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Abstract 8 

This study presents a comprehensive evaluation of the Weather Research and Forecasting 9 

model coupled with Chemistry (WRF-Chem) in simulating meteorological parameters and 10 

concentrations of gaseousair pollutants across the United Arab Emirates (UAE) for the months 11 

of June and December 20182022, representing the contrasting summer and winter climatic 12 

conditions of summer and winter.. The assessment of WRF-Chem performance 13 

involvedinvolves comparisons with ground-based observations for meteorological parameters 14 

and satellite retrievals from the TROPOspheric Monitoring Instrument (TROPOMI) for 15 

gaseous pollutants. The assessment of gaseous pollutants using the WRF-Chem model revealed 16 

distinct patterns in the estimation of pollutant levels across different areas and seasons.the 17 

Moderate Resolution Imaging Spectroradiometer (MODIS) for aerosols. The comparison with 18 

TROPOMI column concentration revealed the model's strengthsconcentrations demonstrates 19 

that WRF-Chem performs well in simulating tropospheric NO2 and total O3 the spatio-temporal 20 

patterns, although it had of total column CO and tropospheric column NO₂, O₃, despite certain 21 

deficiencies in modelling the total COmodeling tropospheric NO₂ column concentrations. The 22 

model exhibitedIn particular, WRF-Chem shows a strong correlation with TROPOMI 23 

retrievals, with correlation coefficients ranging betweenfrom 0.71 and53 to 0.95 for82 during 24 

summer and 0.8640 to 0.94 for69 during winter amongfor these gaseous pollutants. It 25 

tendedThe model tends to slightly overestimate NO2NO₂ levels, with a higher discrepancy 26 

observed in summer (0.24 x 101550 × 10¹⁵ molecules/cm2)cm²) compared to winter (0.19 x 27 

101518 × 10¹⁵ molecules/cm2). When comparing WRF-Chem to cm²). In comparison with 28 

TROPOMI-CO data, the discrepancies wereare more pronounced, showing  in winter, with an 29 
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overestimation of 0.48 x 1018 molecules/cm2 in summer and a significant underestimation of 30 

1.13 x 10180.12 × 10¹⁸ molecules/cm2 in winter. The modelcm². Additionally, WRF-Chem 31 

consistently underestimatedoverestimates ozone levels in both seasons, by 0.15 x 1018 and 0.20 32 

x 1018 molecules/cm2, respectively. Meteorological evaluations revealed the model's tendency. 33 

WRF-Chem also exhibits a moderate correlation with both AERONET and MODIS AOD 34 

measurements. The correlation at Mezaira is 0.60, while a correlation of 0.65 is observed with 35 

MODIS AOD. However, the model tends to underestimate the 2-m temperature in summer and 36 

overestimate it in winterAOD, with mean biases ranging from -2.17a bias of 0.46 at Mezaira 37 

and 0.35 compared to +1.19 °C and a Root Mean Square Error in the range of 0.8 to 5.9 °C 38 

among the stations. The model showed enhanced performance for the 10-m wind speed and 39 

downward shortwave radiation flux, reflecting advancements over previous studies. Therefore, 40 

the WRF-Chem model effectively simulates key meteorological parameters and pollutants over 41 

the UAE, demonstrating significant regional-scale prediction skills. Areas for further model 42 

refinement are also identified and discussed. Integrating model predictions with satellite and 43 

ground-based data is emphasized for advancing air quality monitoring and enhancing 44 

predictive accuracy of atmospheric pollutants in this regionMODIS AOD. 45 

Meteorological evaluations reveal that the model generally overestimated T2m in summer 46 

(≤0.2°C) and underestimated it in winter (~3°C) with correlation coefficients between 0.7 and 47 

0.85. Temperature biases are linked to surface property representation and model physics. For 48 

WS10m, biases were within ±0.5 m/s, indicating good agreement, although overestimations 49 

suggest deficiencies in surface drag parameterization. The dry bias observed was consistent 50 

with other studies due to dry soil, inaccurate mesoscale circulation representation, and bias in 51 

forcing data. The model also overestimated incoming shortwave radiation by ~30 W/m² in 52 

December due to reduced cloud cover. Night-time cold and dry biases were observed due to 53 

more substantial wind speeds and cooler air advection. Comparisons with ERA5 reanalysis 54 

showed regional T2m variations with high correlation coefficients (0.97 in summer, 0.92 in 55 

winter). Both WRF-Chem and ERA5 displayed consistent seasonal patterns in the planetary 56 

boundary layer, correlating with temperature changes and indicating good overall model 57 

performance.  58 

Keywords: Air quality modelling, gaseousmodeling, air pollutants, TROPOMI satellite 59 

retrievals, MODIS, WRF-Chem, UAE. 60 

Key points: 61 
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● First high-resolution WRF-Chem air quality modellingmodeling study over the United 62 

Arab Emirates (UAE)  63 

● WRF-Chem’s ability to simulate meteorological parameters and pollutant levels over 64 

the UAE is assessed during summer and winter in 20182022. 65 

● The model showed a strong correlationstrongly correlated with TROPOMI satellite 66 

data, achieving correlation coefficients of 0.7153-0.9582 in summer and 0.8640-0.9469 67 

in winter for different gaseous pollutants. 68 

● Lower model skill in simulating total CO tropospheric NO2 columns, in contrast to the 69 

more accurate modellingmodeling of tropospheric NO2 total CO and totaltropospheric 70 

O3 columns as compared to TROPOMI data, particularly in summer. 71 

● WRF-Chem demonstrated a moderate correlation with AERONET and MODIS for 72 

AOD during the summer, with correlation coefficients of 0.60 and 0.65, respectively. 73 

● Meteorological analysis revealed a tendency to underestimate overestimate surface 74 

temperature by 0.52 °C in summer and overestimate underestimate it by 1.3 °C in 75 

winter.  76 

●  across land regions. Surface wind speed is overestimated by 0.1-0.95 m/s in both 77 

seasons across various regimes. 78 

  79 
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1. Introduction 80 

The United Arab Emirates (UAE), a federation of seven emirates, has undergone rapid 81 

urbanization and industrialization over the last five decades, which has had a profound impact 82 

on its air quality (Ramadan, 2015). The major factors affecting air quality in the UAE include 83 

emissions from industrial activities, vehicular traffic, construction projects, (Teixido et al., 84 

2021), and occasionally, natural phenomena such as dust storms, which are quite prevalent in 85 

the region due to its desert climate (Environment Agency – Abu Dhabi, 2018; Francis et al., 86 

2020; 2022b; Karagulian et al., 2019). The rapid economic growth of the UAE, especially in 87 

cities like Dubai and Abu Dhabi, has led to a surge in energy demand and desalinated water, 88 

the latter obtained from desalination and cloud seeding activities (Wehbe et al., 2023), largely 89 

met through the burning of fossil fuels (Shahbaz et al., 2014). This has resulted in increased 90 

emissions of pollutants like oxides of nitrogen (NOx), sulfur dioxide (SO2), particulate matter 91 

(PM), and volatile organic compounds (VOCs). Moreover, the heavy traffic in urban areas 92 

contributes to the elevated levels of ground-level ozone and particulate pollution (Abuelgasim 93 

& Farahat, 2020; Li et al., 2010). Understanding the dynamics of air quality in the UAE 94 

involves considering both the environmental challenges posed by rapid development and the 95 

steps being taken to mitigate these impacts. The pursuit of balancing economic growth with 96 

environmental sustainability is central to this discourse. This area of study is not only vital for 97 

ensuring the health and well-being of the population but also plays a crucial role in the UAE's 98 

vision for a sustainable future. 99 

 100 

The swift urban expansion in the UAE, which is expected to continue in the coming decades, 101 

could intensify air pollution sources. With surface observations sparse in this region, satellite 102 

remote sensing becomes a crucial method for air quality monitoring (Chudnovsky et al., 2014; 103 

Fonseca et al., 2023; Francis et al., 2023). What is more, satellite measurements themselves 104 

fall short in clarifying the different atmospheric processes responsible for peak pollution levels. 105 

Consequently, integrating chemistry transport models with satellite-derived and ground-based 106 

observations can significantly improve our understanding of pollutant emissions, distribution, 107 

transport, and transformation in the targeted regions (Eltahan et al., 2018; Li et al., 2018; 108 

Yarragunta et al., 2020; Yin et al., 2021). Air quality (AQ) modelling is dedicated to 109 

unravelling the complicated aspects of atmospheric chemistry and transport across both global 110 

and regional levels, as explored in numerous studies conducted around the world (Emmons et 111 

al., 2010; Kumar et al., 2011, 2018; Tie et al., 2001; Yarragunta et al., 2019, 2020, 2021). 112 
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Despite facing limitations due to the often low spatial and temporal resolution of observational 113 

data, AQ models effectively generate detailed air quality information for remote regions. (e.g., 114 

Guo et al., 2024a). They predict the formation and removal of air pollutants and facilitate a 115 

thorough examination of the transport and photo-chemical transformation of trace gases 116 

following their emission into the atmosphere (Archer-Nicholls et al., 2015; Georgiou et al., 117 

2018; Nhu et al., 2021; Sicard et al., 2021). They are also employed globally for operational 118 

air quality forecasting (Jena et al., 2021; Koo et al., 2012; Kumar et al., 2012, 2021; Srinivas 119 

et al., 2016; Zhang et al., 2012). Air quality models are categorized into two types: 'fully 120 

coupled' models, which integrate interactions between chemistry and meteorology, and 'offline' 121 

models, where chemistry and meteorology simulations are conducted independently (Gao & 122 

Zhou, 2024). Some of  state of the art AQ models include the Weather Research and 123 

Forecasting (WRF) model coupled with chemistry (WRF-Chem;  Grell et al., 2005; Skamarock 124 

et al., 2008), WRF-Chem-MADRID (Model of Aerosol Dynamics, Reaction, Ionization and 125 

Dissolution,; Zhang et al., 2010), CESM2 (Community Earth System Model version 2,; 126 

Emmons et al., 2020), CHIMERE (Menut et al., 2021), LOTOS-EUROS(v2.0) (Long Term 127 

Ozone Simulation European Operational Smog,; Manders et al., 2017) and COSMO/MESSy 128 

(Consortium for Small Scale Modelling/ Modular Earth Submodel System,; Kerkweg & 129 

Jöckel, 2012). However, before using these AQ models for futureoperational or research 130 

applications, it is crucial to conduct thorough evaluations to assess the quality of their 131 

simulationspredictions. The AQ model chosen for the current study is the WRF-Chem with its 132 

foundational meteorological component, WRF. WRF-Chem has been used for research studies 133 

in the Arabian Peninsula (Parajuli et al. 2019, 2023, 2024), with the meteorological component 134 

optimized for simulations over the region (Chaouch et al., 2017; Nelli et al., 2020; Abida et al., 135 

2022; Fonseca et al. 2020, 2021, 2022a). 136 

  137 

The majority of studies conducted in the UAE and similar arid regions have primarily 138 

focused on evaluation of meteorological parameter including temperature, humidity, wind, and 139 

solar radiation (Parajuli et al., 2019; Nelli et al., 2020; Fonseca et al., 2020, 2021) with a few 140 

others investigating the particulate matter (PM) dynamics, especially mineral dust. For 141 

instance, Ukhov et al., (2021) noted inaccuracies in the WRF-Chem model related to the 142 

commonly used bulk Goddard Chemistry Aerosol Radiation and Transport (GOCART; Chin 143 

et al., 2022) aerosol module, affecting PM2.5 and PM10 diagnostics. Karagulian et al.,. (2019) 144 

highlighted the effectiveness of integrating WRF-chemChem model simulations with satellite 145 

and ground observations to understand and predict the impact of severe dust storms on air 146 
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quality. Karumuri et al., (2022) reported significant air quality changes due to COVID-19 147 

lockdown measures, with reduced trace gas concentrations but increased particulate matter 148 

from dust activities, the latter stressed by Francis et al. (2022a) who attributed it to changes in 149 

the atmospheric circulation. Moreover, Parajuli et al.,. (2022;, 2023) utilized high-resolution 150 

WRF-Chem simulations and advanced aerosol schemes to analyse the dust and rainfall 151 

dynamics, providing insights into the direct and indirect effects of dust on rainfall, which aids 152 

in better regional water resource planning through accurate rainfall predictions. However,In 153 

particular, while through the indirect effects dust promotes precipitation provided there is 154 

sufficient moisture for both normal and extreme rainfall events, the dust direct effects on 155 

precipitation shift from negative for normal rainfall events (weaker sea-breeze arising from 156 

surface cooling) to positive in extreme events (smaller effects on the sea breeze). Zhang et al. 157 

(2024) stressed the two-way interaction between dust aerosols and the Planetary Boundary 158 

Layer (PBL) dynamics: aerosols directly impact the PBL structure through direct and indirect 159 

effects, while the the modified PBL characteristics and low-level circulation modulate aerosol 160 

processes. All the aforementioned studies focus on dust aerosols, there is no assessment to date 161 

of the model performance for the simulation of gaseous pollutants model performance over the 162 

region despite. This is crucial, given the complex dynamics between anthropogenic and natural 163 

factors in air quality management and the necessity of tailored model configurations for 164 

accurate environmental assessments in arid regions.  165 

 166 

This study represents the first comprehensive evaluation of the WRF-Chem model in the 167 

Arabian Peninsula, with a focus on the UAE, a country that is representative of those in the 168 

region, specifically examining concentrations of gaseousair pollutants along with crucial 169 

meteorological parameters relevant to air quality studies. The primary objective of this study 170 

is twofold: 171 

 172 

● Evaluate the WRF-Chem's ability to replicate meteorological conditions. This involves 173 

comparing the model's simulation of temperature, wind speed, relative humidity, 174 

downward short-wave radiation and boundary layer height against ground-based 175 

observations and data from the European Centre for Medium-Range Weather 176 

Forecasting (ECMWF) fifth reanalysis product, ERA5 (Hersbach et al., 2020) 177 

reanalysis.);  178 

● Assess the model's performance in simulating concentrations of key gaseous pollutants, 179 

specifically NO2, O3,NO₂, O₃, and CO. The skill of , which are prevalent in the WRF-180 
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Chem in simulating these pollutants is evaluated by comparing its simulationsregion 181 

(Teixido et al., 2021), against data from the TROPOspheric Monitoring Instrument 182 

(TROPOMI; VeekfindVeefkind et al., 2012) ononboard the Sentinel-5 Precursor (S5P) 183 

satellite. Additionally, aerosol optical depth (AOD) at 550 nm from AERONET and 184 

MODIS satellite observations are used to evaluate the model's skill in simulating 185 

aerosol concentrations. 186 

 187 

The structure of the paper is as follows:. Section 2 describes the configuration of the WRF-188 

