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Abstract 8 

This study presents a comprehensive evaluation of the Weather Research and Forecasting 9 

model coupled with Chemistry (WRF-Chem) in simulating meteorological parameters and 10 

concentrations of gaseous pollutants across the United Arab Emirates (UAE) for the months of 11 

June and December 2018, representing the contrasting climatic conditions of summer and 12 

winter. The assessment of WRF-Chem performance involved comparisons with ground-based 13 

observations for meteorological parameters and satellite retrievals from the TROPOspheric 14 

Monitoring Instrument (TROPOMI) for gaseous pollutants. The assessment of gaseous 15 

pollutants using the WRF-Chem model revealed distinct patterns in the estimation of pollutant 16 

levels across different areas and seasons. The comparison with TROPOMI column 17 

concentration revealed the model's strengths in simulating tropospheric NO2 and total O3 18 

spatio-temporal patterns, although it had deficiencies in modelling the total CO column 19 

concentrations. The model exhibited a strong correlation with TROPOMI retrievals, with 20 

correlation coefficients ranging between 0.71 and 0.95 for summer and 0.86 to 0.94 for winter 21 

among these gaseous pollutants. It tended to slightly overestimate NO2 levels, with a higher 22 

discrepancy observed in summer (0.24 x 1015 molecules/cm2) compared to winter (0.19 x 1015 23 

molecules/cm2). When comparing WRF-Chem to TROPOMI-CO data, the discrepancies were 24 

more pronounced, showing an overestimation of 0.48 x 1018 molecules/cm2 in summer and a 25 

significant underestimation of 1.13 x 1018 molecules/cm2 in winter. The model consistently 26 

underestimated ozone levels in both seasons, by 0.15 x 1018 and 0.20 x 1018 molecules/cm2, 27 

respectively. Meteorological evaluations revealed the model's tendency to underestimate the 2-28 

m temperature in summer and overestimate it in winter, with mean biases ranging from -2.17 29 
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to +1.19 °C and a Root Mean Square Error in the range of 0.8 to 5.9 °C among the stations. 30 

The model showed enhanced performance for the 10-m wind speed and downward shortwave 31 

radiation flux, reflecting advancements over previous studies. Therefore, the WRF-Chem 32 

model effectively simulates key meteorological parameters and pollutants over the UAE, 33 

demonstrating significant regional-scale prediction skills. Areas for further model refinement 34 

are also identified and discussed. Integrating model predictions with satellite and ground-based 35 

data is emphasized for advancing air quality monitoring and enhancing predictive accuracy of 36 

atmospheric pollutants in this region. 37 

Keywords: Air quality modelling, gaseous pollutants, TROPOMI satellite retrievals, WRF-38 

Chem, UAE. 39 

Key points: 40 

● First high-resolution WRF-Chem air quality modelling study over the United Arab 41 

Emirates (UAE)  42 

● WRF-Chem’s ability to simulate meteorological parameters and pollutant levels over 43 

the UAE is assessed during summer and winter in 2018. 44 

● The model showed a strong correlation with TROPOMI satellite data, achieving 45 

correlation coefficients of 0.71-0.95 in summer and 0.86-0.94 in winter for different 46 

gaseous pollutants. 47 

● Lower model skill in simulating total CO columns, in contrast to the more accurate 48 

modelling of tropospheric NO2 and total O3 columns as compared to TROPOMI data. 49 

● Meteorological analysis revealed a tendency to underestimate surface temperature by 50 

0.5 °C in summer and overestimate it by 1.3 °C in winter.  51 

● Surface wind speed is overestimated by 0.1-0.9 m/s in both seasons across various 52 

regimes. 53 

  54 
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1. Introduction 55 

The United Arab Emirates (UAE), a federation of seven emirates, has undergone rapid 56 

urbanization and industrialization over the last five decades, which has had a profound impact 57 

on its air quality (Ramadan, 2015). The major factors affecting air quality in the UAE include 58 

emissions from industrial activities, vehicular traffic, construction projects, and occasionally, 59 

natural phenomena such as dust storms, which are quite prevalent in the region due to its desert 60 

climate (Environment Agency – Abu Dhabi, 2018; Francis et al., 2020; 2022b; Karagulian et 61 

al., 2019). The rapid economic growth of the UAE, especially in cities like Dubai and Abu 62 

Dhabi, has led to a surge in energy demand and desalinated water, largely met through the 63 

burning of fossil fuels (Shahbaz et al., 2014). This has resulted in increased emissions of 64 

pollutants like oxides of nitrogen (NOx), sulfur dioxide (SO2), particulate matter (PM), and 65 

volatile organic compounds (VOCs). Moreover, the heavy traffic in urban areas contributes to 66 

the elevated levels of ground-level ozone and particulate pollution (Abuelgasim & Farahat, 67 

2020; Li et al., 2010). Understanding the dynamics of air quality in the UAE involves 68 

considering both the environmental challenges posed by rapid development and the steps being 69 

taken to mitigate these impacts. The pursuit of balancing economic growth with environmental 70 

sustainability is central to this discourse. This area of study is not only vital for ensuring the 71 

health and well-being of the population but also plays a crucial role in the UAE's vision for a 72 

sustainable future. 73 

 74 

The swift urban expansion in the UAE could intensify air pollution sources. With surface 75 

observations sparse in this region, satellite remote sensing becomes a crucial method for air 76 

quality monitoring (Chudnovsky et al., 2014; Fonseca et al., 2023; Francis et al., 2023). What 77 

is more, satellite measurements themselves fall short in clarifying the different atmospheric 78 

processes responsible for peak pollution levels. Consequently, integrating chemistry transport 79 

models with satellite-derived and ground-based observations can significantly improve our 80 

understanding of pollutant emissions, distribution, transport, and transformation in the targeted 81 

regions (Eltahan et al., 2018; Li et al., 2018; Yarragunta et al., 2020; Yin et al., 2021). Air 82 

quality (AQ) modelling is dedicated to unravelling the complicated aspects of atmospheric 83 

chemistry and transport across both global and regional levels, as explored in numerous studies 84 

conducted around the world (Emmons et al., 2010; Kumar et al., 2011, 2018; Tie et al., 2001; 85 

Yarragunta et al., 2019, 2020, 2021). Despite facing limitations due to the often low spatial and 86 

temporal resolution of observational data, AQ models effectively generate detailed air quality 87 
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information for remote regions. They predict the formation and removal of air pollutants and 88 

facilitate a thorough examination of the transport and photo-chemical transformation of trace 89 

gases following their emission into the atmosphere (Archer-Nicholls et al., 2015; Georgiou et 90 

al., 2018; Nhu et al., 2021; Sicard et al., 2021). They are also employed globally for operational 91 

air quality forecasting (Jena et al., 2021; Koo et al., 2012; Kumar et al., 2012, 2021; Srinivas 92 

et al., 2016; Zhang et al., 2012). Air quality models are categorized into two types: 'fully 93 

coupled' models, which integrate interactions between chemistry and meteorology, and 'offline' 94 

models, where chemistry and meteorology simulations are conducted independently (Gao & 95 

Zhou, 2024). Some of  state of the art AQ models include the Weather Research and 96 

Forecasting (WRF) model coupled with chemistry (WRF-Chem;  Grell et al., 2005; Skamarock 97 

et al., 2008), WRF-Chem-MADRID (Model of Aerosol Dynamics, Reaction, Ionization and 98 

Dissolution, Zhang et al., 2010), CESM2 (Community Earth System Model version 2, Emmons 99 

et al., 2020), CHIMERE (Menut et al., 2021), LOTOS-EUROS(v2.0) (Long Term Ozone 100 

Simulation European Operational Smog, Manders et al., 2017) and COSMO/MESSy 101 

(Consortium for Small Scale Modelling/ Modular Earth Submodel System, Kerkweg & Jöckel, 102 

2012). However, before using these AQ models for future applications, it is crucial to conduct 103 

thorough evaluations to assess the quality of their simulations. The AQ model chosen for the 104 

current study is the WRF-Chem with its foundational meteorological component, WRF. 105 

  106 

The majority of studies conducted in the UAE and similar arid regions have primarily 107 

focused on evaluation of meteorological parameter including temperature, humidity, wind, and 108 

solar radiation (Parajuli et al., 2019; Nelli et al., 2020; Fonseca et al., 2020, 2021) with a few 109 

others investigating the particulate matter dynamics, especially mineral dust. For instance, 110 

Ukhov et al., (2021) noted inaccuracies in the WRF-Chem model related to the GOCART 111 

aerosol module, affecting PM2.5 and PM10 diagnostics. Karagulian et al., (2019) highlighted the 112 

effectiveness of integrating WRF-chem model simulations with satellite and ground 113 

observations to understand and predict the impact of severe dust storms on air quality. 114 

Karumuri et al., (2022) reported significant air quality changes due to COVID-19 lockdown 115 

measures, with reduced trace gas concentrations but increased particulate matter from dust 116 

activities, the latter stressed by Francis et al. (2022a) who attributed it to changes in the 117 

atmospheric circulation. Moreover, Parajuli et al., (2022; 2023) utilized high-resolution WRF-118 

