations, which will lead to a more 390 

effective use of spatially sparse rain-gauge observations. 
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Appendix 1: Spatial distribution of observation error variances in our study 

 

Figure A1: An example of (a) the rain gauge observations of CPC_gauge (mm day–1), and (b) the observation error 

variance (mm2 day–2) (on Nov. 15th, 1988). Pixels where no rain gauge observations are available are colored in gray 

for both subplots. Pixels are colored in white when the precipitation is < 0.5 mm day–1 in Subplot (a). 495 

Appendix 2: Sensitivity analysis of the localization parameters 

First, ten-year experiments from 1981 to 1990 were performed to estimate daily global precipitation fields using the 

methodology described in Section 2.1.2 with different combinations of the localization parameters 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖 (=

500, 1000, 1500 km)  and 𝑃𝑙𝑜𝑐
𝑚𝑎𝑥(= 5, 10, 20) . Next, the validation against APHRODITE_gauge, which is described in 

Section 2.2.2 is performed for the precipitation estimates of each experiment. The results of the validations show that Kendall’s 500 

rank correlation coefficient 𝜏𝑏  is the highest when 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖 = 500 km and 𝑃𝑙𝑜𝑐

𝑚𝑎𝑥 = 10, followed by when 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖 = 500 km and 

𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 = 20, and when 𝑑𝑚𝑎𝑥

𝑖𝑛𝑖 = 1000 km and 𝑃𝑙𝑜𝑐
𝑚𝑎𝑥 = 10 (Fig. A3). Because some grid points in Africa were found to have 

no observation point within a 500 km radius circle, values 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖 = 1000 km and 𝑃𝑙𝑜𝑐

𝑚𝑎𝑥 = 10 were eventually selected for the 

localization parameters in the experiment described in the main text. 

 505 

Figure A2: Kendall’s rank correlation coefficient computed against APHRODITE_gauge for different combinations of 

the localization parameters 𝑑𝑚𝑎𝑥
𝑖𝑛𝑖 (= 500, 1000, 1500 km) and 𝑃𝑙𝑜𝑐

𝑚𝑎𝑥(= 5, 10, 20).    
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Appendix 3: Change in the localization function depending on the distance of a grid point and an observation site  

 510 

Figure A3: Localization function 𝐿(𝑑) depending on the distance of a grid point and an observation site when the 

localization scale 𝜎 =
1000
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Appendix 4: Method for converting 0.25˚ × 0.25˚ gridded ERA5 and LETKF_est data into 0.5˚ × 0.5˚ pixel data 

In our study, we assume that the daily precipitation of a 0.25˚ × 0.25˚ grid point represents that of a  0.25˚ × 0.25˚ pixel whose 

center is located at the original gird point.Thus, to convert the 0.25˚ × 0.25˚ gridded into 0.5˚ × 0.5˚ pixel data, we compute 515 

the weighted average of the daily precipitation of the 0.25˚ × 0.25˚ grid points inside of on the sides of each 0.5˚ × 0.5˚ pixel, 

depending on the area ratio of the 0.25˚ × 0.25˚ pixels (Fig. A4). This method allows to conserve the total precipitation in the 

global area before and after the conversion. 

 

Figure A4: Schematic image of the method for converting 0.25˚ × 0.25˚ gridded data (the precipitation data of the 520 

colored plots) into 0.5˚ × 0.5˚ pixel data (the precipitation datum of the pixel surrounded by black lines). 

𝑥𝟎.𝟐𝟓 𝒅𝒆𝒈, 𝒉 (ℎ = 1,… , 9) and 𝛼ℎ (ℎ = 1,… , 9) denote the daily precipitation and the weight of each 0.25˚ × 0.25˚ grid 
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point. The daily precipitation of the 0.5˚ × 0.5˚ pixel 𝑥0.5 𝑑𝑒𝑔  is computed by the weighted average of 

𝑥𝟎.𝟐𝟓 𝒅𝒆𝒈, 𝒉 (ℎ = 1,… , 9). 

Appendix 5: Spatial distribution of temporal MAD for the global area 525 

 

Figure A5: The temporal mean absolute difference (MAD) (mm month–1) of (a) CPC_est and (b) LETKF_est computed 

against the monthly precipitation of GPCC_gauge at each pixel in the global area. Subplot (c) represents the differences 

(mm month–1) between (a) and (b). Lighter colors in (a–b) indicate that the precipitation estimates are more similar to 

GPCC_gauge. Warm colors in (c) indicate that LETKF_est is more similar to GPCC_gauge than CPC_est, and cold 530 

colors indicate otherwise. The temporal MAD is computed only at pixels where more than 50 samples from 

GPCC_gauge are available, and the pixels are colored in gray if they do not match this condition. 
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