Chem considered in this work. Section 3 elaborates on the methodology and datasets used in 189 

this study. Section 4 provides a comprehensive assessment of the WRF-Chem’smodel’s 190 

simulated data withagainst observational datasets, reanalysis and satellite-derived products. 191 

Section 5 concludes by outlining the main findings. 192 

2. WRF-Chem configuration 193 

The central objective of this study is to apply a regional chemistry/dynamical modelWRF-194 

Chem version 4.3.1 is employed to simulate the atmospheric conditions and transport of 195 

pollutants in the UAE, whose forecasts will be evaluated against in-situ, space-based 196 

measurements and a state-of-the-art reanalysis dataset. To this end, the WRF-Chem version 197 

4.3.1 is employed. WRF-Chem is a mesoscale regional chemistry transport model, developed 198 

by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research 199 

Laboratory (ESRL), and has been contributed to bywith contributions from the global science 200 

community. In WRF-Chem, the air quality components and meteorological components are 201 

predicted simultaneously using the same grid coordinates, transport, timestep, and sub-grid 202 

scale physics. A detailed description of the model is found in Grell et al., (2005) and), 203 

Skamarock et al., (2008) and Powers et al., (2017). The physics schemes employed in the 204 

simulations are the Rapid Radiative Transfer Model for Global Circulations Models (RRTMG) 205 

for radiation parametrization of both short and long wave radiation (Iacono et al., 2008), the 206 

cloud microphysics is represented by the Morrison 2-moment (Morrison et al., 2009), and the 207 

Kain-Fritsch scheme is used for convective parameterisation (Kain, J.S, 2004).) with the 208 

subgrid-scale cloud feedback to radiation switched on (Alapaty et al., 2012). The Unified Noah 209 

model is used to represent the land surface model (Tewari et al., 2004)), with an improved 210 

representation of soil texture and land use/land cover (LULC) over the UAE (Temimi et al., 211 

2020). The boundary layer dynamics are represented by the Yonsei University (YSU) scheme 212 
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(Hong, 2010). OtherThe chosen physics schemes are listed in Table 1. SimulatedThe simulated 213 

mesoscale meteorology is kept in line with the analysed meteorology through spectral nudging 214 

to the National Centre for Environmental Prediction (NCEP) Global Forecast System (GFS) 215 

analyses used to drive the model, in an attempt to limit errors in the mesoscale transport. During 216 

the simulations, horizontal and vertical wind, potential temperature and water vapour mixing 217 

ratio are nudged to GFS analyses in all model layers above the planetary boundary layer on a 218 

time-scale of 6 hours. for scales above ~1000 km. Meteorological conditions were initialised 219 

by NCEP GFS 6-hourly analyses at 0.25° resolution.  220 

This study utilised the Model for Ozone and Related Chemical Tracers, version 4 221 

(MOZART-4) chemical mechanism for calculating gas-phase chemistry, which includes 81 222 

chemical species with 159 gas-phase reactions and 38 photolysis processes (Emmons et al., 223 

2010). Aerosol chemistry is represented by the Goddard Chemistry Aerosol Radiation and 224 

Transport (GOCART;  (Chin et al., 2002),) module, along with the Tropospheric, Ultraviolet 225 

and Visible (TUV) full photolysis scheme (Madronich, 1987; Tie, 2003), which deploys 226 

climatological O3 and O2 columns. Dry deposition wasis calculated using Wesely (1989). 227 

Anthropogenic emissions wereare taken from the Emission Database for Global Atmospheric 228 

Research (EDGAR) version 5 (EDGARv5)8.1 at a 0.1 × 0.1° horizontal resolution for 2022 229 

(Crippa et al., 2020).), consistent with the simulation period. Emissions include SO2, NOx, CO, 230 

Non-Methane Volatile Organic Compounds (NMVOC,), NH3, black carbon (BC) and organic 231 

carbon (OC). Biogenic emissions wereare calculated online by the Model of Emissions of 232 

Gases and Aerosol from Nature (MEGAN; Guenther et al., 2012). Model simulation uses 233 

CAM-chem model results as chemicalThe chemistry boundary conditions (BCs) for the 234 

outerused in domain D01 and the initial conditions (ICs) for all domains in the WRF-Chem 235 

simulations are extracted from CAM-chem model forecasts (Emmons et al., 2020). In this 236 

present work, we run the WRF-Chem model using the aforementioned physical and chemical 237 

processes on the three nested domains with horizontal resolutions of 27-, 9--, and 3-km 238 

corresponding to 283×205, 271×193, and 256×178 grid points and 45 , respectively. In the 239 

vertical , there are 45 layers., with the lowest model level at about 27 m above the surface.  The 240 

outermost domain covers the vast majoritymost of the Middle East and the surrounding region, 241 

while the innermost domain covers the entire UAE (Fig. 1(a)). The analysis in this research 242 

article exclusively utilizes results from the inner domain (D03). TheFig. 1(b) shows the spatial 243 

distribution of ground-based observations from NCM are depicted in Fig. 1(b). UAE airport 244 

stations, the WISE-UAE observational site, and AERONET locations for AOD measurements. 245 
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 246 

Figure 1: Model Configuration: (a) The WRF domain configuration consists of three telescoping 247 

nests, with the outermost boundaries denoting the parent grid (D01). D02 and D03 are the nested 248 

domains. Right panel (b) is a zoom of the innermost domain (D03) showing the spatial distribution of 249 

the 16 meteorological stations (land stations are denoted by blue triangles, and marine stations are 250 

represented by red triangles). The shading in (a) represents the orography (m). Further details about the 251 

stations are given in Tables 2. 252 

 253 

 254 
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Figure 1: Model Configuration: (a) The WRF domain configuration consists of three 

telescoping nests, with the outermost boundaries denoting the parent grid (D01). D02 and 

D03 are the nested domains. Bottom panel (b) is a zoom of the innermost domain (D03) 
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showing the spatial distribution of the seven automatic weather stations operated in airports 

(land stations (5) are denoted by blue color, coastal  stations (2) are represented by green 

color) along with WInd‐blown Sand Experiment (WISE)‐United Arab Emirates (UAE) Site 

by reg color star and black dots represent two AERONET stations (Mezaira and Dewa). The 

shading in (a) represents the orography (m). Further details about the stations are given in 

Tables S1. 

 255 

The WRF-Chem simulation is driven by anthropogenic emissions from the EDGAR 256 

database, version 8.1, at a horizontal resolution of 0.1° × 0.1° for the year 2022 (Crippa et al., 257 

2020). The EDGAR emission inventory accounts for day-to-day variability (e.g., weekday 258 

versus weekend) and hourly fluctuations (diurnal cycle) of anthropogenic emissions, as 259 

detailed by Crippa et al. (2020). For example, road transport emissions are generally lower at 260 

night and higher during daytime hours, while agricultural emissions tend to peak during 261 

specific months. To achieve an hourly resolution for the model, we scaled the coarsely resolved 262 

emission data using predefined hourly, daily, and monthly scaling factors (temporal profiles). 263 

The initial temporal profiles are derived from the work of Olivier et al. (2003) and have been 264 

refined to place greater emphasis on the most relevant emission sectors for each pollutant 265 

within the study region. According to the Environment Agency – Abu Dhabi (2018), the 266 

primary sectors contributing to emissions include traffic, the power industry, energy used in 267 

buildings, and the manufacturing industry. Using these optimised emission profiles, emissions 268 

for NO₂ and CO were dynamically adjusted during the model simulations to better capture local 269 

emission patterns and their variability. However, the results indicated that emissions for NO₂ 270 

and CO are underestimated by EDGAR. Although WRF-Chem simulations incorporate 271 

temporal profiles of emissions, the impact of these emission estimates on daily variations could 272 

not be fully assessed in this study due to the lack of ground-based measurements and the limited 273 

temporal resolution of satellite data. MODIS and TROPOMI satellites each pass over the study 274 

area only once per day, restricting the ability to capture daily variations comprehensively. 275 

Consequently, this article is limited in its assessment of daily emission variability. Moreover, 276 

WRF-Chem supports the vertical distribution of trace gas emissions, which is particularly 277 

useful for capturing emissions released at elevated altitudes, such as those from combustion 278 

stacks. Accurately representing the vertical distribution of emissions is important for 279 

simulating atmospheric processes. However, incorporating this complexity would likely 280 

provide minimal improvements in model accuracy for regions where surface emissions 281 
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dominate, and where observational constraints are largely limited to coarse vertical resolution 282 

or surface-level data. Therefore, in this study, all emissions were injected into the lowest model 283 

layer to align with the observational data characteristics and the typical conditions in the study 284 

area. 285 

Table 1: WRF-chem model setup 286 

 287 

Model set-up Option 

Model version 4.3.13 

Domain 3 domains  

Horizontal resolution D01:27km, D02:9km and D03:3km 

Simulation period Monthly runs from June 2018 and December 20182022 

Model spin-up period  2 days in each month 

Vertical resolution  45 eta levels up to 50 hPa. 

Domain size  D01: 283×205 grids, D02: 271×193 grids and D03: 256×178 

grids 

Meteorological boundary NCEP FNL reanalysis (0.25o, 6-hourly) 

Chemical boundary  CAM-Chem (Emmons, Fasullo, et al., 2020) 

Physical Process Parameterization Scheme 

Microphysics Morrison double moment (Morrison et al., 2009) 

Cumulus parameterization Kain-Fritsch (Kain, J.S, 2004) with the subgrid-scale cloud-

radiation feedbacks activated (Alapaty et al., 2012) 

Shortwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) 

(Iacono et al.., 2008) 

 

Longwave radiation Rapid Radiative Transfer Model for GCMs (RRTMG) 

(Iacono et al.., 2008) 

 

Land surface Unified Noah land surface model (Tewari et al., 2004)  

Planetary boundary layer Yonsei University scheme (Hong, 2010) 

Chemistry option Scheme used 

Gas phase chemistry MOZART-4 (Emmons et al., 2010).)   

Aerosol chemistry GOCART (Chin et al., 2002) 
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Photolysis Madronich F-TUV (Madronich, 1987; Tie, 2003) 

Biogenic emissions MEGAN (Guenther et al. 2012) 

Dry deposition Wesely  (Wesely 1989) 

 288 

3. Data Sets and methodology 289 

3.1 Meteorology observations  290 

In this study, meteorological data from 168 automatic weather stations (AWS) operated by 291 

the National Center of Meteorology (NCM),at UAE wereairports are utilized to assess the 292 

WRF-Chem simulations for air temperature at 2 meters above ground (T2m), wind speed at 10 293 

meters (WS10m), and downward shortwave radiation flux at the surface (SR)relative humidity 294 

at 2 meters above ground (RH2m) forecasts during June and December of 20182022. The 295 

spatial distribution of the stations across the UAE is illustrated in Fig. 1(b) (refer to Table 2S1 296 

for more details). These locations wereare categorically divided into two regions—land stations 297 

(station with ID number: 1-9,14codeL OMAA, OMDW, OMAL, OMSJ, OMRK) and 16) and 298 

marinecoastal stations (station with ID number: 10-13 and 15code: OMAD, OMDB)—299 

following the criteria outlined in Branch et al., (2021). Subsequent analyses are based on these 300 

two primary categories, with the land region comprising 11 stations (marked with green 301 

triangles) and the marine region comprising 5 stations (marked with yellow triangles) in Fig. 302 

1(b). Additional information on the specifics, quality control measures, and other research 303 

studies based on NCM data can be found in the referenced literature (Branch et al., 2021; 304 

Fonseca et al., 2020, 2021, 2022; Temimi et al., 2020a).5 stations and the coastal region 305 

comprising 2 stations (Fig. 1b). In addition to the UAE airports data, we utilized meteorological 306 

data from the WInd-Blown Sand Experiment (WISE)-UAE measurements. The WISE-UAE 307 

experiment started on 25 July 2022 at Madinat Zayed (23.5761°N, 53.7242°E; elevation: 119 308 

m; Fig. 1b), located 120 km southwest of Abu Dhabi, UAE. An overview of the instrumentation 309 

and experiment site used during WISE-UAE is provided in Nelli et al. (2024(a, b)). This study 310 

uses WS10m T2m, RH2m, and downward shortwave radiation flux (SW) from these 311 

measurements to validate the WRF-Chem simulations for December 2022. The specifications 312 

and accuracies of the instruments used in WISE-UAE are outlined in detail, along with the 313 

stringent quality control procedures applied, as described in Nelli et al. (2024(a,b,c)).  314 

 315 
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Table 2 List of Automatic Weather Stations (AWS) utilized for evaluating the WRF-Chem model. 316 

ID Name Lat. Lon. Altitude 

(m) 

Region 

1 Owtaid 23.40 53.11 160 Land 

2 Mukhariz 22.91 52.89 130 Land 

3 Mezaria 23.12 53.84 110 Land 

4 Madinat Zayed 23.68 53.70 110 Land 

5 Al Gheweifat 24.12 51.63 47 Land 

6 Bu Hamrah 23.51 54.53 136 Land 

7 Barakah 23.96 52.25 5 Land 

8 Al Qlaa 24.16 52.98 150 Land 

9 Al Jazeera 23.29 52.29 70 Land 

10 Yasat 24.19 52.00 115 Marine 

11 Sri Bani Yas 24.32 52.60 101 Marine 

12 Qarnen 24.94 52.85 26 Marine 

13 Dalma 24.49 52.29 10 Marine 

14 Al Ruwais 24.09 52.62 33 Land 

15 Abu Dhabi 24.48 54.33 3 Marine 

16 Al Tawiyen 25.56 56.07 186 Land 

 317 

3.2 AERONET 318 

The Aerosol Robotic Network (AERONET) program is a global federation of ground-based 319 

sun photometers comprising more than 400 stations worldwide (Holben et al., 1998). 320 

AERONET utilizes multiple bands ranging from UV to near-IR wavelengths to measure 321 

spectral sun irradiance and sky radiances, from which Aerosol Optical Depth (AOD) at 550 nm 322 

and other aerosol properties are derived. A detailed description of the AERONET retrievals is 323 

provided in Holben et al. (1998). This study uses Level 2.0 AOD data at 550 nm from Mezaira 324 

for June and from Dewa for December 2022, with an hourly resolution. It is important to note 325 

that AOD retrieved from AERONET is accurate to within 0.01 (Dubovik et al., 2000). 326 

3.3.2 ERA-5 Reanalysis data 327 

The fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) 328 

reanalysis, known as ERA-5 (Hersbach et al., 2020), represents a significant advancement over 329 

its predecessor, the ERA-Interim reanalysis, introduced by Dee et al.,. (2011). ERA-5 330 

incorporates a sophisticated four-dimensional variational (4D-Var) data assimilation method, 331 

utilizing the 41r2 cycle of the Integrated Forecast System (IFS). This system is enhanced by 332 

the integration of bothintegrating a soil model and an ocean wave modelmodels, offering a 333 
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comprehensive approach to climate data analysis. For the purposes of this research, weWe 334 

accessed ERA-5 data through the Copernicus Climate Change Service Climate Data Store 335 

