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Abstract.

The reduction of in situ observations in recent
::::::
in-situ

::::::::::
observations

::::
over

:::
the

:::
last

::::
few decades poses a potential risk of losing

crucial
::::::::
important

:
information in regions where local effects significantly shape their

:::::::
dominate

:::
the

:
climatology. Reanalyses

face challenges in examining
::::::::::
representing climatologies with highly localized effects, particularly

:::::::
localised

::::::
effects,

:::::::::
especially5

in regions with intricate
::::::
complex

:
orography. Empirical downscaling methods offer a cost-effective and easier to implement in

new areas alternative to dynamic downscaling methods
:::
and

:::
can

:::::::
partially

::::::::
overcome

:::
the

:::::::::::::
aforementioned

:::::::::
limitations

::
of

:::::::::
reanalyses

:::::
taking

::::
into

::::::
account

:::
the

:::::
local

::::::
effects

::::::
through

::::::::
statistical

:::::::::::
relationships. This article introduces RASCAL, an open-source Python

tool designed to address
:::::
extend

::::
time

:::::
series

::::
and

::
fill

:
gaps in observational climate data, especially in regions with limited long-

term data and significant local effects, such as mountainous areas.10

Employing an object-oriented programming style, RASCAL’s methodology effectively links large-scale circulation pat-

terns with local atmospheric features, using the analog method in combination with principal components analysis (PCA),

outperforming reanalysis in conveying climatic characteristics. .
:

The package contains routines for preprocessing observations and reanalysis data, generating reconstructions using various

methods, and evaluating the reconstruction’s performance in reproducing the time series of observations, statistical properties,15

and relevant climatic indices. Its high modularity and flexibility allows fast and reproducible downscaling. The evaluations

carried out in central Spain, near a mountainous area and an urbanized area
:
in
:::::::::::
mountainous

::::
and

::::::::
urbanized

:::::
areas, demonstrate

that RASCAL performs better than the ERA20C and ERA20CM reanalysis
::
as

::::::::
expected, in terms of R2, standard deviation,

and bias. This is particularly evident in the reconstruction of monthly total precipitation. It is worth noting that
:::::
When

::::::::
analyzing

::::::::::::
reconstructions

::::::
against

:::::::::::
observations,

:
RASCAL generates series with statistical properties, such as seasonality and daily distri-20

butions, that closely resemble observations, thus addressing the limitations of reanalysis biases. This addresses the limitations

of reanalysis biases and
:
.
::::
This confirms the potential of this method for conducting robust climate research. The adaptability of

RASCAL to diverse scientific objectives is also highlighted. However, there are challenges to consider, such as the requirement

for
:
as

::::
with

::::
any

::::
other

:::::::
method

:::::
based

::
on

::::::::
empirical

:::::::
training,

::::
this

::::::
method

:::::::
requires

:::
the

:::::::::
availability

::
of

::::::::::
sufficiently long-term data se-

riesand susceptibility to disruptions .
:::::::::::
Furthermore,

::
it

::
is

:::::::::
susceptible

::
to

:::::::::
disruption caused by changes in land use or urbanization25

processes
:::
that

:::::
might

::::::::::
compromise

:::
the

:::::::::::
homogeneity

::
of

:::
the

:::::::
training

::::
data. Despite these limitations, RASCAL’s positive outcomes
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offer opportunities for comprehensive climate variability analyses and potential applications in downscaling short-term fore-

casts, seasonal predictions, and climate change scenarios. The Python code and the Jupyter Notebook for the reconstruction

validation are publicly available as an open project.

Copyright statement. TEXT30

1 Introduction

The origins of meteorological observation can be traced back to ancient civilizations, where people began to notice patterns

in the weather and celestial phenomena. However, it wasn’t until the 17th century that systematic weather observations began

in earnest with the development of instruments such as the mercury barometer and the thermometer by scientists such as

Evangelista Torricelli and Daniel Gabriel Fahrenheit (Barry and Chorley, 2009). An early example of this interest in observing35

the atmosphere using instruments is the Central England Temperature record (CET) (Manley, 1974) which is one of the longest

instrumental temperature records in the world, dating back to 1659. It provides a continuous monthly temperature series for

the central England region and is often used as a proxy for temperature variations in Western Europe. Other examples of

early weather monitoring date back to the 18th century, such as the Paris-Montsouris observations in France (Moisselin et al.,

2002), the Zentralanstalt für Meteorologie und Geodynamik in Austria (Vienna) (Auer et al., 2007), the Uppsala University40

observations in Sweden (Bergström and Moberg, 2002), or the earliest observations recorded in Iberian Peninsula like those

starting in Seville (Spain) in 1780 (Domínguez-Castro et al., 2014). Since these first observations begun, the number of surface

meteorological observatories worldwide has increased significantly, as shown in Fig. 1a.

The critical role played by surface meteorological stations in climate monitoring and research is emphasized by the Inter-

governmental Panel on Climate Change (IPCC) in all its assessments and reports (IPCC, 2021). One of the aspects addressed45

is the need to maintain high quality and consistent data following high standards of quality assurance and control (Begert et al.,

2005). These kind of procedures are essential to ensure that the data collected are homogeneous, accurate and reliable. Errors

or inconsistencies in the data can lead to erroneous climate assessments and predictions (Yang et al., 2005). Another important

fact mentioned is the need for a dense network of surface meteorological stations around the globe to provide comprehensive

coverage of different regions and climates. Dense monitoring networks are less common in remote or less densely populated50

regions or where the environmental conditions are too harsh to operate and maintain the instruments (Dinku, 2019; Fan et al.,

2020; Schween et al., 2020).

It has been commonly accepted that surface meteorological stations are still the best way to identify long-term trends and

variability in climate. They have also proven to be critical for validating and calibrating other atmospheric databases such as

those obtained from satellites or remote sensing instruments (Salio et al., 2015; Emery et al., 2001; Huang et al., 2019). They55

are also a key element for the development and validation of gridded databases obtained by numerical models such as reanal-

yses (Molina et al., 2021; Bell et al., 2021; Lavers et al., 2022; Bonshoms et al., 2022). More recently, meteorological mea-
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surements have become an essential element of machine learning methods applied to atmospheric modeling. These methods

implicitly account for all the involved physics through complex mathematical interrelationships of empirical nature, which

require historical meteorological observations for training (Appelhans et al., 2015; Sachindra et al., 2018; Lam et al., 2022).60

Figure 1. (a) Total number of operative stations from 1850 to 2023. (b) Balance of decomissioned stations in the same period. The negative

value means the stations were no longer operative, and its absolute value represents the number of decomissioned stations. (c) Localization

of all stations from 1850 to 2023, with operative stations in 2023 marked in blue and decommissioned stations until 2023 marked in red. Data

obtained from the Global Historical Climatology Network daily (GHCNd, https://www.ncei.noaa.gov/products/land-based-station/global-

historical-climatology-network-daily, accesed on 15 November 2023)

Due to the important role played by surface observations in climate assessing and weather forecasting, several countries

established and expanded their surface meteorological observatories during the 20th century, trying to cover as much territory

as possible (Klein Tank et al., 2002). From a few hundreds
:
,
::::
from

:::::::
several

::::::::
thousands

:
of surface stations at the end of the

nineteenth century to several
::::
tens

::
of thousand at the end of the twentieth century (Fig. 1a). However, as mentioned before, the

results are very uneven around the world (Fig. 1c), with important areas of the world still under monitored
:::::::::::::
under-monitored.65

After
:::::::
Contrary

::
to

::::
what

:::::
might

:::
be

::::::::
expected,

:::
the

::::::
number

::
of

::::::
surface

:::::::::::::
meteorological

::::::
stations

::::
has

:::
not

::::::::
increased

::
in

:::::
recent

:::::::
decades

:
at
::

a
:::
rate

::::
that

::::::
would

::
fill

:::
the

:::::::::::
documented

::::::::::::::
under-monitored

:::::
areas.

