- 1 Measurement Report: Cloud condensation nuclei (CCN)
- 2 activity in the South China Sea from shipborne
- 3 observations during summer and winter of 2021: seasonal
- 4 variation and anthropogenic influence.
- 5 Hengjia Ou¹, Mingfu Cai², Yongyun Zhang¹, Xue Ni¹, Baoling Liang³, Qibin Sun^{4,5},
- 6 Shixin Mai¹, Cuizhi Sun⁶, Shengzhen Zhou¹, Haichao Wang¹, Jiaren Sun², Jun Zhao¹
- 7 ¹School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural
- 8 Disaster Studies, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-
- 9 sen University, Zhuhai, Guangdong 519082, China
- 10 ²Guangdong Province Engineering Laboratory for Air Pollution Control, Guangdong Provincial Key
- 11 Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, MEE,
- 12 Guangzhou 510655, China
- 13 ³Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou
- 14 510006, China
- 15 ⁴Dongguan Meteorological Bureau, Dongguan, Guangdong, 523086, China
- 16 ⁵Dongguan Engineering Technology Research Center of Urban Eco-Environmental Meteorology,
- 17 Dongguan, Guangdong, 523086, China
- 18 6Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong
- 19 519082, China
- 20
- 21 Correspondence: Mingfu Cai (caimingfu@scies.org) and Jun Zhao (zhaojun23@mail.sysu.edu.cn)

23 Abstract

24	Understanding seasonal variations in cloud condensation nuclei (CCN) activity and the impact of	
25	anthropogenic emissions in marine environments is crucial for assessing climate change. This study	
26	presents findings from two shipborne observations conducted in the South China Sea (SCS) during the	
27	summer and winter of 2021. In the summer, higher particle number concentrations but lower mass	
28	concentrations of non-refractory submicron particle matters (NR-PMJ) were observed. This was	
29	attributed to the dominance of particles in the Aitken mode during summer, whereas there was a more	
30	balanced distribution of Accumulation mode and Aitken mode particles in winter. Summer particles were	
31	more hygroscopic, exhibiting higher activation ratios (ARs) at high supersaturation (SS) levels, while	
32	hygroscopicity at low SS was similar in both seasons. During the summer, three distinct periods were	
33	identified based on the air mass sources: terrestrial air masses from Luzon Island ("Luzon" period), and	
34	from the Indochinese Peninsula ("Indochinese Peninsula" period), and marine air masses. In winter, the	
35	periods were defined by terrestrial air masses from Mainland China ("Mainland China" period), a mix of	
36	Mainland China and marine air masses ("Mixed" period), and purely marine air masses. The "Luzon"	
37	period in summer exhibited the highest particle number concentration, especially in the Aitken mode,	
38	resulting in the highest CCN number concentration (N _{CCN}). Aerosol hygroscopicity was higher during	
39	the "Indochinese Peninsula" period compared to the "Luzon" period, leading to a higher AR due to the	
40	combination of higher hygroscopicity and a greater fraction of accumulation mode particles. The	
41	"Mainland China" period in winter showed a high nitrate fraction in NR-PM _{at} , but the inorganic fraction	
42	was similar to it in "Luzon" period, resulting in comparable hygroscopicity at low SS to the "Luzon"	
43	period. However, hygroscopicity at small particle sizes was much lower in the "Mainland China" period	
44	than in the summer periods. The "Mixed" period in winter exhibited a higher fraction of accumulation	
45	mode particles, causing a higher AR compared to the "Mainland China" period. CCN closure analysis,	
46	considering aerosol composition and mixing state, revealed that summer aerosol was primarily internally	
47	mixed, whereas smaller aerosol in winter was primarily externally mixed. The potential effect of	
48	undetected sea salt may lead to an underestimation of aerosol hygroscopicity in summer. This study	
49	highlights significant seasonal differences in aerosol properties and the impact of different types of	
50	terrestrial air masses on CCN activity in the SCS, contributing to our understanding of regional climate	
51	influences,	

Formatted: Subscript

Deleted: were more

Formatted: Subscript Formatted: Subscript

Deleted: Understanding seasonal variation in cloud condensation nuclei (CCN) activity and the impact of anthropogenic emissions in marine environments is crucial for assessing climate change. In this study, two shipborne observations in the South China Sea (SCS) during the summer and winter of 2021 were conducted. During summer, higher particle number concentrations but lower mass concentrations of non-refractory submicron particles (NR-PM₁) were observed. These differences were attributed to the dominance of particles in the Aitken mode during summer and in the accumulation mode during winter. Moreover, particles during summer were more hygroscopic with higher activation ratios (ARs) at all supersaturation (SS). Based on backward trajectory analysis, the whole campaign was classified into terrestrial and mixed air mass influence periods. Particles measured during the terrestrial period consistently exhibited lower hygroscopicity values

Deleted: . Additionally, minor variations were shown for all NR-PM1 components under different air mass influences during summer, while the mass fraction of nitrate increased significantly under terrestrial influence during winter. Particle number size distribution (PNSD) exhibited unimodal distribution during terrestrial period and bimodal distribution during mixed air mass influence period, with winter displaying a more pronounced bimodal pattern than summer. The impact of PNSD on AR was greater than on aerosol hygroscopicity in summer, and vice versa in winter. During terrestrial period, significant variations in PNSD were observed with the offshore distance, and the largest variation was seen in Aitken mode during both summer and winter. Meanwhile, aerosol hygroscopicity shows an increasing trend with the offshore distance, which is primarily attributed to the increase of sulfate fraction during summer and the decrease of the black carbon fraction during winter. Using a single parameterized PNSD in the N_{CCN} prediction can lead to errors exceeding 100% during both summer and winter, with dominant terrestrial air masses in the SCS atmosphere, while using a constant hygroscopicity parameter would lower the errors in the N_{CCN} prediction (~15% during winter and ~10% during summer). Our study shows significant differences in aerosol properties between winter and summer seasons and highlights the influence of anthropogenic emissions on the CCN activity in the SCS.

96 1.Introduction

Formatted: Indent: First line: 0 cm

97 Aerosols can act as cloud condensation nuclei (CCN), influencing cloud formation, lifespan, and 98 albedo, thus indirectly impacting global radiative balance (Fletcher et al., 2011; Albrecht, 1989). The 99 aerosol-cloud interaction currently represents the largest uncertainty in radiative forcing within climate 100 models, ranging from -1.7 to -0.3 W m⁻² (IPCC, 2021). This uncertainty can be attributed to the significant 101 spatiotemporal variability in the aerosol size distribution and the ability of atmospheric aerosol particles acting as CCN (CCN activity) (Fitzgerald, 1973). Thus, field measurements of aerosol size distribution 102 103 and physicochemical properties are needed to better understand the radiative forcing exerted by 104 atmospheric aerosol particles.

105 Previous studies suggest that particle number size distribution (PNSD) is a primary factor 106 influencing CCN concentrations (Dusek et al., 2006; Rose et al., 2010; Pöhlker et al., 2016; Burkart et 107 al., 2011). The PNSD can account for 84–96% of the variability $_{\bullet}$ in CCN concentrations (N_{CCN}) (Dusek 108 et al., 2006), while CCN activities may also play a significant role in CCN concentrations (Quinn et al., 109 2008; Cai et al., 2018; Ovadnevaite et al., 2017; Liu et al., 2018; Crosbie et al., 2015), which are primarily 110 governed by the particle size, chemical composition, mixing state, surface tension, and hygroscopicity 111 (Köhler, 1936; Seinfeld and Pandis, 2016). Among these factors, the impact of hygroscopicity on CCN 112 activities has received great attention in recent years (Petters and Kreidenweis, 2007; Ajith et al., 2022; 113 Rose et al., 2010). Petters and Kreidenweis (2007) proposed the κ- Köhler theory based on the Köhler 114 theory to quantify the ability of aerosol particles to absorb moisture and become CCN based on the 115 aerosol hygroscopicity parameters (ĸ). Ajith et al. (2022) showed that 64% of particles can be activated 116 as CCN when k is equal to 0.37, whereas when k decreases to 0.23, only 48% of particles can be activated 117 in the tropical coastal area. 118 Significant seasonal variations in PNSD and hygroscopicity under both terrestrial and marine

environments were observed in previous field observations, leading to the seasonal variations in N_{CCN}
(Crosbie et al., 2015; Schmale et al., 2018; Burkart et al., 2011; Bougiatioti et al., 2009; Sihto et al., 2011;
Leena et al., 2016; Ross et al., 2003; Gras and Keywood, 2017; Quinn et al., 2019). Crosbie et al. (2015)
revealed that in the urban area of Arizona particles had larger sizes, higher hygroscopicity, and N_{CCN} was
also higher during winter, while a higher abundance of smaller particles was observed during summer
owing to stronger photochemical reactions. In pristine environments like mountain, coastal, and forested

3

Deleted: (Dusek et al. (2006)

regions, seasonal variations in N_{CCN} and PNSD were more pronounced than urban and rural areas 126 127 (Schmale et al., 2018). Pöhlker et al. (2016) observed significant differences in N_{CCN} between the wet 128 and dry seasons in the Amazon rainforest, while the k values remained relatively stable. They also noted 129 increased particle concentrations and aerosol hygroscopicity, both subject to the impact of long-range 130 transport originating from anthropogenic emissions. Observations in marine areas during different 131 seasons are relatively scarce compared with those in inland areas. Gras (1995) found that both particle 132 concentration and N_{CCN} in the Southern Ocean reached their peaks during summer and gradually decrease 133 to their valleys in winter. Quinn et al. (2019) showed that sea spray aerosols make a relatively significant 134 contribution to N_{CCN} only during winter in the Western North Atlantic, while in other seasons, the primary 135 contribution comes from biogenic aerosols oxidized from dimethyl sulfide (DMS). Zheng et al. (2020) 136 revealed that sulfate dominates the particle condensational growth to CCN sizes during summer in the 137 North Atlantic, while secondary organic aerosols played a significant role in particle growth throughout 138 all seasons. These results indicate that CCN activity and concentration could vary in a large range during 139 different seasons. Thus, further observations across different seasons in marine environments are needed 140 to enhance our understanding of marine CCN activities and their seasonal variations. 141 The South China Sea (SCS), located in Southeast Asia and bordered by China, the Indochinese 142 Peninsula, and Maritime Southeast Asia, is significantly influenced by air pollutants transported through 143 terrestrial air masses. Studies have shown that these pollutants play a crucial role in determining aerosol 144 concentration and properties in the region (Atwood et al., 2017; Xiao et al., 2017; Geng et al., 2019; 145 Liang et al., 2021; Sun et al., 2023; Qin et al., 2024). For instance, Xiao et al. (2017) reported that 69.7% 146 of nitrate and 57.5% of sulfate in the SCS originated from fossil fuel combustion, particularly coal 147 burning in Chinese coastal regions. Additionally, Liang et al. (2021) and Sun et al. (2023) observed an 148 increase in the organic fraction and concentration of submicron aerosols when the region was influenced 149 by terrestrial air masses from Mainland China and the Indochinese Peninsula in the northern SCS. Further 150 studies highlighted the variation in aerosol properties under different air mass influences. Atwood et al.

151 (2017) found a significant bimodal particle distribution with a κ value of 0.65 in the southern SCS under

152 marine air mass influence, whereas a unimodal distribution with a κ of 0.4 was observed under

153 <u>continental air mass influence.</u>

 154
 The SCS experiences a typical monsoon climate with distinct seasonal wind direction changes

 155
 (Wang et al., 2009). The northeast monsoon, occurring from November to March, is characterized by

156	stronger average wind speeds and longer period compared to the southwest monsoon, which dominates	
157	from June to August. The transitional periods occur from April to May and September to October. During	
158	the northeast monsoon, air pollutants are primarily transported to the SCS by terrestrial air masses from	
159	China (Xiao et al., 2017; Liu et al., 2014; Geng et al., 2019). In contrast, during the summer, pollutants	
160	mainly originate from terrestrial air masses from the Indochinese Peninsula and Maritime Southeast Asia	
161	(Geng et al., 2019; Liang et al., 2021; Sun et al., 2023). These varying sources of anthropogenic emissions	
162	exerts different impacts on CCN activity differently across seasons. Additionally, the high cloud fraction	
163	over the SCS varies from approximately 0.3 to 0.7 across different months, indicating that aerosol-cloud	
164	interactions in the region may differ between seasons (Lu et al., 2022). However, due to limited	
165	observational data, our understanding of seasonal variations in CCN activity in the SCS remains	
166	incomplete. Conducting comprehensive observational studies on CCN activity across different seasons	
167	is essential for improving our understanding of aerosol-cloud interactions on the SCS.	
168	In this study, we conducted two shipborne observations in the SCS during summer (May 5-June 9,	
169	2021) and winter (December 19-29, 2021). Our observations with online instruments focused on	
170	measuring aerosol chemical composition, PNSD, and CCN activation in the region. Our results provide	
170 171	valuable insights into the differences in CCN activity between winter and summer, as well as the	
		Deleted: terrestrial transport
171 172	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of different types of terrestrial air masses on CCN activity in the SCS across different seasons.	Deleted: terrestrial transport
171 172 173	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons.	Deleted: terrestrial transport
171 172 173 174	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements	Deleted: terrestrial transport
171 172 173	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information	Deleted: terrestrial transport
171 172 173 174	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements	Deleted: terrestrial transport
171 172 173 174 175	valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information	Deleted: terrestrial transport
171 172 173 174 175 176	 valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information This study consists of two research cruises conducted during the summer and winter of 2021, 	Deleted: terrestrial transport
171 172 173 174 175 176 177	 valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information This study consists of two research cruises conducted during the summer and winter of 2021, respectively. These two cruises were interdisciplinary scientific expeditions, integrating fields such as 	Deleted: terrestrial transport
171 172 173 174 175 176 177 178	 valuable insights into the differences in CCN activity between winter and summer, as well as the influence of different types of terrestrial air masses on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information This study consists of two research cruises conducted during the summer and winter of 2021, respectively. These two cruises were interdisciplinary scientific expeditions, integrating fields such as marine geology, oceanography, and atmospheric environment. The primary objective in atmospheric 	Deleted: terrestrial transport
171 172 173 174 175 176 177 178 179	 valuable insights into the differences in CCN activity between winter and summer, as well as the influence of different types of terrestrial air masses on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information This study consists of two research cruises conducted during the summer and winter of 2021, respectively. These two cruises were interdisciplinary scientific expeditions, integrating fields such as marine geology, oceanography, and atmospheric environment. The primary objective in atmospheric environment of the 	Deleted: terrestrial transport
171 172 173 174 175 176 177 178 179 180	 valuable insights into the differences in CCN activity between winter and summer, as well as the influence of <u>different types of terrestrial air masses</u> on CCN activity in the SCS across different seasons. 2. Methodology 2.1 Cruise information and onboard measurements 2.1.1 Cruise information This study consists of two research cruises conducted during the summer and winter of 2021, respectively. These two cruises were interdisciplinary scientific expeditions, integrating fields such as marine geology, oceanography, and atmospheric environment. The primary objective in atmospheric environment was to investigate the impact of different monsoons on the atmospheric environment of the South China Sea (SCS). The summer and winter cruises were carried out respectively by the vessels "Tan 	Deleted: terrestrial transport

184 of 19.4 meters, and a displacement of 6880 tons.