(CDS).) for this research. The dataset provides atmospheric observations across 137 hybrid 336 

vertical levels, with raw model data available on the CDS interpolated onto 37 distinct pressure 337 

levels. These levels span from 1000 hPa, close to the Earth's surface, up to 1 hPa, reaching 338 

altitudes of approximately 80 km. Further details on the ERA-5 dataset are available in Dee et 339 

al.,. (2011) and Hersbach et al.,. (2020). Our study specifically utilizedutilizes explicitly hourly 340 

data for a selection of meteorological parameters: air temperature at 2 meters above the ground 341 

(T2m), wind speed at 10 meters (, WS10m), downward shortwave radiation flux at the surface 342 

(SR),, SW, and planetary boundary layer height (PBL), for the months of June and December 343 

20182022.  344 

3.34 Satellite-borne observations: TROPOMI 345 

Launched by the European Space Agency (ESA) on October 13, 2017, the TROPOspheric 346 

Monitoring Instrument (TROPOMI) instrument is aboard the Sentinel-5 Precursor (S5P) 347 

satellite, operating in a near-polar sun-synchronous orbit. Positioned at an altitude of 817 km, 348 

the S5P satellite crosses the equator at a local solar time of 13:30, boasting a wide swath of 349 

approximately 2600 km, and providing daily global coverage. TROPOMI features four distinct 350 

spectrometers that measure the radiation in the ultraviolet (UV) and UV-visible (UV-VIS) 351 

range (270 to 500 nm), near-infrared (NIR) range (675 to 775 nm), and short-wave infrared 352 

(SWIR) range (2305 to 2385 nm) spectral bands (Veefkind et al., 2012). Notably, the last two 353 

spectral bands, NIR and SWIR, are newly introduced in TROPOMI compared to its 354 

predecessor OMI (Ozone Monitoring Instrument). TROPOMI's data products encompass daily 355 

observations of trace gases, including CO, O3, NO2, CH4, HCHO, aerosols, and cloud 356 

properties. The presentThis study utilized daily tropospheric NO2, total CO columns, and ozone 357 

column densityprofile level 2 products from TROPOMI, downloaded from the GES DISC 358 

website (https://disc.gsfc.nasa.gov/) for the period of June 1-30 and December 1-31, 20182022. 359 

The specific data sets employed for the present study includesinclude 360 

S5P_OFFL_L2__O3__PR for O3, S5P_OFFL_L2__CO for CO, and S5P_OFFL_L2__NO2 for 361 

NO2, covering the study region bounded by longitudes [51°,58°] and latitudes [21°, 27°]. 362 

Further details regardingon each product, including the retrieval algorithm,algorithms and 363 

validation results, are summarized in the subsequentfollowing section. 364 

 365 
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TROPOMI retrieval of NO2 columns are derived using UV-VIS spectrometer backscattered 366 

solar radiation measurements in the wavelength range of 405-465 nm and provides total and 367 

tropospheric NO2 vertical column density with a near-nadir resolution of 7x37 × 3.5 km. The 368 

total NO2 slant column density (SCD) is retrieved from the measured solar irradiance spectra 369 

using the Differential Optical Absorption Spectroscopy (DOAS) method. Tropospheric and 370 

stratospheric slant column densities are separated from SCD by a data assimilation system 371 

based on the chemistry transport model V5 (TM5-MP). Afterwards, they are converted to 372 

vertical column densities (VCDs) with the help of look-up table of altitude-dependent air-mass 373 

factors (AMFs) and information on the vertical distribution of NO2 from TM5-MP apriori 374 

profile with a horizontal resolution of 1o x 1o and a time step of 30 min (Boersma et al., 2018; 375 

Van Geffen et al., 2022). The TROPOMI NO2 product has been extensively evaluated using 376 

ground-based and aircraft observations and is found to have a high correlation and low bias of 377 

less than 30% with respect to in-situ measurements (Griffin et al., 2019; Ialongo et al., 2020). 378 

We used the both reprocessed (RPRO) and  offline (OFFL) TROPOMI NO2 data files withfrom 379 

the most recent processor version of 1.2.2,versions depending on availability for the study 380 

period.a given day of observations. Additionally, two morethere is another NO2 products 381 

areproduct available such as offline (OFFL) and near-real time (NRTI). NRTI data files are 382 

generated using TM5-MP forecast data rather than analysis data as with REPO and OFFL files 383 

(Van Geffen et al., 2022). The differences between the OFFL/REPO and NRTI NO2 products 384 

are generally very small (Ialongo et al. (2020) and references therein Ialongo et al., 2020).   385 

 386 

The Shortwave Infrared Carbon Monoxide Retrieval (SICOR) algorithm is used to retrieve 387 

CO total column densities from TROPOMI in the spectral range of 2305 to 2385 nm (Landgraf 388 

et al., 2016). The SICOR algorithm accounts for a profile-scaling approach that scales retrieved 389 

CO total column to the a priori reference profile. The a priori reference profiles are taken from 390 

the global chemistry transport model simulations of TM5-MP, and they vary based on the 391 

location, month and year (Krol et al., 2005).  The detailed outline of all settings and other 392 

auxiliary data sets used for CO retrievals are outlinedis given in the Landgraf et al., (2016). 393 

This study limits the analysis to CO pixels corresponding to clear-sky conditions and mid-level 394 

clouds by filtering the data using the quality flag variable (qa_value). The scenes corresponding 395 

to qa_value > 0.5 are used in this current analysis as suggested in the ATBD (algorithm 396 

theoretical baseline document; Landgraf et al., 2016). In this present work, TROPOMI CO 397 

measurements for the period from 1-30 June and 1-31 December, 2018 2022 have been 398 

analysed. Moreover, we use either the reprocessed (RPRO) or offline (OFFL) data files from 399 
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most recent processor versions depending on availability for a given day of observations. 400 

Wizenberg et al., (2021) compared global TROPOMI retrieved CO total columns with 401 

corresponding ACE-FTS (Atmospheric Chemistry Experiment- Fourier transform 402 

spectrometer) columns for the period from November 2017 to May 2020 and found a small 403 

relative bias of -0.83% with a correlation coefficient of 0.93 between two data sets. Similar 404 

results wereare also found between TROPOMI CO with corresponding CO fields from the 405 

ECMWF assimilation system: Borsdorff et al. (2018) reported a small mean difference between 406 

the two data sets of 3.2% with a correlation coefficient of 0.97.  407 

 408 

TROPOMI also provides total ozone column (TOC) and ozone profile dataprofiles 409 

(5P_OFFL_L2__O3__PR) at 1533 pressure levels with a horizontal resolution of 28x28 km. It 410 

measures radiances and irradiances in the ultraviolet wavelength of 270-330 nm and provides 411 

the ozone profile information.  The Optimal Estimation (OE) algorithm is used to retrieve the 412 

ozone profile data. Before this stage, various pre-processing steps are applied to the measured 413 

spectra before the estimation of the ozone profile. The main process of the algorithm is the OE 414 

method, which combines the information from the measured spectra with the a-priori 415 

information.  The a-priori informationlatter is based on climatology as described in the Labow 416 

et al., (2015). The description of the various pre-processing steps performed to retrieve ozone 417 

profiles is presented in the Algorithm Theoretical Basis Document (Veefkind, et al., 2021). The 418 

validation of TROPOMI retrieved ozone profile data against the ground-based measurements 419 

reported a median bias of 0.3% for OFFL/REPO products while 0.8 % for NRTI ozone products 420 

(Lambert et al., 2023).% for NRTI ozone products (Lambert et al., 2023). Our focus is 421 

specifically on the tropospheric ozone column due to its direct relevance to surface air quality. 422 

Total column ozone measurements are primarily influenced by stratospheric ozone, which 423 

accounts for approximately 90% of the total column, while tropospheric ozone comprises only 424 

around 10%. Given this, we have used ozone profile data from the surface to 100 hPa., 425 

designated as tropospheric ozone columns for this study and referred to as TROPOMI-O₃, 426 

expressed in Dobson Units (DU), where 1 DU = 2.69x1016 molecules/cm². 427 

3.43.5 Satellite-borne observations: MODIS 428 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor was launched into the 429 

polar sun-synchronous orbit at an altitude of 705 km aboard NASA’s two Earth Observing 430 

System (EOS) satellites, Terra (Feb-2000) and Aqua (June-2002) [Kaufaman et al., 1997; 431 
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Remer et al., 2005] . The equator crossing times of two satellites were, Terra crossing at 1030 432 

LST and Aqua crossing at 1330 LST. The MODIS sensor has a swath of ~2330 km and 433 

provides near-global coverage with a temporal resolution of 1-2 days. The sensor measures the 434 

reflected solar radiation from the Earth’s atmosphere and the surface as well as emitted thermal 435 

radiation at 36 spectral bands from 0.41 to 14 µm with three spatial resolutions: 250m, 500m, 436 

and 1km. Seven of these bands operating in the spectral range of 0.415-2.155 µm can 437 

effectively retrieve the AOD over land and ocean [Levy et al. 2013 ; Hsu et al. 2015 ; Sayer et 438 

al., 2014a; 2014b; 2015] . The MODIS retrieval algorithm is based on the lookup table 439 

approach with a pre-defined set of aerosol types, loadings and geometries [Floutsi et al. 2016]. 440 

A comprehensive description of retrieval algorithms and details of MODIS instrument are 441 

found elsewhere [Remer et al. 2008; Levy et al. 2013 ]. MODIS AOD retrieval algorithms have 442 

been substantially validated against in-situ and/or other remote sensing data sets from regional 443 

to global scales and are updated periodically [Remer et al. 2008 ; Li et al. 2009]. The 444 

uncertainty of AOD retrievals is estimated to be ±0.05±0.20 x AOD over land and ±0.03±0.15 445 

x AOD over ocean [Remer et al.,2005; 2008]. The present study utilized Level 2 MODIS 446 

aerosol products (Collection 6.1) obtained from the Atmosphere Archive and Distribution 447 

System (LAADS DAAC). These products consist of 5-minute satellite swaths with a spatial 448 

resolution of 10 km, covering the period of June and December 2022. (Devadiga, 2024). 449 

3.6 Satellite data processing 450 

In order to quantitatively compare the WRF-chem simulations with satellite measurements, 451 

the model outputs must be processed using the appropriate method as described in the literature 452 

(Kumar et al., 2012). Direct comparison between satellite retrievals and model outputs is not 453 

recommended, as satellite measurements depend on column averaging kernels (AK) and a-454 

priori profiles. The AK vector, representing represents the vertical sensitivity of the retrieved 455 

column relative to the partial column true vertical profile of the target variable in the 456 

atmosphere. It indicates how changes in the true atmospheric profile at different vertical levels, 457 

should be employed to convolve the  influence the retrieved column values, allowing for a 458 

more accurate comparison between model simulations. and TROPOMI data by convolving the 459 

model outputs with the AK. The typical AK vectors are plotted over the WISE-UAE location 460 

to know the sensitivity of AK at different pressure levels (Figure S7)  461 

The column density from the WRF-Chem model is re-gridded to match the TROPOMI 462 

instrument's grids and is vertically interpolated to the TROPOMI pressure levels before it is 463 

multiplied by the AK. This treatment of the WRF-Chem-simulated profile with the column 464 
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averaging kernels allows for a comparison that is independent of the chemical transport model 465 

(CTM) a-priori assumptions and the vertical sensitivity of the retrieval process; therefore, it 466 

can be directly compared with the TROPOMI-derived tropospheric column of NO2. The 467 

TROPOMI-NO2 and TROPOMI-CO products also provide a column averaging kernel matrix. 468 

In thethis case of TROPOMI-NO2, the application of the column AK averaging kernel accounts 469 

for the vertical distribution and sensitivity of the measurements, as classically done by Borsdorff 470 

et al., (2014) as: 471 

 472 

𝑋𝑟𝑒𝑡 = 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 + 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒 − 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟) + 𝑒𝑥 -----------------------------------------------(1) 473 

where, 𝑋𝑡𝑟𝑢𝑒 is model simulation profile of trace gas; 𝑋𝑟𝑒𝑡 is the retrieved profile or smoothed 474 

model profile; 𝑒𝑥 represents the error on the retrieved trace gas profile; 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 is the a-priori 475 

information provided in the TROPOMI data set. For TROPOMI-NO2 data, the contribution of 476 

the a priori profile and error on the retrieved profile can be eliminated, as explained in Borsdorff 477 

et al., (2014). TheIn particular, eq. (1) simplifies to  478 

𝑋𝑟𝑒𝑡 = 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒) ---------------------------------------------------------------------------------- (2) 479 

 480 

where 𝑋𝑡𝑟𝑢𝑒  represents WRF-Chem simulation profile for both NO2 and CO, AK represents the 481 

averaging kernels information provided in the TROPOMI data set for  NO2 and CO and 𝑋𝑟𝑒𝑡  482 

represents smoothed model profile for NO2 and CO.  483 

For validation of ozone and CO total column, we have used the TROPOMI ozone and CO 484 

profile level 2 data product S5P_OFFL_L2__O3__ and S5P_OFFL_L2__CO__ that provides 485 

the ozone and CO concentrations at 15 and 5033 pressure levels, respectively. This data product 486 

also includes the a priori information and column averaging kernel for each pressure level. In 487 

order to compare our model profile with the one given by this dataset, the model output is 488 

horizontally and vertically interpolated to TROPOMI grids and vertical levels. The final model 489 

profile was calculated by the Eq. (3)  490 

𝑋𝑟𝑒𝑡 = 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 + 𝐴𝐾 ×(𝑋𝑡𝑟𝑢𝑒 − 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟) -----------------------------------------------(3) 491 

where 𝑋𝑡𝑟𝑢𝑒  represents WRF-Chem simulation profile for O3, AK represents the averaging 492 

kernels information provided in the TROPOMI data, 𝑋𝑟𝑒𝑡  represents smoothed model profile 493 

for O3 and 𝑋𝑎 𝑝𝑟𝑖𝑜𝑟 is the a-priori information provided in the TROPOMI data. Since the highest 494 

vertical level in WRF-Chem-simulated trace gas concentration is 50 hPa, the remaining vertical 495 

layers of ozone and CO wereare made equal to the a priori concentration of respective trace 496 

gases as described by ATBD (Landgraf et al., 2016).  497 

Formatted: Centered

Formatted: Centered

Formatted: Centered



 