Chem simulations and advanced aerosol schemes to analyse the dust and rainfall dynamics, 119 

providing insights into the direct and indirect effects of dust on rainfall which aids in better 120 

regional water resource planning through accurate rainfall predictions. However, no 121 
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assessment to date for the gaseous pollutants model performance over the region despite the 122 

complex dynamics between anthropogenic and natural factors in air quality management and 123 

the necessity of tailored model configurations for accurate environmental assessments in arid 124 

regions.  125 

 126 

This study represents the first evaluation of the WRF-Chem model in the region, specifically 127 

examining concentrations of gaseous pollutants along with crucial meteorological parameters 128 

relevant to air quality studies. The primary objective of this study is twofold: 129 

 130 

● Evaluate the WRF-Chem's ability to replicate meteorological conditions. This involves 131 

comparing the model's simulation of temperature, wind speed, downward short-wave 132 

radiation and boundary layer height against ground-based observations and data from 133 

the ERA5 (Hersbach et al., 2020) reanalysis.  134 

● Assess the model's performance in simulating concentrations of gaseous pollutants, 135 

specifically NO2, O3, and CO. The skill of the WRF-Chem in simulating these 136 

pollutants is evaluated by comparing its simulations against data from the 137 

TROPOspheric Monitoring Instrument (TROPOMI; Veekfind et al., 2012) on the 138 

Sentinel-5 Precursor satellite.  139 

 140 

The structure of the paper is as follows: Section 2 describes the configuration of the WRF-141 

Chem considered in this work. Section 3 elaborates on the methodology and datasets used in 142 

this study. Section 4 provides a comprehensive assessment of the WRF-Chem’s simulated data 143 

with observational datasets, reanalysis and satellite-derived products. Section 5 concludes by 144 

outlining the main findings. 145 

2. WRF-Chem configuration 146 

The central objective of this study is to apply a regional chemistry/dynamical model to 147 

simulate the atmospheric conditions and transport of pollutants in the UAE, whose forecasts 148 

will be evaluated against in-situ, space-based measurements and a state-of-the-art reanalysis 149 

dataset. To this end, the WRF-Chem version 4.3.1 is employed. WRF-Chem is a mesoscale 150 

regional chemistry transport model, developed by the National Oceanic and Atmospheric 151 

Administration (NOAA) Earth System Research Laboratory (ESRL), and has been contributed 152 

to by the global science community. In WRF-Chem, air quality components and meteorological 153 
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components are predicted simultaneously using the same grid coordinates, transport, timestep, 154 

and sub-grid scale physics. A detailed description of the model is found in Grell et al., (2005) 155 

and Skamarock et al., (2008). The physics schemes employed in the simulations are the Rapid 156 

Radiative Transfer Model for Global Circulations Models (RRTMG) for radiation 157 

parametrization of both short and long wave radiation (Iacono et al., 2008), the cloud 158 

microphysics is represented by the Morrison 2-moment (Morrison et al., 2009), and the Kain-159 

Fritsch scheme is used for convective parameterisation (Kain, J.S, 2004). The Unified Noah 160 

model is used to represent the land surface model (Tewari et al., 2004) with an improved 161 

representation of soil texture and land use/land cover (LULC) over the UAE (Temimi et al., 162 

2020). The boundary layer dynamics are represented by the Yonsei University (YSU) scheme 163 

(Hong, 2010). Other chosen physics schemes are listed in Table 1. Simulated mesoscale 164 

meteorology is kept in line with analysed meteorology through spectral nudging to the National 165 

Centre for Environmental Prediction (NCEP) Global Forecast System (GFS) analyses used to 166 

drive the model, in an attempt to limit errors in the mesoscale transport. During the simulations, 167 

horizontal and vertical wind, potential temperature and water vapour mixing ratio are nudged 168 

to GFS analyses in all model layers above the planetary boundary layer on a time-scale of 6 169 

hours. Meteorological conditions were initialised by NCEP GFS 6-hourly analyses at 0.25° 170 

resolution.  171 

This study utilised the Model for Ozone and Related Chemical Tracers, version 4 172 

(MOZART-4) chemical mechanism for calculating gas-phase chemistry which includes 81 173 

chemical species with 159 gas-phase reactions and 38 photolysis processes (Emmons et al., 174 

2010). Aerosol chemistry is represented by the Goddard Chemistry Aerosol Radiation and 175 

Transport (GOCART; Chin et al., 2002), along with the Tropospheric, Ultraviolet and Visible 176 

(TUV) full photolysis scheme (Madronich, 1987; Tie, 2003), which deploys climatological O3 177 

and O2 columns. Dry deposition was calculated using Wesely (1989). Anthropogenic emissions 178 

were taken from the Emission Database for Global Atmospheric Research version 5 179 

(EDGARv5) at 0.1 × 0.1° horizontal resolution (Crippa et al., 2020). Emissions include SO2, 180 

NOx, CO, NMVOC, NH3, black carbon (BC) and organic carbon (OC). Biogenic emissions 181 

were calculated online by the Model of Emissions of Gases and Aerosol from Nature 182 

(MEGAN; Guenther et al., 2012). Model simulation uses CAM-chem model results as 183 

chemical boundary conditions (BCs) for the outer domain D01 and initial conditions (ICs) for 184 

all domains (Emmons et al., 2020). In this present work, we run the WRF-Chem model using 185 

the aforementioned physical and chemical processes on the three nested domains with 186 
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horizontal resolutions 27-, 9- and 3-km corresponding to 283×205, 271×193 and 256×178 grid 187 

points and 45 vertical layers.  The outermost domain covers the vast majority of the Middle 188 

East and surrounding region while the innermost domain covers the entire UAE (Fig. 1(a)). 189 

The analysis in this research article exclusively utilizes results from the inner domain (D03). 190 

The spatial distribution of ground-based observations from NCM are depicted in Fig. 1(b).  191 

 192 

Figure 1: Model Configuration: (a) The WRF domain configuration consists of three telescoping 193 

nests, with the outermost boundaries denoting the parent grid (D01). D02 and D03 are the nested 194 

domains. Right panel (b) is a zoom of the innermost domain (D03) showing the spatial distribution of 195 

the 16 meteorological stations (land stations are denoted by blue triangles, and marine stations are 196 

represented by red triangles). The shading in (a) represents the orography (m). Further details about the 197 

stations are given in Tables 2. 198 

 199 

Table 1: WRF-chem model setup 200 

 201 

Model set-up Option 

Model version 4.3.1 

Domain 3 domains  

Horizontal resolution D01:27km, D02:9km and D03:3km 

Simulation period Monthly runs from June 2018 and December 2018 

Model spin-up period  2 days in each month 

Vertical resolution  45 eta levels up to 50 hPa. 

Domain size  D01: 283×205 grids, D02: 271×193 grids and D03: 

256×178 grids 

Meteorological boundary NCEP FNL reanalysis (0.25o, 6-hourly) 

Chemical boundary  CAM-Chem (Emmons, Fasullo, et al., 2020) 

Physical Process Parameterization Scheme 

Microphysics Morrison double moment (Morrison et al., 2009) 

Cumulus parameterization Kain-Fritsch (Kain, J.S, 2004) 

Shortwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) 

(Iacono et al. 2008) 
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Longwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) 

(Iacono et al. 2008) 

 

Land surface Unified Noah land surface model (Tewari et al., 2004)  

Planetary boundary layer Yonsei University scheme (Hong, 2010) 

Chemistry option Scheme used 

Gas phase chemistry MOZART-4 (Emmons et al., 2010).   

Aerosol chemistry GOCART (Chin et al., 2002) 

Photolysis Madronich F-TUV (Madronich, 1987; Tie, 2003) 

Biogenic emissions MEGAN (Guenther et al. 2012) 

Dry deposition Wesely  (Wesely 1989) 

 202 

3. Data Sets and methodology 203 

3.1 Meteorology observations  204 

In this study, meteorological data from 16 automatic weather stations (AWS) operated by 205 

the National Center of Meteorology (NCM), UAE were utilized to assess the WRF-Chem 206 

simulations for air temperature at 2 meters above ground (T2m), wind speed at 10 meters 207 

(WS10m), and downward shortwave radiation flux at the surface (SR) during June and 208 

December of 2018. The spatial distribution of the stations across the UAE is illustrated in Fig. 209 

1(b) (refer to Table 2 for details). These locations were categorically divided into two regions—210 

land stations (station with ID number: 1-9,14 and 16) and marine stations (station with ID 211 

number: 10-13 and 15)—following the criteria outlined in Branch et al., (2021). Subsequent 212 

analyses are based on these two primary categories, with the land region comprising 11 stations 213 

(marked with green triangles) and the marine region comprising 5 stations (marked with yellow 214 

triangles) in Fig. 1(b). Additional information on the specifics, quality control measures, and 215 

other research studies based on NCM data can be found in the referenced literature (Branch et 216 

al., 2021; Fonseca et al., 2020, 2021, 2022; Temimi et al., 2020a). 217 

 218 

Table 2 List of Automatic Weather Stations (AWS) utilized for evaluating the WRF-Chem model. 219 

ID Name Lat. Lon. Altitude 

(m) 

Region 

1 Owtaid 23.40 53.11 160 Land 

2 Mukhariz 22.91 52.89 130 Land 

3 Mezaria 23.12 53.84 110 Land 

4 Madinat Zayed 23.68 53.70 110 Land 

5 Al Gheweifat 24.12 51.63 47 Land 
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6 Bu Hamrah 23.51 54.53 136 Land 