186	The first cruise was from May 5th to June 9th, 2021. The cruise started from Xiamen Port and
187	traversed from the northern to the central-southern South China Sea, and then circled back near Hainan
188	Island, and finally returned to Xiamen Port. The second cruise was from December 19th to December
189	29th, 2021. It began from Gaolan Port in Zhuhai and reached the vicinity of Yongxing Island, and
190	ultimately returned to Gaolan Port (Fig. 1a). Unfortunately, due to adverse weather conditions, such as
191	strong winter monsoon winds causing poor sea conditions, and the fact that it was the first scientific
192	deployment of the research vessel Sun Yat-sen University, the winter cruise had a shorter duration and
193	covered a narrower spatial range compared to the summer cruise. On both cruises, most of the
194	instruments were housed in a single compartment and the sampling lines were extended from the window
195	of the compartment to the height of the ship's bridge (Fig. $\underline{1a}$).

196 2.1.2 Size-resolved cloud condensation nuclei activity measurement

197 The size-resolved CCN activity was measured with a combination of a scanning mobility particle 198 sizer (SMPS) system and a cloud condensation nuclei counter (model CCNc-200, DMT Inc., USA), the 199 scanning mobility CCN analysis (SMCA) method initially proposed in Moore et al. (2010). The SMPS 200 system consisted of a differential mobility analyzer (DMA; model 3082, TSI., Inc.) and a condensation 201 particle counter (CPC; model 3756, TSI Inc.). The SMPS and the CCNc system were used to measure 202 PNSD and size-resolved CCN number concentration at a mobility size range of 10-500 nm and 10-593 203 nm in summer and winter campaign, respectively. The supersaturation (SS) of the CCNc was set at 0.2 %, 0.4 %, and 0.7 % in summer campaign and 204 205 0.1%, 0.2 %, 0.4 %, and 0.7 % in winter campaign, respectively. Before the measurements, the CCNc

 $206 \qquad \text{was calibrated with ammonium sulfate ((NH_4)_2SO_4) particles at each set SS. Detailed description of the}$

207 instrument configuration and calibration can be found in Cai et al. (2018).

208 2.1.3 Aerosol chemical composition measurement

209 The chemical composition of atmospheric non-refractory submicron particulate matter (NR-PM₁), 210 including sulfate, nitrate, organics, ammonium, and chloride, was measured using an online time-of-211 flight ACSM (ToF-ACSM; Aerodyne Inc., USA). The sampling time of the ToF-ACSM was 212 approximately 10 min. The relative ionization efficiency (RIE) values of the instrument were calibrated 213 using ammonium nitrate (NH₄NO₃) and ammonium sulfate ((NH₄)₂SO₄) both before the start and after

6

Formatted: No underline, Font color: Auto Formatted: Check spelling and grammar

Deleted: set

215	the completion of the campaigns. The RIE values for ammonium were 3.31 and 3.33 during the summer	
216	and winter, respectively, while the ones for sulfate were 1.02 and 0.81 during the summer and winter,	
217	respectively. The collection efficiency (CE) was determined as shown in Sun et al. (2023) and time-	
218	independent CE values were used in this study. Detailed CE calculation can be found in the	
219	supplementary (Text S1, and Fig. S1). The organic carbon (OC)/elemental carbon (EC) concentrations	
220	in PM _{2.5} were measured using a semi-continuous OC/EC analyzer (Model-4, Sunset Laboratory Inc.,	
221	USA) based on the thermal optical transmittance technique and detailed measurement process can be	
222	found in Sun et al. (2023). The black carbon concentrations were measured with an aethalometer (AE33,	
223	Magee Scientific).	
224	2.1.4 Trace Cas and metagralagical neurometer measurements	
	2.1.4 Trace Gas and meteorological parameter measurements	
225	The concentrations of trace gases (CO, O ₃ , SO ₂ , and NOx) were measured using gas monitors	
226	(T400U, T100U, and T200U; Teledyne API Inc., USA). The meteorological elements, including	
227	temperature, relative humility, wind speed, and wind direction, were measured by the combined	
228	automatic weather station onboard the vessels. During the winter cruises, meteorology data before 12.22	
229	was missed due to the calibration for the automatic weather station before 12.22. The timeseries of	
230	meteorological data were presented in Fig. S2,	Formatted: Font: (Asian) +Body Asian (等线)
231	2.2 Data analysis	
232	2.2.1 CCN activation	
233	The size-resolved number concentration of total praticle and cloud condensation nuclei were	
234	obtained from the SMPS and CCNc thourgh the SMCA method. The activation diameter was determined	
235	by fitting the activation ratio (AR, N _{CCN} /N _{CN}) and dry diameter at each supersaturation through the	
236	following equation:	
237		Delated: NCCN
231	$AR = \frac{B}{1 + \left(\frac{D_P}{D_{50}}\right)^C},\tag{1}$	Deleted: NCN NCN
238	where <u>AR is the size-resolved AR</u> , D_P represents dry particle diameter (nm); B, C, and D_{50} are the three	
239	fitting parameters, representing the asymptote, the slope, and the inflection point of the sigmoid,	

- $240 \qquad \text{respectively (Moore et al., 2010). The D_{50} parameter, also known as the critical diameter, corresponds}$
- 241 to the particle size at which 50% of the particles are activated at a specific SS. The fitting results from

242 <u>SMCA method measured in this study are presented in Fig. S3.</u>

Formatted: Font: (Asian) +Body Asian (等线)

244	The hygroscopicity parameter (κ) which represents CCN activity according to κ -Köhler equation is			
245	calculated as follows (Petters and Kreidenweis, 2007):			
246	$\kappa = \frac{4A^3}{27D_{50}^{-3}(\ln S_c)^2}, A = \frac{4\sigma_{S/a}M_W}{RT\rho_W} $ (2)			
247	where ρ_w is the density of pure water (about 997.04 kg m^{-3} at 298.15 K), M_W is the molecular weight of			
248	water (0.018 kg mol ⁻¹), σ_{sia} corresponds to the surface tension of the solution-air interface and is assumed			
249	to be equal to the surface tension of pure water ($\sigma_{s/a}=0.0728$ N m ⁻¹ at 298.15 K), R is the universal gas			
250	constant (8.314 J mol ⁻¹ K ⁻¹), T denotes thermodynamic temperature in kelvin (298.15 K), and D ₅₀ is the			
251	critical diameter (in m).			
252	2.2.2 Closure Method		Formatted:	Heading 3
253	According to Petters and Kreidenweis. (2007), K can be predicted by a simple mixing rule based	~	Formatted:	Font: (Default) Times New Roman
254	on chemical volume fractions:		Formatted:	Indent: First line: 2 ch
255				
256	where $\underline{\varepsilon_i}$ and $\underline{\kappa_i}$ are the volume fraction and hygroscopicity parameter for the specific dry component in			Font: Times New Roman
257	the mixture. We obtained ε from aerosol chemical composition measured by the ToF-ACSM. In this study,	\mathbb{N}		Font: Times New Roman, Subscript
			Formatted: Formatted:	Font: Times New Roman
258	<u>κ from (NH_d)_cSO_d (0.48), NH_dNO₃ (0.58), and Nacl (1.1) represent the κ of SO_d²⁻, NO_d[*], and Cl provided</u>		Formatted:	-
259	by the ToF-ACSM (Huang et al., 2022). Besides, the κ of organic was 0.1 at this study. The density of		Formatted:	-
200	(NIL) SO NILNO N. 1. 1. 1. 170 h. 3 1700 h. 301(5 h. 3 11400 h. 3		Formatted:	Subscript
260	(NH ₄) ₂ SO ₄ , NH ₄ NO ₃ , Nacl and organic are 1769 kg m ⁻³ , 1720 kg m ⁻³ , 2165 kg m ⁻³ , and 1400 kg m ⁻³		Formatted:	Subscript
261	(Huang et al., 2022; Gysel et al., 2007).		Formatted:	Subscript
		()	Formatted:	Subscript
262	2.2.3 CCN concentration and activation ratio calculation		Formatted:	Superscript
202		11//	Formatted:	Subscript
263	The CCN concentration (N_{CCN}) can be predicted based on particle number size distribution (PNSD)	$\langle \rangle$		Superscript
264	and D ₅₀ at a specific SS. It can be calculated by the following equation (Cai et al., 2018):			Superscript
204	and D_{50} at a specific SS. It can be calculated by the following equation (Callet al., 2018):			Superscript
265	$N_{CCN}(SS) = \int_{D_{50}(SS)}^{\infty} N_{CN}(D_P) dD_p $ (4)		Deleted:	
266	where N_{CCN} (SS) is CCN concentration at a specific SS, D_{50} (SS) is the activation diameter at a specific	$\overline{\ }$	Formatted: Deleted: 2	Font: (Asian) +Body Asian (等线)
200			Deleted: 3	
267	SS from the SMCA method or from closure method, and N _{CN} (D _P) is the particle number concentration			om the SMCA method
268	under specific diameter from SMPS measurement.			
269	The AR can be calculated by:			
270	$AR = \frac{\int_{D_{50}(SS)}^{\infty} N_{CN}(D_P) dD_P}{\int_{0}^{\infty} N_{CN}(D_P) dD_P} $ (5)			
270	$\int_0^\infty N_{CN}(D_P) dD_p \tag{2}$			
I	8			