20 

3.57 Evaluation methodology 498 

Meteorological parameters from the WRF-Chem model wereare extracted for the grid points 499 

closest to the surface observation sites of NCM. Meteorologicalthe AWS. As noted before, the 500 

meteorological parameters wereare categorized and averaged for land and marine regions 501 

separately for the regional analysis. Consequently, further analyses based on these categories 502 

are presented in subsequent sections of the article. To enable the comparison of atmospheric 503 

column data from the TOPOMITROPOMI satellite retrievals with WRF-Chem outputs, the 504 

data must undergo smoothing through an appropriate method described in Section 3.4, as direct 505 

comparison between satellite retrievals and simulations is not feasible due to discrepancies 506 

highlighted in previous literature. Additionally, and owing to the spatial resolution differences 507 

between WRF-Chem and ERA5 datasets, it is necessary to remap the model data to the ERA5 508 

grids for accurate comparison. A wide range of statistical parameters is available for evaluating 509 

model simulations. In this study, we employed statistical skill scores including the Pearson 510 

correlation coefficient (r), the Mean Bias (MB), the Root Mean Square Error (RMSE), and the 511 

Mean Absolute Error (MAE), which have been extensively discussed and applied in similar 512 

contexts (Fonseca et al., 2021; Ivatt & Evans, 2020; Temimi et al., 2020b). 513 

The following equations (eq. 4 to eq. 7) are used to calculate these statistical matrixes in the 514 

present study,  515 

 516 

𝑟 =
∑ [(𝑂

𝑖
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𝑁
𝑖=1

∑ (𝑂
𝑖
−𝑂𝑖̅)
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1
2
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MB = 
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)𝑁
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MAE = 
1

𝑁
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𝑖=1 -----------------------------------------------------(7)∑ |𝑀𝑖 −𝑁
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where 𝑂𝑖 denotes the i-th observation, 𝑀𝑖 represents the corresponding WRF-chem model 524 

simulated value, and N is the number of model and observation pairs. 𝑀𝑖
̅̅ ̅𝑀𝑖 and 𝑂𝑖̅𝑂𝑖 are the 525 

model and observational means (i.e. average of 1-30, June and 1-31 December), respectively. 526 

The correlation coefficient (r) is an indication of the phase agreement between the modelled 527 

and observed time-series. The RMSE measures the average error in the model, and predictions, 528 

while the MAE determines the mean error between the model forecasts and observations 529 

regardless of whether it is an under or overestimate. The MB is a measure of the systematic 530 

error and gives information as to whether the model is over or underpredicting the 531 

corresponding observed values. 532 

4. Results and Discussion 533 

4.1 Model performance for key meteorological variables 534 

The general abilitycapability of the WRF-Chem model to reproduce realistic spatio-535 

temporalspatiotemporal patterns of the most relevant physical and chemical key meteorological 536 

variables ishas been assessed by comparing the simulated output with the model outputs to 537 

observational reanalysis data for June and December for the year 2018, reflecting the 2022, 538 

representing contrasting summer and winter conditions over the UAE. DeterminingEvaluating 539 

the accuracy of WRF-Chem simulations by validatingChem’s meteorological 540 

conditionsforecasts in the study area is crucialessential before utilizingapplying the model's 541 

output formodel forecasts to air quality applications. In this regardassessments. Accordingly, 542 

we have conducted a comparison ofcompared the model'smodel predictions for T2m, RH2m, 543 

WS10m, and SR outputs with SW against ground-based observations at seven airport stations 544 

and in-situ measurements from observational data sets.the WISE-UAE field campaign (details 545 

in Table S1). Additionally, we have compared the boundary layer height from the model with 546 

the ERA5 reanalysis product. These is evaluated against ERA5 reanalysis data, which offers a 547 

spatial resolution of approximately 28 km, higher than the other currently available reanalysis 548 

datasets. Detailed results of this analysis are presented in the supplementary material, with key 549 

findings summarized here to support the paper’s discussion. The aforementioned 550 

meteorological parameters were chosen due to are selected, given their significance critical role 551 

in influencing most air pollutantspollutant behavior (Ritter et al., 2013). Notably, the ERA5 552 

reanalysis data boasts a high spatial resolution of approximately 28 km, making it superior to 553 

other reanalysis datasets in this aspect. Our comparison involved analysing the hourly results 554 
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from both ERA5 and ground-based datasets against WRF-Chem for two distinct months in 555 

2018. Detailed results of this comparison are presented below. 556 

4.1.1 Evaluation against In-Situ Observations 557 

The WRF-Chem model evaluation against observations across the seven meteorological 558 

stations (Table S1) at the UAE airports for T2m, RH2m, and WS10m during June and 559 

December 2022 reveals a close agreement between the modeled and observed values (Table 560 

S2). The cold bias reported by several studies, including Branch et al. (2021), Temimi et al. 561 

(2020a), and Abida et al. (2022), which occurs primarily at night, is reduced in the WRF-Chem 562 

simulations presented here. In fact, and for the June month, the air temperature bias is positive, 563 

~0.2 °C. This stresses the importance of properly simulating the observed aerosol loading in 564 

this hyper arid region. Deficiencies in the land surface-based observations model and radiation 565 

schemes and in the representation of the surface properties, particularly the surface emissivity 566 

that may be overestimated in the model (Parajuli et al., 2023), can also account for this 567 

discrepancy. The WRF-Chem model also exhibits a noteworthy dry bias in this region, linked 568 

to an incorrect simulation of the soil moisture and the mesoscale land-sea breeze circulation, 569 

which is present in both seasons. The strength of the near-surface wind speed tends to be 570 

overestimated in WRF-Chem in the UAE by about 1-3 m/s, which has been attributed to an 571 

incorrect representation of its subgrid-scale variability and deficiencies in the surface drag 572 

parameterization scheme (Nelli et al., 2020; Fonseca et al., 2020; Temimi et al., 2020b). Here, 573 

the biases are much smaller, within 0.5 m/s. This, together with the improved representation of 574 

the observed air temperature, reflects an overall improved simulation of the boundary layer 575 

dynamics in the model.  576 

The WRF-Chem model effectively represented the observed variations in T2m, WS10m, 577 

and SR across all 16 meteorological stations during June and December 2018. The WRF-Chem 578 

model generally underestimated T2m values by less than 0.5 °C in June and overestimated 579 

them in December by less than 1.3 °C across the majority of locations. Correlation coefficients 580 

for the observed T2m with model simulations were between 0.66 to 0.99 in June, slightly 581 

increasing to a range of 0.70 to 0.99 in December. The MB for T2m varied from -0.04 to +1.19 582 

°C in June and -2.17 to +0.50 °C in December, with the RMSE spanning from 0.8 to 5.9 °C in 583 

June and 0.9 to 4.1 °C in December. Conversely, the outcomes for WS10m and SR 584 

demonstrated variability across different stations. The model performance demonstrates 585 

significant enhancements over previous research conducted in this region. For instance, 586 

Fonseca et al., (2020) observed a warm bias of 1-3 °C in WRF simulations across the UAE for 587 
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both winter and summer seasons. This observation aligns with similar findings reported by 588 

Schwitalla et al., (2020) and Wehbe et al., (2017). The enhanced performance of the model 589 

may be attributed to the present model configuration which differs from that used in previous 590 

studies.  591 

We concentrate on evaluating the model's performance at a regional scale, as delineated 592 

by land (encompassing 11 sites) and marine stations (comprising 5 sites), detailed in section 593 

3.1.1. Table 3 presents an extensive evaluation of the statistical verification scores for essential 594 

meteorological variables at these categories within the UAE. In the month of June, the model 595 

slightly underestimated the T2m values in both land and marine settings, with a 596 

underestimation of 0.37 °C and 0.48 °C, respectively, despite an overprediction of SR. This 597 

arises because of colder temperatures in particular in the evening and night-time hours, a bias 598 

highlighted by other studies such as Temimi et al. (2020b) and Branch et al. (2021). This has 599 

been attributed to deficiencies in the model’s physics and/or dynamics, in particular in the land 600 

surface model and surface properties, a cold bias in the forcing dataset, and an incorrect 601 

representation of the concentration of aerosols and greenhouse gases. Despite this, the model 602 

achieves notable correlation coefficients (r) of 0.91 for land regions and 0.83 for marine 603 

regions. The lower correlation observed in marine regions possibly arises from the more muted 604 

diurnal cycle (Fig. 2) and the model’s inability to properly represent the complex land-sea mask 605 

even at 3 km spatial resolution. Similar results were reported in Abida et al., (2022), where the 606 

WRF model demonstrates improved accuracy in inland areas compared to offshore or coastal 607 

regions. The RMSE (MAE) values stand at 3.57 °C (2.68 °C) for land and 1.67 °C (1.47 °C) 608 

for marine regions, respectively. In December, the T2m predictions by the model show an 609 

overestimation, marked by 0.76 °C in land and 1.30 °C in marine regions. The model maintains 610 

strong correlations, with r = 0.92 for land and r = 0.90 for marine regions, underscoring its 611 

consistent performance. The RMSE (MAE) values recorded are 2.87 °C (1.66 °C) for land and 612 

2.57 °C (1.37 °C) for marine regions, illustrating the model's accuracy in capturing temperature 613 

fluctuations over these regions. For WS10m, the model effectively aligns with observed values, 614 

showing good agreement in both land and marine settings. In June, it slightly overestimated 615 

the wind speed in the marine region by 0.51 m/s, a trend that is also reflected in the RMSE 616 

metrics, which are marginally higher for marine areas compared to land (0.08 m/s). In 617 

December, it notably overestimated wind speeds in marine regions by 0.92 m/s, while the 618 

overestimation was slightly less in land areas, at 0.38 m/s.  Despite this, the correlations remain 619 

robust in both seasons, highlighting the model reliability in capturing wind speed variations 620 
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across different environments. The model representation of SR demonstrates a similar pattern 621 

of accuracy and overestimation. In June, the model tends to overestimate SR across both 622 

regions, which has been reported in Fonseca et al. (2020) and Temimi et al. (2020b), yet it 623 

achieves a more accurate depiction in December. A possible explanation is a reduced aerosol 624 

loading in the model, with the summer featuring higher atmospheric aerosol amounts than the 625 

winter season (Nelli et al., 2021), with WRF also exhibiting a tendency to underpredict the 626 

observed cloud cover in the region. Although the correlations for SR are slightly lower, 627 

especially in the marine regions, they still indicate a reasonable level of model performance. 628 

Overall, the model tends to overestimate WS10m and SR across both seasons, while it 629 

underestimates the T2m in winter and overestimates it in summer. Such variable performance 630 

of the model has been noted in findings from prior research (for example, Schwitalla et al., 631 

2020; Wehba et al., 2017; Fonseca et al.,  632 

The WRF-Chem model evaluation against WISE-UAE measurements (detailed in Table 633 

S3 and Fig. S1) reveals a comparable performance to that seen concerning the seven airport 634 

stations. SW observations are also available for this site. An evaluation against the WRF-Chem 635 

values reveals the model overestimates the incoming shortwave radiation flux by about 30 636 

W/m2 for December, which can be attributed to reduced cloud cover, a known WRF deficiency 637 

(Wehbe et al., 2019; Fonseca et al. 2020, 2022a). An inspection of the diurnal cycle revealed 638 

the cold (typically by 2-3 °C) and dry (by about 20%) biases occur mostly at night, when the 639 

wind speed in the model is higher than that observed, suggesting increased advection of cooler 640 

and drier desert air into the site. 641 

2020; Abida et al., 2022). Furthermore, a more detailed analysis of the biases identified in 642 

T2m and WS10m, including an examination of the diurnal variation of these parameters, is 643 

presented in the following sections. 644 

Table 3: Statistical verification scores for evaluation against weather station data: skill scores for 645 

air temperature at 2m (T2m), wind speed at 10m (WS10m) and downward shortwave radiation flux 646 

(SR) for 16 meteorological stations (categorised into land and marine regions) over the United Arab 647 

Emirates (UAE). 648 

Parameter Month Region MOD OBS MB MAE R RMSE 

T2m (o C) 

June 
Land 35.70 36.07 -0.37 2.68 0.91 3.57 

Marine 33.54 34.03 -0.48 1.47 0.83 1.67 

Dec 
Land 21.84 21.08 0.76 1.66 0.92 2.87 

Marine 24.02 22.72 1.30 1.37 0.90 2.57 
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WS10m 

(m/s) 

June 
Land 4.24 4.16 0.08 0.90 0.88 1.35 

Marine 4.44 3.92 0.51 1.01 0.78 1.09 

Dec 
Land 3.29 2.91 0.38 0.63 0.88 0.95 

Marine 4.26 3.35 0.92 1.12 0.89 1.54 

SR 

(W/m2) 

June 
Land 352.0 279.7 72.4 197.1 0.87 327.1 

Marine 349.3 264.9 84.4 273.4 0.68 358.7 

Dec 
Land 192.7 177.2 15.5 124.3 0.85 231.2 

Marine 183.8 171.7 12.1 188.8 0.59 240.7 

 649 

Figure 2, (a) and (b), presents a comparative analysis of the average diurnal variation in T2m 650 

from WRF-Chem simulations and observations at both land and marine sites investigated in 651 

this study, for the summer and winter seasons of 2018, respectively. The observed and 652 

modelled T2m data exhibit a close alignment over land and marine locations, although some 653 

discrepancies are evident. During the daytime, there is a tendency for the model to exhibit a 654 

warm bias, while at night and evening, a cold bias is more apparent. Such discrepancies in 655 

temperature have been reported before (Abida et al., 2022; Branch et al., 2021; Fonseca et al., 656 

2021; Schwitalla et al., 2020; Temimi et al., 2020a). Overall, the WRF-Chem model displays 657 

a consistent cold bias of less than 0.5 °C for both environments during the summer months. In 658 

contrast, during winter, the model shows a warm bias ranging from 0.8 to 1.3 °C. This is in 659 

contrast to findings by Branch et al. (2021), which indicated an increase in the nocturnal cold 660 

bias from winter to summer. Conversely, our study identifies a cold bias in the summer and a 661 

warm bias in the winter, persisting throughout the entire day over marine locations. The 662 

decrease in cold bias observed during summer in WRF-Chem simulations is a result of 663 

enhanced representations of updated surface and soil parameters over the study region. 664 
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 665 

Figure 2: Air temperature and wind speed diurnal cycle: Diurnal cycles of spatial mean values of 666 

WRF-chem simulated (red) and observed (blue) air temperature at 2m (T2m; oC) in (a) (summer) and 667 