7 Barakah 23.96 52.25 5 Land 

8 Al Qlaa 24.16 52.98 150 Land 

9 Al Jazeera 23.29 52.29 70 Land 

10 Yasat 24.19 52.00 115 Marine 

11 Sri Bani Yas 24.32 52.60 101 Marine 

12 Qarnen 24.94 52.85 26 Marine 

13 Dalma 24.49 52.29 10 Marine 

14 Al Ruwais 24.09 52.62 33 Land 

15 Abu Dhabi 24.48 54.33 3 Marine 

16 Al Tawiyen 25.56 56.07 186 Land 

 220 

3.2 ERA-5 Reanalysis data 221 

The fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) 222 

reanalysis, known as ERA-5 (Hersbach et al., 2020), represents a significant advancement over 223 

its predecessor, the ERA-Interim reanalysis, introduced by Dee et al., (2011). ERA-5 224 

incorporates a sophisticated four-dimensional variational (4D-Var) data assimilation method, 225 

utilizing the 41r2 cycle of the Integrated Forecast System (IFS). This system is enhanced by 226 

the integration of both a soil model and an ocean wave model, offering a comprehensive 227 

approach to climate data analysis. For the purposes of this research, we accessed ERA-5 data 228 

through the Copernicus Climate Change Service Climate Data Store (CDS). The dataset 229 

provides atmospheric observations across 137 hybrid vertical levels, with data available on the 230 

CDS interpolated onto 37 distinct pressure levels. These levels span from 1000 hPa, close to 231 

the Earth's surface, up to 1 hPa, reaching altitudes of approximately 80 km. Further details on 232 

the ERA-5 dataset are available in Dee et al., (2011) and Hersbach et al., (2020). Our study 233 

specifically utilized hourly data for a selection of meteorological parameters: air temperature 234 

at 2 meters above the ground (T2m), wind speed at 10 meters (WS10m), downward shortwave 235 

radiation flux at the surface (SR), and planetary boundary layer height (PBL), for the months 236 

of June and December 2018.  237 

3.3 Satellite-borne observations 238 

Launched by the European Space Agency (ESA) on October 13, 2017, the TROPOspheric 239 

Monitoring Instrument (TROPOMI) is aboard the Sentinel-5 Precursor (S5P) satellite, 240 

operating in a near-polar sun-synchronous orbit. Positioned at an altitude of 817 km, the S5P 241 

satellite crosses the equator at a local solar time of 13:30, boasting a wide swath of 242 
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approximately 2600 km, and providing daily global coverage. TROPOMI features four distinct 243 

spectrometers that measure the ultraviolet (UV) and UV-visible (UV-VIS) range (270 to 500 244 

nm), near-infrared (NIR) range (675 to 775 nm), and short-wave infrared (SWIR) range (2305 245 

to 2385 nm) spectral bands (Veefkind et al., 2012). Notably, the last two spectral bands, NIR 246 

and SWIR, are newly introduced in TROPOMI compared to its predecessor OMI (Ozone 247 

Monitoring Instrument). TROPOMI's data products encompass daily observations of trace 248 

gases, including CO, O3, NO2, CH4, HCHO, aerosols, and cloud properties. The present study 249 

utilized daily NO2, CO, and ozone column density level 2 products from TROPOMI, 250 

downloaded from the GES DISC website (https://disc.gsfc.nasa.gov/) for the period of June 1-251 

30 and December 1-31, 2018. The specific data sets employed for the present study includes 252 

S5P_OFFL_L2__O3 for O3, S5P_OFFL_L2__CO for CO, and S5P_OFFL_L2__NO2 for NO2, 253 

covering the study region bounded by longitudes [51°,58°] and latitudes [21°, 27°]. Further 254 

details regarding each product, retrieval algorithm, and validation results are summarized in 255 

the subsequent section. 256 

 257 

TROPOMI retrieval of NO2 columns are derived using UV-VIS spectrometer backscattered 258 

solar radiation measurements in the wavelength range of 405-465 nm and provides total and 259 

tropospheric NO2 vertical column density with a near-nadir resolution of 7x3.5 km. The total 260 

NO2 slant column density (SCD) is retrieved from the measured solar irradiance spectra using 261 

the Differential Optical Absorption Spectroscopy (DOAS) method. Tropospheric and 262 

stratospheric slant column densities are separated from SCD by a data assimilation system 263 

based on the chemistry transport model V5 (TM5-MP). Afterwards, they are converted to 264 

vertical column densities (VCDs) with the help of look-up table of altitude-dependent air-mass 265 

factors (AMFs) and information on the vertical distribution of NO2 from TM5-MP apriori 266 

profile with a horizontal resolution of 1o x 1o and a time step of 30 min (Boersma et al., 2018; 267 

Van Geffen et al., 2022). The TROPOMI NO2 product has been extensively evaluated using 268 

ground-based and aircraft observations and found to have a high correlation and low bias of 269 

less than 30% with respect to in-situ measurements (Griffin et al., 2019; Ialongo et al., 2020). 270 

We used the reprocessed (RPRO) TROPOMI NO2 data files with processor version of 1.2.2, 271 

for the study period. Additionally, two more NO2 products are available such as offline (OFFL) 272 

and near-real time (NRTI). NRTI data files are generated using TM5-MP forecast data rather 273 

than analysis data as with REPO and OFFL files (Van Geffen et al., 2022). The differences 274 

between the OFFL/REPO and NRTI NO2 products are generally very small (references therein 275 

Ialongo et al., 2020).   276 
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 277 

The Shortwave Infrared Carbon Monoxide Retrieval (SICOR) algorithm is used to retrieve 278 

CO column densities from TROPOMI in the spectral range of 2305 to 2385 nm (Landgraf et 279 

al., 2016). The SICOR algorithm accounts for a profile-scaling approach that scales retrieved 280 

CO total column to the a priori reference profile. The a priori reference profiles are taken from 281 

the global chemistry transport model simulations of TM5-MP, and they vary based on the 282 

location, month and year (Krol et al., 2005).  The detailed outline of all settings and other 283 

auxiliary data sets used for CO retrievals are outlined in the Landgraf et al., (2016). This study 284 

limits the analysis to CO pixels corresponding to clear-sky conditions and mid-level clouds by 285 

filtering the data using the quality flag variable (qa_value). The scenes corresponding to 286 

qa_value > 0.5 are used in this current analysis as suggested in the ATBD (algorithm theoretical 287 

baseline document; Landgraf et al., 2016). In this present work, TROPOMI CO measurements 288 

for the period from 1-30 June and 1-31 December, 2018 have been analysed. Moreover, we use 289 

either the reprocessed (RPRO) or offline (OFFL) data files from most recent processor versions 290 

depending on availability for a given day of observations. Wizenberg et al., (2021) compared 291 

global TROPOMI retrieved CO total columns with corresponding ACE-FTS (Atmospheric 292 

Chemistry Experiment- Fourier transform spectrometer) columns for the period from 293 

November 2017 to May 2020 and found a small relative bias of -0.83% with a correlation 294 

coefficient of 0.93 between two data sets. Similar results were also found between TROPOMI 295 

CO with corresponding CO fields from the ECMWF assimilation system: Borsdorff et al. 296 

(2018) reported a small mean difference between the two data sets of 3.2% with a correlation 297 

coefficient of 0.97.  298 

 299 

TROPOMI also provides total ozone column (TOC) and ozone profile data at 15 pressure 300 

levels. It measures radiances and irradiances in the ultraviolet wavelength of 270-330 nm and 301 

provides the ozone profile information.  The Optimal Estimation (OE) algorithm is used to 302 

retrieve the ozone profile data. Before this stage, various pre-processing steps are applied to 303 

the measured spectra before the estimation of the ozone profile. The main process of the 304 

algorithm is the OE method, which combines the information from the measured spectra with 305 

the a-priori information.  The a-priori information is based on climatology as described in the 306 

Labow et al., (2015). The description of the various pre-processing steps performed to retrieve 307 

ozone profiles is presented in the Algorithm Theoretical Basis Document (Veefkind, et al., 308 

2021). The validation of TROPOMI retrieved ozone profile data against the ground-based 309 
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measurements reported a median bias of 0.3% for OFFL/REPO products while 0.8 % for NRTI 310 

ozone products (Lambert et al., 2023). 311 

3.4 Satellite data processing 312 

In order to quantitatively compare the WRF-chem simulations with satellite measurements, 313 

the model outputs must be processed using the appropriate method as described in the literature 314 

(Kumar et al., 2012). Direct comparison between satellite retrievals and model outputs is not 315 

recommended as satellite measurements depend on column averaging kernels (AK) and a-316 

priori profiles. The AK vector, representing the vertical sensitivity of the retrieved column to 317 

the partial column at different vertical levels, should be employed to convolve the model 318 

simulations. 319 

The column density from the WRF-Chem model is re-gridded to match the TROPOMI 320 

instrument's grids and is vertically interpolated to the TROPOMI pressure levels before it is 321 

multiplied by the AK. This treatment of the WRF-Chem-simulated profile with the column 322 

averaging kernels allows for a comparison that is independent of the chemical transport model 323 