275	It is noting that the AR here is bulk AR.		Formatted: 公式1, Indent: First line: 0 cm
276	To investigate the impact of the fraction and mixing state of aerosol on N _{CCN} , two CCN simulation		Formatted: Subscript
277	scheme are applied in this study (Patel et al., 2021).		
278	(1) Internal-mixed scheme: the aerosol composition from the Tof-ACSM was assumed to be size-		
279	independent and internally mixed. All aerosol has an identical chemical composition in the		
280	whole size range. N _{CCN} is calculated by Ksim and measured PNSD according to Eq. (2), Eq. (3),		Formatted: Font: (Default) Times New Roman
			Formatted: Subscript
281	and Eq. (4).		
282	(2) External-mixed scheme: the aerosol composition from the Tof-ACSM was assumed to be size-		Formatted: Font: (Asian) +Body Asian (等线)
283	independent and externally mixed. Four type of aerosol ((NH4)2SO4, NH4NO3, Nacl and organic)		Formatted: Indent: Left: 0 cm, First line: 2 ch
284	are assumed to have identical concentration at each size. N_{CCN} is calculated according to the Eq.		Deleted: To investigate the effect of PNSD and D_{50} on N_{CCN} and AR,
285	(4)	//	we defined delta N_{CCN} (ΔN_{CCN}) and delta AR (ΔAR). They are calculated by following equations:
286	To access the simulation result from these two schemes, normalized mean bias (NMB) was used in	/	$\Delta N_{CCN} = \frac{N_{CCN,sim} - N_{CCN,actual}}{N_{CCN,actual}} $ (5) $\Delta AR = \frac{N_{CCN,actual} - N_{CCN,sim}}{N_{CCN,actual}} $ (6)
287	this study:		The subscript "actual" represents the actual measured value,
288	$NMB = \frac{\Sigma(N_{CCN,sim} - N_{CCN,obs})}{(6)}$		while the subscript "sim" represents the simulated value.
200	NMD = (0)	1	Formatted: Subscript
200	$NMB = \frac{\Sigma(N_{CCN,sim} - N_{CCN,obs})}{\Sigma^{N_{CCN,obs}}} $ (6)		Formatted: Subscript
289	$\frac{100}{\text{Where } N_{\text{CCN,obs}}}$ where $N_{\text{CCN,sim}}$ is the simulated N_{CCN} from two schemes, and $N_{\text{CCN,obs}}$ is the observed N_{CCN} .		·
			Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon
			Formatted: Subscript Formatted: Normal
289	where $N_{CCN,sim}$ is the simulated N_{CCN} from two schemes, and $N_{CCN,obs}$ is the observed N_{CCN}		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation:
289 290	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN}		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8)
289 290 291	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} ,		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from
289 290 291 292	 where N_{CCN,sim} is the simulated N_{CCN} from two schemes, and N_{CCN,obs} is the observed N_{CCN} 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang, 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a 		Formatted: Subscript Formatted: Normal Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where $(OC/EC)_{pri}$ is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016).
289 290 291 292 293	 where N_{CCN,sim} is the simulated N_{CCN} from two schemes, and N_{CCN,obs} is the observed N_{CCN} 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang, 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website 		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from
289 290 291 292 293 294	 where N_{CCN,sim} is the simulated N_{CCN} from two schemes, and N_{CCN,obs} is the observed N_{CCN}, 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang,* 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every 		Formatted: SubscriptFormatted: SubscriptFormatted: NormalDeleted: 2.2.3 Primary and secondary organic carbon concentration calculationThe concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC) _{min} or (OC/EC) _{10%} approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu,
289 290 291 292 293 294 295	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} , 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang, 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Lhour backward trajectories at 500m.		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC) _{min} or (OC/EC) _{10%} approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC) _{Pri} values were 3.65 and 0.25 in summer when affected by terrestrial air masses and
289 290 291 292 293 294 295 296	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} , 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang, 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Lhour based on the location mentioned below, generating 72-hour backward trajectories at 500m. To clarify the sources of air masses, we applied cluster analysis in this study. During the summer 4		Formatted: SubscriptFormatted: SubscriptFormatted: NormalDeleted: 2.2.3 Primary and secondary organic carbon concentration calculationThe concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC) _{min} or (OC/EC) _{10%} approach and the results obtained from the RRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC) _{pri} values were 3.65 and 0.25 in summer when affected by terrestrial air masses and terrestrial-marine mixed air masses, while they were 2.82 and 0.82 in winter when affected by terrestrial air masses
289 290 291 292 293 294 295 296 297	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} , 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang,* 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Lhour, based on the location mentioned below, generating 72-hour backward trajectories at 500m. To clarify the sources of air masses, we applied cluster analysis in this study. During the summer cruise, we conducted cluster analysis at two key locations: the midpoint of the ship's track before the		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentration calculation The concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC) _{pri} is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC) _{pri} was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC) _{min} or (OC/EC) _{10%} approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC) _{10%} values were 3.65 and 0.25 in summer when affected by terrestrial air masses and terrestrial-marine mixed air masses, while they were 2.82
289 290 291 292 293 294 295 296 297 298	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang,* 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Ihour based on the location mentioned below, generating 72-hour backward trajectories at 500m. To clarify the sources of air masses, we applied cluster analysis in this study. During the summer cruise, we conducted cluster analysis at two key locations: the midpoint of the ship's track before the outbreak of the summer monsoon (May 5-23) and the midpoint of the track after the summer monsoon		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC)_pri is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC)_pri was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC)_min or (OC/EC)_10% approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC)_pri values were 3.65 and 0.25 in summer when affected by terrestrial air masses and terrestrial-marine mixed air masses, schild they were 2.82 and 0.82 in winter when affected by terrestrial air masses and terrestrial-marine mixed air masses, respectively. The categorization method based on the influence of different air masses will be introduced in the next section. Formatted: Font: (Asian) +Body Asian (等线)
289 290 291 292 293 294 295 296 297 298 299	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} , 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang, 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Lhour, based on the location mentioned below, generating 72-hour backward trajectories at 500m. To clarify the sources of air masses, we applied cluster analysis in this study. During the summer cruise, we conducted cluster analysis at two key locations: the midpoint of the ship's track before the outbreak of the summer monsoon (May 5-23) and the midpoint of the track after the summer monsoon began (May 24-June 9). In the winter cruise, cluster analysis was performed at two specific locations:		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)pri \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC)pri is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC)pri was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC)min or (OC/EC)10% approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC)mi values were 3.65 and 0.25 in summer when affected by terrestrial air masses and terrestrial-marine mixed air masses, while they were 2.82 and 0.82 in winter when affected by terrestrial air masses and terrestrial-marine mixed air masses, respectively. The categorization method based on the influence of different air masses will be introduced in the next section. Formatted: Formatted: Font: (Asian) +Body Asian (等线)
289 290 291 292 293 294 295 296 297 298 299 300	where N _{CCN,sim} is the simulated N _{CCN} from two schemes, and N _{CCN,obs} is the observed N _{CCN} , 2.2.4 Backward trajectory simulation and cluster analysis Backward trajectory calculations were performed using MeteoInfo, an open-source software (Wang,* 2014) to determine potential source origins. Weekly GDAS1 (Global Data Assimilation System at a resolution of 1°) files were downloaded from the NOAA Air Resource Laboratory (ARL) website (https://www.ready.noaa.gov/gdas1.php). The calculation of backward trajectories is performed every Lhour based on the location mentioned below, generating 72-hour backward trajectories at 500m. To clarify the sources of air masses, we applied cluster analysis in this study. During the summer cruise, we conducted cluster analysis at two key locations: the midpoint of the ship's track before the outbreak of the summer monsoon (May 5-23) and the midpoint of the track after the summer monsoon began (May 24-June 9). In the winter cruise, cluster analysis was performed at two specific locations: the ship's anchorage near Big Ten-thousand Mountain Island (December 19-22 and December 27-29)		Formatted: Subscript Formatted: Normal Deleted: 2.2.3 Primary and secondary organic carbon concentrations of primary organic carbon (POC) and secondary organic carbon (SOC) were calculated according to following equation: $POC = (OC/EC)_{pri} \times EC$ (7) $SOC = OC_{total} - (OC/EC)_{pri} \times EC$ (8) where (OC/EC)_pri is the OC/EC ratio in freshly emitted combustion aerosols, and OC _{total} and EC are available from ambient measurements. The (OC/EC)_pri was obtained from the minimum R squared (MRS) method (Wu and Yu, 2016). The MRS approach provides more accurate estimation of SOC than (OC/EC)_min or (OC/EC)_10% approach and the results obtained from the MRS method are sensitive to the magnitude of measurement uncertainty, but the bias does not exceed 23% if the uncertainty is within 20% (Wu and Yu, 2016). In this study, the (OC/EC)_pri values were 3.65 and 0.25 in summer when affected by terrestrial air masses and terrestrial-marine mixed air masses, schild they were 2.82 and 0.82 in winter when affected by terrestrial air masses and terrestrial-marine mixed air masses, respectively. The categorization method based on the influence of different air masses will be introduced in the next section. Formatted: Font: (Asian) +Body Asian (等线)

Formatted: Normal, Indent: First line: 0.71 cm, Left 0 ch

335	2.2.5 Data quality control	
336	To ensure reliable atmospheric samples in the SCS and mitigate the influence of research vessel	Formatted: Indent: Left: 0 cm, Right: 0 cm
337	emissions, we applied the following data processing procedures (Huang et al., 2018; Cai et al., 2020;	
338	Liang et al., 2021).	
339	Firstly, we identified organic compounds, black carbon (BC), and small particulate matter (41.4 nm	
340	particles) as indicators of ship emissions, recognizing their sudden peak values as indicative of the ship's	
341	own emissions.	
342	Secondly, we accounted for the relative positions of the ship's chimney and the sampling tube.	
343	During the summer cruise, we excluded data corresponding to a relative wind direction (with respect to	
344	the ship's bow) between 150° and 270° and a relative wind speed (with respect to the ship's speed) of less	
345	than 2.5 m s ⁻¹ (Fig. S4a, Fig. S5a1, and Fig. S6a-c). During the winter cruise, we excluded data for a	
346	relative wind direction between 150° and 220° and a relative wind speed of less than 2.5 m s ⁻¹ (Fig. S4b.	 Formatted: Superscript
347	Fig. S5b1, and Figs. S6d-f).	
348	Applying these criteria, 74.8% of the data in summer and 92.2% in winter (both at 10-minute	
349	resolution) were classified as "clean" and retained for analysis. The timeseries of data before and after	
350	quality control is shown in Fig. S7,	 Deleted:
		Formatted: Font: Not Bold
351	3. Results and discussion	Formatted: Heading 2, Indent: Left: 0 cm, First line: 0 cm, Right: 0 cm
352	3.1 <u>CCN concentration and aerosol characteristics over SCS in summer and winter</u> ,	 Deleted: Overview
353	Figure 2 presented the timeseries of PNSD (a1 and a2), <u>NR-PM1 mass concentrations and fractions</u>	 Deleted: shows
354	(b1 and b2, c1 and c2), number concentrations of CCN (d1 and d2), and hygroscopicity x-values (e1 and	Formatted: Not Superscript/ Subscript
355	e2) during two campaigns in summer and winter. During the summer cruise, we observed two distinct	Formatted: Font: Times New Roman
356	periods around the onset of the summer monsoon. The South China Sea (SCS) summer monsoon began	
357	in the sixth pentad of May (Chao et al., 2022). In winter, the influence of the winter monsoon persisted	
358	throughout the entire observation period (Fig. 1c). Despite our measurements being limited to the	
359	northern SCS in winter, the impact of the Northeast Monsoon on the SCS was evident.	
360	The average particle number concentration in summer (6966 cm ⁻³) was higher than in winter (4988	
361	cm ⁻³), primarily due to the higher number concentration of Aitken-mode particles in summer (Fig. 3a-b).	
1		

366	relatively balanced between the Aitken mode (2185 cm ⁻³) and the accumulation mode (2176 cm ⁻³) (Fig.
367	<u>3a-b).</u>
368	The average mass concentration of NR-PM _a was 3.76 μ g m ⁻³ in summer and increased to 9.39 μ g
369	m ⁻³ in winter (Fig. 3c-d). In summer, the dominant aerosol component was sulfate (45.5%), followed by
370	organics (35.8%), ammonium (12.9%), nitrate (4.0%), and chloride (1.9%) (Fig. 3c), similar to the
371	pattern observed in the northern SCS during the summer of 2018 (Fig. 3e) (Liang et al., 2021). However,
372	in winter, organics became the predominant aerosol component (37%), with nitrate (22.2%) replacing
373	sulfate (18.9%) as the highest proportion of inorganic components (Fig. 3d).
374	The average number concentration of cloud condensation nuclei (N _{CCN}) in summer was higher than
375	in winter at all supersaturation (SS) levels (Table 1). The absolute difference in the N _{CCN} between summer
376	and winter was greater at high SS (ΔN_{CCN} =2099 cm ⁻³ and 1865 cm ⁻³ at 0.4% SS and 0.7% SS,
377	respectively) compared to low SS (ΔN_{CCN} =341 cm ⁻³ at 0.2% SS), likely due to the significant difference
378	in Aitken-mode particles between the two seasons (Fig. 3a-b).
379	Aerosol hygroscopicity (κ) was similar at low SS but differed significantly at high SS between
380	summer and winter (Table 1). The hygroscopicity pattern varied between seasons: in summer, k increased
381	with SS (from 0.49 to 0.72 between 0.2% SS and 0.4% SS), while in winter, κ decreased with SS (from
382	0.50 to 0.15 between 0.1% SS and 0.7% SS) (Fig. 3a-b). The winter κ pattern was similar to observations
383	in the Western North Pacific (Table 1) (Kawana et al., 2020). Additionally, the winter κ values were
384	comparable to those in Guangzhou, adjacent to the SCS, indicating that the northern SCS is influenced
385	by air masses from Mainland China under the significant influence of the Northeast Monsoon during
386	winter,

387 3.2 Anthropogenic influence on CCN concentration in different season

266

388 Based on cluster analysis, we identified periods affected by different types of air masses. In summer, 389 three terrestrial air mass sources were confirmed: from Luzon Island (referred to as "Luzon"), Palawan 390 Island, and the Indochinese Peninsula, along with a marine air mass source (Fig. 4a). Due to the small 391 fraction of air masses from Palawan Island, this period was excluded from the study. Consequently, the 392 periods affected by air masses from Luzon, the Indochinese Peninsula, and marine sources were referred 393 to as the "Luzon" period, "Indochinese Peninsula" period, and "Marine-s" period, respectively. In winter, 394 the identified air mass sources included Mainland China, a Mainland China-SCS mixed source (referred

Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Normal, Indent: First line: 0.71 cm

Deleted: Based on the backward trajectories and source origins, both campaigns were classified into two periods: the period influenced by terrestrial-marine mixed air masses (31%) and the period influenced by terrestrial air masses only (69%) (Fig. S3). During the summer, terrestrial air masses primarily traverse through the Philippines region, whereas during the winter, they predominantly originate from mainland China. As shown in Fig. 2, a higher total particle number concentration during summer (11195 cm-3) than during winter (6358 cm⁻³) was obtained when the marine atmosphere was mainly influenced by terrestrial air masses. This is in line with previous studies that a higher particle number concentration of exceeding 15000 cm-3 was observed in Manila (the largest port city in the Philippines) than that of approximately 10000 cm-3 reported in Guangzhou and Hong Kong (Liu et al., 2008; Cai et al., 2017). Similar particle concentrations (2114 cm⁻³ and 1840 cm⁻³) in winter and summer were shown when the marine atmosphere was predominantly influenced by mixed air masses. Interestingly, they are much lower than those (~3400 cm⁻³) observed in the northern South China Sea (Cai et al., 2020), but higher than those observed in the remote SCS (975 cm-3) when similar mixed influences of air masses (Atwood et al., 2017). The average mass concentration of NR-PM1 was 3.60 $\mu g \ m^{-3}$ in summer and significantly increased to 18.11 $\mu g \ m^{\text{-3}}$ in winter. However, this summer concentration was much lower than the concentrations (9.11 µg m⁻³ and 10.65 µg m⁻³ measured in similar summer periods of 2018 and 2019 in the northern SCS (Liang et al., 2021; Sun et al., 2023). As aforementioned, the particle number concentrations were higher in summer than in winter when the atmosphere was primarily influenced by terrestrial air masses. However, the particles in summer were predominantly in the Aitken mode, resulting in a lower contribution to the mass loading than those in winter which were mainly in the accumulation mode (Fig. 3). Additionally, higher NR-PM1 concentrations were found in both summer and winter under the influence of terrestrial air masses than mixed ones, with decreases of approximately 0.6 $\mu g~m^3$ (from 3.84 to 3.20 $\mu g~m^3$) and 17 $\mu g~m^3$ (from 23.52 to 6.32 $\mu g~m^3$) in summer and winter, respectively. The dramatic decrease for the latter case indicated a more pronounced impact of inland anthropogenic emissions on the aerosol mass concentration in the SCS region during winter.