(b) (winter) for the regional categories of land and marine sites (c)-(d) are as (a)-(b) but for the wind 668 

speed at 10 m (WS10m; m/s). The averaged spatial standard deviation is represented by an error bar at 669 

each hour. 670 

Figure 2, (c) and (d), showcase a comparative analysis of the mean diurnal variation in WS10m 671 

from model simulations and observations at both land and marine sites examined in this study, 672 

during the summer and winter of 2018, respectively. In both seasons, higher wind speeds are 673 

observed over marine sites, while lower wind speeds are found over land sites, reflecting sea 674 

and land circulations, respectively. It is indicated that wind speeds are higher during the 675 

daytime and lower during the night and evening hours. This pattern is especially pronounced 676 

over land sites compared to marine sites during both seasons. WRF-Chem tends to overestimate 677 
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WS10m during both day and night, across all regions and seasons. Nonetheless, the model 678 

shows the smallest discrepancies over land, with biases being the least significant at 0.1 m/s 679 

during summer and 0.4 m/s in winter. In contrast, the biases over marine areas are more 680 

pronounced, at 0.5 m/s in the summer and 0.9 m/s in the winter. WRF-Chem tends to 681 

overestimate WS10m more significantly during winter, with less overestimation observed 682 

during summer. This discrepancy is linked to alterations in wind direction driven by land and 683 

sea breeze circulations. Consequently, numerous studies have previously emphasized the 684 

model's tendency for wind speed overprediction (Abida et al., 2022; Branch et al., 2021; 685 

Fonseca et al., 2021; Schwitalla et al., 2020; Temimi et al., 2020a). 686 

4.1.2 Evaluation against ERA5 reanalysis data  687 

The WRF-Chem model predictions are also evaluated against ERA5 reanalysis data for 688 

T2m, WS10m, SW, and PBL during June and December 2022. The air temperature biases are 689 

within 1 °C, with a cold bias present in both months, more pronounced over inland areas, with 690 

correlation coefficients 0.9 (Fig. S2). It is important to note that ERA5 overestimates the 691 

temperature at night and underestimates it during the day typically by 1-2 °C in the country for 692 

all seasons (Nelli et al., 2024a), meaning the cold bias shown by WRF-Chem does not 693 

necessarily indicate a poorer performance. The skill scores for WS10m and SW are also similar 694 

to those estimated concerning the station observations and the WISE-UAE field measurements. 695 

For the PBL height, the model reproduces its spatial and seasonal variations (Fig. S3), largely 696 

driven by the temperature seasonal cycle (cf. Figs. S2; Basha et al., 2019). In Fig. 3, a spatial 697 

comparison is presented between the averaged ERA5 T2m and the corresponding WRF-chem 698 

simulation output across the simulation domain during June and December of 2018. The model 699 

adeptly captures regional temperature variations, displaying underestimation in the southern 700 

regions and overestimation in the north-western region of the UAE. This observation suggests 701 

a comprehensive portrayal of temperature dynamics by the model, with specific tendencies in 702 

certain geographical areas. This observation is also supported by NCM data, for instance, at 703 

Mezaria (ID No: 3), which represents a southern land site, and at Abu Dhabi (ID No: 15), 704 

representing a northern marine site within the emirate of Abu Dhabi. The southern land site 705 

found an underestimation of 1°C, while the northern marine site exhibited an overprediction of 706 

T2m by WRF-chem. WRF-Chem overestimates the area-averaged temperature (T2m) over the 707 

UAE compared to ERA5 in both seasons. In contrast, NCM observations indicate an 708 

underestimation during the summer and an overestimation during the winter across the majority 709 

of sites. Kishta et al., (2023) reported that, minor discrepancies in temperature measurements 710 
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between observational data and ERA5 reanalysis, identifying a strong correlation coefficient 711 

of 0.89 over Abu Dhabi. The spatial average of WRF-Chem and ERA5 values are 35.8 °C and 712 

35.7 °C, respectively, with a small underestimation of 0.08°C over the UAE. The model 713 

displays a high correlation (r) of 0.97 and a RMSE of 2.3 °C, MAE of 2.2 °C in June. For 714 

December, the model showed a similar pattern, with a underestimation of 0.53 °C which is 715 

slightly higher as compared to June, r of 0.98, MAE of 1.0 °C and RMSE of 1.1 °C (Table 4).  716 

Moreover, the analysis of the absolute differences between the two datasets highlighted the 717 

most pronounced discrepancies over the Arabian Gulf region, observable in both the summer 718 

and winter months. However, these discrepancies are notably more emphasised during the 719 

warmer months. WRF-simulated Sea Surface Temperatures (SSTs) are compared with both 720 

ERA5 and Group for High Resolution Sea Surface Temperature (GHRSST) data over the 721 

Arabian Gulf region (not shown). The comparison involved area-averaged daily values, 722 

considering that the diurnal amplitude of SST is 0.5 °K over this region as reported by Nesterov 723 

et al., (2021). The model showed an overestimation of 1.4 °K compared to both ERA5 and 724 

GHRSST during the summer. Similarly, in winter, its overestimated SSTs by 1.5 °K compared 725 

to ERA5 and by 1.3 °K compared to GHRSST. Furthermore, the model exhibited a 726 

significantly higher correlation in winter, achieving a correlation coefficient of 0.9 with both 727 

datasets. However, during the summer, it displayed variable correlations, with r=0.38 for ERA5 728 

and r=0.20 for GHRSST. This observation suggests potential inaccuracies in the model 729 

simulation of temperature and wind speed in this region, which could be due to the sea surface 730 

temperature data utilized for model forcing. The temperature gradient plays a pivotal role in 731 

driving the land-sea breeze circulation. Higher temperatures observed over the Gulf could 732 

potentially weaken this circulation pattern, resulting in reduced transportation of cleaner 733 

marine air towards inland areas. Consequently, this reduction in the influx of marine air could 734 

obstruct the effective dispersion of pollutants across terrestrial regions, negatively impacting 735 

air quality and the spatial distribution of pollutants. 736 
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737 

The PBL height, and over land areas, ranges from 2400-2500 m in the summer during the day 738 

to less than 500 m in winter at night. Over the Arabian Gulf, the PBL is deeper in the winter 739 

months in both ERA-5 and WRF-Chem (800 m vs. 200 m), owing to stronger winds and 740 

enhanced turbulent mixing (Dai, 2024). 741 

This comprehensive evaluation of the predicted meteorological parameters against those 742 

observed at seven UAE airport sites, the WISE-UAE experimental site, and ERA5 reanalysis 743 

data demonstrates that WRF-Chem reliably captures them, including their spatial and seasonal 744 

variations across the UAE. As WRF-Chem integrates meteorological and chemical processes, 745 

precise meteorological simulations are essential to ensure accurate chemical computations 746 

within the model domain. 747 

 748 

Figure 3: ERA-5 and WRF-Chem Air Temperature: Average 2-m air temperature (°C) obtained 749 

from ERA5 reanalysis (first panel), simulated by WRF-Chem (second panel), and the corresponding 750 

absolute differences (third panel) and scatter plots between the two datasets (fourth panel) during June 751 

(top) and December (bottom) 2018. 752 

It is widely recognized that the Planetary boundary layer (PBL) plays a crucial role in the 753 

pollution transport process over the region. It constitutes the lowest part of the troposphere and 754 

is directly influenced by the Earth's surface. The PBL reaches higher elevations during summer, 755 

with its altitudes being lower in winter. There are noticeable differences in the PBL between 756 

land areas (approximately 2400–2500 m) and marine regions (about 1200–1500 m) (Basha et 757 

al., 2019). Basha et al. (2019) also discovered that ERA-Interim reanalysis data tend to 758 

underestimate PBL when compared with data obtained from Global Positioning System Radio 759 
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Occultation (GPSRO) in most regions and in all the seasons. Chen et al., (2022) emphasized 760 

the critical role of the boundary layer in influencing air quality and facilitating the 761 

transboundary transport of pollutants. They noted that a higher boundary layer enhances the 762 

potential for pollutant transport to the Tibetan Plateau. Wang et al., (2022) highlighted the 763 

critical role of meteorological conditions in severe PM2.5 pollution episodes. They noted that 764 

rapid cold air movement can quickly disperse pollutants, in contrast to the slow accumulation 765 

of pollutants under weak high-pressure systems. This slow build-up is characterized by low 766 

wind speeds, and low atmospheric boundary layer heights, which lead to prolonged heavy 767 

pollution periods. 768 

In this study, we aim to compare the PBL as simulated by WRF-Chem with the ERA5 769 

reanalysis, providing further specifics of model accuracy and performance. Fig. 4 shows a 770 

comparison of the mean ERA5 PBL with corresponding WRF-chem simulated values over the 771 

UAE for the months of June and December 2018. The absolute difference and scatter plot for 772 

these data sets are also shown. The spatial distribution of PBL across the UAE, as from ERA5 773 

data, exhibits a consistent spatial pattern that aligns with the PBL simulated by WRF-Chem. 774 

There is a notable trend of increased PBL during the summer months and decreased PBL in the 775 

winter. This pattern generally corresponds with the seasonal temperature variations, where 776 

warmer summer temperatures contribute to an elevation in PBL, and cooler winter 777 

temperatures result in a reduction of PBL (Basha et al., 2019). In terms of PBL (averaged 778 

spatially for the UAE), the model exhibits good performance in capturing the regional 779 

variations. In June, the modelled PBL is at 669.8 m compared to 646.7 m in ERA5, with a 780 

correlation coefficient of 0.91 and a RMSE of 450.1 m. In December, the modelled PBL is 781 

490.5 m compared to the ERA5 of 444.2 m, with a high correlation coefficient of 0.98 and an 782 

RMSE of 152.8 m (Table 4). 783 
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 784 

Figure 4: ERA-5 and WRF-Chem Boundary Layer Height: Same as Fig. 3, but for planetary 785 

boundary layer height (PBL).  786 

 787 

In addition to T2m and PBL, Table 4 also summarizes the spatially averaged statistical 788 

verification scores for WS10m and SR over UAE. Regarding WS10m, it is accurately 789 

simulated by the model with small differences in MB (June: 0.08 m/s, Dec: 0.01 m/s), which 790 

are slightly larger compared to observations from land-based sites in Abu Dhabi and good 791 

correlations (June: 0.79, Dec: 0.80). The RMSE values are 1.7 m/s for June and 1.1 m/s for 792 

December. For SR, the model performs well, capturing the variability in radiation flux. In June, 793 

the modelled SR is 643.6 W/m² compared to the ERA5 of 576.5 W/m², with a high correlation 794 

of 0.99 and an RMSE of 75.3 W/m². Similarly, in December, the modelled SR is 460.8 W/m² 795 

compared to the ERA5 of 438.1 W/m², with a correlation of 0.97 and an RMSE of 76.1 W/m². 796 

Overall, these results indicate a very good performance of the WRF-chem model in simulating 797 

meteorological parameters over the UAE during the specified months. This rigorous evaluation 798 

of meteorological parameters showed that WRF-Chem's simulated values closely align with 799 

both ground-based and reanalysis datasets. Since WRF-Chem simulates meteorology and 800 

chemistry simultaneously, accurate meteorological simulations are crucial for the precise 801 

computation of chemistry within the model domain.  802 

 803 

Table 4: Statistical verification scores for evaluation against ERA-5 data: skill scores calculated 804 

for model simulations for air temperature at 2m (T2m), wind speed at 10m (WS10m), downward 805 

shortwave radiation flux (SR) and planetary boundary layer (PBL) during June and December of 2018 806 

over the United Arab Emirates. 807 

 808 
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Parameter Month MOD ERA5 MB MAE R RMSE 

T2m (o C) June 35.82 35.73 0.08 2.17 0.97 2.28 

Dec 21.61 21.08 0.53 0.99 0.98 1.12 

WS10m 

(m/s) 

  4.34 4.26 0.08 1.26 0.79 1.7 

  3.05 3.07 0.01 0.87 0.8 1.1 

SR (W/m2)   643.6 576.5 67.1 85 0.99 75.3 

  460.8 438.1 22.8 69.5 0.97 76.1 

PBL (m)   669.8 646.7 21.4 271.6 0.91 450.1 

  490.5 444.2 46.4 113.8 0.98 152.8 

 809 

4.2 Model performance with respect tofor the gaseous pollutants 810 

The study incorporates comparative assessments with satellite data from the TROPOMI 811 

instrument. This includes, including evaluations of the tropospheric column of NO2 (denoted 812 

as TROPOMI-NO2), total column CO (TROPOMI-CO), and totaltropospheric column ozone 813 

(TROPOMI-O3) for the corresponding periods within the UAE. Detailed outcomes of these 814 

comprehensive assessments are discussed in the following subsections. The WRF-Chem model 815 

exhibited commendable proficiency in replicating the satellite-derived measurements of these 816 

pollutants throughout the UAE over the summer and winter seasons of 2018. The satellite 817 

overpass takes place daily at 13:30 local time; therefore, model simulations corresponding to 818 

this time are utilized here for comparison over the study area. After smoothing the model 819 

concentrations using the a priori and averaging kernel matrix, as detailed in Section 3.4, the 820 

results wereare compared with the corresponding TROPOMI products. 821 

 822 

In the troposphere, oxides of nitrogen oxides (NOx= = NO+NO2) + NO₂) are crucialvital 823 

for the mechanisms of ozone production and depletion processes in the presence of sunlight. 824 

Due to their shorterrelatively short lifespan, theirNOx concentrations are primarilyclosely 825 

linked to emission sources. As a result, NOx is more susceptible, making them highly sensitive 826 

to inaccuracies in emission estimates compared to other criteria pollutants. In our model setup, 827 

we adopt the recommendation of Emmons et al. (2010), assigning 10% of NOx emissions as 828 

NO₂. As a result, the model tends to underestimate TROPOMI NO₂ levels, particularly in 829 

regions with high emission sources, such as urban centres. The Environment Agency – Abu 830 

Dhabi (2018) reported that oil and gas, road transport, and electricity generation are the primary 831 



 

33 

sectors contributing to NOx total emissions, accounting for 42%, 34%, and 13%%, 832 

respectively, for the base year of 2015 in the Emirate of Abu Dhabi. In Fig. 5,2 presents the 833 

average spatial distributions of both absolute differences between the model-simulated and the 834 

TROPOMI-retrieved tropospheric column NO2 are presented. Additionally, the spatial 835 

discrepancies between simulated and retrieved columns are illustrated by absolute differences 836 

(see third row) and, scatter plots between the two datasets are depicted (see fourth row) for 837 

June (left) and December (right) 2018 across the study region., and histograms of relative 838 

frequency. The satellite retrievals indicatedindicate elevated levels of NO2 columncolumns, 839 

exceeding 12x10155x1015 molecules/cm2, in densely populated and industrial areas and the 840 

adjacent regionsto the major cities of Dubai and Abu Dhabi in both summer and winter. (Fig. 841 

S4). Conversely, lower NO2 values, less than 1.5x1015 molecules/cm2, wereare observed over 842 

the less urbanized areas. The higher columns are associated with significant economic 843 

development driven by a high demand in power generation and water desalination projects, 844 

which primarily depends on the combustion of fossil fuels in big cities like Dubai and Abu 845 