(CTM) a-priori assumptions and the vertical sensitivity of the retrieval process; therefore, it 324 

can be directly compared with the TROPOMI-derived tropospheric column of NO2. The 325 

TROPOMI-NO2 products also provide a column averaging kernel matrix. In the case of 326 

TROPOMI-NO2, the application of the column AK averaging kernel accounts for the vertical 327 

distribution and sensitivity of the measurements, as classically done by Borsdorff et al., (2014) 328 

as: 329 

 330 

𝑋𝑟𝑒𝑡 = 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 + 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒 − 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟) + 𝑒𝑥 -----------------------------------------------(1) 331 

where, 𝑋𝑡𝑟𝑢𝑒 is model simulation profile of trace gas; 𝑋𝑟𝑒𝑡 is the retrieved profile or smoothed 332 

model profile; 𝑒𝑥 represents the error on the retrieved trace gas profile; 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 is the a-priori 333 

information provided in the TROPOMI data set. For TROPOMI-NO2 data, the contribution of 334 

the a priori profile and error on the retrieved profile can be eliminated, as explained in Borsdorff 335 

et al., (2014). The eq. (1) simplifies to  336 

𝑋𝑟𝑒𝑡 = 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒) ---------------------------------------------------------------------------------- (2) 337 

 338 

For validation of ozone and CO total column, we have used the TROPOMI ozone and CO 339 

profile level 2 data product S5P_OFFL_L2__O3__ and S5P_OFFL_L2__CO__ that provides 340 

the ozone and CO concentrations at 15 and 50 pressure levels, respectively. This data product 341 
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also includes the a priori information and column averaging kernel for each pressure level. In 342 

order to compare our model profile with this dataset, the model output is horizontally and 343 

vertically interpolated to TROPOMI grids and vertical levels. The final model profile was 344 

calculated by the Eq. (3)  345 

𝑋𝑟𝑒𝑡 = 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 + 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒 − 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟) -----------------------------------------------(3) 346 

Since the highest vertical level in WRF-Chem-simulated trace gas concentration is 50 hPa, the 347 

remaining vertical layers of ozone and CO were made equal to the a priori concentration of 348 

respective trace gases as described by ATBD (Landgraf et al., 2016).  349 

3.5 Evaluation methodology 350 

Meteorological parameters from the WRF-Chem model were extracted for the grid points 351 

closest to the surface observation sites of NCM. Meteorological parameters were categorized 352 

and averaged for land and marine regions for the regional analysis. Consequently, further 353 

analyses based on these categories are presented in subsequent sections of the article. To enable 354 

comparison of atmospheric column data from the TOPOMI satellite retrievals with WRF-355 

Chem outputs, the data must undergo smoothing through an appropriate method described in 356 

Section 3.4, as direct comparison between satellite retrievals and simulations is not feasible 357 

due to discrepancies highlighted in previous literature. Additionally, owing to the spatial 358 

resolution differences between WRF-Chem and ERA5 datasets, it is necessary to remap the 359 

model data to the ERA5 grids for accurate comparison. A wide range of statistical parameters 360 

is available for evaluating model simulations. In this study, we employed statistical skill scores 361 

including the Pearson correlation coefficient (r), the Mean Bias (MB), the Root Mean Square 362 

Error (RMSE), and the Mean Absolute Error (MAE), which have been extensively discussed 363 

and applied in similar contexts (Fonseca et al., 2021; Ivatt & Evans, 2020; Temimi et al., 364 

2020b). 365 

The following equations (eq. 4 to eq. 7) are used to calculate these statistical matrixes in the 366 

present study,  367 

 368 

𝑟 =
∑ [(𝑂𝑖−𝑂𝑖̅̅ ̅)(𝑀𝑖−𝑀𝑖̅̅̅̅ )]𝑁

𝑖=1

∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑁
𝑖=1 ∑ (𝑀𝑖−𝑀𝑖̅̅̅̅ )2𝑁

𝑖=1

 ---------------------------------------------------(4) 369 

RMSE = (
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)2𝑁

𝑖=1 )

1

2
 -----------------------------------------------(5) 370 

MB = 
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)𝑁

𝑖=1   --------------------------------------------------------(6) 371 
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MAE = 
1

𝑁
∑ |𝑀𝑖 − 𝑂𝑖|    𝑁

𝑖=1 -----------------------------------------------------(7) 372 

where 𝑂𝑖 denotes the i-th observation, 𝑀𝑖 represents the corresponding WRF-chem simulated 373 

value, and N is the number of model and observation pairs. 𝑀𝑖
̅̅ ̅ and 𝑂�̅� are the model and 374 

observational means (i.e. average of 1-30, June and 1-31 December), respectively. The 375 

correlation coefficient (r) is an indication of the phase agreement between the modelled and 376 

observed time-series. The RMSE measures the average error in the model, and the MAE 377 

determines the mean error between the model and observations regardless of whether it is an 378 

under or overestimate. The MB is a measure of the systematic error and gives information 379 

whether the model is over or underpredicting the corresponding observed values. 380 

4. Results and Discussion 381 

4.1 Model performance for meteorological variables 382 

The general ability of the WRF-Chem model to reproduce realistic spatio-temporal 383 

patterns of the most relevant physical and chemical variables is assessed by comparing the 384 

simulated output with the observational data for June and December for the year 2018, 385 

reflecting the contrasting summer and winter conditions over the UAE. Determining the 386 

accuracy of WRF-Chem simulations by validating meteorological conditions in the study area 387 

is crucial before utilizing the model's output for air quality applications. In this regard, we have 388 

conducted a comparison of the model's T2m, WS10m, and SR outputs with measurements from 389 

observational data sets. Additionally, we have compared the boundary layer height from the 390 

model with the ERA5 reanalysis product. These parameters were chosen due to their 391 

significance in influencing most air pollutants (Ritter et al., 2013). Notably, the ERA5 392 

reanalysis data boasts a high spatial resolution of approximately 28 km, making it superior to 393 

other reanalysis datasets in this aspect. Our comparison involved analysing the hourly results 394 

from both ERA5 and ground-based datasets against WRF-Chem for two distinct months in 395 

2018. Detailed results of this comparison are presented below. 396 

4.1.1 Evaluation against surface-based observations 397 

The WRF-Chem model effectively represented the observed variations in T2m, WS10m, 398 

and SR across all 16 meteorological stations during June and December 2018. The WRF-Chem 399 

model generally underestimated T2m values by less than 0.5 °C in June and overestimated 400 

them in December by less than 1.3 °C across the majority of locations. Correlation coefficients 401 
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for the observed T2m with model simulations were between 0.66 to 0.99 in June, slightly 402 

increasing to a range of 0.70 to 0.99 in December. The MB for T2m varied from -0.04 to +1.19 403 

°C in June and -2.17 to +0.50 °C in December, with the RMSE spanning from 0.8 to 5.9 °C in 404 

June and 0.9 to 4.1 °C in December. Conversely, the outcomes for WS10m and SR 405 

demonstrated variability across different stations. The model performance demonstrates 406 

significant enhancements over previous research conducted in this region. For instance, 407 

Fonseca et al., (2020) observed a warm bias of 1-3 °C in WRF simulations across the UAE for 408 

both winter and summer seasons. This observation aligns with similar findings reported by 409 

Schwitalla et al., (2020) and Wehbe et al., (2017). The enhanced performance of the model 410 

may be attributed to the present model configuration which differs from that used in previous 411 

studies.  412 

We concentrate on evaluating the model's performance at a regional scale, as delineated by 413 

land (encompassing 11 sites) and marine stations (comprising 5 sites), detailed in section 3.1.1. 414 

Table 3 presents an extensive evaluation of the statistical verification scores for essential 415 

meteorological variables at these categories within the UAE. In the month of June, the model 416 

slightly underestimated the T2m values in both land and marine settings, with a 417 

underestimation of 0.37 °C and 0.48 °C, respectively, despite an overprediction of SR. This 418 

arises because of colder temperatures in particular in the evening and night-time hours, a bias 419 

highlighted by other studies such as Temimi et al. (2020b) and Branch et al. (2021). This has 420 

been attributed to deficiencies in the model’s physics and/or dynamics, in particular in the land 421 

surface model and surface properties, a cold bias in the forcing dataset, and an incorrect 422 

representation of the concentration of aerosols and greenhouse gases. Despite this, the model 423 

achieves notable correlation coefficients (r) of 0.91 for land regions and 0.83 for marine 424 

regions. The lower correlation observed in marine regions possibly arises from the more muted 425 

diurnal cycle (Fig. 2) and the model’s inability to properly represent the complex land-sea mask 426 

even at 3 km spatial resolution. Similar results were reported in Abida et al., (2022), where the 427 

WRF model demonstrates improved accuracy in inland areas compared to offshore or coastal 428 

regions. The RMSE (MAE) values stand at 3.57 °C (2.68 °C) for land and 1.67 °C (1.47 °C) 429 

for marine regions, respectively. In December, the T2m predictions by the model show an 430 

overestimation, marked by 0.76 °C in land and 1.30 °C in marine regions. The model maintains 431 

strong correlations, with r = 0.92 for land and r = 0.90 for marine regions, underscoring its 432 

consistent performance. The RMSE (MAE) values recorded are 2.87 °C (1.66 °C) for land and 433 