As shown in Fig. 2 (d1 and d2), the N_{CCN} values at three supersaturation levels (0.2%, 0.4%, and 0.7%) in winter (1660, 2356, and 3053 cm-3) were lower than those in summer (2899, 5450, and 5770 cm-3), respectively. Specifically, the N_{CCN} (5450 cm⁻³) at 0.4% SS in this study during summer is much higher than that (1544 cm⁻³) measured at a similar SS (0.34%) in summer 2018 in the similar northern SCS region (Cai et al., 2020). This is primarily due to most of the particles being in the Aitken mode particles during summer (Figs. 3a and c). For comparison, the average total particle number concentration in summer is twice that in winter, however, no such a significant difference in CCN concentration was see [1]

532	to as "Mixed"), and a marine source (Fig. 4b). These were named as the "Mainland China" period,	
533	"Mixed" period, and "Marine-w" period, respectively.	
534	Terrestrial air masses significantly affected the marine atmosphere in the SCS, resulting in higher	
535	<u>NR-PM₄ mass concentration and a higher fraction of organic compounds compared to those influenced</u>	Formatted: Subscript
536	by marine air masses (Fig. 5). Additionally, the number concentration of particles (N_{CN}) in the	Formatted: Subscript
537	accumulation mode and the number concentration of cloud condensation nuclei (N _{ECN}) at low	Formatted: Subscript
538	supersaturation (SS) were higher during periods influenced by terrestrial air masses than those during	
539	marine air mass periods (Table 2).	
540	In summer, the "Luzon" period had the highest N _{CN} , particularly in the Aitken mode, among all	Formatted: Subscript
541	periods in both summer and winter (Fig. 6a and Table 1). The high fraction of Aitken mode particles	
542	contributed to the lowest activation ratio (AR) among the summer periods (Fig. 7a), further exacerbated	
543	by low hygroscopicity during this period (Fig. 7b). This high fraction of Aitken mode particles likely	
544	indicates a high fraction of primary organic aerosol, which lowers aerosol hygroscopicity.	
545	The N _{CN} during the "Indochinese Peninsula" period was lower than during the "Marine-s" period	Formatted: Subscript
546	(Table 2). This difference was mainly due to the variation of Aitken mode particles, while accumulation	
547	mode particles were higher during the "Indochinese Peninsula" period than in "Marine-s" period (Table	
548	2). The "Marine-s" period occurred primarily during the transition before the summer monsoon onset,	
549	when wind direction shifted from east (Luzon Island direction) to southwest (Indochinese Peninsula	
550	direction). Anthropogenic emissions from Luzon Island still affected the marine atmosphere, leading to	
551	higher concentrations of Aitken mode particles compared to the "Indochinese Peninsula" period (Table	
552	2). The higher fraction of accumulation mode particles and higher hygroscopicity during the	
553	"Indochinese Peninsula" period resulted in a higher AR compared to the "Luzon" period. Despite a higher	
554	organic fraction in NR-PM ₄ during the "Indochinese Peninsula" period (Fig. 5), hygroscopicity was still	Formatted: Subscript
555	higher due to a higher oxidation degree of organics, indicated by a higher m/z 44 to 43 ratio (5.87	
556	compared to 5.60 in the "Luzon" period) (Lambe et al., 2011; Jimenez et al., 2009). Additionally, higher	
557	wind speeds during this period (7.26 m s ⁻¹ compared to 3.18 m s ⁻¹ in the "Luzon" period) leaded a higher	Formatted: Superscript
558	fraction of sea salt (Huang et al., 2022), resulting a higher aerosol hygroscopicity. Unfortunately, owing	
559	to instrument limit, sea salt cannot be detected by the ToF-ACSM.	
560	In winter, nitrate had the highest fraction in NR-PMJ (25.4%) during the "Mainland China" period	Formatted: Subscript
561	among other periods. Due to similar hygroscopicity between nitrate and sulfate and similar inorganic	
I	12	

562	fractions between the "Mainland China" and "Luzon" periods, <u>K</u> at 0.2% SS was comparable (0.30 and	Formatted: Font: Times New Roman
563	0.33, respectively) (Fig. 7b). However, aerosol hygroscopicity at small sizes was much lower in the	
564	"Mainland China" period than in the "Luzon" period (Fig. 7b), contributing to the low AR in the	
565	"Mainland China" period (Fig. 7a). This lower hygroscopicity could be due to lower sulfate concentration,	
566	oxidized by DMS, in winter than in summer, as higher sea surface temperatures in summer (29.3°C)	
567	compared to winter (18.0°C) promote DMS production by phytoplankton (Bates et al., 1987). The similar	
568	fractions of Aitken mode and accumulation particles indicated that PNSD could not fully explain the low	
569	AR in the "Mainland China" period. Lower N _{CN} and AR in the "Mainland China" period compared to	Formatted: Subscript
570	the "Luzon" period resulted in a lower N _{CCN}	Formatted: Subscript
571	During the "Mixed" period, the N _{CCN} was lower than in the "Mainland China" period, attributed to	Formatted: Subscript
572	decreased N _{CN} (Table 2). However, particles were primarily concentrated in the accumulation mode,	Formatted: Indent: First line: 2 ch
573	distinct from other terrestrial air mass periods (Fig. 6), leading to a significantly higher AR than the	Formatted: Subscript
574	"Mainland China" period. Organic aerosol hygroscopicity was higher during the "Mixed" period than	
575	the "Mainland China" period, supported by a higher m/z 44 to 43 ratio (3.88 compared to 3.10 in the	
576	"Mainland China" period), explaining the higher hygroscopicity despite a higher organic fraction in NR-	
577	PM ₄ . Additionally, lower BC concentration in the "Mixed" period (1.20 μg m ⁻³ compared to 2.25 μg m ⁻³	Formatted: Subscript
578	in the "Mainland China" period) suggested a lower fraction of BC, which was hydrophobic. Higher wind	
579	speeds in the "Mixed" period (10.77 m s ⁻¹ compared to 7.14 m s ⁻¹ in the "Mainland China" period) could	Formatted: Superscript
580	increase sea salt fraction, further enhancing aerosol hygroscopicity.	Formatieu. Saperscript
500	meredse sed salt fraction, futurer einfahenig derosor nygrosoopterty.	
581	<u>3.3 CCN closure analysis</u>	
582	CCN closure study was widely applied to investigate the impacts of different factors on the CCN	
583	activity (Patel et al., 2021; Cai et al., 2018; Meng et al., 2014; Deng et al., 2013). In this study, two	
584	schemes considering aerosol composition and mixing state based on CCN closure method mentioned in	
585	2.2.3 were applied. The fitting parameter and coefficient of determination (R ²) was shown in Table 3 and	Formatted: Superscript
586	the fitting plots from two schemes were shown in Fig. S8 and Fig. S9. Besides, the NMB from these two	
587	schemes was presented in Fig. 8.	
588	In summer, the NMB always lower than 0, which indicated that simulated aerosol hygroscopicity	
589	was lower than observed value (Fig. 8). Sea salt which cannot be detected by the ToF-ACSM may	
590	account for higher fraction in summer due to low aerosol concentration in summer (Fig. 3c), resulting in	
I	13	

591	the underestimation of aerosol hygroscopicity. The NMB exhibits different trends with changes in SS in
592	"Luzon" and "Indochinese Peninsula" period. Better fitting result appeared in high SS in "Indochinese
593	Peninsula" period, while it appeared in low SS in "Luzon" period (Fig. 8), which indicated that aerosol
594	fraction had different trend as particle size increased in these two periods. Besides, "Internal-mixed"
595	scheme had more precious result than it in "External-mixed" scheme in summer (Fig. 8), suggesting the
596	aerosol was primary internally mixed in summer.
597	In winter, the "External-mixed" scheme always showed a better result than "Internal-mixed" scheme at
598	high SS (0.4% SS and 0.7% SS), indicating that particles in small size were mainly externally mixed.
599	Considering the low hygroscopicity of small-sized particles in winter, it is likely that a significant fraction
600	of these particles consists of externally mixed BC, which probably originated from fresh anthropogenic
601	emissions and remains unmixed with other inorganic salts and organics. As BC ages, inorganic and
602	organic components adhere to it, which would lead to the increase of diameter and particles tended to be
603	internally mixed (Sarangi et al., 2019). This transition resulted in higher hygroscopicity in large-sized
604	particle compared to the smaller-sized particles. Besides, overestimation of aerosol hygroscopicity at
605	high SS could be owing to a higher fraction of non- or less- hygroscopic component (such as organic and
606	BC) at small particle sizes. The predicted N _{CCN} at 0.1% SS are 10%-20% lower than the observed
607	concentrations, whereas the predicted value at 0.2% SS more closely aligns with the observed
608	concentrations (Fig. 8). It could be owing to the higher fraction of sea salt at larger particle size. However,
609	due to instrument limitations, black carbon and sea salt cannot be detected by the ToF-ACSM. More
610	observations containing sea salt and black carbon are needed in the future to better assess their effects on
611	aerosol hygroscopicity in SCS. In addition, further study size-resolved aerosol composition can also
612	enhance the understanding on CCN activity in the SCS

613 4. Conclusion

614	In this study, we investigated the seasonal variations of cloud condensation nuclei (CCN) activity
615	in the South China Sea (SCS) and explored the impact of anthropogenic emissions. Shipborne
616	observations were conducted during the summer (May 5-June 9) and winter (December 19-29) of 2021.
617	We measured CCN activity, chemical composition, and particle number size distribution (PNSD) using
618	several onboard instruments, including a ToF-ACSM, a CCNs, an SMPS, and an AF33. Observations

Formatted: Indent: First line: 0 ch Formatted: Font: Bold, (Intl) +Headings (等线 Light), Subscript

Deleted: 3.3 Differences in the CCN activation ratio during different seasons

The CCN activation ratio (AR), which quantifies the number fraction of aerosol particles capable of acting as CCN at a specific supersaturation level, is an important parameter for characterizing the CCN activity (Dusek et al., 2006). In addition, AR is also a useful parameter in the CCN prediction (Pruppacher, 2010; Deng et al., 2013). Figure 6 illustrates the variations in AR and N_{CCN} under the influence of different air masses during different seasons. The median AR values were higher in summer (0.39, 0.67, and 0.85 at 0.2%, 0.4%, and 0.7% SS, respectively) than in winter (0.21, 0.36, 0.49, and 0.64 at 0.1%, 0.2%, 0.4%, and 0.7% SS, respectively). In summer under terrestrial air masses, the ARs (0.34-0.81 at 0.2%-0.7% SS) in this study were lower than those (0.49-0.85 at 0.18%-0.59% SS) in a previous study in the same region (Cai et al., 2020), but higher than those (0.18-0.48 at 0.11%-0.60% SS) in the Western North Pacific (Kawana et al., 2022). However, under mixed air masses, the AR values were higher than those (0.31–0.71 at 0.18%–0.59% SS) reported in Cai et al. (2020) and close to those (0.42-0.85 at 0.11%-0.60% SS) in the Western North Pacific (Kawana et al., 2022). In winter under terrestrial air masses, the AR values were in a range of 0.14 to 0.59 at 0.1%-0.7% SS consistent with those measured in the Guangzhou (0.26-0.64 at 0.1%-0.7% SS) and Hong Kong (0.16-0.65 at 0.15%-0.7% SS) (Cai et al., 2018; Meng et al., 2014). The differences of AR between different seasons under different air masses could be attributed to different PNSD and hygroscopicity. When the PNSD concentrates particles in the size range beyond the D50, more particles can be activated as CCN, leading to higher ARs. Meanwhile, more hygroscopic particles intend to have smaller D50 values with which more particles can be activated. Previous studies showed that the influence of the above two factors may vary under different environments. The PNSD played a more important role in most cases in continental area (Dusek et al., 2006; Tao et al.,2021), while hygroscopicity can also have significant effects in some environments, such as boreal forest and coastal area (Roldin et al., 2019, Bougiatioti et al., 2016). Here, we investigate the relative importance of aerosol PNSD and chemical composition (hence hygroscopicity) in the SCS during different seasons under different air masses. We define AAR as the difference between the actual and estimated AR using Eq. (7), following a procedure illustrated in Fig. S8. AR was calculated using Eq. (4) based on the average D50 and the PNSD obtained during different seasons and periods (Fig. S8). Figure 7 shows that the ΔAR values at 0.2%–0.7% SS between summer and winter due to D_{50} were from -22% to 29%, while they were from -10% to 12% due to PNSD, indicating more significant influence of D50 than PNSD on N_{CCN} in the South China. In fact, the peak diameters of PNSD during both winter and summer are around 70 nm, and their variations are relatively small compared to the changes in D50 (Fig. S9).