::::::
Rather,

:::
the

::::
ratio

:::
of

:::::::::
operational

:::::::
stations

:::
has

::::::
slowed

:::::
down

::::
and

::::::::
decreased

::::
after

:::
the

:::::
1970s

:::::
(Fig.

:::
1a).

:::
As

:::
can

::
be

:::::
seen,

:::
the

:::::::
number

::
of

::::::::::::::
decommissioned

::::::
stations

:::
has

::::::::
increased

::
in
::::::
recent

:::::::
decades

::
in

::::
many

:::::::
regions

::
of

:::
the

:::::
globe,

:::::::::
disrupting

:::::
some

::::::::
historical

::::::
climate

::::
time

::::::
series.

:::
One

::::::::
potential

::::::::::
explanation

:::
for

::::
this

::::::
decline

::
in

:::
the

:::::::
number

:::
of

::::::
surface

:::::::
stations

::
is

:::
the

::::::
advent

::
of

::::::::
satellites

::
as

::
a
:::::
novel

:::::::
method70

::
for

:::::::::
observing

:::
the

:::::::
weather

::::
and

:::::::
climate.

:::::::::
Following

:::
the

::::::
launch

::
of

:
the world’s first weather satellitewas launched ,

:::::::::
TIROS-1,

in 1960(TIROS-1), satellite weather observations became common
:::::::
prevalent

:
and began to offer multiple

:
a
:::::::
number

::
of

:
ad-

vantages over on-site weather observations(Purdom and Menzel, 1996)
:
,
::
as

:::::
cited

::
in

:::::::
Purdom

::::::
(1996). For instance, they allow

for
:::::
permit

:
global coverage and cost-effectiveness since they do not require

::::::::
necessitate

:
an extensive network of ground-based

weather stations to cover vast areas. Even sometimes, satellite observations have shown to outperform surface measurements75

(Pinker et al., 2005; Heft-Neal et al., 2017). But satellite
::::::::
However,

:::::::
satellite weather observations also have limitations. For ex-
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ample, they have difficulties accurately measuring conditions at the Earth’s surface, their data availability is highly dependent

on cloud cover, they often exhibit long-term instrument drift, and they have calibration issues in remote areas where surface

observations are unavailable. Currently, satellite measurements are crucial for assessing the Earth’s atmospheric conditions

and perform the numerical weather prediction (Rabier, 2005). Despite the great improvement achieved in numerical weather80

prediction thanks to satellites, they may be behind the gradual decrease in the number of operational surface meteorological

stations around the world, as illustrated in Fig. 1b.
:::
still

::::::::::
unavailable.

Another potential factor contributing to the decline in the number of active surface weather stations worldwide in recent

decades is the
:::
this

::::::
decline

::
is

:::
the

::::::::
increasing

:
use of model reanalyzed

::::::::
reanalysis

:
data to conduct climate research (Dee et al., 2014; Hersbach, 2016)

::::
(Dee

::
et

:::
al.,

:::::
2014;

::::::::
Hersbach

::
et
:::
al.,

::::::
2016). Model reanalyses use

::::::
employ a combination of observational data sources, such as85

::::::::
including in-situ surface weather observations, satellite data, and others, to generate a gridded and consistent dataset of weather

and climate information from the past. The resulting data sets are comprehensive, homogeneous and have strong climatological

consistency. They cover global areas, enabling analysis where in-situ data is not accessible.
::
In

:::::
many

:::::
cases,

:::::::::
reanalyses

:::
are

::::
used

::::::
instead

::
of

:::::
in-situ

::::::::::::
measurements

:::
for

::::::
climate

:::::::
studies. They are certainly useful for studying broad climate patterns and long-term

climate trends, and could theoretically be used to fill gaps or extend the temporal and spatial coverage of observations. However,90

they suffer significant losses with regards to temporal and spatial resolution
:
, as well as information relating to local phenomena.

Global reanalyses have inherent difficulties to provide
:
in

::::::::
providing

:
fine-scale details that are often missed in the physics of the

models,
:
or are meaningless at the low resolution considered(Bromwich et al., 2007; Kaiser-Weiss et al., 2015; Gleixner et al., 2020)

.

This study is organized as follows: Sect. 2 discusses the motivation behind developing code to generate time series that95

capture climatological local phenomena. Sect. 3 provides a detailed description of the implemented method, while Sect. 4

describes the model structure and implementation. In Sect. 5, we evaluate the performance of the package by downscaling the

daily maximum and minimum temperatures and precipitation of four stations near a mountainous region in central Spain. We

draw final conclusions and important remarks in Sect. 6.

2 Motivation100

:
.

Several factors, such as the use of satellite and reanalysis data for climate studies, along with other complex socio-political

and economic events, may be behind the steady and heterogeneous decrease observed in the number of surface stations in

operation worldwide during the last decades (Fig. 1). Although it may seem that global weather data is fully addressed through

the more precise reanalyses available nowadays, there may be a hidden loss of information about local phenomena that only105

surface weather stations are able to capture. When historical meteorological data is not continued indefinitely or if interrupted,

many
::
of the resources invested during decades are lost. In addition to these interrupted time series, there are also numerous

surface meteorological observation series of good quality around the world that are the
::
as

:
a
:
result of short-term campaigns or
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very recent initiatives. These time series also provide a wealth of information on local processes, but their short duration is still

insufficient for climatological analyses (Durán et al., 2017).110

On the other hand, we
::
We

:
have global reanalyses that span the entire 20th century and part of the 21st century, which provide

a valuable alternative, but their low resolution limits the phenomenaunder analysis (Poli et al., 2016). Downscaling of
:::
with

::::
low

::::::::
resolution

:::
and

:::::::
limited

::::::::::
phenomena.

::::::::
However,

:::::
these

::::
data

:::
sets

:::
are

::::::::
sufficient

::
to

::::::::
consider

:::
the

::::
main

::::::
drivers

::::
that

::::
force

:::::::
weather

::::
and

::::::
climate

::
at

:::
the

:::::::
surface.

::
In

:::::::
contrast,

:::
we

:::::
have

:::
sets

::
of
::::::::::

interrupted
::
or

::::::
recent

::::::
surface

::::::::::::
measurements

:::
that

:::::::
capture

::::
local

:::::::::::
phenomena,

:::
but

::::
these

:::
are

::::
too

::::
short

:::
to

:::::::
conduct

::::::::::::
climatological

::::::::
analyses.

::
It

::::
thus

::::::
appears

:::::::
feasible

:::
to

:::::::::
downscale reanalysis data in order to115

obtain pseudo-observations or finer gridded meteorological fields
:::
that

:::
can

:::::::
provide

::
the

::::
best

::
of

::::
both

:::::::
worlds.

:::::::::::
Downscaling has been performed since the inception of reanalysisand can provide the best of both worlds. Two general

approaches to downscaling are: physical downscaling and empirical downscaling, with statistical downscaling being a subset

of the latter when statistical methods are used. Physical downscaling is achieved by using higher resolution physical models that

account for lower scale phenomena nested within the reanalysis fields (Lo et al., 2008; Durán and Barstad, 2018; Wang et al., 2021)120

. On the other hand, empirical downscaling relies
:::::::::
Dynamical

:::::::::::
Downscaling

:::::
(DD)

:::
and

::::::::
Empirical

:::::::::
Statistical

:::::::::::
Downscaling

::::::
(ESD).

:::::
ESDs

:::
rely

:
on observational data to establish empirical relationships between the large scale fields provided by the reanalysis

and the local phenomena seen in the observations (Wilks, 2011; Bürger, 1996; Boé et al., 2006).
:::::
These

::
are

:::::::
grouped

::::
into

::::::
Model

::::::
Output

::::::::
Statistics,

::::::
Perfect

:::::::::
Prognosis

:::
and

:::::::
Weather

::::::::::
Generators

:::
(in

:::::
which

::::::::
analogue

::::::
models

:::
are

::::::
used).