Dhabi (Abuelgasim & Farahat, 2020; Li et al., 2010). The model effectively 846 

reproducedreproduces the spatial distributions of NO2 during the summer and winter of 847 

20182022 as depicted in Fig. 5. Although, the model overestimation is close to zero2. Even 848 

though the biases are positive in rural areas, it can be as high as 1016the observed column NO2 849 

concentration is underestimated by up to 2x1015 molecules/cm2 in areas of high pollution, 850 

specifically over Dubai and Abu Dhabi. Conversely, it underestimates up to 1016 851 

molecules/cm2 in the the heavily populated north-eastern UAE, in particular around Ras Al 852 

Khaimah emirate;and Dubai (Fig. 2a) the sixth-largest city by population in the country and 853 

home to thea global ceramic manufacturing company, RAK Ceramics. This observation is not 854 

unexpected, as urban and industrial areas frequently report elevated pollutant emissions 855 

stemming from urban activities, which are significantly high and present challenges that 856 

models often struggle to accurately capture these changes.. This discrepancy also suggests that 857 

anthropogenic and industrial emissions might be improperly represented in the EDGAR 858 

emission inventory., at least for the UAE. Challenges range from the incomplete 859 

characterization of emissions in source regions to the impact of model resolution on capturing 860 

sub-grid emission sources. Besides deficiencies in the emission sources, other reasons may 861 

explain the model's underperformance in this region. Additionally,  Hoshyaripour et al.,. (2016) 862 

found that the PBL is shallower and more stable at night when simulated with the YSU 863 

boundary layer scheme used in the WRF-Chem runs, resulting in a higher accumulation of 864 

NOx in the surface layers. Such insights were constrained in the present model As the 865 
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evaluation, which conducted here against satellite observations is primarily focusing on 866 

temporal variability of gaseous pollutants on a daily basis, and did not encompass diurnal 867 

variations. Incorporating these diurnal variations, an incorrect representation of the 868 

atmospheric dynamics will be reflected in future model simulations over this region may 869 

enhance the assessment's accuracythe WRF-Chem predictions. Additionally, the existing 870 

model configuration does not include the formation of secondary aerosols in its simulations, 871 

indicating a potential area for improvement in future versions. Additionally, theThe absence of 872 

a vertical distribution of anthropogenic emissions in the model simulations also plays a pivotal 873 

role in these model discrepancies. The satellite retrieved TROPOMI-NO2 averaged for the 874 

UAEd03 is 0.211.1 x 10161015 molecules/cm2 in summer and 0.241.03 x 10161015 875 

molecules/cm2 in winter. The, with the corresponding model simulated column is 876 

0.46concentration of 1.6 x 10161015 and 0.431.2 x 10161015 molecules/cm2, respectively. The 877 

model demonstrated a strongmoderate correlation with satellite-derived NO2 column 878 

measurements, achieving correlation coefficients of 0.9559 for summer and 0.9458 for winter 879 

(refer to Table 52). It showed a slight tendency tended to overestimate NO2 levels more in 880 

summer, with a discrepancy of 0.245 x 1015, compared to 0.192 x 1015 molecules/cm2 in winter. 881 

Moreover, the evaluation shows RMSE values of 0.12 x 1015 to 0.121 x 1015 molecules/cm2 882 

and MAE values of 0.207 x 1015 to 0.255 x 1015 molecules/cm2 during the seasons. The 883 

frequency distributions in Fig 2(c) and (f) illustrate the differences in NO₂ concentrations 884 

between the WRF-Chem model and TROPOMI observations during summer and winter, 885 

respectively. In panel 2(c), the distribution of differences is entirely positive, indicating that 886 

the WRF-Chem model consistently overestimates NO₂ concentrations compared to TROPOMI 887 

observations for the summer of 2022. In contrast, Fig. 2(f) shows both positive and negative 888 

differences, indicating that the WRF-Chem model exhibits a mix of overestimations and 889 

underestimations of NO₂ concentrations in winter, although the majority of differences are still 890 

positive. This suggests a more variable alignment between WRF-Chem and TROPOMI-NO₂ 891 

in winter, with a general tendency toward overestimation but occasional instances of 892 

underestimation. 893 
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 895 

Figure 5: Evaluation of WRF-chem against satellite-derived NO2: average spatial pattern of 896 

tropospheric column NO2 (mole. /cm2) obtained from TROPOMI satellite (1st row), simulated by WRF-897 

Chem (2nd row), corresponding absolute difference (model minus TROPOMI) (3rd row) and scatter plots 898 

between two daily data sets (4th row) during (a) June and (b) December in 2018. 899 
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Figure 2: Evaluation of WRF-chem against satellite-derived NO2: The average difference 

between tropospheric column NO2 (mole/cm²) from the TROPOMI satellite and simulated by WRF-

Chem, for (a) June and (d) December 2022. (b)-(e) and (c)-(f) are as (a) and (d) but showing scatter 

plots and histograms of the differences, respectively. 

 900 

In Fig. 63, the average spatial distributionsassessment of boththe model-simulated and 901 

TROPOMI-retrieved total CO column are CO and the corresponding TROPOMI-retrieved 902 

values is presented. Also, the absolute difference of WRF-Chem simulations with TROPOMI-903 
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CO is depicted along with scatter plots between them during summer and winter of 2018 over 904 

UAE. The statistical metrics comparing these datasets are provided in Table 5.2. Fig. S5, shows 905 

the comparison of total column CO concentrations over the domain as observed by the 906 

TROPOMI satellite and simulated by the WRF-Chem model (. Panels (a) and (c) display 907 

TROPOMI-CO for summer and winter, showing spatial variations in CO concentration across 908 

the region. High concentrations, particularly over the northern areas, while lower 909 

concentrations found the southern areas. Panels (b) and (d) illustrate corresponding WRF-910 

Chem CO simulations for the same periods, providing a model-based estimate of CO 911 

distribution. The WRF-Chem model appears to capture the general spatial patterns observed 912 

by TROPOMI, though there may be some discrepancies in the intensity and precise locations 913 

of high CO concentrations. This comparison highlights areas where the WRF-Chem model 914 

aligns well with satellite observations and regions where further adjustments in model 915 

parameters may be necessary to better replicate observed patterns. The TROPOMI-retrieved 916 

CO columns display values of 1.8792 x 1018 and 1.8979 x 1018 molecules/cm2 for summer and 917 

winter, respectively. In contrast, the simulated columns showcolumn values are of 2.351.93 x 918 

1018 for summer and 0.761.91 x 1018 molecules/cm2 for winter. Thus, comparing WRF-Chem 919 

and TROPOMI-CO data reveals more pronounced discrepancies, with a minor overestimation 920 

of 0.4802 x 1018 molecules/cm2 in summer and a significant underestimation of 1.130.12 x 1018 921 

molecules/cm2 in winter.  Shami et al.,. (2022) discovered found that the EDGAR emissions 922 

inventory underestimates CO emissions when compared to Lebanon's national emission 923 

inventory, identifying the road transport sector as the primary source of CO emissions. 924 

Consequently, EDGAR's estimates for CO emissions are lower than those provided by Waked 925 

et al.,. (2012) for the same region. The Environment Agency – Abu Dhabi (2018) reported that 926 

the road transport sector is the primary source of CO emissions in Abu Dhabi, accounting for 927 

74% of the total CO emissions. Additionally, the industrial sector contributes 21% to the total 928 

CO emissions. Kumar et al. (2022) observed an underestimation of CO by the WRF-Chem 929 

model, attributing it to an inaccurate representation of anthropogenic emissions on the vertical 930 

scale., not represented in the current WRF-Chem simulations as noted for NO2. This could 931 

result in a more rapid deposition of CO molecules at the surface, thereby leading to the 932 

observed underestimation. In the summer months, the underprediction of the column CO over 933 

coastal areas, in particular around the major urban centers, and the overprediction over inland 934 

regions suggests deficiencies in the representation of the atmospheric flow (e.g., a too strong 935 

onshore flow), coupled with the aforementioned biases in the emission inventory. In contrast, 936 
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in winter the biases are positive, and probably more strongly linked to chemistry than to 937 

meteorological dynamics. 938 

The model output correlates reasonably well with TROPOMI-CO with ra correlation 939 

coefficient of 0.7182 and 0.86 while40 and an RMSE of 0.04 to 0.0203 x 1018 and 0.04 x 1018 940 

molecules/cm2 in summer and winter, respectively (Table 5).2). The frequency distribution in 941 

Fig. (c) shows most differences, with a slight positive skew, suggesting a tendency for the 942 

WRF-Chem model to slightly overestimate CO concentrations compared to TROPOMI 943 

observations for summer. In bothcontrast, Fig. (f) displays a broader distribution with a more 944 

pronounced positive skew, indicating larger and more variable overestimations by WRF-Chem 945 

in winter. In winter seasons, the lower correlation coefficients and higher biases for 946 

TROPOMI-CO as compared to TROPOMI-NO2 suggest a less robust linear relationship 947 

between the TROPOMI and WRF-chem CO levels. This variation in performance might be 948 

attributed to the complexities inherent in modellingmodeling and observing CO distributions, 949 

which can be influenced by local emission sources, atmospheric chemistry, and transport 950 

processes can influence. These findings are consistent with research conducted in India, where 951 

Dekker et al. (2019) reported a correlation of 0.81 between TROPOMI and WRF-Chem CO 952 

levels during a high pollution episode duringin November 2017. Similarly, in East Asia, Zhang 953 

et al. (2016a) documented correlations between WRF-Chem simulated and the Measurements 954 

of Pollution in the Troposphere (MOPITT )-retrieved CO columns, with a r-value of 0.59 and 955 

RMSE of 4.6 x 1017 molecules/cm2 for summer, and 0.69 with RMSE of 5.2 x 1017 956 

molecules/cm2 for winter, respectively. 957 

 958 
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Figure 3: Evaluation of WRF-Chem against satellite-derived CO: Same as Fig. 2 but for the total 

column of CO. 
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Figure 960 

 961 

Figure 6: Evaluation of WRF-Chem against satellite-derived CO: Same as Fig. 5 but for total 962 

column of CO 963 

We S6 presents the spatial distribution of tropospheric ozone concentrations over the UAE 964 

as observed by TROPOMI (TROPOMI-O3) and simulated by the WRF-Chem model during 965 
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the summer and winter of 2022. In Figures S5 (a) and (b), TROPOMI shows varying O₃ 966 

concentrations with higher values, particularly along the northern coastal regions, where 967 

concentrations reach up to 20 DU. Similarly, WRF-Chem demonstrates a comparable spatial 968 

pattern, with elevated O₃ concentrations in the same regions, reaching up to 40 DU, indicating 969 

that the model captures the general distribution observed by TROPOMI. In Figure S5 (c), 970 

representing winter, TROPOMI exhibits a different distribution pattern, with overall lower O₃ 971 

concentrations compared to summer. The WRF-Chem simulation in winter also conducted a 972 

shows a broader distribution of O₃, with concentrations reaching up to 25 DU. While the WRF-973 

Chem model aligns reasonably well with TROPOMI observations, discrepancies in 974 

concentration levels highlight both the model’s ability to replicate seasonal variations and areas 975 

where improvements may be needed, especially in the winter months. The comparison of the 976 

WRF-Chem simulated tropospheric ozone levelscolumns with the TROPOMI-retrieved total 977 

columns (TROPOMI-O3), as) is illustrated in Fig. 7. This figure also presents both the absolute 978 

differences (3rd row) and scatter plots (4th row) between the two datasets for both seasons.  The 979 

4, with the statistical comparisons between these datasets are detailed in Table 52. The 980 

TROPOMI-O3 columns show higher values in summer, at 7.85 x 1018 molecules/cm216.6 DU, 981 

and lower values in winter, at 13.4 DU, which is attributed to increased photochemical activity 982 

during the summer months (Reddy et al., 2012; Coates et al., 6.25 x 1018 molecules/cm2.2016; 983 

Badia & Jorba, 2015; Abdallah et al., 2018; Baldasano et al., 2011) The WRF-Chem 984 

simulations closely matchshow these variations, with values of 7.70 x 1018 molecules/cm232.8 985 

DU for summer and 6.06 x 1018 molecules/cm224.8 DU for winter, respectively. Therefore, 986 

model output is strongly correlated to the TROPOMI-O3 columnscolumn concentration, with 987 

a correlation coefficient of r=0.8278 and 0.93 while83 and an RMSE (MAE) of 1.4 and 988 

1.0.01(0. DU (15.9 and 0.20 x 1018 molecules/cm211.2 DU) during summer and winter, 989 

respectively. Many studies commonly report higher ozone concentrations in the summer and 990 

lower concentrations in the winter, a phenomenon primarily attributed to increased 991 

photochemical activity during the summer months (Reddy et al., The WRF-Chem 2012; Coates 992 

et al., 2016; Badia & Jorba 2015; Abdallah et al. 2018; Baldasano et al. 2011). The WRF-Chem 993 

model systematically underestimatesoverestimates ozone levels, with 0. by 15 and 0.20 x 1018 994 

molecules/cm2 both seasons.9 and 11.2 DU in summer and winter, respectively. The frequency 995 

distribution in Fig. 4(c) represents the differences between WRF-Chem and TROPOMI-O₃ 996 

concentrations during the summer, showing that they are more pronounced with a positive 997 

skew. This indicates a consistent tendency for the WRF-Chem model to overestimate O₃ 998 

concentrations compared to TROPOMI observations in summer. Similarly, Fig. 4(f) displays 999 
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a frequency distribution for winter with a positive skew and narrower spread, highlighting that 1000 

WRF-Chem also tends to overestimate O₃ concentrations compared to TROPOMI during this 1001 

season, although with less variability in the overestimations. Therefore, the WRF-Chem model 1002 

systematically overestimates O₃ concentrations throughout the year, with a slightly more 1003 

consistent bias observed in winter. Hu et al.,. (2021) highlighted that the substantial influence 1004 

of meteorological factors have a considerable effect on ozone production, noting from studies 1005 

in China that temperature, relative humidity, and sunshine duration significantly influence 1006 

ozone concentrations play significant roles in descending order of importance. They also noted 1007 

that strongStrong solar radiation and elevated temperatures could enhance photochemical 1008 

reactions, thereby increasing ozone formation. In comparison with ERA-5 data (Fig. S1) and 1009 

station data (Table S2), the colder temperatures observed in WRF-Chem, particularly in winter 1010 

months when tropospheric column O₃ biases are less positive (Table 2), may explain the 1011 

overestimation of O₃ concentrations in the model. Zhang et al.,. (2020) pointed out found that 1012 

low wind speeds and high atmospheric pressure can impede the hinder pollutant dispersion and 1013 

dilution of pollutants, which in turn can lead to higher, leading to ozone accumulation, while . 1014 