We further investigate the influence of PNSD and hygroscopicity on AR under different air masses in the same season. In summer, the influence of PNSD on the AR can reach 6.0% to 9.8% between different periods (Figs. 7 b1 and c1), with the most significant impact at 0.2% SS (D₅₀ > 90 nm). This can be attributed to the fact that large vari

758	included periods before and after the summer monsoon outbreak and periods influenced by the winter	
759	monsoon.	
760	Our results show that particle number concentration (N_{CN}) and CCN number concentration (N_{CCN})	Formatted: Subscript
761	were higher in summer than in winter, while the mass concentration of non-refractory submicron	Formatted: Subscript
762	particulate matter (NR-PMg) was lower in summer. This can be attributed to the predominance of Aitken	Formatted: Subscript
763	mode particles in summer, compared to the higher concentration of accumulation mode particles in winter.	
764	Additionally, aerosol hygroscopicity and activation ratio (AR) were found to be higher in summer than	
765	in winter.	
766	Backward trajectory and cluster analysis identified distinct air mass influences. In summer, we	
767	confirmed periods affected by terrestrial air masses from Luzon Island ("Luzon" period) and the	
768	Indochinese Peninsula ("Indochinese Peninsula" period), as well as a period influenced by marine air	
769	masses ("Marine-s" period). In winter, the periods were influenced by terrestrial air masses from	
770	Mainland China ("Mainland China" period), mixed air masses from Mainland China and marine sources	
771	("Mixed" period), and marine air masses ("Marine-w" period). Periods influenced by terrestrial air	
772	masses showed higher NR-PM _d mass concentration, organic fraction, and N _{CCN} , especially at low	Formatted: Subscript
773	supersaturation (SS), compared to those influenced by marine air masses.	Formatted: Subscript
774	During the "Luzon" period, high N _{CCN} was observed, attributed to high N _{CNs} especially in the Aitken	Formatted: Subscript
775	mode. This high concentration in the Aitken mode resulted in a low AR at 0.2% SS, indicating a higher	Formatted: Subscript
776	fraction of primary organic aerosol with low hygroscopicity. This caused lower overall hygroscopicity	
777	compared to other summer periods. The lower ratio of m/z 44 to 43 also suggested a lower oxidation	
778	degree of organics in this period. In the "Indochinese Peninsula" period, a higher particle fraction in the	
779	accumulation mode compared to the "Luzon" period led to a higher AR, combined with increased	
780	hygroscopicity.	
781	In winter, the "Mainland China" period showed a high nitrate fraction in NR-PMU. Similar inorganic	Formatted: Subscript
782	fractions in NR-PM1 between the "Mainland China" and "Luzon" periods resulted in similar aerosol	
783	hygroscopicity at low SS (0.2% SS). However, at higher SS (0.4% SS and 0.7% SS), the "Mainland	
784	China" period exhibited much lower hygroscopicity, causing a lower AR at high SS. During the "Mixed"	
785	period, accumulation mode particles predominated, leading to a high AR. This indicated an aging process	
786	during transport, with more oxidized organics and higher aerosol hygroscopicity. The lower black carbon	
1		

787	(BC) fraction and the higher sea salt fraction from high wind speed contributed to higher hygroscopicity
788	in the "Mixed" period compared to the "Mainland China" period, despite the high organic fraction.
789	The CCN closure analysis, considering aerosol composition and mixing state, revealed that aerosols
790	in summer were primarily internally mixed, while in winter, small-sized aerosols were primarily
791	externally mixed. This distinction is crucial for climate models predicting N _{CCN} in the SCS. The
792	underestimation of aerosol hygroscopicity in summer suggests that the effect of sea salt should be
793	considered.
794	Our study highlights significant seasonal differences in CCN activity in the SCS and the influence of
795	different types of terrestrial air masses. Future measurements including size-resolved aerosol
796	composition and obtain more precise measurements of BC and sea salt are needed to better understanding
797	CCN activity in this region. Additionally, our observation in winter focused on the CCN activity over the
798	northern SCS, while the influence of air masses from Mainland China in remote SCS was still unclear.
799	Further observations in remote SCS areas could help clarify the anthropogenic influence during winter
800	under the effect of the winter monsoon.
801	~
802	
803	Data availability. Data from the measurements are available at https://doi.org/
804	<u>10.6084/m9.figshare.25472545 (Ou et al., 2024)</u> .
805	
806	Supplement. The supplement related to this article is available online at xxx.
807	
808	Author contributions. HO, MC, and JZ designed the research. YZ, XN, BL, and CS performed the
809	measurements. HO, MC, QS, and SM analyzed the data. SZ and HW provided useful comment on the
810	paper. HO, MC, and JZ wrote the paper with contributions from all co-authors.
811	
812	Competing interests. The authors declare that they have no conflict of interest.
813	

Formatted: Font: Not Bold, Subscript Formatted: Normal, Indent: First line:

Formatted: Font: (Asian) +Body Asian (等线) Deleted: In this study, we investigated the seasonal variations of CCN activity in the SCS and explored the impact of anthropogenic emissions, based on shipborne observations conducted during the summer (May 5–June 9) and winter (December 19–29) of 2021. CCN activity, chemical composition, and particle number size distribution (PNSD) over the SCS were measured using several onboard instruments including a ToF-ACSM, a CCNc, an SMPS, an OC/EC analyzer, an AE33, and several monitors for trace gases (i.e., SO₂, NOx, CO, and O₃). Our results show that the particle number concentration (NCN) and CCN number concentration (N_{CCN}) during summer were higher than those during winter, while the NR-PM1 mass concentration was lower in summer, which can be attributed to the predominance of the Aitken mode particles in summer than a significant higher concentration of the accumulation mode particles during winter. Additionally, the aerosol hygroscopicity was found to be higher in summer than in winter, likely due to the enhanced terrestrial air masses and the increased proportions of black carbon and decreased sulfate concentrations from DMS oxidation.

Based on backward trajectories, both campaigns could be divided into two periods: period affected by terrestrial air masses and period affected by both terrestrial and marine (mixed) air masses. In summer, the terrestrial air masses originate primarily from the Philippines, whereas in winter, they predominantly originate from the PRD region of China. The hygroscopicity under terrestrial air masses was lower than that under mixed air masses during both seasons, and it was similar to that observed in the PRD region during winter. The PNSD distribution exhibited a unimodal pattern under the terrestrial air masses, whereas a bimodal pattern was observed under the mixed air masses. During winter, the N_{CCN} values were higher under terrestrial air masses in contrast to higher AR values under mixed air masses. During summer, the AR ratio was primarily influenced by PNSD, whereas during winter, it was more strongly influenced by

Our study demonstrated significant variations in the aerosol concentration and physicochemical properties with increasing offshore distances under terrestrial air masses during both various gas concentrations (NOx and CO) with increasing offshore distances suggest a diminishing influence of anthropogenic emissions. The aerosol hygroscopicity increased with increasing offshore distances, primarily due to the decrease of the organic fraction, the oxidation degree of the organic component, the decreased proportions of black carbon, and the increased sulfate ratio. We found that the predicted CCN concentrations nearshore based on a single PNSD under terrestrial air masses could lead to significant error (15%-360%). In contrast, using a representative hygroscopicity parameter value nearshore can reduce the

error in predicting N_{CCN} (5%–10%). Hence, the PNSD had a greater impact on N_{CCN} prediction than hygroscopicity. Our study highlights the significant differences of CCN activity during summer and winter in the SCS and significant influence of anthropogenic emissions on the CCN activity. Future studies should include observations during spring and autumn to explore the impact of mixing state on aer $\boxed{\dots 3}$

aerosol hygroscopicity than by PNSD.

1.5 ch

936	Financial support. This work was supported by National Natural Science Foundation of China (NSFC)	
937	(Grant No. 42305123 and 42175115) and Basic and Guangzhou Applied Basic Research Foundation	
938	(Grant No. 2023A1515012240 <u>and 2024A1515030221</u>).	Deleted: of Guangdong Province
939		
940	Acknowledgements. Additional support from the crew of the vessels "Tan Kah Kee" and "Sun Yat-sen	
941	University" is greatly acknowledged.	
942		
943		

945 Reference

- 946 Ajith T. C, Kompalli, S. K., and Babu, S. S.: Role of Aerosol Physicochemical Properties on Aerosol
- 947 Hygroscopicity and Cloud Condensation Nuclei Activity in a Tropical Coastal Atmosphere, ACS Earth
- 948 Space Chem, 6, 1527-1542, doi:https://doi.org/10.1021/acsearthspacechem.2c00044, 2022.
- 949 Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230,
- doi:https://doi.org/10.1126/science.245.4923.1227, 1989. 950
- Atwood, S. A., Reid, J. S., Kreidenweis, S. M., Blake, D. R., Jonsson, H. H., Lagrosas, N. D., Xian, P., 951
- 952 Reid, E. A., Sessions, W. R., and Simpas, J. B.: Size-resolved aerosol and cloud condensation nuclei
- (CCN) properties in the remote marine South China Sea Part 1: Observations and source classification, 953
- 954 Atmos. Chem. Phys., 17, 1105-1123, doi:https://doi.org/10.5194/acp-17-1105-2017, 2017.
- 955 Bates, T. S., Cline, J. D., Gammon, R. H., and Kelly-Hansen, S. R.: Regional and seasonal variations in
- 956 the flux of oceanic dimethylsulfide to the atmosphere, J. Geophys. Res. Oceans, 92, 2930-2938,
- 957 doi:https://doi.org/10.1029/JC092iC03p02930, 1987.
- 958 Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud
- 959 condensation nuclei measurements in the marine boundary layer of the eastern Mediterranean: CCN
- 960 closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053-7066, doi:https://doi.org/10.5194/acp-9-7053-2009, 2009. 961
- 962 Burkart, J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei
- 963 (CCN) activation of the atmospheric aerosol in Vienna, Atmos Environ, 45, 5751-5759, doi:https://doi.org/10.1016/j.atmosenv.2011.07.022, 2011. 964
- 965 Cai, M., Tan, H., Chan, C. K., Mochida, M., Hatakeyama, S., Kondo, Y., Schurman, M. I., Xu, H., Li, F.,
- 966 Shimada, K., Li, L., Deng, Y., Yai, H., Matsuki, A., Qin, Y., and Zhao, J.: Comparison of Aerosol
- Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta 967
- Region and a Marine Site in Okinawa, Aerosol Air Qual Res, 17, 3194-3208, 968 969 doi:https://doi.org/10.4209/aaqr.2017.01.0020, 2017.
- Cai, M. F., Liang, B. L., Sun, Q. B., Zhou, S. Z., Chen, X. Y., Yuan, B., Shao, M., Tan, H. B., and Zhao, 970
- 971 J.: Effects of continental emissions on cloud condensation nuclei (CCN) activity in the northern South
- 972 China Sea during summertime 2018, Atmos. Chem Phys., 20. 9153-9167
- 973 doi:https://doi.org/10.5194/acp-20-9153-2020, 2020.

Deleted: Bhattu, D., Tripathi, S. N., and Chakraborty, A.: Deriving aerosol hygroscopic mixing state from size-resolved CCN activity and HR-ToF-AMS measurements, Atmos Environ, 142, 57-70,

doi:https://doi.org/10.1016/j.atmosenv.2016.07.032, 2016.

Deleted: Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N., Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean, Atmospheric Chemistry and Physics, 16, 7389-7409, doi:https://doi.org/10.5194/acp-16-7389-2016, 2016.

986	Cai, M. F., Tan, H. B., Chan, C. K., Qin, Y. M., Xu, H. B., Li, F., Schurman, M. I., Liu, L., and Zhao, J.:		
987	The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol		
988	hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014, Atmos.		
989	Chem. Phys., 18, 16419-16437, doi:https://doi.org/10.5194/acp-18-16419-2018, 2018.		
990	Chao, Q., Xiao, C., Li, w., Wang, L., Sun, L., Chen, X., Chen, Y., Li, Y., Gao, G., Liu, Y., Zhang, D., Ai,		
991	W., Chen, Y., Cui, T., Dai, T., Feng, A., Guo, Y., Huang, D., Jiang, Y., Li, D., Li, M., Liu, B., Liu, Y., Lv.		
992	Z., Mei, m., Wang, Q., Wang, Y., Yin, Y., Zeng, H., Zhang, Y., Zhai, J., Zhao, L., Zhi, R., Zhong, H.,		
993	Zhou, X., Zhou, X., Zhu, X., and Wu, H.: China Climate Bulletin (2022), China Meteorological		
994	Administration, https://www.cma.gov.cn/zfxxgk/gknr/qxbg/202303/t20230324_5396394.html, 2022.		
995	Choi, Y., Rhee, T. S., Collett, J. L., Park, T., Park, SM., Seo, BK., Park, G., Park, K., and Lee, T.:*	Formatted: Normal	
996	Aerosol concentrations and composition in the North Pacific marine boundary layer, Atmos Environ.,		
997	171, 165-172, doi:https://doi.org/10.1016/j.atmosenv.2017.09.047, 2017,	Formatted: Font: (Asian) +Body Asian (等	
998	Crosbie, E., Youn, J. S., Balch, B., Wonaschutz, A., Shingler, T., Wang, Z., Conant, W. C., Betterton, E.		
999	A., and Sorooshian, A.: On the competition among aerosol number, size and composition in predicting	3	
1000	CCN variability: a multi-annual field study in an urbanized desert, Atmos Chem Phys, 15, 6943-6958,		
1001	doi:https://doi.org/10.5194/acp-15-6943-2015, 2015.		
1002	Deng, Z. Z., Zhao, C. S., Ma, N., Ran, L., Zhou, G. Q., Lu, D. R., and Zhou, X. J.: An examination of		
1003	parameterizations for the CCN number concentration based on in situ measurements of aerosol activation		
1004	properties in the North China Plain, Atmos. Chem. Phys., 13, 6227-6237,		
1005	doi:https://doi.org/10.5194/acp-13-6227-2013, 2013.		
006	Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F.,	Deleted: Dusek, U., Frank, G. P., Curtius, J., Dre	
1007	Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than chemistry for cloud-	Schneider, J., Kürten, A., Rose, D., Andreae, M. O. Borrmann, S., and Pöschl, U.: Enhanced organic m fraction and decreased hygroscopicity of cloud con	
1008	nucleating ability of aerosol particles, Science, 312, 1375-1378,	nuclei (CCN) during new particle formation events Res Lett, 37, doi:https://doi.org/10.1029/2009GL04	
1009	doi:https://doi.org/10.1126/science.1125261, 2006.	2010.	
1010	Fitzgerald, J. W.: Dependence of the Supersaturation Spectrum of CCN on Aerosol Size Distribution and		
1011	Composition, J Atmos Sci, 30, 628-634, doi:https://doi.org/10.1175/1520-0469(1973)030, 1973.		
1012	Fletcher, Squires, I. b. P., and Bowen, F. b. E. G.: The Physics of Rainclouds, 2011.		

- 013 Geng, X. F., Zhong, G. C., Li, J., Cheng, Z. B., Mo, Y. Z., Mao, S. D., Su, T., Jiang, H. Y., Ni, K. W., and
- 1014 Zhang, G.: Molecular marker study of aerosols in the northern South China Sea: Impact of atmospheric

Deleted: Frossard, A. A., Russell, L. M., Burrows, S. M., Elliott, S. M., Bates, T. S., and Quinn, P. K.: Sources and composition of submicron organic mass in marine aerosol particles, J Geophys Res-Atmos, 119, 12977-13003, doi:https://doi.org/10.1002/2014jd021913, 2014.

