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Abstract 9 

Dust significantly influences global weather and climate by impacting the Earth's radiative balance. 10 

Based on the reanalysis datasets, this study explores how the North Atlantic Oscillation (NAO) and 11 

El Niño-Southern Oscillation (ENSO) during the preceding winter impact the following spring dust 12 

activities in North China. It is found that both the NAO and ENSO significantly affect dust activities 13 

in North China, especially during their negative phases. When both of them are in the negative 14 

phases, their combined impact on dust activities exceeding that of either factor individually. The 15 

previous winter NAO notably affects the sea surface temperatures (SST) in the North Atlantic, 16 

associated with an anomalous SST tripole pattern. These SST anomalies persist into the following 17 

spring due to their inherent persistence, inducing anomalous atmospheric teleconnection wave-train 18 

that influence dust activities in North China. ENSO, on the one hand, directly impacts dust activities 19 

in North China by modulating the circulation in the Western North Pacific. Moreover, ENSO 20 

enhances the NAO's effect on the North Atlantic SST, explaining their synergistic effects on dust 21 

activities in North China. This study elucidates the combined roles of NAO and ENSO in 22 

influencing dust activities in North China, providing one season ahead signals for predicting spring 23 

dust activities in North China. 24 

25 
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1. Introduction 26 

Dust, one of the most significant natural aerosols in the atmosphere, is of great importance to 27 

the global radiative balance with its light-absorbing properties, exerting a crucial role in climate 28 

change (Lou et al., 2017; Kok et al., 2023). Additionally, dust impacts not only its source regions 29 

but also extends its influence across oceans through teleconnections driven by atmospheric 30 

circulation. This transboundary transport affects ocean-atmosphere interactions and profoundly 31 

impacts the Earth's climate system (Huang et al., 2015). Dust activities, resulting from regional dust 32 

surges, pose formidable threats to socio-economic development, natural ecosystems, as well as 33 

human health and safety (Zhao et al., 2020; Li et al., 2023). The Gobi Desert in East Asia, 34 

particularly the Mongolian Plateau and Northern China, is a major source of dust (Chen et al., 2023), 35 

contributing approximately 70% of Asia's total dust emissions (Zhang et al., 2003). Given that China 36 

is profoundly impacted by dust activities (Fan et al., 2018), exploring the variations in dust activities 37 

over China is of great scientific and practical significance. 38 

Besides the dust source regions over China (mainly Xinjiang and Inner Mongolia), dust content 39 

over North China also exhibits high values and strong interannual variability (Liu et al., 2004; Ji 40 

and Fan, 2019). Additionally, as a crucial center of politics, economy, and population, it is 41 

meaningful to investigate the variations of dust activities over North China (30-40°N, 105-120°E) 42 

and explore the relevant physical mechanisms. Previous studies have shown that the frequency of 43 

dust events in China exhibits strong variations, with high frequency from the 1950s to 1970s, low 44 

frequency from the 1980s to 1990s, and a notable increase after 2000 (Zhu et al., 2008; Ji and Fan, 45 

2019). On interdecadal time scales, climate oscillations such as the Atlantic Multidecadal 46 

Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Antarctic Oscillation (AAO) can 47 

influence dust activities by affecting the climatic background. For instance, the positive phase of 48 

PDO reduces dust activities by influencing the mid-latitude westerly regime, leading to weaker dust 49 

activities (uplift and deposition) in the Asian region (Gong et al., 2006). The AMO affects the global 50 

aridification process by altering the thermal properties between land and sea (Huang et al., 2017). 51 

Additionally, the AAO may substantially regulate dust activities in China by influencing the 52 

interaction of meridional circulations between the Northern and Southern Hemispheres (Ji and Fan, 53 

2019). 54 

On the interannual scale, a weaker East Asian Winter Monsoon is associated with anomalous 55 

circulation over the Gobi and Taklamakan deserts, facilitating the transport of dust, consequently 56 

increasing dust content in China (Lou et al., 2016). The variations of the sea ice coverage in the 57 
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Barents Sea significantly influence the intensity and frequency of dust activities in China by 58 

affecting cyclone generation and thermal instability in North China (Fan et al., 2018). The North 59 