Lu et al.,. (2019) observed that high humidity conditions, with increased can deplete O₃ through 1015 

interactions with water vapor, could cause more significant chemical depletion of O3, as water 1016 

vapor interacts with excited ozone molecules to produce  and the production of OH radicals. 1017 

Hence, the meteorological conditions are conducive to ozone formation in the model but are 1018 

insufficient to fully account for WRF-Chem's negative RH2m bias against in situ 1019 

measurements in both summer and winter (Tables S2 and S3), combined with temperature 1020 

biases, may contribute to the model's significance underprediction of O3. Sillman, (1999) 1021 

demonstrated the ozone formation potential by its precursors being highly nonlinear rather than 1022 

linear. Ozone formation can be either NOx-sensitive, meaning O3 formation increases with an 1023 

increase in NOx concentration, or VOC-sensitive, where O3 formation increases with an 1024 

increase in VOC concentration. However, Geng et al., (2007) observed that high NOx 1025 

concentrations in urban environments result in reduced OH radical levels, consequently 1026 

decreasing ozone production, as loss of OH is evidenced by the chemical reaction NO2 + OH 1027 

-> HNO3. This observation is consistent with model simulations showing increased NO2 levels 1028 

but markedly lower ozone concentrations at an urban area in the UAE, illustrating the 1029 

significant impact of NOx on urban ozone formation. However, drawing such conclusions 1030 

requires careful analysis of model simulations, suggesting that future work, particularly in the 1031 

refinement of WRF-Chem evaluations, is essential.overprediction of O₃. Further exploration of 1032 

these chemical interactions would require additional sensitivity analyses beyond this study's 1033 
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scope. Future simulationswork should not only critically assess these findings but also aim to 1034 

improvefocus on refining model fidelity by enhancingimproving the representation of chemical 1035 

processes and emissions. Adopting this approach will lead to more precise forecasts and a more 1036 

profound grip of atmospheric chemistry, thereby enhancing to enhance air quality projections 1037 

and fostering a more detaileddeepen our understanding of regional pollution patterns over this 1038 

region. 1039 

The disparities between WRF-Chem and TROPOMI data highlight the intrinsic challenges 1040 

in air quality monitoring and prediction. WRF-Chem's limitations may stem from its 1041 

dependency on emissions inventories, meteorologicalwhich, as noted above, can have 1042 

significant discrepancies compared to actual emissions, uncertainty in the meteorological 1043 

forcing data, and the representation of atmospheric chemistry. TROPOMI, while offering high-1044 

resolution satellite observations, is subject to constraints related to retrieval algorithms and the 1045 

influence of atmospheric conditions on measurement accuracy. Liu et al.,. (2022) identified 1046 

that uncertainties in column observations stemarise from the challenges in differentiating 1047 

between stratospheric and tropospheric contributions, as well as and uncertainties in the 1048 

tropospheric air mass factor and its spectral fitting. The integration ofIntegrating model 1049 

predictions with satellite observations, alongside ground-based measurements, is crucial for 1050 

enhancing our understanding of air quality dynamics and improving predictive capabilities. 1051 

This synergistic approach can help mitigate biases, enhance accuracy, and provide a more 1052 

comprehensive view of atmospheric pollutants' distribution over this region. 1053 

 1054 
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 1055 

Figure 7: Evaluation of WRF-Chem against satellite-derived O3: Same as Fig. 5 but for total column 1056 

of ozone. 1057 

 1058 

 1059 
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Figure 4: Evaluation of WRF-Chem against satellite-derived O3: Same as Fig. 5 but for total 

column of ozone. 

 1060 

Table 52: Statistical verification scores for evaluation against TROPOMI measurements: skill 1061 

scores between TROPOMI columns (mole. /cm2), tropospheric column NO2 (TROPOMI-NO2), total 1062 

column carbon monoxide (TROPOMI-CO) and total), tropospheric column ozone (TROPOMI-O3) and 1063 

MODIS AOD with corresponding WRF-chem simulated columns during June and December of 1064 
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20182022 over UAE. MeansThe first two columns show the model and satellite monthly-mean values, 1065 

with the other four giving the MB, MAE and RMSE are given in units of (x1015 mole. / cm2 for 1066 

TROPOMI-NO2. and CO and in DU for O3 1067 

 1068 

Parameter Month MOD SAT MB MAE R RMSE 

NO2 

(x1016x1015) 

June 0.461.6 0.211.1 0.2550 0.2574 0.9559 0.1016 

Dec 0.431.2 1.0.24 0.1918 0.2054 0.9458 0.1215 

O3   39.6 19.3 20.0 20.0 0.53 1.70 

  33.1 17.3 15.4 15.4 0.69 1.62 

O3CO 

(x1018) 

  7.701.9

3 

7.851.9

2 

-0.1502 0.1503 0.82 0.0103 

  6.061.9

1 

6.251.7

9 

-0.212 0.2012 0.9340 0.0104 

CO 

(x1018)AOD 

  2.350.8

5 

1.870.5

4 

0.483 0.4832 0.7165 0.0422 

  0.7628 1.890.2

8 

-

1.130.0 

1.130.1

1 

0.8630 0.0213 

 1069 

4.3 Model performance with respect to AOD 1070 

4.3.1 AERONET 1071 

The analysis of daily mean AOD at Mezaira for June 2022 (Fig. 5(a)) and DEWA for 1072 

December 2022 (Fig. 5(b)) reveals the model tends to overestimate the observed AOD values, 1073 

in particular in the summer month when it is the highest (Nelli et al. 2020, 2022). In June at 1074 

Mezaira, the AERONET AOD shows a steady increase from around 0.5 to approximately 1.0 1075 

by the end of the month, which is in line with the expected build-up of aerosols with the annual 1076 

maxima typically occurring in July (Nelli et al., 2022). The WRF-Chem model captures this 1077 

upward variation but consistently overestimates the observed AOD, especially toward the end 1078 
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of the month. This overestimation is highlighted by the MB of 0.46. The general overestimation 1079 

of the observed wind speed concerning ground-based measurements (Tables S2 and S3; Fig. 1080 

S1) can at least partially explain this bias, together with an incorrect representation of the 1081 

particle size distribution and hence the sedimentation rates, leading to excessive amounts of 1082 

suspended dust (Ukhov et al., 2021; Parajuli et al., 2023). The moderate correlation coefficient 1083 

(r = 0.60) suggests that the model’s day-to-day variability reasonably follows that observed. 1084 

This is expected, as dust lifting in the warmer months is mainly associated with the Shamal 1085 

winds (Yu et al., 2016), which are fairly well represented in the model. Conversely, at DEWA 1086 

in December (Fig. 5(b)), the observed AODs are lower, fluctuating between 0.2 and 0.3, 1087 

indicative of the season’s lower aerosol concentrations (Nelli et al., 2020). The WRF-Chem 1088 

model again follows the observed variation but shows occasional significant overestimations, 1089 

most notably on December 10th, where simulated AOD spikes to 1.6, far exceeding the 1090 

observed AODs. Dust lifting in the colder months is typically associated with the passage of 1091 

mid-latitude weather systems (Nelli et al., 2022), which the WRF model does not fully 1092 

reproduce, in particular with respect to its timing (Temimi et al., 2020b; Taraphdar et al., 2021). 1093 

This discrepancy is reflected in the weak correlation coefficient (r = 0.16) and the MB of 0.05. 1094 

The overestimation of the near-surface wind speed at the location of the airport stations (Table 1095 

S2) and the WISE-UAE site (Table S3) is also in line with the higher amounts of atmospheric 1096 

dust in the model. Fig. 5 shows that, while the WRF-Chem model demonstrates the ability to 1097 

capture seasonal variations in AOD, it tends to overestimate AOD levels in both summer and 1098 

winter months, suggesting a need for calibration of the aerosol parameterization scheme in the 1099 

model or the emissions input. This comparison highlights the model's potential and limitations 1100 

in simulating the UAE-specific aerosol conditions, as well as where research is needed to 1101 

optimize the model performance. 1102 

 1103 
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Figure 5: Evaluation of WRF-Chem against AERONET AOD: Daily mean Aerosol Optical 

Depth (AOD; dimensionless) from WRF-Chem simulations (red) and AERONET 

observations (blue) at Mezaira during June 2022 (a) and Dewa during December 2022 (b). 

The lines give the daily mean values and the error bars show one standard deviation from the 

mean computed using the hourly values. The correlation (r) and mean bias (MB) are given 

in the plot. 

 1104 

4.3.2 MODIS 1105 

The comparison between WRF-Chem simulated and MODIS AOD (MOD-AOD) is 1106 

depicted in Fig. 6, with the statistical comparisons summarized in Table 2. The satellite-derived 1107 

MOD-AOD values follow the same seasonal cycle as the ground-based AERONET 1108 

observations: they are higher in the summer, averaging 0.54, and lower in winter, averaging 1109 

0.28, reflecting the annual cycle in aerosol loading in the region (Nelli et al., 2020). The WRF-1110 

Chem simulations capture these seasonal variations, with corresponding AODs of 0.85 in 1111 

summer and 0.28 in winter. The model AOD demonstrates moderate correlation with MODIS 1112 

AOD, yielding correlation coefficients of 0.65 for summer and 0.30 for winter, similar to the 1113 

ones with respect to the AERONET AOD, indicating the satellite-derived and ground-based 1114 

AOD estimates are in close agreement, which has been noted by Nelli et al. (2020). The WRF-1115 

Chem model systematically overestimates AOD by 0.31 in summer, a similar (albeit of a 1116 

smaller magnitude) bias with that respect to the AERONET station (Fig. 5(a)), while slightly 1117 

underestimating by 0.004 in winter. 1118 

 1119 
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For June, WRF-Chem generally overestimates AOD compared to the MODIS’ estimates, in 1120 

particular over the southern and central UAE, as shown in the spatial distribution of the 1121 

difference between them (Figs. 6(a)-(c)). The frequency distribution shows most differences 1122 

clustering around zero, with a slight positive skew, reinforcing the model's overestimation 1123 

tendency for this month. Stronger wind speeds and an incorrect representation of the dust 1124 

physical and optical properties can explain the model bias. In contrast, in December there are 1125 

more balanced results, with WRF-Chem showing a closer alignment with MODIS AOD on 1126 

average. The spatial distribution of the model bias displays areas in the central and southern 1127 

UAE where the MODIS AOD exceeds the WRF-Chem values, with anomalies of the opposite 1128 

sign over the Arabian Gulf and parts of the Al Hajar mountains in Oman. Mostamandi et al. 1129 

(2023) showed that, over the Arabian Gulf and in the WRF-Chem model, the dust deposition 1130 

rates decrease away from the coastlines, with coastal UAE having lower deposition rates than 1131 

inland sites. Excessive dust deposition over the Rub Al Khali Desert is consistent with a clearer 1132 

atmosphere closer to the coastlines in the model when compared to the MODIS measurements. 1133 

The positive bias over the Arabian Gulf can be attributed to higher amounts of dust transported 1134 

upstream by north-westerly winds and/or reduced dust deposition over the water in WRF-1135 

Chem. The frequency distribution in December shows a balanced spread around zero, 1136 

suggesting a more accurate seasonal fit than in June. These findings, together with those in Fig. 1137 

5 with respect to the AERONET station observations, underscore the influence of seasonal 1138 

atmospheric conditions on WRF-Chem’s performance and suggest the need for seasonal 1139 

adjustments in the aerosol parameterization to improve model accuracy in capturing the UAE’s 1140 

unique aerosol dynamics. 1141 

 1142 
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Figure 6: Evaluation of WRF-Chem against MODIS AOD : Same as Fig. 2 but for the 

MODIS AOD. 

 1143 

4.4. Aerosol influence on Ozone 1144 

Tropospheric or surface ozone (O₃) is one of the most significant greenhouse gases after 1145 

carbon dioxide (CO₂) and methane (CH₄) (Ehhalt and Prather, 2001). It plays a critical role in 1146 

the Earth's radiation budget, contributing to an increase in radiative forcing of up to 0.47 W/m² 1147 



 

51 

and accounting for 3-7% of global warming (Gauss, 2003; Ehhalt and Prather, 2001). Elevated 1148 

O₃ levels in the atmospheric boundary layer are toxic and can significantly impact human health 1149 

and vegetation (Adams et al., 1989). The interactions between reactive gaseous pollutants and 1150 

aerosols are a major focus in the development of air quality and climate models. Aerosols, 1151 

through scattering and absorption of solar radiation, influence photolysis rates and can either 1152 

increase or decrease the formation of O₃ and its precursors (He and Carmichael, 1999). Studies 1153 

have shown that aerosols impact ozone production and loss by altering photolysis frequencies 1154 

(Dickerson et al., 1997; Jacobson, 1998). For example, Li et al. (2011) used an air quality model 1155 

to evaluate the changes in photolysis frequencies caused by sulfate, nitrate, ammonium, and 1156 

mineral dust aerosols in central and eastern China, finding a 5.4% decrease in daily average 1157 

surface ozone concentrations. Similarly, Lou et al. (2014) found that aerosols reduced annual 1158 

mean photolysis frequencies, j(O¹D) and j(NO₂), by 6–18% in polluted eastern China, resulting 1159 

in reductions of up to 0.5 ppbv in O₃ during spring and summer, using a global chemical 1160 

transport model. Attributing ozone levels to a specific source region is particularly challenging, 1161 

as ozone concentrations are influenced by various processes, including stratosphere-1162 

troposphere exchange, significant hemispheric background levels, dominant local emissions, 1163 

and complex photochemical reactions involving multiple trace gases (Fiore et al., 2003). 1164 

Therefore, it is crucial to understand the impact of aerosol feedback on surface ozone in the 1165 

UAE, a region with high aerosol loading in the Arabian Peninsula.  1166 

From Fig. 4 and the discussion in section 4.2, it is evident that ozone levels are higher during 1167 

the summer season, which coincides with a dominance of aerosols over the UAE. In order to 1168 

better understand the impact of aerosols on ozone concentrations, we conducted a simulation 1169 

in which all aerosol components in the WRF-Chem model are turned off (No aerosol + radiative 1170 

feedback on), simulating an aerosol-free atmosphere over the UAE. This simulation is 1171 

conducted alongside a control simulation (All aerosol + radiative feedback on)  in which all 1172 

aerosol processes are included, both for June 2022. The results of these simulations, comparing 1173 

the scenarios with and without aerosols, are presented in Fig. 7 and highlight the influence of 1174 

aerosols on ozone formation and spatial distribution in the region. This analysis focuses on 1175 

daytime hours (04-12 UTC) and non-daytime hours (13-03 UTC) to delve deeper into ozone 1176 

dynamics, as ozone production predominantly occurs during the daytime compared to non-1177 

daytime hours. Figs. 7 (a)-(b) shows the ozone distribution with and without aerosols during 1178 

the daytime hours (04-12 UTC; 08-16 LT). Both panels depict higher ozone concentrations over 1179 

the northern regions, with a clear gradient decreasing towards the south-eastern areas during 1180 
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daytime hours. The influence of aerosols on ozone production is evident in areas where the 1181 

ozone levels are slightly elevated, suggesting that aerosols contribute to ozone production/loss 1182 

under daytime conditions based on the nature of the aerosols. Fig. 7 (c) highlights the difference 1183 

in ozone concentrations between simulations with and without aerosols for daytime hours. The 1184 

difference shows localized areas of positive and negative changes, indicating regions where 1185 

aerosols either enhance or suppress ozone levels. Notably, over the northern areas, particularly 1186 

in oceanic regions where the ozone concentrations are the highest, the differences are generally 1187 

positive, reflecting a positive feedback of aerosols on ozone production, particularly over the 1188 