- 1027 outflow from the Indo-China Peninsula and South China, Atmos Environ, 206, 225-236,
 1028 doi:https://doi.org/10.1016/j.atmosenv.2019.02.033, 2019.
- 1029 Gras, J. L.: CN, CCN and particle size in Southern Ocean air at Cape Grim, Atmos Res, 35, 233-251,
- 1030 doi:https://doi.org/10.1016/0169-8095(94)00021-5, 1995.
- 1031 Gras, J. L. and Keywood, M.: Cloud condensation nuclei over the Southern Ocean: wind dependence
- and seasonal cycles, Atmos. Chem. Phys., 17, 4419-4432, doi:https://doi.org/10.5194/acp-17-4419-2017,
 2017.
- 1034 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I.,
- 1035 Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and
- 1036 hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131-6144,
- 1037 doi:https://doi.org/10.5194/acp-7-6131-2007, 2007.
- 1038 Huang, S., Wu, Z. J., Poulain, L., van Pinxteren, M., Merkel, M., Assmann, D., Herrmann, H., and
- 1039 Wiedensohler, A.: Source apportionment of the organic aerosol over the Atlantic Ocean from 53 degrees
- 040 <u>N to 53 degrees S: significant contributions from marine emissions and long-range transport, Atmos.</u>
- 041 Chem. Phys., 18, 18043-18062, doi: 10.5194/acp-18-18043-2018, 2018
- 1042 Huang, S., Wu, Z., Wang, Y., Poulain, L., Höpner, F., Merkel, M., Herrmann, H., and Wiedensohler, A.:
- 1043 Aerosol Hygroscopicity and its Link to Chemical Composition in a Remote Marine Environment Based
- 1044 on Three Transatlantic Measurements, Environ. Sci. Technol, 56, 9613-9622,
 1045 doi:https://doi.org/10.1021/acs.est.2c00785, 2022.
- 1046 Ipcc: Annex I: Observational Products [Trewin, B. (ed.)], in: Climate Change 2021: The Physical Science
- 1047 Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
- 1048 on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger,
- 1049 S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B.
- 1050 R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
- 1051 Cambridge, United Kingdom and New York, NY, USA, 2061–2086,
- 1052 https://doi.org/10.1017/9781009157896.015, 2021.
- Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S., Zhang, Q., Kroll, J. H., DeCarlo, P.
- 1054 F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson,
- 1055 A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen,
- 1056 A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D.

Deleted: H.R. Pruppacher, J. D. K.: Microphysics of Clouds and Precipitation, Atmospheric and Oceanographic Sciences Library, Springer Dordrecht, XXII, 954 pp., https://doi.org/10.1007/978-0-306-48100-0, 2010.

Formatted: Font: (Asian) +Body Asian (等线)

Deleted: Jayachandran, V., Safai, P. D., Soyam, P. S., Malap, N., Bankar, S. P., Varghese, M., and Prabha, T. V.: Characterization of carbonaceous aerosols during the Indian summer monsoon over a rain-shadow region, Air Qual Atmos Hlth, 15, 1713-1728, doi:https://doi.org/10.1007/s11869-022-01211-1, 2022.

- 1067 R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower,
- 1068 K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell,
- 1069 L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
- 1070 K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E.
- 1071 C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic
- 1072 aerosols in the atmosphere, Science, 326, 1525-1529, doi:https://doi.org/10.1126/science.1180353, 2009.
- 1073 Kawana, K., Miyazaki, Y., Omori, Y., Tanimoto, H., Kagami, S., Suzuki, K., Yamashita, Y., Nishioka, J.,
- 1074 Deng, Y. G., Yai, H., and Mochida, M.: Number-Size Distribution and CCN Activity of Atmospheric
- 1075 Aerosols in the Western North Pacific During Spring Pre-Bloom Period: Influences of Terrestrial and
- 1076 Marine Sources, J Geophys Res-Atmos, 127, e2022JD036690,
- 1077 doi:https://doi.org/10.1029/2022JD036690, 2022.
- 1078 Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152-1161,
- 1079 doi:https://doi.org/10.1039/TF9363201152, 1936.
- Lambe, A. T., Onasch, T. B., Massoli, P., Croasdale, D. R., Wright, J. P., Ahern, A. T., Williams, L. R.,
- 1081 Worsnop, D. R., Brune, W. H., and Davidovits, P.: Laboratory studies of the chemical composition and
- 1082 cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary

1083 organic aerosol (OPOA), Atmos. Chem. Phys., 11, 8913-8928, doi:https://doi.org/10.5194/acp-11-89131084 2011, 2011.

- 1085 Leena, P. P., Pandithurai, G., Anilkumar, V., Murugavel, P., Sonbawne, S. M., and Dani, K. K.: Seasonal
- 1086 variability in aerosol, CCN and their relationship observed at a high altitude site in Western Ghats,
- 1087 Meteorol Atmos Phys, 128, 143-153, doi:https://doi.org/10.1007/s00703-015-0406-0, 2016.
- 1088 Liang, B., Cai, M., Sun, Q., Zhou, S., and Zhao, J.: Source apportionment of marine atmospheric aerosols
- 1089 in northern South China Sea during summertime 2018, Environ. Pollut, 289, 117948,
 1090 doi:https://doi.org/10.1016/j.envpol.2021.117948, 2021.
- 1091 Liu, P., Song, M., Zhao, T., Gunthe, S. S., Ham, S., He, Y., Qin, Y. M., Gong, Z., Amorim, J. C., Bertram,
- 1092 A. K., and Martin, S. T.: Resolving the mechanisms of hygroscopic growth and cloud condensation nuclei
- activity for organic particulate matter, Nat. Commun, 9, 4076, doi:https://doi.org/10.1038/s41467-018-
- 1094 06622-2, 2018.
- Liu, X. and Wang, J.: How important is organic aerosol hygroscopicity to aerosol indirect forcing?,
- 1096 Environ. Res. Lett, 5, 044010, doi:https://doi.org/10.1088/1748-9326/5/4/044010, 2010.

Deleted: Kuang, Y., Xu, W., Tao, J., Ma, N., Zhao, C., and Shao, M.: A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels, Curr. Pollut. Rep, 6, 410-424, doi:https://doi.org/10.1007/s40726-020-00164-2, 2020.

Deleted: Liu, S., Hu, M., Wu, Z., Wehner, B., Wiedensohler, A., and Cheng, Y.: Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China, Atmos Environ, 42, 6275-6283, disktray/(dai.ass/https://doi.org/10.1016/j.strassay.2008.0

doi:https://doi.org/https://doi.org/10.1016/j.atmosenv.2008.01 .063, 2008.

- 1110 Liu, Y., Sun, L., Zhou, X., Luo, Y., Huang, W., Yang, C., Wang, Y., and Huang, T.: A 1400-year 1111 terrigenous dust record on a coral island in South China Sea, Sci Rep, 4, 4994, 1112 doi:https://doi.org/10.1038/srep04994, 2014. 1113 Lu, W., Yang, S., Zhu, W., Li, X., Cui, S., Luo, T., Han, L., and Shi, J.: Evaluation of High Cloud Product of ECMWF Over South China Sea Using CALIOP, Earth Space Sci, 9, e2021EA002113, 1114 1115 doi:https://doi.org/10.1029/2021ea002113, 2022. 1116 Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved cloud condensation 1117 nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 1118 14, 10267-10282, doi:https://doi.org/10.5194/acp-14-10267-2014, 2014. 1119 Moore, R. H., Nenes, A., and Medina, J.: Scanning Mobility CCN Analysis-A Method for Fast Measurements of Size-Resolved CCN Distributions and Activation Kinetics, Aerosol Sci Tech, 44, 861-1120 871, doi:https://doi.org/10.1080/02786826.2010.498715, 2010. 1121 1122 Ou, H., Cai, M., Zhang, Y., Ni, X., Liang, B., Sun, Q., Mai, S., Sun, C., Zhou, S., Wang, H., Sun, j., and 1123 Zhao, J.: Measurement Report: Seasonal variation and anthropogenic influence on cloud condensation 1124 nuclei (CCN) activity in the South China Sea: Insights from shipborne observations during summer and 1125 winter of 2021 [dataset], doi:https://doi.org/10.6084/m9.figshare.25472545, 2024. 1126 Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G., Ceburnis, D., Decesari, S., 1127 Rinaldi, M., Hodas, N., Facchini, M. C., Seinfeld, J. H., and O' Dowd, C.: Surface tension prevails over 1128 solute effect in organic-influenced cloud droplet activation, Nature, 546, 637-641, 129 doi:https://doi.org/10.1038/nature22806, 2017. 130 Patel, P. N. and Jiang, J. H.: Cloud condensation nuclei characteristics at the Southern Great Plains site: 131 role of particle size distribution and aerosol hygroscopicity, Environ Res Commun, 3, 132 doi:https://doi.org/10.1088/2515-7620/ac0e0b, 2021, Formatted: Font: (Asian) +Body Asian (等线) 1133 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and 1134 cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961-1971, doi:https://doi.org/10.5194/acp-1135 7-1961-2007, 2007. 1136 Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., Hrabe de Angelis, I., Araújo, A., Brito, J., Carbone,
 - 1137 S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier, J., Könemann, T., Lavrič, J. V., Martin, S. T.,
 - 1138 Mikhailov, E., Moran-Zuloaga, D., Rose, D., Saturno, J., Su, H., Thalman, R., Walter, D., Wang, J., Wolff,
 - 1139 S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., and Pöschl, U.: Long-term observations of cloud

1140	condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and	
1141	new model parametrizations for CCN prediction, Atmos. Chem. Phys., 16, 15709-15740,	
142	doi:https://doi.org/10.5194/acp-16-15709-2016, 2016.	
143	Qin, Y., Wang, H., Wang, Y., Lu, X., Tang, H., Zhang, J., Li, L., and Fan, S.: Wildfires in Southeast Asia	Formatted: Normal
144	pollute the atmosphere in the northern South China Sea, Sci Bull (Beijing), 69, 1011-1015,	
145	doi:https://doi.org/10.1016/j.scib.2024.02.026, 2024	Formatted: Font: (Asian) +Body Asian (等线)
1146	Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle size and chemistry on	
1147	the cloud nucleating properties of aerosols, Atmos. Chem. Phys., 8, 1029-1042,	
1148	doi:https://doi.org/10.5194/acp-8-1029-2008, 2008.	
1149	Quinn, P. K., Bates, T. S., Coffman, D. J., Upchurch, L., Johnson, J. E., Moore, R., Ziemba, L., Bell, T.	
1150	G., Saltzman, E. S., Graff, J., and Behrenfeld, M. J.: Seasonal Variations in Western North Atlantic	
1151	Remote Marine Aerosol Properties, J Geophys Res-Atmos, 124, 14240-14261,	
1152	doi:https://doi.org/10.1029/2019jd031740, 2019.	
153	Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and	Deleted: Roldin, P., Ehn, M., Kurtén, T., Olenius, T.,
1154	Poschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city	Rissanen, M. P., Sarnela, N., Elm, J., Rantala, P., Hao, L., Hyttinen, N., Heikkinen, L., Worsnop, D. R., Pichelstorfer, L., Xavier, C., Clusius, P., Öström, E., Petäjä, T., Kulmala, M.,
1155	Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol	Vehkamäki, H., Virtanen, A., Riipinen, I., and Boy, M.: The role of highly oxygenated organic molecules in the Boreal
1156	particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365-3383,	aerosol-cloud-climate system, Nat. Commun, 10, 4370, doi:https://doi.org/10.1038/s41467-019-12338-8, 2019.
1157	doi:https://doi.org/10.5194/acp-10-3365-2010, 2010.	
1158	Ross, K. E., Piketh, S. J., Bruintjes, R. T., Burger, R. P., Swap, R. J., and Annegarn, H. J.: Spatial and	
1159	seasonal variations in CCN distribution and the aerosol-CCN relationship over southern Africa, J	
1160	Geophys Res-Atmos, 108, doi:https://doi.org/10.1029/2002jd002384, 2003.	
1161	Safai, P. D., Raju, M. P., Rao, P. S. P., and Pandithurai, G.: Characterization of carbonaceous aerosols	
1162	over the urban tropical location and a new approach to evaluate their climatic importance, Atmos Environ,	
163	92, 493-500, doi:https://doi.org/10.1016/j.atmosenv.2014.04.055, 2014.	
164	Sarangi, B., Ramachandran, S., Rajesh, T. A., and Dhaker, V. K.: Black carbon linked aerosol hygroscopic	Formatted: Normal
1165	growth: Size and mixing state are crucial, Atmos Environ., 200, 110-118,	
166	doi:https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.12.001, 2019	Formatted: Font: (Asian) +Body Asian (等线)
1167	Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pohlker,	Deleted: Savoie, D. L., Arimoto, R., Keene, W. C., Prospero, J. M., Duce, R. A., and Galloway, J. N.: Marine
1168	M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A.,	biogenic and anthropogenic contributions to non-sea-salt sulfate in the marine boundary layer over the North Atlantic Ocean, J Geophys Res-Atmos, 107.

Park, M., Schlag, P., Iwamoto, Y., Aalto, P., Aijala, M., Bukowiecki, N., Ehn, M., Frank, G., Frohlich, R., 23 1169

Ocean, J Geophys Res-Atmos, 107, doi:https://doi.org/10.1029/2001jd000970, 2002.

- 1184 Frumau, A., Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes,
- 1185 A., O'Dowd, C., Petaja, T., Picard, D., Pohlker, C., Poschl, U., Poulain, L., Prevot, A. S. H., Swietlicki,
- 1186 E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., Stratmann, F.,
- 1187 Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle
- 1188 number size distribution and chemical composition measurements at regionally representative
- 1189 observatories, Atmos. Chem. Phys., 18, 2853-2881, doi:https://doi.org/10.5194/acp-18-2853-2018, 2018.
- 1190 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate
- 1191 Change, Wiley2016.