2.57 °C (1.37 °C) for marine regions, illustrating the model's accuracy in capturing temperature 434 

https://doi.org/10.5194/egusphere-2024-959
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



16 

fluctuations over these regions. For WS10m, the model effectively aligns with observed values, 435 

showing good agreement in both land and marine settings. In June, it slightly overestimated 436 

the wind speed in the marine region by 0.51 m/s, a trend that is also reflected in the RMSE 437 

metrics, which are marginally higher for marine areas compared to land (0.08 m/s). In 438 

December, it notably overestimated wind speeds in marine regions by 0.92 m/s, while the 439 

overestimation was slightly less in land areas, at 0.38 m/s.  Despite this, the correlations remain 440 

robust in both seasons, highlighting the model reliability in capturing wind speed variations 441 

across different environments. The model representation of SR demonstrates a similar pattern 442 

of accuracy and overestimation. In June, the model tends to overestimate SR across both 443 

regions, which has been reported in Fonseca et al. (2020) and Temimi et al. (2020b), yet it 444 

achieves a more accurate depiction in December. A possible explanation is a reduced aerosol 445 

loading in the model, with the summer featuring higher atmospheric aerosol amounts than the 446 

winter season (Nelli et al., 2021), with WRF also exhibiting a tendency to underpredict the 447 

observed cloud cover in the region. Although the correlations for SR are slightly lower, 448 

especially in the marine regions, they still indicate a reasonable level of model performance. 449 

Overall, the model tends to overestimate WS10m and SR across both seasons, while it 450 

underestimates the T2m in winter and overestimates it in summer. Such variable performance 451 

of the model has been noted in findings from prior research (for example, Schwitalla et al., 452 

2020; Wehba et al., 2017; Fonseca et al., 2020; Abida et al., 2022). Furthermore, a more 453 

detailed analysis of the biases identified in T2m and WS10m, including an examination of the 454 

diurnal variation of these parameters, is presented in the following sections. 455 

Table 3: Statistical verification scores for evaluation against weather station data: skill scores for 456 

air temperature at 2m (T2m), wind speed at 10m (WS10m) and downward shortwave radiation flux 457 

(SR) for 16 meteorological stations (categorised into land and marine regions) over the United Arab 458 

Emirates (UAE). 459 

Parameter Month Region MOD OBS MB MAE R RMSE 

T2m (o C) 

June 
Land 35.70 36.07 -0.37 2.68 0.91 3.57 

Marine 33.54 34.03 -0.48 1.47 0.83 1.67 

Dec 
Land 21.84 21.08 0.76 1.66 0.92 2.87 

Marine 24.02 22.72 1.30 1.37 0.90 2.57 

WS10m 

(m/s) 

June 
Land 4.24 4.16 0.08 0.90 0.88 1.35 

Marine 4.44 3.92 0.51 1.01 0.78 1.09 

Dec Land 3.29 2.91 0.38 0.63 0.88 0.95 
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Marine 4.26 3.35 0.92 1.12 0.89 1.54 

SR 

(W/m2) 

June 
Land 352.0 279.7 72.4 197.1 0.87 327.1 

Marine 349.3 264.9 84.4 273.4 0.68 358.7 

Dec 
Land 192.7 177.2 15.5 124.3 0.85 231.2 

Marine 183.8 171.7 12.1 188.8 0.59 240.7 

 460 

Figure 2, (a) and (b), presents a comparative analysis of the average diurnal variation in T2m 461 

from WRF-Chem simulations and observations at both land and marine sites investigated in 462 

this study, for the summer and winter seasons of 2018, respectively. The observed and 463 

modelled T2m data exhibit a close alignment over land and marine locations, although some 464 

discrepancies are evident. During the daytime, there is a tendency for the model to exhibit a 465 

warm bias, while at night and evening, a cold bias is more apparent. Such discrepancies in 466 

temperature have been reported before (Abida et al., 2022; Branch et al., 2021; Fonseca et al., 467 

2021; Schwitalla et al., 2020; Temimi et al., 2020a). Overall, the WRF-Chem model displays 468 

a consistent cold bias of less than 0.5 °C for both environments during the summer months. In 469 

contrast, during winter, the model shows a warm bias ranging from 0.8 to 1.3 °C. This is in 470 

contrast to findings by Branch et al. (2021), which indicated an increase in the nocturnal cold 471 

bias from winter to summer. Conversely, our study identifies a cold bias in the summer and a 472 

warm bias in the winter, persisting throughout the entire day over marine locations. The 473 

decrease in cold bias observed during summer in WRF-Chem simulations is a result of 474 

enhanced representations of updated surface and soil parameters over the study region. 475 
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 476 

Figure 2: Air temperature and wind speed diurnal cycle: Diurnal cycles of spatial mean values of 477 

WRF-chem simulated (red) and observed (blue) air temperature at 2m (T2m; oC) in (a) (summer) and 478 

(b) (winter) for the regional categories of land and marine sites (c)-(d) are as (a)-(b) but for the wind 479 

speed at 10 m (WS10m; m/s). The averaged spatial standard deviation is represented by an error bar at 480 

each hour. 481 

Figure 2, (c) and (d), showcase a comparative analysis of the mean diurnal variation in WS10m 482 

from model simulations and observations at both land and marine sites examined in this study, 483 

during the summer and winter of 2018, respectively. In both seasons, higher wind speeds are 484 

observed over marine sites, while lower wind speeds are found over land sites, reflecting sea 485 

and land circulations, respectively. It is indicated that wind speeds are higher during the 486 

daytime and lower during the night and evening hours. This pattern is especially pronounced 487 

over land sites compared to marine sites during both seasons. WRF-Chem tends to overestimate 488 
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WS10m during both day and night, across all regions and seasons. Nonetheless, the model 489 

shows the smallest discrepancies over land, with biases being the least significant at 0.1 m/s 490 

during summer and 0.4 m/s in winter. In contrast, the biases over marine areas are more 491 

pronounced, at 0.5 m/s in the summer and 0.9 m/s in the winter. WRF-Chem tends to 492 

overestimate WS10m more significantly during winter, with less overestimation observed 493 

during summer. This discrepancy is linked to alterations in wind direction driven by land and 494 

sea breeze circulations. Consequently, numerous studies have previously emphasized the 495 

model's tendency for wind speed overprediction (Abida et al., 2022; Branch et al., 2021; 496 

Fonseca et al., 2021; Schwitalla et al., 2020; Temimi et al., 2020a). 497 

4.1.2 Evaluation against ERA5 reanalysis data  498 

In Fig. 3, a spatial comparison is presented between the averaged ERA5 T2m and the 499 

corresponding WRF-chem simulation output across the simulation domain during June and 500 

December of 2018. The model adeptly captures regional temperature variations, displaying 501 

underestimation in the southern regions and overestimation in the north-western region of the 502 

UAE. This observation suggests a comprehensive portrayal of temperature dynamics by the 503 

model, with specific tendencies in certain geographical areas. This observation is also 504 

supported by NCM data, for instance, at Mezaria (ID No: 3), which represents a southern land 505 

site, and at Abu Dhabi (ID No: 15), representing a northern marine site within the emirate of 506 

Abu Dhabi. The southern land site found an underestimation of 1°C, while the northern marine 507 

site exhibited an overprediction of T2m by WRF-chem. WRF-Chem overestimates the area-508 

averaged temperature (T2m) over the UAE compared to ERA5 in both seasons. In contrast, 509 

NCM observations indicate an underestimation during the summer and an overestimation 510 

during the winter across the majority of sites. Kishta et al., (2023) reported that, minor 511 

discrepancies in temperature measurements between observational data and ERA5 reanalysis, 512 

identifying a strong correlation coefficient of 0.89 over Abu Dhabi. The spatial average of 513 

WRF-Chem and ERA5 values are 35.8 °C and 35.7 °C, respectively, with a small 514 

underestimation of 0.08°C over the UAE. The model displays a high correlation (r) of 0.97 and 515 

a RMSE of 2.3 °C, MAE of 2.2 °C in June. For December, the model showed a similar pattern, 516 

with a underestimation of 0.53 °C which is slightly higher as compared to June, r of 0.98, MAE 517 

of 1.0 °C and RMSE of 1.1 °C (Table 4).  518 

Moreover, the analysis of the absolute differences between the two datasets highlighted the 519 

most pronounced discrepancies over the Arabian Gulf region, observable in both the summer 520 

and winter months. However, these discrepancies are notably more emphasised during the 521 
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warmer months. WRF-simulated Sea Surface Temperatures (SSTs) are compared with both 522 

ERA5 and Group for High Resolution Sea Surface Temperature (GHRSST) data over the 523 

Arabian Gulf region (not shown). The comparison involved area-averaged daily values, 524 

considering that the diurnal amplitude of SST is 0.5 °K over this region as reported by Nesterov 525 

et al., (2021). The model showed an overestimation of 1.4 °K compared to both ERA5 and 526 