Atlantic Oscillation (NAO) substantially impacts spring dust activities in North China by 60 

modulating the zonal wave-train from the Atlantic to the Pacific at mid-latitudes in the Northern 61 

Hemisphere, and the sea level pressure (SLP) gradient in the Tarim Basin in China (Zhao et al., 62 

2013). On the synoptic scale, the NAO influences the emergence and evolution of dust activities in 63 

North China by impacting transient wave flux transport and atmospheric circulation (Li et al., 2023). 64 

Beyond extratropical signals, tropical variabilities, such as El Niño–Southern Oscillation (ENSO), 65 

also significantly modulate dust activities by regulating large-scale circulation, precipitation, and 66 

temperature variations over East Asia (Yang et al., 2022), Saudi Arabia (Yu et al., 2015), and North 67 

America (Achakulwisut et al., 2017).  68 

From the aforementioned studies on dust activities in China, it is evident that the NAO and 69 

ENSO are two important factors, with a focus on their individual effects on the dust activities in 70 

China. However, as significant climate variabilities in the extratropical and tropical regions, 71 

respectively, the NAO and ENSO often co-occur and have complex interactions (López-Parages et 72 

al., 2015). It is found that ENSO can influence the climate near the North Atlantic through 73 

atmospheric forcing of the Pacific-North America teleconnection (Wallace and Gutzler, 1981). 74 

During the early winter of El Niño events, strong convective anomalies in the tropical Indian Ocean-75 

Western Pacific (Abid et al., 2021) and the Gulf of Mexico-Caribbean Sea (Ayarzagüena et al., 2018) 76 

can trigger Rossby wave-train reaching the North Atlantic, leading to positive NAO signals. 77 

Furthermore, the stratosphere, serving as an energy transmission channel, may also be an important 78 

pathway for ENSO to influence the NAO (Jiménez-Esteve and Domeisen, 2018). Moreover, 79 

observations and numerical simulations have demonstrated that the NAO can induce a Gill-Matsuno 80 

pattern in the tropical region, strengthening the connection between the East Asian Summer 81 

Monsoon and ENSO (Wu et al., 2012). When the NAO is in its positive phase, intensified 82 

northeasterlies over tropical North Atlantic are observed, increasing low-level moisture content and 83 

precipitation in the tropical North Atlantic, which in turn enhances ENSO's impact (Ding et al., 84 

2023). These studies emphasize the connections and interactions between NAO and ENSO, 85 

underscoring the necessity of considering their synergistic effects on the dust activities in North 86 

China. 87 

The synergistic effect refers to the phenomenon where the combined impacts of two or more 88 

factors are significantly greater than their individual roles (Li et al., 2019). It has been found that 89 

there are synergistic effects in the impact of NAO and ENSO on the weather and climate in China. 90 
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The NAO can facilitate the development of the subpolar teleconnection across northern Eurasia 91 

downstream, leading to anomalies in the high-pressure systems over the Ural Mountains and the 92 

Sea of Okhotsk, which in turn affect the East Asian Summer Monsoon (Wang et al., 2000). 93 

Meanwhile, ENSO exerts significant impact on the convective activities in the central Pacific and 94 

induces alterations in the equatorial circulation via the Pacific-East Asia teleconnection, further 95 

affecting the atmospheric circulation and sea surface temperature (SST) in the Western North Pacific 96 

(WNP), ultimately influencing the intensity of the East Asian Summer Monsoon (Wang et al., 2000). 97 

Therefore, the synergistic effects of NAO and ENSO can result in pronounced impacts on the East 98 