:::
On

:::
the

:::::
other

::::
hand

::::
DD

::
is

:::::::
achieved

::
by

:::::
using

::::::
higher

::::::::
resolution

:::::::
physical

:::::::
models

:::
that

:::::::
account

::
for

:::::
lower

:::::
scale

::::::::::
phenomena

:::::
nested

::::::
within

:::
the

::::::::
reanalysis

:::::
fields125

:::::::::::::::::::::::::::::::::::::::::::::::::
(Lo et al., 2008; Durán and Barstad, 2018; Wang et al., 2021)

:
.

Numerous papers scrutinize the advantages and disadvantages of the various methods (Hewitson and Crane, 1996; Hanssen-

Bauer et al., 2003; De Rooy and Kok, 2004). As a rule of thumb, empirical techniques are generally less computationally

intensive than physical downscaling and may yield better results at a lower cost. However, empirical downscaling is only

feasible when a
:::::::::
sufficiently

:
long and uniformly collected dataset of observations is available. Assuming the hypothesis that130

there is a connection between the large-scale phenomena shown by the reanalysis and the local phenomena captured by the

observations is also essential. In the context of downscaling climate change scenarios, this issue is subject to debate unless we

consider a second hypothesis that suggests a shift in the relative frequency of past demonstrated forcings without any inherent

change in the phenomenological relationship between scales.

Regardless of the chosen regionalization
::::::::::
downscaling method, combining reanalysis and surface observations to create long135

and homogeneous time series requires a significant amount of effort. Setting up a dynamic regionalization system can be

expensive in terms of both computation and human resources, but even a relatively simple statistically-based regionalization

method entails a learning curve that may discourage or slow down certain climate studies.

This work introduces and explains RASCAL v1.0 .0 (Reconstruction by AnalogS of ClimatologicAL time series), an open-

source tool for climatological time series reconstruction and extension using statistical downscaling
:::
ESD. The primary goal140

of RASCAL is to promote and accelerate rigorous climate research in regions where surface meteorological observations

are insufficient for climate analysis and where relevant regional and local meteorological processes can only be captured
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through in-situ observations. RASCAL could prove highly beneficial for mountain climate research and other areas with unique

microclimates, such as river valleys, forests, caves, or canyons.

::::
This

::::
study

::
is

::::::::
organized

::
as

:::::::
follows:

:::::
Sect.

:
2
:::::::
provides

::
a

::::::
detailed

::::::::::
description

::
of

:::
the

::::::::::
implemented

:::::::
method,

:::::
while

::::
Sect.

::
3
::::::::
describes145

::
the

::::::
model

::::::::
structure

:::
and

::::::::::::::
implementation.

:::
In

::::
Sect.

::
4,
:::

we
::::::::

evaluate
:::
the

:::::::::::
performance

::
of

:::
the

:::::::
package

:::
by

:::::::::::
downscaling

:::
the

:::::
daily

::::::::
maximum

::::
and

::::::::
minimum

:::::::::::
temperatures

:::
and

:::::::::::
precipitation

::
of

::::
four

:::::::
stations

:::
near

::
a
:::::::::::
mountainous

:::::
region

::
in
::::::

central
::::::

Spain.
:::
We

:::::
draw

::::
final

:::::::::
conclusions

::::
and

::::::::
important

:::::::
remarks

::
in

:::::
Sect.

::
5.

2 Methods

RASCAL is based on a ESD know as analogue models or Weather generator
:::::
analog

::::::
models

:::
or

:::::::
weather

:::::::::
generators. This is a150

widely used technique in climate research (Zorita and Von Storch, 1999). It is based on the premise that large-scale atmospheric

conditions tend to produce comparable local weather patterns, allowing the prediction of local conditions for a day without

real-time observations. This is done by identifying an analog day from General Circulation Models (GCMs), such as reanalyses,

and assigning its local conditions. This approach allows the study of climate variability over an extended time frame, providing

valuable perspectives on long-term patterns and connections between different geographic locations, while also incorporating155

important local factors into the analysis . (Hidalgo et al., 2008; Benestad, 2010; Abatzoglou and Brown, 2012; Saavedra-

Moreno et al., 2015; Shulgina et al., 2023)

2.1 The analog method for time series reconstruction

:
.

The analog method is
:
a
:
nonlinear technique that relies on the identification of strong statistical relationships between two160

fields: the predictor variable extracted from GCM products, and the predictand variable obtained from local historical observa-

tions. To predict an atmospheric feature (the predictand) for a given day, this method searches for the day with the most similar

predictor field in the historical record and uses its atmospheric features to make a prediction, allowing the reconstruction of

missing data points (Lorenz, 1969; Horton et al., 2017).

To incorporate the relationship between large-scale meteorological patterns and local weather, the analog method is often165

combined with Principal Component Analysis (PCA). The PCA reduces the high dimensionality of the atmospheric phase

space by generating an orthogonal basis of vectors that represent the main directions of variability. As a result, only a limited

set of
::
m

:
coefficients, called principal components (PCs), are required to represent the atmospheric state (Wilks, 2011). The

resulting values
::
set

::
of

::
m

::::::::::
coefficients of the PCs

:
at
::::
time

:
t
:
are considered the predictand. To identify the best analog, a pool of the

N closest neighbors in the PC space is constructed, using
:::::::
predictor

:::::::::::::::::::::::::::::
X(t) = (X1(t),X2(t), . . . ,Xm(t))

::
for

:::
the

:::::
local

:::::::::
predictand170

::::
Y (t).

::::
For

:
a
:::::
given

::::
day

::
t,

:::
the

:::::::
objective

::
is
:::
to

::::::
identify

:::
N

::::::::
historical

::::
days

:::::::::::::
t1, t2, t3, . . . , tN:::::

such
:::
that

:::
the

::::::::
predictor

:::::
X(t)

::
is

::::::
similar

::
to

:::
the

::::::::
predictors

::::::
X(ti).::::

The
::::::::
similarity

::::::::
between

:::
the

::::::::
predictors

:::
in

:::
the

::::::::
historical

::::::
record

:::::
X(ti)::::

and
:::
the

::::::::
predictor

::
of

:::
the

::::
day

::
to

:::::::::
reconstruct

::::
X(t)

::
is
::::::::
measured

::::
with

:
the Euclidean distanceas the criterion for determining closeness.
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dX(t, ti) = ∥X(t)−X(ti)∥
::::::::::::::::::::::

(1)

:::
The

::
N

:::::
days

::::
with

:::
the

:::::::
smallest

:::::::
distance

:::::::
dX(t, ti):::::::::

constitutes
:::
an

:::::
analog

:::::
pool. Various similarity methods can be used to select175

the best analog
::::
Ŷ (t)

:
or group of analogs from the pool. The most straightforward method is to choose the

:::
day

::
ti :::

that
::::

has

::
the

::::::::
smallest

:::::::
distance

::::::::
dX(t, ti), :::

that
::
is

:::
the

:
closest day in the PC

:::
PCs

:
space. However, similar synoptic patterns can sometimes

produce different local weather if the role of other variables or more complex phenomena is not taken into account. Therefore,

assigning the day with the most similar predictor field pattern as the analog day may not always be accurate. To avoid making

the reconstruction method too complex, one solution is to select the N closest days from the pool of analogs instead of just one.180

Then, perform a weighted average
::
of

:::
the

::::::::
predictand

::::::
Y (ti) by the square of the distance in space of the PCs of those days.

Ŷ (t) =
1

N

N∑
i=1

wiY (ti)

::::::::::::::::::

(2)

:::::
where

:::
the

::::::
weight

::
wi:::

is:

wi =

1
dX(t,ti)2∑N

j=1
1

dX(t,tj)2
:::::::::::::::::

(3)

This way, the days with a more similar synoptic pattern have more presence in the average, while also considering possible185

phenomena that have not occurred on the closest day but on the other similar days.