GHRSST during the summer. Similarly, in winter, its overestimated SSTs by 1.5 °K compared 527 

to ERA5 and by 1.3 °K compared to GHRSST. Furthermore, the model exhibited a 528 

significantly higher correlation in winter, achieving a correlation coefficient of 0.9 with both 529 

datasets. However, during the summer, it displayed variable correlations, with r=0.38 for ERA5 530 

and r=0.20 for GHRSST. This observation suggests potential inaccuracies in the model 531 

simulation of temperature and wind speed in this region, which could be due to the sea surface 532 

temperature data utilized for model forcing. The temperature gradient plays a pivotal role in 533 

driving the land-sea breeze circulation. Higher temperatures observed over the Gulf could 534 

potentially weaken this circulation pattern, resulting in reduced transportation of cleaner 535 

marine air towards inland areas. Consequently, this reduction in the influx of marine air could 536 

obstruct the effective dispersion of pollutants across terrestrial regions, negatively impacting 537 

air quality and the spatial distribution of pollutants. 538 

 539 

Figure 3: ERA-5 and WRF-Chem Air Temperature: Average 2-m air temperature (°C) obtained 540 

from ERA5 reanalysis (first panel), simulated by WRF-Chem (second panel), and the corresponding 541 

absolute differences (third panel) and scatter plots between the two datasets (fourth panel) during June 542 

(top) and December (bottom) 2018. 543 

It is widely recognized that the Planetary boundary layer (PBL) plays a crucial role in the 544 

pollution transport process over the region. It constitutes the lowest part of the troposphere and 545 

is directly influenced by the Earth's surface. The PBL reaches higher elevations during summer, 546 
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with its altitudes being lower in winter. There are noticeable differences in the PBL between 547 

land areas (approximately 2400–2500 m) and marine regions (about 1200–1500 m) (Basha et 548 

al., 2019). Basha et al. (2019) also discovered that ERA-Interim reanalysis data tend to 549 

underestimate PBL when compared with data obtained from Global Positioning System Radio 550 

Occultation (GPSRO) in most regions and in all the seasons. Chen et al., (2022) emphasized 551 

the critical role of the boundary layer in influencing air quality and facilitating the 552 

transboundary transport of pollutants. They noted that a higher boundary layer enhances the 553 

potential for pollutant transport to the Tibetan Plateau. Wang et al., (2022) highlighted the 554 

critical role of meteorological conditions in severe PM2.5 pollution episodes. They noted that 555 

rapid cold air movement can quickly disperse pollutants, in contrast to the slow accumulation 556 

of pollutants under weak high-pressure systems. This slow build-up is characterized by low 557 

wind speeds, and low atmospheric boundary layer heights, which lead to prolonged heavy 558 

pollution periods. 559 

In this study, we aim to compare the PBL as simulated by WRF-Chem with the ERA5 560 

reanalysis, providing further specifics of model accuracy and performance. Fig. 4 shows a 561 

comparison of the mean ERA5 PBL with corresponding WRF-chem simulated values over the 562 

UAE for the months of June and December 2018. The absolute difference and scatter plot for 563 

these data sets are also shown. The spatial distribution of PBL across the UAE, as from ERA5 564 

data, exhibits a consistent spatial pattern that aligns with the PBL simulated by WRF-Chem. 565 

There is a notable trend of increased PBL during the summer months and decreased PBL in the 566 

winter. This pattern generally corresponds with the seasonal temperature variations, where 567 

warmer summer temperatures contribute to an elevation in PBL, and cooler winter 568 

temperatures result in a reduction of PBL (Basha et al., 2019). In terms of PBL (averaged 569 

spatially for the UAE), the model exhibits good performance in capturing the regional 570 

variations. In June, the modelled PBL is at 669.8 m compared to 646.7 m in ERA5, with a 571 

correlation coefficient of 0.91 and a RMSE of 450.1 m. In December, the modelled PBL is 572 

490.5 m compared to the ERA5 of 444.2 m, with a high correlation coefficient of 0.98 and an 573 

RMSE of 152.8 m (Table 4). 574 
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 575 

Figure 4: ERA-5 and WRF-Chem Boundary Layer Height: Same as Fig. 3, but for planetary 576 

boundary layer height (PBL).  577 

 578 

In addition to T2m and PBL, Table 4 also summarizes the spatially averaged statistical 579 

verification scores for WS10m and SR over UAE. Regarding WS10m, it is accurately 580 

simulated by the model with small differences in MB (June: 0.08 m/s, Dec: 0.01 m/s), which 581 

are slightly larger compared to observations from land-based sites in Abu Dhabi and good 582 

correlations (June: 0.79, Dec: 0.80). The RMSE values are 1.7 m/s for June and 1.1 m/s for 583 

December. For SR, the model performs well, capturing the variability in radiation flux. In June, 584 

the modelled SR is 643.6 W/m² compared to the ERA5 of 576.5 W/m², with a high correlation 585 

of 0.99 and an RMSE of 75.3 W/m². Similarly, in December, the modelled SR is 460.8 W/m² 586 

compared to the ERA5 of 438.1 W/m², with a correlation of 0.97 and an RMSE of 76.1 W/m². 587 

Overall, these results indicate a very good performance of the WRF-chem model in simulating 588 

meteorological parameters over the UAE during the specified months. This rigorous evaluation 589 

of meteorological parameters showed that WRF-Chem's simulated values closely align with 590 

both ground-based and reanalysis datasets. Since WRF-Chem simulates meteorology and 591 

chemistry simultaneously, accurate meteorological simulations are crucial for the precise 592 

computation of chemistry within the model domain.  593 

 594 

Table 4: Statistical verification scores for evaluation against ERA-5 data: skill scores calculated 595 

for model simulations for air temperature at 2m (T2m), wind speed at 10m (WS10m), downward 596 

shortwave radiation flux (SR) and planetary boundary layer (PBL) during June and December of 2018 597 

over the United Arab Emirates. 598 

 599 
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Parameter Month MOD ERA5 MB MAE R RMSE 

T2m (o C) June 35.82 35.73 0.08 2.17 0.97 2.28 

Dec 21.61 21.08 0.53 0.99 0.98 1.12 

WS10m 

(m/s) 

  4.34 4.26 0.08 1.26 0.79 1.7 

  3.05 3.07 0.01 0.87 0.8 1.1 

SR (W/m2)   643.6 576.5 67.1 85 0.99 75.3 

  460.8 438.1 22.8 69.5 0.97 76.1 

PBL (m)   669.8 646.7 21.4 271.6 0.91 450.1 

  490.5 444.2 46.4 113.8 0.98 152.8 

 600 

4.2 Model performance with respect to gaseous pollutants 601 

The study incorporates comparative assessments with satellite data from the TROPOMI 602 

instrument. This includes evaluations of the tropospheric column of NO2 (denoted as 603 

TROPOMI-NO2), total column CO (TROPOMI-CO), and total column ozone (TROPOMI-O3) 604 

for the corresponding periods within the UAE. Detailed outcomes of these comprehensive 605 

assessments are discussed in the following subsections. The WRF-Chem model exhibited 606 

commendable proficiency in replicating the satellite-derived measurements of these pollutants 607 

throughout the UAE over the summer and winter seasons of 2018. The satellite overpass takes 608 

place daily at 13:30 local time; therefore, model simulations corresponding to this time are 609 

utilized here for comparison over the study area. After smoothing the model concentrations 610 

using the a priori and averaging kernel matrix as detailed in Section 3.4, the results were 611 

compared with the corresponding TROPOMI products. 612 

 613 

In the troposphere, oxides of nitrogen (NOx=NO+NO2) are crucial for the mechanisms of 614 

ozone production and depletion in the presence of sunlight. Due to their shorter lifespan, their 615 

concentrations are primarily linked to emission sources. As a result, NOx is more susceptible 616 

to inaccuracies in emission estimates compared to other criteria pollutants. The Environment 617 

Agency – Abu Dhabi (2018) reported that oil and gas, road transport, and electricity generation 618 

are the primary sectors contributing to NOx total emissions, accounting for 42%, 34%, and 619 

13% respectively, for the base year of 2015 in the Emirate of Abu Dhabi. In Fig. 5, the average 620 

spatial distributions of both model-simulated and TROPOMI-retrieved tropospheric column 621 

NO2 are presented. Additionally, the spatial discrepancies between simulated and retrieved 622 
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columns are illustrated by absolute differences (see third row) and scatter plots between the 623 

two datasets are depicted (see fourth row) for June (left) and December (right) 2018 across the 624 

study region. The satellite retrievals indicated elevated levels of NO2 column, exceeding 625 

12x1015 molecules/cm2, in densely populated and industrial areas and the adjacent regions of 626 

Dubai and Abu Dhabi in both summer and winter. Conversely, lower NO2 values, less than 627 

5x1015 molecules/cm2, were observed over the less urbanized areas. The higher columns are 628 

associated with significant economic development driven by a high demand in power 629 

generation and water desalination projects, which primarily depends on the combustion of 630 

fossil fuels in big cities like Dubai and Abu Dhabi (Abuelgasim & Farahat, 2020; Li et al., 631 

2010). The model effectively reproduced the spatial distributions of NO2 during summer and 632 

winter of 2018 as depicted in Fig. 5. Although, the model overestimation is close to zero in 633 

rural areas, it can be as high as 1016 molecules/cm2 in areas of high pollution, specifically over 634 

Dubai and Abu Dhabi. Conversely, it underestimates up to 1016 molecules/cm2 in the Ras Al 635 