Asian Summer Monsoon. During El Niño events, SST in the central and eastern equatorial Pacific 99 

rises, enhancing convective activity near the equator, which brings more moisture to Northern China 100 

and increases the likelihood of precipitation. Simultaneously, the positive phase of NAO can alter 101 

atmospheric pressure in the North Atlantic, influencing atmospheric circulation over the Eurasian 102 

continent. The influences of NAO and ENSO synergistically regulate the distribution of 103 

precipitation in Northern China (Guo et al., 2012). 104 

The synergistic effects of NAO and ENSO significantly influence the climate in China, but 105 

their synergistic effects on the spring dust activities over North China and the mechanisms involved 106 

remain unclear. This study will investigate these effects on dust activities over North China, 107 

providing a scientific foundation for predicting dust activities in China. The structure of this paper 108 

is as follows: Section 2 outlines the datasets and methods employed in this study. Section 3 presents 109 

the analysis and findings. Section 4 contains the conclusions and discussions. 110 

2. Datasets and methods 111 

2.1 Datasets 112 

The dust dataset for the Modern-Era Retrospective Analysis for Research and Applications 113 

Version 2 (MERRA-2) was obtained from NASA’s Global Modeling and Assimilation Office 114 

(GMAO), incorporating assimilated observations from both satellites and ground stations (Gelaro 115 

et al., 2017). In this study, the Dust Column Mass Density of the MERRA-2 tavg1_2d_aer_Nx 116 

product was utilized to represent the dust content with a 0.5° × 0.625° resolution from 1980-2022. 117 

Previous studies have demonstrated the applicability of MERRA-2 reanalysis data for representing 118 

the spatiotemporal distribution characteristics of dust content in China (Kang et al., 2016; Wang et 119 

al., 2021). It is reported that the results based on MERRA-2 are similar to those obtained from 120 

MODIS, OMPS, CALIPSO, and Himawari-8 datasets (Kang et al., 2016; Wang et al., 2021). 121 
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Additionally, we further employ the datasets from the China National Meteorological Centre from 122 

1980-2018, which include observations of floating dust, blowing dust, and dust storms, to validate 123 

the reliability of MERRA-2 reanalysis dataset. The frequency of dust activities recorded at these 124 

stations has been converted into a Dust Index (DI) (Wang et al., 2008; Equations 1), effectively 125 

representing the dust content. 126 

DI = 9 × DS + 3 × BD + 1 × FD (1) 127 

Where DS, BD, and FD represent the frequency of dust storms, blowing dust, and floating dust, 128 

respectively. Additionally, DI denotes the dust content at each station. It is worth noting that the 129 

value of 1 represents the normalized mass weight of dust content for each FD, while 3 and 9 130 

represent the relative mass weight of dust content for BD and DS, respectively (Wang et al., 2008). 131 

Therefore, DI is an index used to indicate the dust content which does not have unit. In order to 132 

better compare the DI with the reanalysis, we first interpolate the site data into grid points by 133 

Cressman (1959), and then obtain the gridded DI. We found that the distribution of DI and MERRA-134 

2 dust content during the four seasons all show similar spatial characteristics (Figure 1). The above 135 

results indicate that the MERRA-2 reanalysis data can capture the spatiotemporal characteristics of 136 

dust content in China, which is applicable to understand the variations in dust content in China. 137 

Additionally, the SST dataset was derived from the Hadley Centre of the UK Met Office on a 138 

1°×1° grid (Rayner et al., 2003). The atmospheric reanalysis datasets employed herein were 139 

provided from the Fifth Generation Reanalysis Version 5 (ERA-5) of the European Centre for 140 

Medium-Range Weather Forecasts (ECMWF) with a resolution of 0.25°×0.25° on 37 vertical levels 141 

(Hersbach et al., 2020). The period of SST and atmospheric reanalysis datasets was from 1979-2022. 142 

The winter is defined as the average of December-February (December-January-February, DJF), 143 

with the winter 1979 (2021) corresponding to the average of December in 1979 (2021), January and 144 