Averaging can impact the distribution of the variable by smoothing the data and removing extreme values. To preserve

extremes while still accounting for possible phenomena beyond the similarity of synoptic patterns, bias reduction methods

such as quantile-mapping can be used. This technique employs a ’mapping variable’
:::
Z(t)

:
and examines the quantile of the

day to reconstruct
:::::::
Q(Z(t))

::
in the distribution of this variable in the analog pool

:::::::::::::::::::::
(Z(t1),Z(t2), . . . ,Z(tN ))). The method first190

examines the distribution of the predictand variable in the analog pool
::::::::::::::::::::::
(Y (t1),Y (t2), . . . ,Y (tN )))

:
and selects the day

:
ti:that

occupies the same quantile as the best analog.

Ŷ (t) = Y (ti), when Q(Y (ti)) =Q(Z(t))
:::::::::::::::::::::::::::::::::

(4)

This approach improves the representation of extreme events. However, it is crucial to note that the mapping variable must

have a strong correlation with the predictand variable. One possible solution is to use the reanalysis predictand variable as the195

mapping variable.

The analog method fundamentally involves the reorganization of observed time-series data, aiming to maintain the statistical

characteristics of the original dataset. The efficacy of this method relies on ensuring that the downscaling and training periods
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exhibit a comparable climatic context (Zorita et al., 1995). The reconstruction capability of the analog method is constrained

by the temporal extent and accuracy of historical observations. This means that it cannot replicate unobserved events and,200

therefore, cannot reproduce new record values in the context of climate change. However, its utility becomes pronounced in

scenarios where external climate forcing induces shifts in the frequency of observed phenomena. In essence, it serves as a

valuable tool for discerning alterations in the occurrence patterns of documented events.

3 Model Structure

The empirical downscaling techniques involve laborious steps that must be carefully addressed to ensure the quality of the local205

climate series reconstructions, as pointed out in Boateng and Mutz (2023). RASCAL is a Python library that implements the

analog method in a clear and simple way. It is an object-oriented library with four main blocks or classes: Station, Predictor,

Analogs and RSkill. This library is a valuable complement to other empirical downscaling libraries, such as pyESD from

Boateng and Mutz (2023), which is based on machine learning downscaling methods and focus on generating monthly time

series. RASCAL is based on classical statistical methods, which produce results that are easier to interpret physically, and210

additionally, it is more focused on daily resolution reconstructions rather than monthly, which allows for the calculation of

relevant daily climate indices. This section describes these components and their implementation workflow, with examples of

code used for the reconstruction of daily total precipitation.

RASCAL main features and workflow. The colored boxes highlight the principal classes, and within them, the featured

methods and objects are shown. An example of the EOFs obtained for the Total Column of Water Vapor Flux (TCWVF), used215

as a precipitation predictor, is included in the Predictor class box.

3.1 Station class

The analog method requires (1) homogeneous time series of observational data, and (2) a reanalysis dataset or GCM product

that covers both the period to be reconstructed and the period of historical observations. The Station class retains the information

about the historical record, including metadata about the observation point such as its name, elevation, altitude
::::::
latitude, and220

longitude, as well as the observational data of the variable to be predicted. The historical record must have a daily to sub-daily

resolution, and it is assumed to be homogeneous. The data is preprocessed to extract the desired meteorological variable, such

as maximum, minimum, mean, or total accumulated, in the form of selected daily quantities. The code below provides an

example of how to extract the historical time series. The path should include a CSV file with the variable name and a meta.csv

file with the metadata.225

1: station = Station(path="./data/observations/")

2: station_data = station.get_data(variable="PCP")

8



3.2 Predictor class230

The analog method has the benefit of low subjectivity due to its limited parameters for adjustment (Wetterhall et al., 2005).

However, selecting and processing the predictor correctly is crucial for achieving accurate local weather reproduction. The

selection should be based on our knowledge of atmospheric dynamics and the local climate of the study area, as pointed out by

other authors (Boateng and Mutz, 2023). After selecting a predictor variable that is expected to have a strong relationship to the

predictand variable,
:::
for

:::::::
instance

::
its

:::::
main

:::::::::
large-scale

::::::
forcing

:::::
field,

:::
and

::::
that

::
is

:::::::
relevant

::
to

:::
the

::::::::
proposed

:::::::
scientific

::::::::
question,

:
it is235

necessary to choose a predictor field domain that can identify relevant synoptic patterns for the study area. These fields should

be carefully grouped for each day. Although the analog method is based on recognizing patterns in a single predictor field, it is

possible to use multiple variables within the same field. To use vector fields with multiple components or
::
to include different

variables, it is necessary to construct a composite field by concatenating each variable on the longitude axis. This results in a

single field with dimensions of (time, latitude, number of components x longitude).240

These steps are implemented in the class Predictor. It takes as input the paths to the files of the chosen predictor, and allows

to select the limits of the field domain and to group them for each day, taking only one hour, or computing the sum or the

average of all the available hours. The composite field is obtained when the mosaic option is set to True and more than one

different variable is detected within the files of the input paths. The code example below selects both horizontal components of

the Total Column of Water Vapor Flux (TCWVF) as the precipitation predictor from 1900 to 2010, and uses the field at 12:00245

of each day in a limited domain.

1: -

2: predictor_files = rascal.utils.get_files(

3: nwp_path="./data/reanalysis/",250

4: variables=["SURF_71.162", "SURF_72.162"],

5: dates=["1900", "1901", ..., "2010"],

6: file_format=".grib"

7: )

8: -255

9: predictors = Predictor(

10: paths=predictor_files,

11: grouping="12hour_1D_mean",

12: lat_min=20,

13: lat_max=80,260

14: lon_min=-60,

15: lon_max=20,

16: mosaic=True

17: )265
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Once the predictor field is chosen, the PCA is performed. The PCA is implemented as the method Predictor.pcs(). To perform

the PCA is necessary to calculate the anomalies of the predictor field. In this method
:
it
:
is possible to choose the months of

each season and the number of seasons. The the number of principal components to be used, and the scaling of the PCs. This

scaling will subsequently influence the selection of a pool of the N closest days. This method wraps the phyton library eofs

(Dawson, 2016) using xarray (Hoyer et al., 2020), so it has its scaling options, which are (0) un-scaled principal components,270

(1) principal components scaled to unit variance (divided by the square root of their eigenvalue) and (2) principal components

multiplied by the square root of their eigenvalue. This is implemented for the boreal winter, spring, summer and fall, for four

principal component as follows.

1: predictor_pcs = predictors.pcs(275

2: npcs=4,

3: seasons=[[12, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]],

4: standardize=True,

5: pcscaling=1

6: )280
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Figure 2.
::::::::
RASCAL

::::
main

::::::
features

:::
and

::::::::
workflow.

:::
The

::::::
colored

:::::
boxes

:::::::
highlight

::
the

:::::::
principal

::::::
classes,

:::
and

:::::
within

:::::
them,

:::
the

::::::
featured

:::::::
methods

:::
and

:::::
objects

:::
are

::::::
shown.

:::
An

::::::
example

:::
of

::
the

:::::
EOFs

:::::::
obtained

:::
for

::
the

:::::
Total

::::::
Column

::
of

:::::
Water

:::::
Vapor

::::
Flux

:::::::::
(TCWVF),

:::
used

:::
as

:
a
::::::::::
precipitation

:::::::
predictor,

::
is

::::::
included

::
in

:::
the

:::::::
Predictor

::::
class

:::
box.