Khaimah emirate; the sixth-largest city by population and home to the global ceramic 636 

manufacturing company, RAK Ceramics. This observation is not unexpected, as urban and 637 

industrial areas frequently report elevated pollutant emissions stemming from urban activities, 638 

which are significantly high and present challenges that models often struggle to accurately 639 

capture these changes. This discrepancy also suggests that anthropogenic and industrial 640 

emissions might be improperly represented in the EDGAR emission inventory. Challenges 641 

range from the incomplete characterization of emissions in source regions to the impact of 642 

model resolution on capturing sub-grid emission sources. Additionally,  Hoshyaripour et al., 643 

(2016) found that the PBL is shallower and more stable at night when simulated with the YSU 644 

boundary layer scheme, resulting in a higher accumulation of NOx in the surface layers. Such 645 

insights were constrained in the present model evaluation, which is primarily focusing on 646 

temporal variability of gaseous pollutants on a daily basis, and did not encompass diurnal 647 

variations. Incorporating these diurnal variations in future model simulations over this region 648 

may enhance the assessment's accuracy. Additionally, the existing model configuration does 649 

not include the formation of secondary aerosols in its simulations, indicating a potential area 650 

for improvement in future versions. Additionally, the absence of vertical distribution of 651 

anthropogenic emissions in the model simulations also plays a pivotal role in these model 652 

discrepancies. The satellite retrieved TROPOMI-NO2 averaged for the UAE is 0.21 x 1016 653 

molecules/cm2 in summer and 0.24 x 1016 molecules/cm2 in winter. The corresponding model 654 

simulated column is 0.46 x 1016 and 0.43 x 1016 molecules/cm2 respectively. The model 655 

demonstrated a strong correlation with satellite NO2 column measurements, achieving 656 
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correlation coefficients of 0.95 for summer and 0.94 for winter (refer to Table 5). It showed a 657 

slight tendency to overestimate NO2 levels more in summer, with a discrepancy of 0.24 x 1015, 658 

compared to 0.19 x 1015 molecules/cm2 in winter. Moreover, the evaluation shows RMSE 659 

values of 0.1 x 1015 to 0.12 x 1015 molecules/cm2 and MAE values of 0.20 to 0.25 x 1015 660 

molecules/cm2 during the seasons.  661 

 662 

 663 
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Figure 5: Evaluation of WRF-chem against satellite-derived NO2: average spatial pattern of 664 

tropospheric column NO2 (mole. /cm2) obtained from TROPOMI satellite (1st row), simulated by WRF-665 

Chem (2nd row), corresponding absolute difference (model minus TROPOMI) (3rd row) and scatter plots 666 

between two daily data sets (4th row) during (a) June and (b) December in 2018. 667 

 668 

In Fig. 6, the average spatial distributions of both model-simulated and TROPOMI-retrieved 669 

total CO column are presented. Also, the absolute difference of WRF-Chem simulations with 670 

TROPOMI-CO is depicted along with scatter plots between them during summer and winter 671 

of 2018 over UAE. The statistical metrics comparing these datasets are provided in Table 5. 672 

The TROPOMI-retrieved CO columns display values of 1.87 and 1.89 x 1018 molecules/cm2 673 

for summer and winter, respectively. In contrast, the simulated columns show values of 2.35 674 

for summer and 0.76 x 1018 molecules/cm2 for winter. Thus, comparing WRF-Chem and 675 

TROPOMI-CO data reveals more pronounced discrepancies, with a minor overestimation of 676 

0.48 x 1018 molecules/cm2 in summer and a significant underestimation of 1.13 x 1018 677 

molecules/cm2 in winter.  Shami et al., (2022) discovered that the EDGAR emissions inventory 678 

underestimates CO emissions when compared to Lebanon's national emission inventory, 679 

identifying the road transport sector as the primary source of CO emissions. Consequently, 680 

EDGAR's estimates for CO emissions are lower than those provided by Waked et al., (2012) 681 

for the same region. The Environment Agency – Abu Dhabi (2018) reported that the road 682 

transport sector is the primary source of CO emissions in Abu Dhabi, accounting for 74% of 683 

the total CO emissions. Additionally, the industrial sector contributes 21% to the total CO 684 

emissions. Kumar et al. (2022) observed an underestimation of CO by the WRF-Chem model, 685 

attributing it to an inaccurate representation of anthropogenic emissions on the vertical scale. 686 

This could result in a more rapid deposition of CO molecules at the surface, thereby leading to 687 

the observed underestimation.  688 

The model output correlates reasonably well with TROPOMI-CO with r of 0.71 and 0.86 while 689 

RMSE of 0.04 to 0.02 x 1018 molecules/cm2 in summer and winter respectively (Table 5). In 690 

both seasons, the lower correlation coefficients for TROPOMI-CO as compared to TROPOMI-691 

NO2 suggest a less robust linear relationship between the TROPOMI and WRF-chem CO 692 

levels. This variation in performance might be attributed to the complexities inherent in 693 

modelling and observing CO distributions, which can be influenced by local emission sources, 694 

atmospheric chemistry, and transport processes. These findings are consistent with research 695 

conducted in India, where Dekker et al. (2019) reported a correlation of 0.81 between 696 

TROPOMI and WRF-Chem CO levels during a high pollution episode during November 2017. 697 
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Similarly, in East Asia, Zhang et al. (2016a) documented correlations between WRF-Chem 698 

simulated and MOPITT retrieved CO columns, with r of 0.59 and RMSE of 4.6 x 1017 699 

molecules/cm2 for summer, and 0.69 with RMSE of 5.2 x 1017 molecules/cm2 for winter, 700 

respectively. 701 

 702 
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Figure 6: Evaluation of WRF-Chem against satellite-derived CO: Same as Fig. 5 but for total 703 

column of CO 704 

We also conducted a comparison of WRF-Chem simulated ozone levels with TROPOMI-705 

retrieved total columns (TROPOMI-O3), as illustrated in Fig. 7. This figure also presents both 706 

the absolute differences (3rd row) and scatter plots (4th row) between the two datasets for both 707 

seasons.  The statistical comparisons between these datasets are detailed in Table 5. The 708 

TROPOMI-O3 columns show higher values in summer, at 7.85 x 1018 molecules/cm2, and 709 

lower values in winter, at 6.25 x 1018 molecules/cm2. The WRF-Chem simulations closely 710 

match these variations, with values of 7.70 x 1018 molecules/cm2 for summer and 6.06 x 1018 711 

molecules/cm2 for winter, respectively. Therefore, model output is strongly correlated to 712 

TROPOMI-O3 columns with correlation of r=0.82 and 0.93 while RMSE (MAE) of 0.01(0.15 713 

and 0.20 x 1018 molecules/cm2) during summer and winter respectively. Many studies 714 

commonly report higher ozone concentrations in the summer and lower concentrations in the 715 

winter, a phenomenon primarily attributed to increased photochemical activity during the 716 

summer months (Reddy et al., 2012; Coates et al., 2016; Badia & Jorba 2015; Abdallah et al. 717 

2018; Baldasano et al. 2011). The WRF-Chem model systematically underestimates ozone 718 

levels, with 0.15 and 0.20 x 1018 molecules/cm2 both seasons respectively. Hu et al., (2021) 719 

highlighted that meteorological factors have a considerable effect on ozone production, noting 720 

from studies in China that temperature, relative humidity, and sunshine duration significantly 721 

influence ozone concentrations in descending order of importance. They also noted that strong 722 

solar radiation and elevated temperatures could enhance photochemical reactions, thereby 723 

increasing ozone formation. Zhang et al., (2020) pointed out that low wind speeds and high 724 

atmospheric pressure can impede the dispersion and dilution of pollutants, which in turn can 725 

lead to higher ozone accumulation. Lu et al., (2019) observed that high humidity conditions, 726 

with increased water vapor, could cause more significant chemical depletion of O3, as water 727 

vapor interacts with excited ozone molecules to produce OH radicals. Hence, the 728 

meteorological conditions are conducive to ozone formation in the model but are insufficient 729 

to fully account for the model's significance underprediction of O3. Sillman, (1999) 730 

demonstrated the ozone formation potential by its precursors being highly nonlinear rather than 731 

linear. Ozone formation can be either NOx-sensitive, meaning O3 formation increases with an 732 

increase in NOx concentration, or VOC-sensitive, where O3 formation increases with an 733 

increase in VOC concentration. However, Geng et al., (2007) observed that high NOx 734 

concentrations in urban environments result in reduced OH radical levels, consequently 735 
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decreasing ozone production, as loss of OH is evidenced by the chemical reaction NO2 + OH 736 

-> HNO3. This observation is consistent with model simulations showing increased NO2 levels 737 

but markedly lower ozone concentrations at an urban area in the UAE, illustrating the 738 

significant impact of NOx on urban ozone formation. However, drawing such conclusions 739 

requires careful analysis of model simulations, suggesting that future work, particularly in the 740 

refinement of WRF-Chem evaluations, is essential. Future simulations should not only 741 

critically assess these findings but also aim to improve model fidelity by enhancing the 742 

representation of chemical processes and emissions. Adopting this approach will lead to more 743 

precise forecasts and a more profound grip of atmospheric chemistry, thereby enhancing air 744 

quality projections and fostering a more detailed understanding of pollution patterns over this 745 

region. 746 

The disparities between WRF-Chem and TROPOMI data highlight the intrinsic challenges 747 

in air quality monitoring and prediction. WRF-Chem's limitations may stem from its 748 

dependency on emissions inventories, meteorological data, and the representation of 749 

atmospheric chemistry. TROPOMI, while offering high-resolution satellite observations, is 750 

subject to constraints related to retrieval algorithms and the influence of atmospheric conditions 751 

on measurement accuracy. Liu et al., (2022) identified that uncertainties in column 752 

observations stem from the challenges in differentiating between stratospheric and tropospheric 753 

contributions, as well as uncertainties in the tropospheric air mass factor and its spectral fitting. 754 