Arabian Gulf. On the other hand, over land areas, where the ozone is lower, the lower 1189 

photolysis rates may limit ozone production. Therefore, the impact of aerosols on ozone varies 1190 

based on their origin, such as dust events. These aerosols can have anthropogenic, natural, or 1191 

marine origins (Filioglou et al., 2020; Nelli et al., 2021).  Aerosols significantly influence 1192 

surface ozone through atmospheric chemical and physical processes. Depending on their 1193 

nature, aerosols can either increase or decrease ozone levels, as observed in various studies 1194 

(Gao et al., 2023; Shi et al., 2022). As noted in studies such as Wang et al. (2019), Mukherjee 1195 

et al. (2020), and Qu et al. (2021), the reduction in the incoming shortwave radiation flux will 1196 

hinder the generation of ozone, as well as an increase in the NO/NO2 ratio, which can happen 1197 

when the pollutants’ concentration increases in a shallower boundary layer. On the other hand, 1198 

higher amounts of CO and NO2 will promote the production of ozone.  1199 

Fig. 7 (d) and (e) illustrate ozone concentrations with and without aerosols for the remaining 1200 

hours (non-daytime). The patterns are largely similar to those observed during the daytime, 1201 

except over urban areas where the ozone concentration is much reduced owing to the lack of 1202 

in situ generation due to the absence of sunlight and underestimation of ozone precursor 1203 

concentration. Fig. 7(d) shows slightly higher concentrations than Fig. 7(e), suggesting that 1204 

aerosols continue to have an impact on ozone production, albeit less pronounced, during non-1205 

daytime periods. Fig. 7(f) presents the difference in ozone concentrations between simulations 1206 

with and without aerosols for the non-daytime hours. The spatial distribution of positive and 1207 

negative differences follows a similar pattern to that observed during the daytime hours, though 1208 

the magnitudes are generally larger. This suggests that ozone advection from upstream sources 1209 

may play a role. Additionally, marine aerosols can contribute to ozone production through their 1210 

nature. 1211 

 1212 
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Figure 7: Ozone (O3) Sensitivity Simulations: Spatial distribution of surface ozone 

concentrations (ppb) simulated by the WRF-Chem model with (a) and without (b) aerosols 

over the UAE for specified daytime hours during June 2022. (d)-(e) are as (a)-(b) for the 

remaining hours. Panels (c) and (f) illustrate the difference (%) in ozone concentrations (with 

aerosols minus without aerosols) during daytime hours and the remaining hours, 
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respectively. The 10-m wind vectors (m/s) are overlaid on each plot, indicating the wind 

patterns influencing the ozone distribution. 

 1213 

5. Conclusions 1214 

This study rigorously evaluates the performance of the Weather Research and Forecasting 1215 

model coupled with chemistry (WRF-Chem). The model ability to simulate) in simulating 1216 

meteorological parameters and gaseousair pollutants over the United Arab Emirates (UAE) is 1217 

assessed during June and December 2018 to reflect2022, representing contrasting summer and 1218 

winter conditions. The modelmodel's performance is assessed through comparisoncomparisons 1219 

with ground-based observations and ERA-5 reanalysis data for meteorological parameters, 1220 

andas well as AERONET, TROPOMI, and MODIS satellite observations for gaseousair 1221 

pollutants.   1222 

 1223 

We evaluated WRF-Chem model's accuracy in simulating meteorological parameters, in 1224 

particularparticularly 2-meter temperature (T2m), 10-meter wind speed (WS10m), and solar 1225 

radiation (SR),2-meter relative humidity (RH2m) across 167 locations in the UAE. The model 1226 

generally underestimates overestimates T2m in summer by less than 0.52 °C and overestimates 1227 

underestimates it in winter by less than 1.3 °C, with correlation coefficients ranging from 0.7 1228 

to 0.985 among the stations. WRF-chemThis is comparable performance for WS10m and SR 1229 

has shown high scores, indicating enhanced accuracy acrosswith compared to that reported 1230 

studies (e.g., Branch et al., 2021; Temimi et al., 2020b), reflecting the locations. Regionally, it 1231 

slightly underpredicts T2madded value of explicitly predicting chemistry fields in summer (by 1232 

0.37 °C for land and 0.48 °C for marine) mainly due to colder nights, and overestimates in 1233 

winter (by 0.76 °C for land and 1.30 °C for marine), both with strong correlations above 0.83. 1234 

Higher SR values in summer and winter, suggest reduced cloud cover and this aerosol loading 1235 

in WRF-Chem.-rich region. An incorrect representation of surface properties, such as the 1236 

albedo and surface emissivity, and deficiencies in the model physics and dynamics, may 1237 

explain the referred temperature biases. For WS10m, the model's bias is within ±1 m/s, and 1238 

correlation coefficients range between 0.78 and 0.890.5 m/s, indicating good agreement for 1239 

both land and marine areas. The tendency for the model to overestimate the observed wind 1240 

speed may arise from deficiencies in the surface drag parameterization scheme and an 1241 

underrepresentation of its subgrid-scale variability (Nelli et al., 2020). In any case, and as for 1242 
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air temperature, the magnitude of the biases is much smaller than that reported in other studies, 1243 

for which the wind speed biases exceed 3 m/s (Branch et al., 2021; Fonseca et al., 2020; Temimi 1244 

et al., 2020b). The dry bias noted in these studies, however, is also seen in the WRF-Chem 1245 

simulations, possibly arising from a drier soil, an incorrect representation of the mesoscale 1246 

(sea-/land-breeze) circulations, and a dry bias in the forcing data. The WRF-Chem model 1247 

evaluation against WISE-UAE measurements reveals a comparable performance to that seen 1248 

with respect to the airport stations w.r.t T2m, WS10m and RH2m. An evaluation against the 1249 

WRF-Chem values reveals the model overestimates the incoming shortwave radiation flux 1250 

(SW) by about 30 W/m2 for December, which can be attributed to reduced cloud cover, a 1251 

known WRF deficiency (Wehbe et al., 2019; Fonseca et al. 2020, 2022a). An inspection of the 1252 

diurnal cycle revealed the cold (typically by 2-3 °C) and dry (by about 20%) biases occur 1253 

mostly at night, when the wind speed in the model is higher than that observed, suggesting 1254 

increased advection of cooler and drier desert air into the site. 1255 

The comparison of ERA5 reanalysis data with WRF-Chem simulations revealed regional 1256 

variations in T2m, specifically underestimation in the UAE's southsouthern region and 1257 

overestimation in the north-west. The most significant differences were observed over the 1258 

Arabian Gulf region, especially during warmer months. These temperature discrepancies are 1259 

crucial for the land-sea breeze circulation, with higher Gulf temperatures potentially weakening 1260 

this pattern. This could lead to diminished transport of cleaner marine air inland, thereby 1261 

hindering pollutant dispersion over land and adversely affecting air quality and pollutant 1262 

distribution. western region. Statistical metrics for summer showsshow an 1263 

overestimationunderestimation of 0.081 °C and a correlation coefficient (r) of 0.97, while 1264 

winter's follows. In comparison, for winter a similar pattern is seen with an 1265 

overestimationunderestimation of 0.531 °C and a r value of 0.9892 over land mass region of 1266 

UAEthe domain. The fact that WRF-Chem performs well against in-situ data and ERA5 1267 

reanalysis with respect to air temperature is also an indication that the reanalysis dataset 1268 

performs well in this region., as noted by Fonseca et al. (2022b) and Nelli et al. (2024a). The 1269 

mean PBL from ERA5 is largely consistent with that from the WRF-Chem outputs, with both 1270 

data sets displaying a clear seasonal variation—increased PBL during summer and decreased 1271 

in winter, correlating with temperature changes. June's modelled PBL has a correlation of 0.91, 1272 

and December's correlation of 0.98 with ERA5.  1273 



 

56 

Regarding gaseous pollutants, both WRF-Chem and satellite data show higher TROPOMI-1274 

NO2 columns greater than 12x10155x1015 molecules/cm2 in urban and industrial regions such 1275 

as Dubai, Abu Dhabi, and Ras Al Khaimah emirate, and, reflecting emissions from economic 1276 

activities like power generation, water desalination, and industries. Lower concentrations of 1277 

less than (<1.5x1015 molecules/cm2) are noted in less urbanized areas. The WRF-Chem model 1278 

closely reproduces the TROPOMI-NO2 spatial patterns. However,, even though it 1279 

overestimates NO2tends to underestimate the observed concentrations in the Abu Dhabi region 1280 

and underestimates it in underestimate the north-eastern UAE. High, which has been tied to 1281 

deficiencies in the emission inventory. Moderate correlation coefficients (0.9559 in summer 1282 

and 0.9458 in winter) confirm the model's effectiveness in capturing NO2’s day-to-day 1283 

variability. The model shows minimal MB and high r values, indicating small discrepancies in 1284 

NO2 estimations. Moreover, the WRF-Chem underestimatesoverestimates the observed 1285 

TROPOMI-O3 columnscolumn, as indicated by negativepositive MB values of around 11-16 1286 

DU, yet maintains high correlation coefficients (0.8278 in summer and 0.9383 in winter), 1287 

suggesting accurate ozone concentration simulations. Colder and drier conditions, along with 1288 

deficiencies in the representation of the observed chemistry, particularly concerning the NOx 1289 

emissions linked to the O3 concentration, can explain the WRF-Chem biases. TROPOMI-CO 1290 

column simulations, howeveron the other hand, exhibit significant discrepancies in winter and 1291 

lower correlation coefficients (0.71 in summer and 0.86 in winter),, highlighting challenges in 1292 

accurately modelling CO levels. This Besides an incorrect emission inventory, discrepancies 1293 

in the representation of the atmospheric flow and its effect on the pollutant’s dispersion, can 1294 

explain the model performance. In summer, the analysis conducted here stresses the WRF-1295 

Chem model's strengths in simulating CO, NO2 and O3 columns with high fidelity to 1296 

TROPOMIwith respect to the TROPOMI’s observations, but also points out its limitations in 1297 

estimating CO columns accurately in winter.  1298 

Regarding aerosol optical depth (AOD) observed by AERONET stations and the MODIS 1299 

satellite, the WRF-Chem model generally tends to overestimate AOD, particularly during the 1300 

summer months. At Mezaira in June, AERONET data showed a steady increase in AOD, which 1301 

the WRF-Chem model captured but consistently overpredicted due to factors such as 1302 

overestimated wind speeds and inaccuracies in particle size distribution. In December at 1303 

DEWA, observed AOD levels were lower, and while the model followed the observed trends, 1304 

it occasionally produced large spikes, reflecting challenges in accurately capturing the effects 1305 

of mid-latitude weather systems. Correlation coefficients for AOD comparisons reveal 1306 



 

57 

moderate (0.60) to weak model performance depending on the season, influenced by dust 1307 

transport mechanisms. Comparisons with MODIS satellite-derived AOD similarly indicated 1308 

seasonal overestimations during the summer, with a closer alignment observed in winter. 1309 

Spatially, overestimations in southern and central UAE in June were linked to strong winds 1310 

and dust properties, while December results were more balanced. Biases over the Arabian Gulf 1311 

were attributed to dust transport and deposition dynamics. Overall, the findings indicate that 1312 

while the WRF-Chem model captures seasonal AOD variations, adjustments to aerosol 1313 

parameterization and dust representation are necessary to improve model accuracy. 1314 

This study also explores the impact of aerosols on surface ozone (O₃) in the UAE by altering 1315 

photolysis rates through the scattering and absorption of solar radiation. Using WRF-Chem 1316 

model simulations for June 2022, we compared scenarios with and without aerosols to assess 1317 

their influence. The results show higher ozone concentrations during daytime in northern 1318 

regions, with aerosols contributing to localized increases or decreases. Marine aerosols notably 1319 

enhance O₃ production over the Arabian Gulf, while lower photolysis rates limit ozone 1320 

formation over land areas. During non-daytime hours, aerosol influence continues but is less 1321 

significant, with urban areas experiencing reduced ozone levels due to limited photochemical 1322 

activity. Additional sensitivity simulations and in-situ observations are needed to validate these 1323 

findings further. 1324 

The WRF-Chem model exhibits satisfactoryenhanced capability in simulating key 1325 

meteorological parameters and gaseoussatisfactory performance in air pollutants over the 1326 

UAE, showcasing significant improvements in regional-scale dynamics. This is evidenced by 1327 

strong correlation coefficients, variable MB, RMSE and MAE values, andhigh skill scores with 1328 

respect to observational data, with a clear enhancementimprovement over previous research 1329 

outcomes, particularly during summer. This comprehensive assessment validates the model's 1330 

effectiveness and identifies potential areas for improvement in simulating gaseousair pollutant 1331 

concentrations across the hyper-arid and aerosol-rich UAE. The discrepancies between model 1332 

simulations and various observational data sets maylikely arise from improper emission 1333 

inventories, particularly anthropogenic emissions, model parameterizations, andwhich must be 1334 

optimized based on existing country-specific datasets. Other sources of uncertainty are model 1335 

parameterization schemes and the quality of the meteorological inputsand chemistry input data. 1336 

Integrating model predictions with satellite observations and ground-based measurements is 1337 

crucial for advancing air quality monitoring and enhancing the predictive accuracy of 1338 



 

58 

atmospheric pollutant distributions in the UAE. This collective approach aids in addressing 1339 

biases and improving the overall understanding of regional air quality dynamics. 1340 

 1341 
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freely available online: (i) ERA-5 reanalysis data is extracted from the Copernicus Climate 1348 

Change Service Climate Data Store (Hersbach et al. 2023a,b); (ii) Nitrogen Dioxide (NO2), 1349 
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measurements collected by the Tropopsheric Monitoring Instrument (TROPOMI) onboard the 1351 
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Operational Global Analysis meteorological data used to drive the WRF-chem simulations is 1354 

downloaded from the National Center for Atmospheric Research (NCAR) Research Data 1355 

Archive website  (NCEP/NWS/NOAA/USDC, 2000), with the chemistry data used to force 1356 
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