February in 1980 (2022). The spring seasonal mean is the average of March, April, and May. Thus, 145 

the previous winter is from 1979 to 2021, and the following spring is from 1980 to 2022. To focus 146 

the investigation into the interannual variability, the linear trends of all variables were removed.  147 
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 148 

Figure 1. (a-d) Spatial distribution of seasonal mean DI based on station data, (e-h) as in (a-d), but 149 

for dust column mass density based on MERRA-2 (units: mg·m-2). The green box in (a) and (e) 150 

represents North China. The green lines represent the Yellow River (northern one) and the Yangtze 151 

River (southern one), respectively. 152 

2.2 Methods 153 

The NAO index (NAOI) used is following Li and Wang (2003), quantified by the difference in 154 

the normalized monthly SLP regionally zonal averaged over the North Atlantic within 80°W-30°E 155 

between 35°N and 65°N. This definition effectively captures the large-scale circulation 156 

characteristics associated with NAO, essentially measuring the intensity of zonal winds spanning 157 

the entire North Atlantic. We also employed the NAOI from Hurrell (1995) and Jones (1997) to 158 

validate the NAOI by Li and Wang (2003). A good agreement with correlation coefficients of 0.96 159 

and 0.94 between these two indices and the NAOI defined by Li and Wang (2003). Furthermore, 160 

ENSO is characterized by Niño3.4 index with SST anomalies averaged over 5°S-5°N, 170°W-161 

120°W (Trenberth, 1997).  162 

In this study, the seasonal standardized values exceeding 0.5 standard deviation identified as 163 

anomalous years. The correlation analysis is used to examine the relationship between NAO/ENSO 164 
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and dust content over North China, while composite analysis investigates the synergistic effects of 165 

these climatic variabilities on dust activities over North China. The statistical significance of the 166 

correlation, regression, and composite values is assessed using a two-sided Student’s t-test. Unless 167 

otherwise noted, all reported statistically significant levels are at the 0.1 level. 168 

The memory effect of SST can be elucidated by the SST persistence component (𝑆𝑆𝑇𝑝), as 169 

delineated in equation (2) (Pan, 2005). 170 

𝑆𝑆𝑇𝑝 = 𝑆𝑆𝑇(𝑡) ∗
𝐶𝑜𝑣[𝑆𝑆𝑇(𝑡), 𝑆𝑆𝑇(𝑡 + 1)]

𝑉𝑎𝑟[𝑆𝑆𝑇(𝑡)]
(2) 171 

𝑆𝑆𝑇𝑝 represents the memory effect of the previous SST (𝑡; previous winter) on the following SST 172 

(𝑡 + 1; spring), where 𝑆𝑆𝑇(𝑡) and 𝑆𝑆𝑇(𝑡 + 1) denote the previous winter SST and spring SST, 173 

respectively. 𝐶𝑜𝑣[𝑆𝑆𝑇(𝑡), 𝑆𝑆𝑇(𝑡 + 1)] denotes the covariance between the previous winter SST 174 

and spring SST, while 𝑉𝑎𝑟[𝑆𝑆𝑇(𝑡)]  signifies the variance of the previous winter SST. 175 

Consequently, the 𝐶𝑜𝑣[𝑆𝑆𝑇(𝑡), 𝑆𝑆𝑇(𝑡 + 1)]/𝑉𝑎𝑟[𝑆𝑆𝑇(𝑡)] represents the connection between the 176 

SST variations in previous winter and spring. A greater value of 𝑆𝑆𝑇𝑝 indicates the variation of 177 

𝑆𝑆𝑇(𝑡 + 1) is more closely attached with the variation of 𝑆𝑆𝑇(𝑡). 178 

The T-N wave activity flux (WAF), formulated by Takaya and Nakamura (2001), represents a 179 

three-dimensional wave action flux that describes the energy dispersion characteristics of stationary 180 