The integration of model predictions with satellite observations, alongside ground-based 755 

measurements, is crucial for enhancing our understanding of air quality dynamics and 756 

improving predictive capabilities. This synergistic approach can help mitigate biases, enhance 757 

accuracy, and provide a more comprehensive view of atmospheric pollutants' distribution over 758 

this region. 759 

 760 
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 761 

Figure 7: Evaluation of WRF-Chem against satellite-derived O3: Same as Fig. 5 but for total column 762 

of ozone. 763 

 764 

 765 
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Table 5: Statistical verification scores for evaluation against TROPOMI measurements: skill 766 

scores between TROPOMI columns (mole. /cm2), tropospheric column NO2 (TROPOMI-NO2), total 767 

column carbon monoxide (TROPOMI-CO) and total column ozone (TROPOMI-O3) with 768 

corresponding WRF-chem simulated columns during June and December of 2018 over UAE. Means 769 

and MB, MAE and RMSE are given in units of (x1015 mole. / cm2 for TROPOMI-NO2. 770 

 771 

Parameter Month MOD SAT MB MAE R RMSE 

NO2 (x1016) June 0.46 0.21 0.25 0.25 0.95 0.10 

Dec 0.43 0.24 0.19 0.20 0.94 0.12 

O3 (x1018)   7.70 7.85 -0.15 0.15 0.82 0.01 

  6.06 6.25 -0.2 0.20 0.93 0.01 

CO (x1018)   2.35 1.87 0.48 0.48 0.71 0.04 

  0.76 1.89 -1.13 1.13 0.86 0.02 

 772 

5. Conclusions 773 

This study rigorously evaluates the performance of the Weather Research and Forecasting 774 

model coupled with chemistry (WRF-Chem). The model ability to simulate meteorological 775 

parameters and gaseous pollutants over the United Arab Emirates (UAE) is assessed during 776 

June and December 2018 to reflect contrasting summer and winter conditions. The model 777 

performance is assessed through comparison with ground-based observations and ERA-5 778 

reanalysis data for meteorological parameters, and TROPOMI satellite observations for 779 

gaseous pollutants.   780 

 781 

We evaluated WRF-Chem model's accuracy in simulating meteorological parameters, in 782 

particular 2-meter temperature (T2m), 10-meter wind speed (WS10m), and solar radiation 783 

(SR), across 16 locations in the UAE. The model generally underestimates T2m in summer by 784 

less than 0.5 °C and overestimates it in winter by less than 1.3 °C, with correlation coefficients 785 

ranging from 0.7 to 0.9 among the stations. WRF-chem performance for WS10m and SR has 786 

shown high scores, indicating enhanced accuracy across the locations. Regionally, it slightly 787 

underpredicts T2m in summer (by 0.37 °C for land and 0.48 °C for marine) mainly due to 788 

colder nights, and overestimates in winter (by 0.76 °C for land and 1.30 °C for marine), both 789 

with strong correlations above 0.83. Higher SR values in summer and winter, suggest reduced 790 
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cloud cover and aerosol loading in WRF-Chem. For WS10m, the model's bias is within ±1 m/s, 791 

and correlation coefficients range between 0.78 and 0.89, indicating good agreement for both 792 

land and marine areas.  793 

The comparison of ERA5 reanalysis data with WRF-Chem simulations revealed regional 794 

variations in T2m, specifically underestimation in the UAE's south and overestimation in the 795 

north-west. The most significant differences were observed over the Arabian Gulf region, 796 

especially during warmer months. These temperature discrepancies are crucial for the land-sea 797 

breeze circulation, with higher Gulf temperatures potentially weakening this pattern. This could 798 

lead to diminished transport of cleaner marine air inland, thereby hindering pollutant dispersion 799 

over land and adversely affecting air quality and pollutant distribution.  Statistical metrics for 800 

summer shows an overestimation of 0.08 °C and a correlation coefficient (r) of 0.97, while 801 

winter's follows a similar pattern with an overestimation of 0.53 °C and r of 0.98 over land 802 

mass region of UAE. The fact that WRF-Chem performs well against in-situ data and ERA5 803 

reanalysis with respect to air temperature is an indication the reanalysis dataset performs well 804 

in this region. The mean PBL from ERA5 is largely consistent with that from the WRF-Chem 805 

outputs, with both data sets displaying a clear seasonal variation—increased PBL during 806 

summer and decreased in winter, correlating with temperature changes. June's modelled PBL 807 

has a correlation of 0.91, and December's correlation of 0.98 with ERA5.  808 

Regarding gaseous pollutants, both WRF-Chem and satellite data show higher TROPOMI-809 

NO2 columns greater than 12x1015 molecules/cm2 in urban and industrial regions such as 810 

Dubai, Abu Dhabi and Ras Al Khaimah emirate, and reflecting emissions from economic 811 

activities like power generation, water desalination and industries. Lower concentrations of 812 

less than 5x1015 molecules/cm2 are noted in less urbanized areas. The WRF-Chem model 813 

closely reproduces TROPOMI-NO2 spatial patterns. However, it overestimates NO2 in the Abu 814 

Dhabi region and underestimates it in north-eastern UAE. High correlation coefficients (0.95 815 

in summer and 0.94 in winter) confirm the model's effectiveness in capturing NO2’s day-to-816 

day variability. The model shows minimal MB and high r values, indicating small discrepancies 817 

in NO2 estimations. Moreover, the WRF-Chem underestimates TROPOMI-O3 columns, as 818 

indicated by negative MB values, yet maintains high correlation coefficients (0.82 in summer 819 

and 0.93 in winter), suggesting accurate ozone concentration simulations. TROPOMI-CO 820 

column simulations, however, exhibit significant discrepancies and lower correlation 821 

coefficients (0.71 in summer and 0.86 in winter), highlighting challenges in accurately 822 
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modelling CO levels. This analysis stresses the WRF-Chem model's strengths in simulating 823 

NO2 and O3 columns with high fidelity to TROPOMI observations but also points out its 824 

limitations in estimating CO columns accurately.  825 

The WRF-Chem model exhibits satisfactory capability in simulating key meteorological 826 

parameters and gaseous pollutants over the UAE, showcasing significant improvements in 827 

regional-scale dynamics. This is evidenced by strong correlation coefficients, variable MB, 828 

RMSE and MAE values, and a clear enhancement over previous research outcomes. This 829 

comprehensive assessment validates the model's effectiveness and identifies potential areas for 830 

improvement in simulating gaseous pollutant concentrations across the UAE. The 831 

discrepancies between model simulations and various observational data sets may arise from 832 

improper emission inventories, particularly anthropogenic emissions, model parameterizations, 833 

and meteorological inputs. Integrating model predictions with satellite observations and 834 

ground-based measurements is crucial for advancing air quality monitoring and enhancing the 835 

predictive accuracy of atmospheric pollutant distributions in the UAE. This collective approach 836 

aids in addressing biases and improving the overall understanding of regional air quality 837 

dynamics. 838 

 839 

Code and Data Availability 840 

The authors would like to thank the United Arab Emirates’ National Center of Meteorology for 841 

providing meteorological observations at 16 weather stations for the months of June and 842 

December 2018 under an agreement with clauses for non-disclosure of data. Access to these 843 

data is restricted and readers should request them through contacting research@ncms.ae. The 844 

remaining products considered in this study are freely available online: (i) ERA-5 reanalysis 845 

data is extracted from the Copernicus Climate Change Service Climate Data Store (Hersbach 846 

et al. 2023a,b); (ii) Nitrogen Dioxide (NO2), Ozone (O3) and Carbon Monoxide (CO) column 847 

concentrations estimated from the measurements collected by the Tropopsheric Monitoring 848 

Instrument (TROPOMI) onboard the Sentinel 5-P satellite are extracted from the National 849 

Aeronautics and Space Administration’s (NASA’s) website; (iii) National Centers for 850 

Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis meteorological 851 

data used to drive the WRF-chem simulations is downloaded from the National Center for 852 

Atmospheric Research (NCAR) Research Data Archive website  (NCEP/NWS/NOAA/USDC, 853 

2000), with the chemistry data used to force WRF-Chem, the ouput of the Community 854 
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Atmosphere Model with Chemistry (CAM-chem) model, extracted from NCAR’s website 855 

(Bucholz et al., 2019); (iv) the WRF-Chem model used, version 4.3.1, is freely available from 856 

the developers’ website (WRF, 2023), with the pre-processor tools available at NCAR’s 857 

website (NCAR, 2023). All figures displayed in this manuscript were generated with the Matrix 858 

Laboratory (MATLAB) software version 2023 (Mathworks, 2023). 859 
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