3.3 Analogs class

After establishing the predictor and determining its synoptic patterns via PCA, the next step is to search for a set of days

with similar synoptic patterns for each day, known as the analog pool. To ensure the validity of the reconstructions, it is

recommended to exclude at least the 5 previous and/or following days from the day to be reconstructed to avoid persistence285

effects. After determining the analog pool, the days without observations are reconstructed using one of the following similarity

methods: (1) the ’closest’ method, which selects the closest day in the space of the PCs, (2) the ’average’ method, which calcu-

lates the weighted average of the N closest days, or (3) the ’quantile-map’ method, which chooses the day that corresponds to

the same quantile as the day to be reconstructed in another variable called the ’mapping variable’. These steps are implemented

in the Analog class. This object is fed by the historical observations from the Station object and the PCs time series of the290

Predictor object. This object allows
::
the

::::
user to select the number of analog days in the pool as pool_size,

:::
and the number of

days to exclude for the reconstruction validation
::::
from

:::
the

:::::
pool

:::::
when

::::::
testing

:::
the

::::::::::::
reconstruction

::::::::::
performance, and whether to

exclude the previous, posterior or both days, as vw_size and vw_type arguments. Additionally, it allows for the selection of

the similarity method to be used as method. To use the quantile-mapping method a mapping variable is required. This variable

11



must be a time series from the reanalysis dataset in the gridpoint of the station. The Predictor class can be used to obtain this295

information by setting the domain limits to the station’s localization, which is saved in the Station object.

1: -

2: mapping_variable_files = rascal.utils.get_files(

3: nwp_path="./data/reanalysis/",300

4: variables=["SURF_71.162", "SURF_72.162"],

5: dates=["1900", "1901", ..., "2010"],

6: file_format=".grib"

7: )

8: -305

9: mapping_variable = Predictor(

10: paths=mapping_variable_files,

11: grouping="1D_mean",

12: lat_min=station.latitude,

13: lat_max=station.latitude,310

14: lon_min=station.longitude,

15: lon_max=station.longitude,

16: mosaic=False

17: )

18: mapping_variable.module()315

19: -

20: analogs = Analogs(

21: pcs=predictor_pcs,

22: observations=station_data,

23: dates=[1900-01-01, 1900-01-02, ..., 2010-12-31]320

24: )

25: -

26: reconstruction = analogs.reconstruct(

27: pool_size=30,

28: method="quantilemap",325

29: vw_size=10,

30: vw_type="centered",

31: mapping_variable=mapping_variable

32: )330
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3.4 RSkill class

To assess the quality of a reconstructed time series, it is necessary to clearly state its goal beforehand. RASCAL is designed

to produce daily reconstructions to calculate relevant indices, such as days above zero-degree isotherm or length of dry spells.

However, it is not necessary for the daily reconstructions to be completely in phase with the daily observations when the

objective is to evaluate these quantities at coarser temporal resolutions, such as monthly, seasonal, or annual. It is sufficient that335

their behavior and statistical properties are well-reproduced at these coarser temporal resolutions. To evaluate the skill of the

reconstructions, RASCAL is equipped with an skill evaluation class called RSkill. This class contains functions to evaluate the

behavior of the reconstructions and asses their added value compared to using the reanalysis data alone. The skill metrics and

diagrams included are the following: Taylor diagrams, quantile-quantile diagrams, time series and annual cycles plots, Root

Mean Squared Error (RMSE), Correlation cofficient (R2), Mean Bias Error (MBE), MSE-based skill score (Where MSE is the340

Mean Squared Error), Heidke skill score (HSS) and Brier Score (BS).

The MSE-based skill score (Wilks, 2011) is given by:

SSMSE = 1− MSE

MSEr
(5)

Where MSE is the MSE of the reconstruction and MSEr the MSE of the reference model, in this case the reanalysis.

Therefore, the SSMSE can be interpreted as the relative error reduction of the reconstruction compared to the reanalysis series.345

The Heidke Skill Score (HSS) is implemented in order to assess the performance of the analog method in predicting days

where the predictand is above or below a certain threshold compared to the reanalysis, based on a contingency table analysis.

The HSS scores events based on their occurrence or absence and determines whether the performance of the tested model is

superior to that of the reference model. The HSS is defined as:

HSS(r) =
r− rr
1− rr

(6)350

Where r is the proportion of correct forecast (true positive and true negative) of the reconstructed series, and rr the proportion

of correct forecast of the reanalysis. The proportion of correct forecast is expressed as

r =
a+ d

a+ b+ c+ d
(7)

Where a is the number of times that en
::
an

:
event is forecasted and observed (true positive), b the number of times that is

forecasted but not observed (false positive), c the number of times that is observed but not forecasted (false negative) and d the355

number of times that is neither forecasted nor observed (true negative).

This score condense the information whether the tested model performs better that the reference model with a number in

the interval (−∞,1]. A model that perfectly reproduces the observations get
:::
gets

:
a score of one, if it performs as well as the

reference model it gets a score of zero, and if the model performs worse than the reference model it gets negative scores.
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3.5 RASCAL implementation360

Although RASCAL is designed as a Python library, the GitHub repository contains scripts that allow for perform
:::::::::
performing

reconstructions and skill evaluations without the need to write a script. The multiple_runs_example.py script demonstrates a

workflow that reconstructs several stations and variables using different values for the parameters including analog pool size,

number of days in the pondered
::::::::
weighted average, and similarity method. There is also a Jupyter notebook available, named

RASCAL_evaluation.ipynb, which evaluates the skill of the reconstructions for daily, monthly, and annual series.365

4 Application examples

To test RASCAL performance, we tested the skill of the reconstructions of maximum and minimum temperature, and daily

precipitation at four different surface stations in the vicinity of the Central System of the Iberian Peninsula (Spain), as shown

in Figure 3. This mountain range is of vital importance as the main hydrological resource in central Spainand
:
it
::
is

:::
the

:::::
main

:::::::::
contributor

::
to

:::
the

:::::::::::
hydrological

::::::::
resources

::
of

:::::::
central

:::::
Spain,

::::
due

::
to

:::
the

::::
high

:::::
levels

:::
of

::::::
rainfall

::::
and

:::::
snow

:::::
runoff

::
in
:::::::

spring.
::::
This370

:::
area

:
has been subject of several studies by the authors in recent years (Durán et al., 2013, 2015; Durán and Barstad, 2018;

González-Flórez et al., 2022). The reader can refer to these previous works in order to understand the importance of having

long time series in this area.

4.1 Observational data

The surface stations used are sumarized
::::::::::
summarized in Table 1. All of the stations belong to the Spanish Meteorological375

Agency (AEMET, http://www.aemet.es, accessed on 13 September 2023), which has conducted high-quality observations of

precipitation and temperature
::::::::::
temperature

:::
and

:::::::::::
precipitation

:
since 1893

:::
and

::::
1948

:::::::::::
respectively for the case of ’Retiro’ station

located in Madrid. The ’Navacerrada’ station is the highest one, situated at 1888 m.a.s.l. in the core of Sierra de Guadarrama,

an area that has been kept almost unaltered since then. Stations ’Segovia’ and ’Colmenar’ are located on the northern and

southern slopes, respectively, of this mountain massif (Fig. 3). These set of surface meteorological stations were selected based380

on their long historical records, on the variety of their orography and environments, as well as on the deep knowledge of this

area due to previous research carried out by the authors of this work. Furthermore, they spread across a wide range of altitudes.

Of the four data sets, two are particularly long: Retiro and Navacerrada.

Observations have been available at Navacerrada station since 1946. This station is located at 1888 m.a.s.l. and has one of

the longest meteorological records for studying mountain meteorology in the world. The whole region has remained practically385

unchanged since then, making it a valuable resource. In contrast, the Retiro station is located in the heart of the city of Madrid.

Observations of this station have been available since 1948. The city ,
::::::
which has undergone significant growth, particularly

since the 1960s.

This set of observations can serve as a suitable test bed for evaluating the strengths and weaknesses of RASCAL and its

working hypotheses.390
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Figure 3. (a) Location of the Iberian Central System. (b) Location of sites used in this example of application, these being: S (Segovia), N

(Navacerrada), C (Colmenar) and R (Retiro).