192 Sihto, S. L., Mikkila, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, K., Aalto, P. P., Duplissy, J., Petaja,

- 1193 T., Kerminen, V. M., Boy, M., and Kulmala, M.: Seasonal variation of CCN concentrations and aerosol
- 1194 activation properties in boreal forest, Atmos. Chem. Phys., 11, 13269-13285,
 1195 doi:https://doi.org/10.5194/acp-11-13269-2011, 2011.
- Sun, Q., Liang, B., Cai, M., Zhang, Y., Ou, H., Ni, X., Sun, X., Han, B., Deng, X., Zhou, S., and Zhao,
 J.: Cruise observation of the marine atmosphere and ship emissions in South China Sea: Aerosol
 composition, sources, and the aging process, Environ. Pollut, 316, 120539,
- 1199 doi:https://doi.org/10.1016/j.envpol.2022.120539, 2023.

200 201

- 202 Wang, B., Huang, F., Wu, Z., Yang, J., Fu, X., and Kikuchi, K.: Multi-scale climate variability of the
- 203 South China Sea monsoon: A review, Dynam Atmos Oceans, 47, 15-37,
- 204 doi:https://doi.org/10.1016/j.dynatmoce.2008.09.004, 2009, Wang, Y., Chen, J., Wang, Q., Qin, Q., Ye, J.,
- 1205 Han, Y., Li, L., Zhen, W., Zhi, Q., Zhang, Y., and Cao, J.: Increased secondary aerosol contribution and
- possible processing on polluted winter days in China, Environ Int, 127, 78-84,
 doi:https://doi.org/10.1016/j.envint.2019.03.021, 2019.
- Wang, Y. Q.: MeteoInfo: GIS software for meteorological data visualization and analysis, Meteorol. Appl
 21, 360-368, doi:https://doi.org/10.1002/met.1345, 2014,
- 210 Xiao, H.-W., Xiao, H.-Y., Luo, L., Shen, C.-Y., Long, A.-M., Chen, L., Long, Z.-H., and Li, D.-N.:4
- 211 <u>Atmospheric aerosol compositions over the South China Sea: temporal variability and source</u>
- 212 apportionment, Atmos. Chem. Phys., 17, 3199-3214, doi:https://doi.org/10.5194/acp-17-3199-2017,

24

- 213 <u>2017</u>
- 214

Deleted: Siegel, K., Neuberger, A., Karlsson, L., Zieger, P., Mattsson, F., Duplessis, P., Dada, L., Daellenbach, K., Schmale, J., Baccarini, A., Krejci, R., Svenningsson, B., Chang, R., Ekman, A. M. L., Riipinen, I., and Mohr, C.: Using Novel Molecular-Level Chemical Composition Observations of High Arctic Organic Aerosol for Predictions of Cloud Condensation Nuclei, Environ. Sci. Technol, 56, 13888-13899, doi:https://doi.org/10.1021/acs.est.2c02162, 2022.

Deleted: Tao, J., Kuang, Y., Ma, N., Hong, J., Sun, Y., Xu, W., Zhang, Y., He, Y., Luo, Q., Xie, L., Su, H., and Cheng, Y.: Secondary aerosol formation alters CCN activity in the North China Plain, Atmos. Chem. Phys., 21, 7409-7427, doi:https://doi.org/10.5194/acp-21-7409-2021, 2021. Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multi-component aerosol hygroscopicity model framework: Part 1 - Inorganic compounds, Atmos. Chem. Phys., 5, 1205-1222, doi:https://doi.org/10.5194/acp-5-1205-2005, 2005.

Formatted: Font: (Asian) +Body Asian (等线)

Deleted: Tseng, Y. L., Yuan, C. S., Bagtasa, G., Chuang, H. L., and Li, T. C.: Inter-correlation of Chemical Compositions, Transport Routes, and Source Apportionment Results of Atmospheric PM2.5 in Southern Taiwan and the Northern Philippines, Aerosol Air Qual Res, 19, 2645-2661, doi:https://doi.org/10.4209/aaqr.2019.10.0526, 2019.

Formatted: Indent: Left: 0 cm

Deleted: Formatted: 参考文献

Deleted:

Deleted: Weingartner, E., Burtscher, H., and Baltensperger, U.: Hygroscopic properties of carbon and diesel soot particles, Atmos Environ, 31, 2311-2327, doi:https://doi.org/10.1016/S1352-2310(97)00023-X, 1997. Wu, C. and Yu, J. Z.: Determination of primary combustion source organic carbon-to-elemental carbon (OCaEuro-/aEuro-EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method, Atmos. Chem. Phys., 16, 5453-5465, doi:https://doi.org/10.5194/acp-16-5453-2016.

Formatted: Normal

Formatted: Font: (Asian) +Body Asian (等线)

Deleted: Yang, M., Jalava, P., Wang, X.-F., Bloom, M. S., Leskinen, A., Hakkarainen, H., Roponen, M., Komppula, M., Wu, Q.-Z., Xu, S.-L., Lin, L.-Z., Liu, R.-Q., Hu, L.-W., Yang, B.-Y., Zeng, X.-W., Yu, Y.-J., and Dong, G.-H.: Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China, Sci. Total Environ, 845, 157382, doi:https://doi.org/10.1016/j.scitotenv.2022.157382, 2022.

Zhang, X. Y., Zhuang, G. S., Guo, J. H., Yin, K. D., and Zhang, P.: Characterization of aerosol over the Northern South China Sea during two cruises in 2003, Atmos Environ, 41, 7821-7836,

doi:https://doi.org/10.1016/j.atmosenv.2007.06.031, 2007. Zheng, G. J., Kuang, C. G., Uin, J., Watson, T., and Wang, J.: Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in the remote marine boundary layer, Atmos. Chem. Phys., 20, 12515-12525, doi:https://doi.org/10.5194/acp-20-12515-2020, 2020.

270	Table 1. The number concentration of	particle and cloud condensation nuclei at different su	persaturation (SS), the h	ygroscopicit	y and activation ratio (AR) at d	lifferent SS in
-----	--------------------------------------	--	---------------------------	--------------	----------------------------------	-----------------

271 <u>different studies.</u>

Location	period	<u>N_{CN}(cm⁻³)</u>	N _{CCN} (cm ⁻³)	<u>Hygroscopicity (κ)</u>	AR	Reference
<u>South China</u> <u>Sea</u>	2021.05.05-2021.06.09	<u>6966±9249</u>	2019±2993 (0.20% SS) 4445±7018 (0.40% SS) 4786±6402 (0.70% SS)	<u>0.49±0.42 (0.20% SS)</u> <u>0.74±0.51 (0.40% SS)</u>	0.43±0.17 (0.20% SS) 0.68±0.19 (0.40% SS) 0.89±0.12 (0.70% SS)	This study
<u>Northern</u> South China <u>Sea</u>	<u>2021.12.19-2021.12.29</u>	<u>4988±3474</u>	1100±1287 (0.10% SS) 1678±1046 (0.20% SS) 2346±1767 (0.40% SS) 2921±1917 (0.70% SS)	0.50±0.21 (0.10% SS) 0.31±0.10 (0.20% SS) 0.19±0.05 (0.40% SS) 0.15±0.05 (0.70% SS)	0.23±0.10 (0.10% SS) 0.35±0.12 (0.20% SS) 0.48±0.14 (0.40% SS) 0.60±0.16 (0.70% SS)	<u>This study</u>
<u>Northern</u> South China <u>Sea</u>	<u>2018.8.6-2018.8.27</u>	<u>3463</u>	<u>1544 (0.34% SS)</u>	0.38±0.09 (0.18% SS) 0.40±0.08 (0.34% SS) 0.38±0.08 (0.59% SS)	Ĺ	<u>Cai et al., 2020</u>
<u>Remote</u> South China Sea	2012.9.14-2012.9.26	<u>503±455</u>	<u>450±388 (0.14% SS)</u> <u>675±516 (0.38% SS)</u> <u>698±555 (0.53% SS)</u> <u>724±512 (0.71% SS)</u>	<u>0.54±0.14 (0.14% SS)</u> 0.50±0.21 (0.38% SS)	0.47±0.16 (0.14% SS) 0.72±0.17 (0.38% SS) 0.79±0.15 (0.53% SS) 0.85±0.13 (0.71% SS)	<u>Atwood et al., 2017</u>
<u>Western</u> North Pacific	<u>2015.3.4-2015.3.26</u>	Ĺ	Ĺ	0.75±0.21 (0.11% SS) 0.51±0.16 (0.24% SS) 0.45±0.16 (0.60% SS)	0.40±0.22 (0.11% SS) 0.50±0.22 (0.24% SS) 0.70±0.23 (0.60% SS)	<u>Kawana et al., 2020</u>
Guangzhou	2014.11-2014.12	<u>/</u>	3103±1913 (0.10% SS) 5095±2972 (0.20% SS) 6524±3783 (0.40% SS)	0.37±0.11 (0.10% SS) 0.29±0.09 (0.20% SS) 0.18±0.07 (0.40% SS)	0.26±0.10 (0.10% SS) 0.41±0.14 (0.20% SS) 0.53±0.15 (0.40% SS)	<u>Cai et al., 2018</u>

Formatted Table

<u>7913±4234 (0.70% SS)</u> <u>0.15±0.06 (0.70% SS)</u> <u>0.64±0.13 (0.70% SS)</u>

273 <u>Table 2. The number concentration of particle and cloud condensation nuclei in different periods.</u>

		Summer			Winter	
<u>Cluster</u>	<u>Indochines</u> <u>e</u> <u>Peninsula</u>	<u>Luzon</u>	Marine	<u>Mainland</u> <u>China</u>	Marine	<u>Mix</u>
N _{CCN} (cm ⁻³)						
<u>0.1% SS</u>	7	7	7	<u>1460±167</u> <u>0</u>	<u>464±243</u>	<u>929±</u>
<u>0.2% SS</u>	<u>1290±785</u>	4093±4864	<u>1112±682</u>	<u>2105±974</u>	<u>649±362</u>	<u>1499±</u>
<u>0.4% SS</u>	<u>1634±1121</u>	<u>8241±7478</u>	<u>1885±114</u> <u>2</u>	<u>3014±193</u> <u>4</u>	<u>831±439</u>	<u>1900±</u>
<u>0.7% SS</u>	<u>1968±1111</u>	<u>10776±1054</u> <u>0</u>	<u>2477±154</u> <u>1</u>	<u>3668±184</u> <u>1</u>	<u>1052±49</u> <u>3</u>	<u>2296±</u>
<u>N_{CN} (cm⁻³)</u>						
<u>Total</u>	<u>2699±2147</u>	<u>14674±1384</u> <u>4</u>	<u>3033±236</u> <u>6</u>	<u>6875±326</u> <u>3</u>	<u>1728±46</u> <u>5</u>	<u>2918±</u> <u>4</u>
Nucleation	<u>111±206</u>	<u>1543±3341</u>	<u>238±426</u>	<u>893±925</u>	<u>214±281</u>	<u>141±</u>
<u>Aikten</u>	<u>1156±1261</u>	<u>8653±8815</u>	<u>1668±152</u> <u>6</u>	<u>3089±201</u> <u>7</u>	<u>732±337</u>	<u>806±</u>
<u>Accumulatio</u> <u>n</u>	<u>1434±1444</u>	<u>3764±4157</u>	<u>1121±929</u>	<u>2923±244</u> <u>0</u>	<u>781±313</u>	<u>1975</u>

275

276 <u>Table 3. The slope and coefficient of determination (in parentheses) in CCN closure analysis at</u>

277 <u>different supersaturations in different periods.</u>

different supe.		interent period.	<u>.</u>			
		Summer			Winter	
Cluster	<u>Luzon</u>	<u>Indochinese</u> <u>Peninsula</u>	Marine	<u>Mainland</u> <u>China</u>	Mixed	Marine
<u>Internal</u> scheme						
<u>0.1% SS</u>	Σ	7	Σ	<u>0.81 (0.94)</u>	<u>0.64 (0.92)</u>	<u>0.65 (0.95)</u>
<u>0.2% SS</u>	<u>0.82 (0.82)</u>	<u>0.73 (0.80)</u>	<u>0.79 (0.91)</u>	<u>1.05 (0.96)</u>	<u>0.93 (0.97)</u>	<u>0.79 (0.89)</u>
<u>0.4% SS</u>	<u>0.79 (0.92)</u>	<u>0.76 (0.62)</u>	<u>0.80 (0.92)</u>	<u>1.23 (0.97)</u>	<u>1.04 (0.98)</u>	<u>1.01 (0.95)</u>

- Formatted: Font: (Asian) +Body Asian (等线)

Deleted: -----Page Break------

<u>0.7% SS</u>	<u>0.80 (0.88)</u>	<u>0.85 (0.52)</u>	<u>0.80 (0.90)</u>	<u>1.26 (0.97)</u>	<u>1.06 (0.99)</u>	<u>0.97 (0.</u>
<u>External</u> <u>scheme</u>						
<u>0.1% SS</u>	7	7	7	<u>0.97 (0.95)</u>	<u>0.96 (0.92)</u>	<u>0.97 (0.9</u>
<u>0.2% SS</u>	<u>0.73 (0.83)</u>	<u>0.63 (0.76)</u>	<u>0.75 (0.90)</u>	<u>0.98 (0.96)</u>	<u>0.99 (0.97)</u>	<u>0.94 (0.8</u>
<u>0.4% SS</u>	<u>0.69 (0.85)</u>	<u>0.69 (0.65)</u>	<u>0.74 (0.91)</u>	<u>0.99 (0.97)</u>	<u>0.99 (0.98)</u>	<u>0.97 (0.9</u>
<u>0.7% SS</u>	<u>0.70 (0.85)</u>	<u>0.80 (0.53)</u>	<u>0.72 (0.88)</u>	<u>0.99 (0.97)</u>	<u>0.99 (0.99)</u>	<u>0.96 (0.9</u>