Rossby waves, thereby reflecting the direction of Rossby wave energy dispersion. The WAF is 181 

suitable for application in mid-high latitude regions where the background circulation deviates from 182 

uniform zonality, as obviates the need for the assumption that the basic flow field must be a zonally 183 

averaged basic flow and can accommodate zonally non-uniform wind fields. The convergence and 184 

divergence characteristics of WAF reveal the source and dissipation areas of wave energy, with the 185 

transmission direction indicating the direction of energy transport. The three-dimensional 186 

formulation of WAF is as follows: 187 

𝑊 =
𝑝𝑐𝑜𝑠𝜑

2|𝑼|
∙
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(3) 188 

In the expression, 𝑝 , 𝜑 , 𝜆 , 𝑓0 , and 𝑎  represent the atmospheric pressure, latitude, longitude, 189 

Coriolis parameter, and Earth's radius, respectively. 𝜓′ = 𝛷′/𝑓0  (where 𝛷  represents the 190 

geopotential height) denotes the disturbance of the quasi-geostrophic stream function relative to the 191 

climatology. 𝑁 is buoyancy frequency, 𝑧 = −𝐻𝑙𝑛(𝑝) with 𝐻 being a constant scale height (𝐻=8 192 
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km). The basic flow field 𝑼 = (𝑈, 𝑉, 𝑍)  (where 𝑍  represents the selected level) denotes the 193 

climatic field, where 𝑈 and 𝑉 indicate the zonal and meridional velocities, respectively. 194 

3. Results 195 

3.1 Impacts of NAO and ENSO on the spring dust in North China 196 

The NAO shows the strongest variability during the winter months, with the maximum 197 

standard deviation in February (Figure 2a). Similarly, ENSO shows larger variation during winter 198 

(Figure 2b). Previous studies have found that preceding NAO and ENSO significantly impact the 199 

subsequent climate over North China, particularly the cross-seasonal impacts (Zheng et al., 2016a; 200 

Feng et al., 2019). We have examined the roles of the previous autumn, winter and simultaneous 201 

spring NAO and ENSO on the spring dust over North China. It is found that the most significant 202 

influences on spring dust occur when NAO and ENSO lead by one season (Figures 2c-h). Therefore, 203 

the impacts of the previous winter NAO and ENSO on spring dust over North China are discussed 204 

in the study. 205 

 206 
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Figure 2. The monthly standard deviation of (a) NAOI and (b) Niño3.4 index, respectively. Black 207 

line represents three-month running average of standard deviation. (c) Spatial distribution of 208 

correlation coefficients between the previous autumn NAOI and spring dust content . (d) As in (c), 209 

but with Niño3.4 index. (e-f) and (g-h), as in (c-d), but for the correlations with previous winter and 210 

simultaneous spring NAOI and Niño3.4 index, respectively. The green box represents North China. 211 

Thick and fine stippled areas are statistically significant at the 0.05 and 0.1 level, respectively. The 212 

green lines in (c-h) represent the Yellow River (northern one) and the Yangtze River (southern one), 213 

respectively. 214 

The results indicate that lower (higher) dust content is expected when the NAO and ENSO are 215 

in the positive (negative) phases (Figures 2e-f). Meanwhile, the NAOI/Niño3.4 index is significantly 216 

correlated with the area-averaged spring dust content over North China (SDI), with correlation 217 

coefficients of -0.36/-0.35 statistically significant at the 0.1 level. Considering the significant 218 

relationship between the NAO and ENSO (López-Parages et al., 2015; Zhang et al., 2015), to detect 219 

their independent effects on the dust content, the partial correlation between NAO (ENSO) and dust 220 

content after removing the influence of the ENSO (NAO) is provided (Figures 3a-b). The results 221 

indicate that the significant correlation regions between dust content and either NAO or ENSO show 222 

little change after removing the influence of the other. These findings suggest a stable and significant 223 

connection between the previous winter NAO/ENSO and SDI.  224 

 225 
Figure 3. (a) Spatial distribution of partial correlation coefficients between the previous winter 226 

NAOI and spring dust content after removing the effect of ENSO. (b) As in (a), but for correlation 227 

between Niño3.4 index and dust content after removing the effect of NAO. The green box represents 228 