Table 1. Observational data used

Station Altitude Coordinates Variables Period Frequency

Segovia 1000 m.a.s.l. 40°56’48.012”N 6°6’56.998”W
Temperature 1978-2023

::::::::
1988-2023

:
Daily

Precipitation 1978-2023
::::::::
1948-2023

:
Daily

Navacerrada 1888 m.a.s.l. 40°47’35.000"N 4°00’38.000"W
Temperature 1946-2023 Daily

Precipitation 1946-2023 Daily

Colmenar 1004 m.a.s.l. 40°41’46.000”N 3°45’54.000”W
Temperature 1893-2023

::::::::
1978-2023

:
Daily

Precipitation 1948-2023
::::::::
1978-2023

:
Daily

Retiro 660 m.a.s.l. 40°24’43.000”N 3°40’41.001”W
Temperature 1988-2023

::::::::
1893-2023

:
Daily

Precipitation 1948-2023 Daily
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4.2 Reanalysis Data

The reconstruction of the time series was performed using ECMWF reanalysis data. Specifically, ERA20C data for the temper-

ature and ERA20CM ensemble data for the precipitation (Poli et al., 2016) were used for the period from 1900 to 2010, with a

spatial resolution of 0.75ºx0.75º and a temporal resolution of 3 hours.

Principal component analysis was conducted for each season (DJF, MAM, JJA, and SON) individually, using geopotential395

height (GpH) data at 925 hPa as a temperature predictor and TCWVF as the precipitation predictor. The ’quantile-map’ method

used the 2m temperature and TCWVF to search for analogs in the dataset as the mapping variables. The selection of these

predictors was based on their previous use in identifying circulation weather types for precipitation and extreme snow events

in the study region, as reported by Durán et al. (2015) and González-Flórez et al. (2022).

4.3 Model evaluation400

The reconstructions were performed for all stations, using all three similarity methods and varying values of pool size and

number of days to average in the ’average’ method, to account for the possible sensitivity of the results to these parameters. To

evaluate the quality of a reconstruction, it is necessary to determine the similarity of the time series to the observations. How-

ever, in climate studies it may be more relevant to consider the statistical characteristics of the series. Therefore, it may be more

effective to evaluate the ability to reproduce daily distributions, seasonality, seasonal and interannual variability, and relevant405

indices, such as the number of days below zero degrees or days of precipitation above certain threshold. RASCAL evaluates the

effectiveness of reconstructions for use in climate studies. It assesses the behavior of time series for maximum and minimum

temperature, as well as precipitation, and their statistical properties. Additionally, it compares the performance of using the

analog method versus using reanalysis data to reproduce observations.
::
To

:::::::
compare

:::
its

:::::::::
performace

:::::::
against

:::
the

:::::::::
reanalysis,

:::
the

::::::::::
temperature

:::
data

:::
of

::
the

:::::::::
reanalysis

::::
was

::::::::
corrected

::::
with

:::
the

:::::::
elevation

:::::
using

:::
the

::::::::::::
environmental

:::::
lapse

:::
rate

::::::::::::::
(−6.5◦C/Km).410

RASCAL includes options to cross-validate when generating the reconstructions.
::
To

::::
test

:::
the

:::::::::::
performance

::
of

:::
the

::::::
model

::
in

:::::::::::
reconstructing

:::::
gaps

:
in
:::
the

:::::
series

::::
and

::::::::
extending

:
it
::
to

:::::::
periods

:::::
distant

:::::
from

:::
the

:::::::::
observation

::::::
period,

:::::::::
validation

:::::::
windows

:::
are

:::::::
created.

:::::
These

::::::
moving

::::::::
windows

::
of

::
N
:::::
days

:::
are

::::
taken

:::::::
around

::::
each

:::
day

::
to

:::
be

::::::::::::
reconstructed,

::
as

::::
these

:::
are

:::
the

:::::
days

:::
that

:::
are

:::::
likely

::
to
:::::

have

::
the

:::::
most

::::::
similar

:::::::::
large-scale

::::::
pattern

::
to

:::
the

:::::
target

::::
day,

:::
and

::::::::
therefore

:::::::
contain

:::
the

::::
most

:::::::
possible

:::::::::
analogues.

:::::::::
Excluding

:::::
these

::::
days

:::::::
removes

::::
both

:::
the

:::::::::
large-scale

::::::
patterns

::::
and

::::
their

::::::::
associated

:::::
local

::::::::::::
meteorological

:::::
times

::::
from

:::
the

::::
pool

::
of

:::::::
analogs,

:::::::
allowing

::
a
:::::
better415

::::::::
evaluation

::
of

:::
the

:::::::::::
performance

::
of

:::
the

::::::
model

:::
and

::::
each

::::::::::::
reconstruction

:::::::
method. For this application case, we excluded the five

::
60

::::
days,

:::
the

:::
30 days before and after each day designated for reconstruction to avoid any persistence effects

::::
target

::::
day.

4.3.1 Time series skill

Taylor diagrams were implemented in RASCAL to assess the agreement between the reconstructed time series and the observed

data. As illustrated in Fig. 4, Fig. 5 and Fig. 6, these diagrams provide a visual representation of the analysis, displaying the420

standard deviation and correlation of each time series in comparison to the reference observations.
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As depicted in Fig. 4 the precipitation reconstructions outperform the reanalysis precipitation in all the cases, both in total

monthly and total yearly precipitation. Monthly reconstructions yield better results than the yearly series, with correlation

coefficients ranging from 0.4 to 0.8, whereas the yearly series ranges from 0.2 to 0.7. However, for both cases, the reanalysis

only shows correlations of 0.4 at best, and negative correlations at worst (not visible in the diagram). The panels (c, f, i, l) display425

the yearly time series in water years (from October to September), comparing the observations with the reanalysis ensemble

and the best reconstruction. The chosen reconstruction balances a good correlation coefficient and a standard deviation close to

the observations. These panels demonstrate that not only are the correlation and standard deviation better than the reanalysis,

but also that it corrects its biases. An example that illustrates this point is ’Navacerrada’ (Fig. 4i), where the reanalysis dry bias

may be attributable to a smoothed reanalysis orography that hampers orographic precipitation, an important contributor to total430

precipitation in this region (Durán et al., 2017).

The
::
As

:::::::::
evidenced

::
in

:::
the

:::::::::
difference

::
in

:::
the

:::::::
location

::
of

::::::
points

::
of

:::
the

:::::
same

::::
color

:::
in

:::
the

:::::
Taylor

:::::::::
diagrams,

:::
the

:
reconstructions

are somewhat sensitive to the pool size selection, but
:
as

::::
one

::::::
method

::::
with

::::::::
different

::::
pool

::::
sizes

:::
can

:::::::
produce

:::::
series

::::
with

::::::::
different

:::::::::
correlations

:::
to

:::
the

::::::::::
observations

::::
and

:::::::
standard

:::::::::
deviations.

::::::::
However,

:
this sensitivity is not significant enough to be considered a

critical determinant in the simulations. Therefore, adjusting this parameter can be useful for subtle modifications.435

Additionally, the Taylor diagrams demonstrate how various scientific inquiries
:::::::
different

::::::::
scientific

::::::::
questions

:
may require

different similarity methods. While ’average10’ shows the strongest correlations, ’quantilemap100’ exhibits standard devia-

tions closest to the original series, resulting in more similar distributions. Therefore, the choice of reconstruction methods may

depend on the specific goals that led to the reconstruction process.

Fig. 5 illustrates that the reconstructions of maximum temperatures yield better results than those of precipitation, with440

correlation coefficients above 0.93 for the monthly mean maximum temperature series and between 0.3 and 0.9 for the yearly

mean maximum temperature series. The reanalysis exhibits a very similar behavior to the quantile-map reconstructions for this

variable, but the latter consistently shows a slight improvement in correlation or standard deviation. The time series panels in

Fig. 5c, f, i, l, show that although the behaviour of the reanalysis is very close to the observations, the reconstructions correct

the bias for all the stations
:
,
::::
even

:::::
when

:::
the

::::::::
reanalysis

::::
was

::::::::
corrected

::::
with

:::
the

:::::::
elevation.445

Maximum temperature reconstructions exhibit less agreement between different similarity methods, but demonstrate more

consistent outcomes for different pool sizes, when compared to the precipitation reconstructions. In this case, the ’quantile-

map’ method is recommended for reconstruction, above ’closest’ and ’average’.