Formatted: Font: (Asian) +Body Asian (等线), Check spelling and grammar

1281 FIGURE CAPTION

282	Figure 1. The <u>cruises</u> of two shipborne <u>observations</u> , and the location of sample line and chimney of Tan	-(Delet
283	Kah Kee, and Sun Yat-sen scientific vessel (a); Wind rose of the wind direction and wind speed in	-{	Delet
284	summer and winter cruises; The radius represents the frequency of wind direction occurrences, and the		
285	shaded areas indicate wind speed (b) and (c).		
286	Figure 2. Timeseries of (a) particle number size distribution, (b) mass concentration of NR-PM _a , and (c)	(Forma
1287	its fraction, (d) mass concentration of organic carbon and elemental carbon, (e) number concentration of		
1288	total particle and cloud condensation nuclei under the supersaturation of 0.1%, 0.2%, 0.4%, and 0.7%,		
289	and (f) aerosol hygroscopicity. The number 1 in figure number means timeseries in summer and number		
1290	2 means it in winter.		
291	Figure 3. Particle number size distribution in summer (a) and winter (b); The red markers represent the		Delet
1292	activation diameters and hygroscopicity parameters corresponding to 0.1%, 0.2%, 0.4%, and 0.7%		Delet mixed
1293	supersaturations in this study (without 0.1% in summer). The green markers represent the hygroscopicity		
1294	parameters reported in Atwood et al. (2017) for the southern South China Sea during summer. The gray		
1295	markers represent the hygroscopicity parameters documented in Cai et al. (2018) for the Pearl River		Forma
296	Delta region during winter. The fraction of NR-PM ₂ in summer (c) and winter (d) in this study, in northern	$^{\prime}$	Delet organ black
297	SCS reported by Liang et al. (2021), and in North Pacific reported by Choi et al. (2017).		masse
298	Figure 4. The cluster analysis result in summer (a), and winter (b). The solid line in summer means cluster		and or Delet
299	analysis from May 5 to May 24 and the dash line in summer means cluster analysis from May 25 to June		Delet
300	9: The solid line in winter means cluster analysis from Dec 19 to Dec 21 and Dec 27 to Dec 29, and the		0.2%, air ma
301	dash line in winter means cluster analysis from Dec 22 to Dec 26.		first q a line data,
302	Figure 5. The fraction of NR-PM in "Luzon" period (a), "Indochinese Peninsula" period (b), and		the bo
303	"Marine-s" period (c) in summer. The fraction of NR-PM1 in "Mainland China" period (d), "Mixed"		Forma
304	period (e), and "Marine-w" period (f) in winter, Figure 6. The particle number size distribution (PNSD)		Delet Delet
305	in "Luzon" period (a), "Indochinese Peninsula" period (b), and "Marine-s" period (c) in summer. The		Delet
306	PNSD in "Mainland China" period (d), "Mixed" period (e), and "Marine-w" period (f) in winter Figure		differ Delet
307	2. The activation ratio (AR) at different supersaturation (SS) in different periods (a); The aerosol		

- 308 hygroscopicity at different supersaturation (SS) in different periods (b). Figure 8. The normalized mean
- 309 bias (NMB) calculated by "Internal-mixed" scheme and "External-mixed" scheme according to CCN

ed: cruies

ed: observation

tted: Subscript

ed: under effect of terrestrial air masses ed: Particle number size distribution under effect of air masses in summer (c) and winter (d);

atted: Subscript

ted: The mass concentration of NR-PM1 , primary ic carbon, secondary carbon, elemental carbon, and carbon and their fraction under effect of different air es in summer and winter.

re 5. Scatter plot of κ under the supersaturation of 0.2% rganic mass fraction with linear regression.

ed: 6

ed: Activation ratio at supersaturation of 0.1%, 0.4%, and 0.7% under effect of terrestrial and mixed asses in summer and winter. The box extends from the quartile (Q1) to the third quartile (Q3) of the data, with at the median. The box extends from Q1 to Q3 of the with a line at the median. The whiskers extend from ox by 1.5 times of the inter-quartile range (IQR). Flier are those passing the end of the whiskers.

tted: Subscript

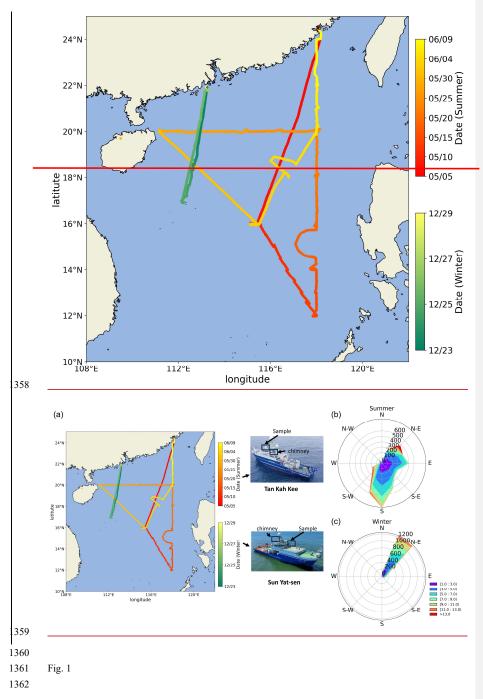
ed:

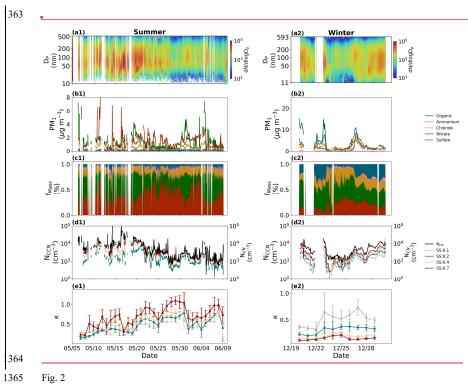
ed: 7

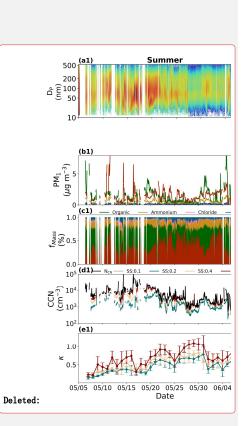
ted: Differences in activation fraction calculated from ent particle size distributions and activation diameters.

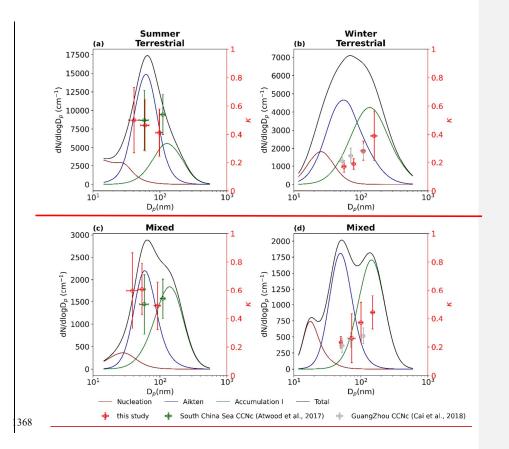
ted: 8

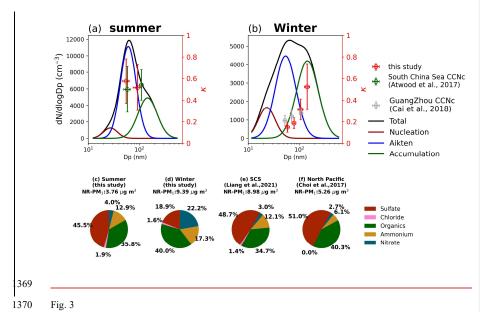
ced: Variations of KSS:0.4%, trace gases (NOx and OC/EC, BC, SOC/OC, mass fraction of NR-PM1 chemical composition, as well as number concentrations of nucleation mode, Aitken mode, and accumulation mode with offshore distance under effect of terrestrial and mixed air masses in summer and winter.

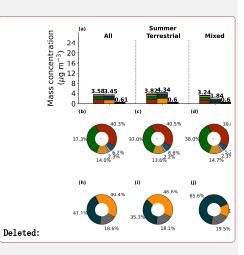

Deleted: 9

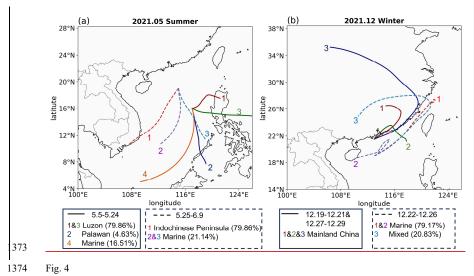

342 closure method. The marker of circle means "Internal-mixed" scheme and the marker of triangle means

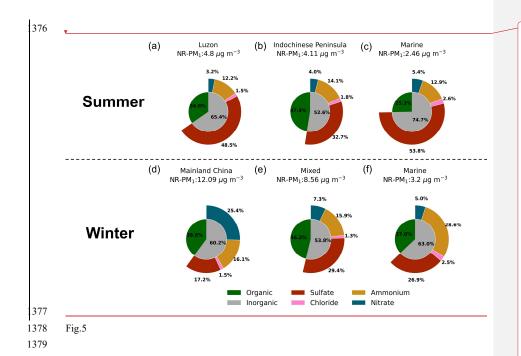

343 <u>"External-mixed" scheme. Different colors means different supersaturations.</u>

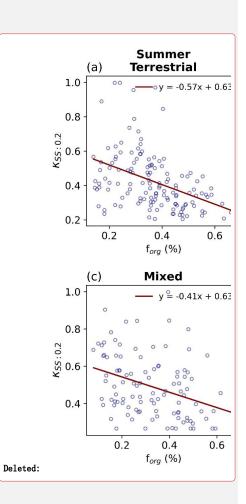

1344

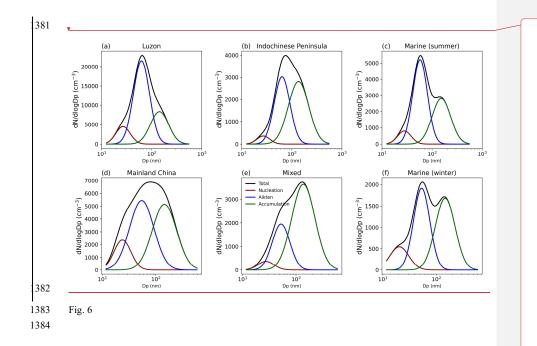

Deleted: The difference between the calculated cloud condensation nuclei number concentration (NCCN) using the D50 from the farthest and nearest offshore distances, along with the measured particle number size distribution (PNSD), and the measured NCCN under the effect of terrestrial air masses in summer (al and a2) and winter (c1 and c2); The difference between the calculated NCCN using the PNSD from the farthest and nearest offshore distances, along with the measured D50, and the measured NCCN under the effect of terrestrial air masses in summer (b1 and b2) and winter (d1 and d2). Δ NCCN refers to the difference between calculated NCCN, divided by the observed NCCN.

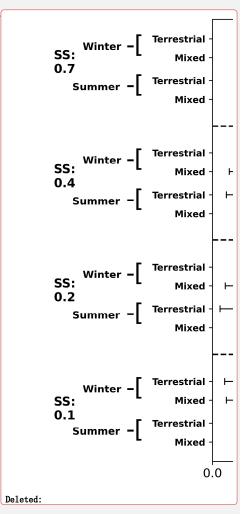


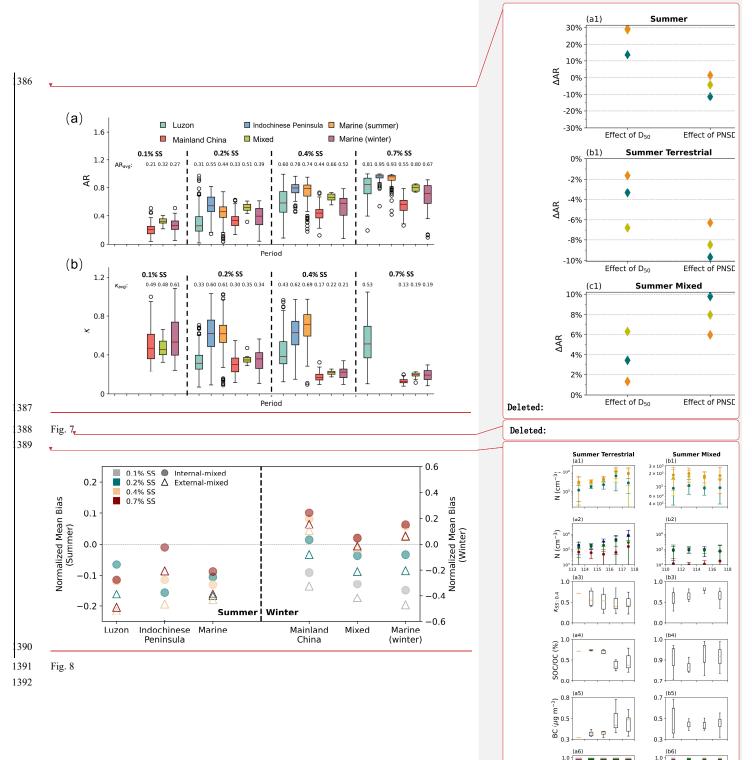








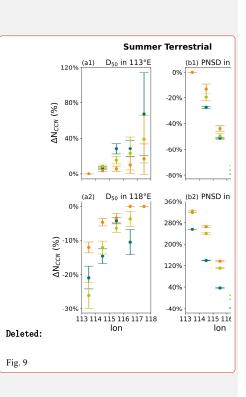




(%)

f_{Mass}

Deleted:


0.0 113 114 115 116 117 118

longitude

0.5

0.0 110 112 114 116 118 longitude

 Deleted:
 Sarangi, B., Ramachandran, S., Rajesh, T. A., and Dhaker, V. K.: Black carbon linked aerosol hygroscopic growth: Size and mixing state are crucial, Atmos Environ., 200, 110-118, doi:https://doi.org/10.1016/j.atmosenv.2018.12

 .001, 2019.
 ... [4]

	2024-7-18 0:57:00	区恒嘉	Page 11: [1] Deleted	
J				
			▼	T
			A	_
	2024-7-30 23:05:00	区恒嘉	Page 14: [2] Deleted	
1				
			▼	T
				_
	2024-7-20 23:10:00	区恒嘉	Page 16: [3] Deleted	
J				
			▼	T
			A	
	2024-7-28 0:37:00	区恒嘉	Page 40: [4] Deleted	
1				
			•	T
			A	