North China. Thick and fine stippled areas are statistically significant at the 0.05 and 0.1 level, 229 

respectively. The green lines represent the Yellow River (northern one) and the Yangtze River 230 

(southern one), respectively. 231 

Previous studies have indicated that the development rate, intensity variations, and spatial 232 

structure of the NAO exhibit distinct asymmetries between different phases (Feldstein, 2003; Jia et 233 

al., 2007). And the influence of NAO on the East Asian Winter Monsoon is more pronounced during 234 

its negative phase (Sung et al., 2010). In addition, it is shown that El Niño and La Niña, as the 235 

positive and negative phases of ENSO, are not simply mirror images of each other. The SST 236 
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anomalies in the tropical Pacific associated with ENSO exhibit significant asymmetries in 237 

meridional range (Zhang et al., 2009), amplitude (Su et al., 2010), zonal propagation (McPhaden 238 

and Zhang, 2009), and impacts (Feng and Li, 2011; Feng et al., 2020) under El Niño and La Niña 239 

conditions. To further explore these asymmetries, we analyzed the connection between NAO/ENSO 240 

and SDI during different phases. The results indicate that the relationship between NAO/ENSO and 241 

SDI also exhibits significant asymmetry, i.e., with weaker (stronger) correlations during their 242 

positive (negative) phases (Figure 4). Based on the scatter distribution of SDI under different phases 243 

of NAO and ENSO, it is noted that the correlation coefficients between NAOI and SDI during the 244 

positive and negative phases of NAO are -0.05 (statistically insignificant) and -0.46 (statistically 245 

significant), indicating that the significant influence of NAO on the SDI mainly occurs during its 246 

negative phase (Figure 5a). Similarly, the correlation coefficients between ENSO and SDI also 247 

shows that the influence of ENSO is more pronounced during its negative phase, with the correlation 248 

coefficients for the positive and negative phases being -0.16 (statistically insignificant) and -0.36 249 

(statistically significant), respectively (Figure 5b). These results demonstrate that the impacts of the 250 

previous winter NAO and ENSO on the SDI exhibit asymmetrical characteristics, with significant 251 

effects primarily manifested during their negative phases. 252 

 253 

Figure 4. Spatial distribution of correlation coefficients between (a) positive and (c) negative NAO 254 

phases and dust content. (b) and (d) as in (a) and (b), respectively, but for the Niño3.4 index. The 255 

green box represents North China. Thick and fine stippled areas are statistically significant at the 256 

0.05 and 0.1 level, respectively. The green lines represent the Yellow River (northern one) and the 257 

Yangtze River (southern one), respectively.  258 
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The synergistic effects of climate variabilities from mid-high latitudes and the tropics are 259 

pivotal mechanisms affecting the weather and climate in East Asia (Feng et al., 2019; Li et al., 2019). 260 

Correspondingly, we will examine whether the negative phases of the previous winter NAO and 261 

ENSO exert synergistic effects on the dust content over North China. As shown in Figure 5c, when 262 

the NAO is in its negative phase (Table 1; white bar in Figure 5c labeled NAO), the value of 263 

anomalous SDI is +16.21 mg·m-2 (statistically significant), whereas it is +8.32 mg·m-2 ( statistically 264 

insignificant) for the case that negative NAO occurred alone (red bar in Figure 5c). Similarly, the 265 

value of anomalous SDI in the negative ENSO phase is greater than that when negative ENSO 266 

occurred alone (+19.40 mg·m-2 (statistically significant) vs. +14.88 mg·m-2 (statistically 267 

insignificant)). When both the NAO and ENSO are in their negative phases (Table 1), the value of 268 

anomalous SDI (+25.23 mg·m-2; statistically significant) is much greater than the situation when 269 

one of them is in the negative phase (green bar in Figure 5c). This indicates that the negative phases 270 

of the previous winter NAO and ENSO demonstrate synergistic effects on the dust content over 271 