In Fig. 6a, d, g, j, the monthly mean minimum temperatures exhibit a similar behavior to the maximum mean temperatures

in Fig. 5a, d, g, j, with correlation coefficients above 0.9, and a slight improvement in the correlation and standard deviation450

compared to the reanalysis. The yearly mean series (Fig. 5b, e, h, k) also ahow
::::
show moderate improvements compared to

the reanalysis, with correlations ranging from 0.3 to 0.9. The ’quantile-map’ method was found to be the most effective for

reconstruction. The bias corrections are apparent in Fig. 6c, f, i, l.

It should be noted that the reconstruction of ’Retiro’ in Fig. 6l, shows a peculiar behavior, overestimating the mean minimum

temperatures before 1945, followed by an underestimation of the temperatures thereafter. This effect does not appear in the455

maximum temperature reconstructions in Fig. 5l, a possible hypothesis is that this is due to the progressive urbanization of
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Figure 4. Precipitation time series reconstruction skill for all the stations. The left panels (a, d, g, j, m)
::
(a,

::
d,

::
g,

:
j) show the Taylor diagrams of

the monthly total precipitation series. The central panels (b, e, h, k, n)
::
(b,

::
e,

:
h,
::
k) show the Taylor diagrams of yearly total precipitation series.

The right panels (c, f, i, l, o)
::
(c,

:
f,
:
i,
::

l) show the time series of observations, reanalysis and the selected as best performing reconstruction. In

the precipitation case the yearly series are based on water years, beginning in October and ending in September
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Figure 5. Maximum temperature time series reconstruction skill for all the stations. The left panels (a, d, g, j, m)
::
(a,

:
d,
::
g,
::
j) show the Taylor

diagrams of the maximum temperature monthly mean series. The central panels (b, e, h, k, n)
::
(b,

::
e,
::
h,

::
k) show the Taylor diagrams of yearly

mean series. The right panels (c, f, i, l, o)
:
(c,

::
f,
::
i,

:
l) show the time series of observations, reanalysis and the selected as best performing

reconstruction.
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Figure 6. Minimum temperature time series reconstruction skill for all the stations. The left panels (a, d, g, j, m)
:

(a,
::

d,
::
g,

::
j) show the Taylor

diagrams of the maximum temperature monthly series. The central panels (b, e, h, k, n)
::
(b,

:
e,
::
h,

::
k) show the Taylor diagrams of yearly series.

The right panels (c, f, i, l, o)
::
(c,

:
f,
:
i,
::
l) show the time series of observations, reanalysis and the selected as best performing reconstruction.

Madrid, the city in whose core ’Retiro’ is located. This urbanization leads to a change in the land use and
:
to

:
an increase in the

heat island effect, which affects mainly the increase in minimum temperatures (Yagüe et al., 1991). This induces a change in

the relationship between the local scale and the synoptic scale, and therefore in the relationship between the predictor and the

predictand, ultimately affecting the temperature trends.460

4.3.2 Distributions

To evaluate the statistical properties of a reconstruction, we first examined the distributions of the daily time series in com-

parison to the observations. Fig. 7 displays the quantile-quantile plots of the daily time series for maximum and minimum
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Figure 7. Quantile-Quantile plot of the daily time series for all the stations (from left to right) including all the reconstructions and the

reanalysis. The first row panels (a, b, c, d, e)
::
(a,

::
b,

::
c,

::
d) are for the precipitation, the second row (f, g, h, i, j)

::
(e,

::
f,

:
g,
:::

h) for the maximum

temperature, and the third row (k, l, m, n, o)
::
(i,

:
j,
::
k,
::
l) for the minimum temperature.

temperature, as well as precipitation. These plots illustrate the values assigned to the same percentiles for the distributions of

the reconstructed and observed time series. When the distributions are identical, the points align along a 45º line. The distri-465

bution of the observations is well represented by the ’closest’ and ’quantile-map’ methods, as shown in the first row of Fig.

7. However, the ’average’ method affects the extreme values as expected, narrowing the distribution further as the pool size

increases. The poor performance of the reanalysis in representing precipitation distributions is also evident, as it exhibits a

skew towards lower values. All methods show a high alignment with the observed data regarding maximum and minimum

temperatures, with a slight narrowing in the distribution for the ’average’ methods. The impact of bias correction compared to470

the reanalysis is prominently noticeable in these variables as well.
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Figure 8. Annual cycle of monthly total precipitation for all the stations (left to right). The first row panels (a, b, c, d, e) show the cycle for

the variable, and the second row (f, g, h, i, j) for its standard deviation.

4.3.3 Seasonality

Understanding the seasonality of meteorological variables is crucial for climate studies as it enables the identification of

recurring patterns and trends throughout the year. As shown in Fig. 8
:
, the seasonal cycles of total monthly precipitation and

monthly standard deviation reveal that the reconstructions generally reflect the observations more accurately than the reanalysis.475

Notably, the quantile-map method shows better performance from January to June, while the closest and average methods

work better from July to December. These differences between methods are more pronounced in MAM and SON, which are

the months of highest variability (Fig. 8e, f, g, h). The standard deviation is well captured by the quantile-map method, with

exceptions noted in February and November. ’Navacerrada’ once again emerges as the station that benefited the most from the

reconstructions. It exhibits the most similar precipitation cycles and standard deviation, outperforming the reanalysis.480

Fig. 9 and Fig. 10 illustrate the annual cycles for maximum and minimum temperatures, respectively. The ’quantile-map’

method outperforms the ’closest’ and ’average’ methods, as evidenced by the standard deviation, and is therefore recom-

mended. These results demonstrate that RASCAL is more effective than the reference reanalysis in representing seasonality.

4.3.4 Daily Indices

In climate studies, it is common to employ indices that condense key climatic features of the study area. These indices are485

usually based on the comparison of a variable with a fixed threshold or a threshold based on some statistical property, such as

a mean value or a percentile (Data, 2009). Consequently, when using climate indices, the focus of a study may not necessarily
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Figure 9. Annual cycle of monthly mean maximum temperature for all the stations (left to right). The first row panels (a, b, c, d, e)
::
(a,

::
b,

::
c,

::
d) show the cycle for the variable, and the second row (f, g, h, i, j)

::
(e,

:
f,
::

g,
::
h) for its standard deviation.

Figure 10. Annual cycle of monthly mean minimum temperature for all the stations (left to right). The first row panels (a, b, c, d, e) show

the cycle for the variable, and the second row (f, g, h, i, j) for its standard deviation.
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Figure 11. Seasonal cycle of the observations and the best reconstruction of climatological indices in Navacerrada, these being: (a) days of

PCP ≥ 1mm (R1mm), (b) days of Tmax < 0◦C or icing days (ID) , and (c) days of Tmin < 0◦C or frost days (FD).

be on making the reconstructed time series closely resemble the observations, but rather on effectively reproducing these

indices. Given that the indices are based on threshold crossings, a dataset characterized by significant biases may result in an

misrepresentation of these indices. As demonstrated earlier, the station ’Navacerrada’ stands out as the one most positively490

influenced by the reconstructions. This is due to the fact that the reanalysis provides a deficient representation of precipitation

and temperature, mainly due to its pronounced warm and dry bias. Therefore, this station was chosen for the calculation of

relevant indices for a mountainous region using the reconstructions, such as days with precipitation exceeding 1 mm (R1mm),

icing days (IC, days of maximum temperature below 0◦C), and frost days (FD, days of minimum temperature below 0◦C).

Table 2.
::::
Skill

::::::
metrics

::
for

:::
the

:::
best

:::::::
monthly

::::::::::
reconstruction

::
in

::::::::::
Navacerrada

::
of

:::
days

::
of

:::::::::::
PCP ≥ 1mm

:::::::
(R1mm),

::::
icing

::::
days

::::
(ID),

:::
and

::::
frost

::::
days

::::
(FD).

::::
Index

: ::
R2

: ::::
MBE

:
[
:::
days

:::::::
month−1]

:::::
RMSE

:
[
:::
days

:::::::
month−1]

:::::
R1mm

:::
0.80

: :::
0.17

: :::
3.55

:

::
ID

:::
0.91

: :::
0.22

: ::
2.3

:

::
FD

: :::
0.96

: :::
0.34

: :::
3.01

:

Fig. 11 presents the seasonal cycles of the indices for both observations and the optimal reconstruction chosen in Section495

5.3.1.. The aim is to ensure that the reconstructions accurately replicate the climatic characteristics associated with these indices

without exhibiting any spurious behavior.
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The R1mm index in Fig. 11a reveals highly similar distributions across all months, with only a slight overestimation of the

median value noted in March, June, and July. Fig. 11b also demonstrates very good agreement in the ID index between the

reconstruction and observed distributions and median values, although with slightly broader distributions during winter months.500

Finally, Fig. 11c reaffirms the substantial agreement between observations and distributions for the FD index, highlighting

RASCAL’s capability to faithfully replicate the seasonal behavior inherent in these indices.

Upon examining the time series skill, Table 2 presents the values for Pearson correlation coefficient (R2), Mean Bias Error

(MBE), and Root Mean Square Error (RMSE) of the indices. The table highlights the commendable performance of the

reconstructions in accurately reproducing these indices, as evidenced by high correlations, particularly for temperature-related505

indices. Furthermore, the MBE values are significantly low, measuring less than 0.34 days per month, and the RMSE values

remain below 3.55 days per month.

Skill metrics for the best monthly reconstruction in Navacerrada of days of PCP ≥ 1mm (R1mm), icing days (ID), and

frost days (FD).

Index R2 MBE days month−1RMSE days month−1510

R1mm 0.80 0.17 3.55 ID 0.91 0.22 2.3 FD 0.96 0.34 3.01

5 Conclusions

We have confirmed a decline in
:::
that

::
a
::::::
decline

:::
of in situ observations is a noteworthy concern as it may result in the loss of

crucial information in areas where local effects are relevant to their climatology. While the reanalysis provides a homogeneous

and comprehensive dataset, its applicability to studying climatologies with highly localized effects, particularly in regions with515

intricate orography, has been called into question.

In order to mitigate this possible loss of meteorological information based on surface observations, RASCAL has been

developed. This is an open-source Python tool designed to fill gaps in observational data, enabling climate studies in regions

with limited long-term data. This tool has shown
:::::
proved

::
to

:::
be

:::::::::
particularly

::::::
useful for the test sitesparticularly useful, specially

in the mountain sites,
:::::::::
especially

::
in

:::
the

:::::::::::
mountainous

:::::
areas. It is expected to be also useful in other areas with important local520

effects or distinctive locations like river valleys, forests, caves, or canyons.

The package presented here utilizes an object-oriented programming (OOP) approach, treating weather stations, predictors,

and reconstructions as objects with multiple functional attributes that encompass all necessary functionalities. This has allowed

for the execution of all modeling steps with just a few lines of code.

The core methodology is based on linking large-scale circulation patterns with local atmospheric features. This linkage is525

established through the analog method and principal component analysis, and has been shown to be more effective than reanal-

ysis in conveying climatic characteristics
:
,
:
a
:::::

faster
::::

and
::::
less

:::::::::::::
computationally

:::::::::
expensive

:::::::::
alternative

::
to

:::::::::
dynamical

:::::::::::
downscaling

:::::::
methods,

::::
and

::
an

:::::
easier

::
to

::::::::
interpret

::::::
method

::::
than

:::::::
machine

:::::::
learning

::::::::
statistical

:::::::::::
downscaling

:::::::
methods.

The package was evaluated at four stations in Spain, including three near a mountainous area in central Spain and one in

a highly urbanized area. The results were compared to the products of the reanalysis ERA20C and ERA20CM. RASCAL530
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outperformed the reanalysis in terms of R2, standard deviation, and bias. This improvement was particularly noticeable in the

reconstruction of monthly total precipitation, with correlation values reaching 0.8. The reconstructed maximum and minimum

temperatures show a slight improvement over the reanalysis in terms of standard deviation and correlation, reaching very high

values of correlation, achieving high correlation values of over 0.99 for both monthly maximum and minimum temperatures.

Additionally, the biases present in the reanalysis are significantly corrected by the reconstructions. This is also evident when535

examining the distributions of daily data. RASCAL is proficient in generating series that closely resemble the observations,

unlike the reanalysis, which exhibits skewness towards low precipitation and biases in maximum and minimum temperatures.

The various methods for selecting the best analog have exhibited diverse behaviors when examining the different character-

istics of the series. Therefore, it is recommended not to designate a single method as the best possible, but to choose it based

on the scientific objectives.540

Seasonality also demonstrates a marked enhancement compared to the reanalysis. RASCAL produces reconstructions with

an annual cycle closely resembling the observations. While the precipitation annual cycle exhibits some disparities during

unstable months, such as November and March, the cycles of maximum and minimum temperatures are nearly identical to the

observations in every month when using the ’quantile-map’ method. This method better represents the monthly variability for

both precipitation and temperatures.545

In climate studies, the use of indices is a common practice to condense key climatic features of a study area. RASCAL

has demonstrated its capacity to reproduce well indices like days of precipitation above 1mm, icing days, and frost days, in a

station situated in the core of a mountain range. This achievement is particularly noteworthy given the difficult conditions posed

by the strong dry and warm biases of the reanalysis in this region, which would otherwise hinder the accurate computation

of these indices. The reconstructed data showcase high correlation coefficients with observations, ranging from 0.8 to 0.96.550

Additionally, consistently low values of MBE and RMSE were observed. These outcomes highlight the significant potential

of RASCAL in facilitating climate studies in regions with complex climatic dynamics. These results confirm RASCAL’s

effectiveness in capturing and reproducing important climatic features for reliable climate research, highlighting its potential

in regions with limited long-term weather data.

However, it is important to acknowledge instances where this methodology may have limitations. This approach requires of555

long-time
:::::::::
sufficiently

::::
long

:
series, as it cannot reconstruct with data that has not been observed. Additionally, land use changes

or urbanization processes , can disrupt the intricate relationship between large and small scales, affecting the relationship

between predictor and predictand, and,
:
ultimately, the quality of the reconstruction.

The implementation of this package has yielded positive results, providing opportunities for conducting comprehensive

climate variability analyses within the study area. In a short time, it is expected to use RASCAL in the analysis of the climate560

variability and climate change in the mountainous area of Central System (Spain). On the other hand, improvements to be

implemented in this methodology will be studied once it has been applied to different cases, scenarios and regions. Finally, it

will be analyzed if this package can be extended as a downscaling tool for short and medium term numerical forecast, as well

as for seasonal prediction and even climate change scenarios.
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Code availability. RASCAL (version 1.0) source code is available in GitHub (https://github.com/alvaro-gc95/RASCAL) and Zenodo (https:565

//zenodo.org/records/12654140, (Gonzalez-Cervera, 2024)). The required dependencies, package usage and functionalities are described in

the documentation (https://rascalv100.readthedocs.io/en/latest/) (last access: 15 July 2024). Additionally, a Jupyter Notebook is available to

represent and validate the reconstructions and assess their skill. To run this library, Python 3.10 is required. RASCAL is also installable via

Python package index (PyPI): https://pypi.org/project/rascal-ties/ (last access: 15 July 2024).
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