North China. Therefore, three categories, i.e., the NAO/ENSO is in its negative phase, and both the 272 

NAO and ENSO are in the negative phases (Table 1) are discussed in the context, to elucidate the 273 

relevant processes of the synergistic effects of NAO and ENSO on the dust content over North China. 274 

  275 

Figure 5. Scatterplots of the spring dust content in North China against previous winter (a) NAOI 276 

and (b) Niño3.4 index. Also shown are lines of best fit for positive and negative NAOI/Niño3.4 277 

index values and correlation coefficients (R), slope (slope), * indicates statistically significant at the 278 

0.1 level. (c) Spring dust content over North China during the negative NAO, negative ENSO phases, 279 

and concurrent negative phases of NAO and ENSO (unit: mg·m-2). White bars represent negative 280 

phases of the NAO and ENSO, red and blue bars indicate solo negative NAO and ENSO years, and 281 

green bar is the negative NAO and ENSO co-occurring years. 282 
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Table 1. The events of NAO and ENSO classified by three categories 283 

Scenarios Years Numbers 

NAO- 
1980,1982,1985,1986,1987,1996,1998,2001, 

2003,2004,2006,2010,2011,2013,2021 
15 

ENSO- 
1984,1985,1986,1989,1996,1999,2000,2001, 

2006,2008,2009,2011,2012,2018,2021,2022 
16 

NAO- &ENSO- 1985,1986,1996,2001,2006,2011,2021 7 

3.2 Impacts of NAO and ENSO on the environmental variables 284 

To examine the anomalous characteristics associated with NAO and ENSO, the circulation 285 

anomalies in their negative phases, as well as in their co-occurring negative phases (Table 1) are 286 

analyzed. In the upper troposphere (200 hPa), zonal wind intensifies over northwest China and 287 

Mongolia during the negative NAO phase (Figure 6a), with significant positive anomalies centered 288 

over Mongolia. In the negative ENSO phase, intensified zonal winds over northwest China and 289 

Mongolia are observed in the upper level (Figure 6d). The intensification of upper-level zonal wind 290 

boosts the upper-level momentum, which is transferred downward to the mid-lower troposphere 291 

through vertical circulation (Wu et al., 2016; Li et al., 2023), causing windy weather in the dust 292 

source regions, facilitating dust lifting and transport activities, thereby promoting the occurrence of 293 

dust activities in the downstream North China. When both the NAO and ENSO are in their negative 294 

phases, the primary positive anomaly center appears over the northern part of North China, 295 

facilitating dust transport to North China. The result implies the synergistic effects of NAO and 296 

ENSO on the upper-level zonal wind, enhancing dust transport from source regions to North China, 297 

favoring for dust activities in North China (Figure 6g).  298 

Subsequent analysis delved into the anomalous distribution of the circulation field in the mid 299 

and lower troposphere. In the negative NAO situation, a pronounced trough-ridge anomaly pattern 300 

emerges in the mid-latitude region, characterized by a trough in Siberia and a ridge in the Middle 301 

East (Figure 6b). This atmospheric configuration fosters a dominant meridional circulation in the 302 

mid-high latitude region, enhancing the southward transport of cold air from the north. This 303 

incursion of cold air strengthens surface wind speeds, promoting the uplift and transport of dust 304 

from source regions. In the negative ENSO situation, a similar trough-ridge pattern is observed in 305 

the mid-latitude, but with more pronounced circulation anomalies over the WNP. The region is 306 

predominantly under the influence of northeasterly winds on its western flank, manifesting cyclonic 307 

circulation anomalies (Figure 6e). This abnormal circulation hinders the northward transport of 308 

warm and moist air from the South China Sea and the Bay of Bengal, diminishing the likelihood of 309 
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interactions with cold air from the north, thus reducing the likelihood of formation of stationary 310 

fronts and precipitation. The decrease in precipitation weakens the wet deposition (Zheng et al., 311 

2016b; Huang et al., 2021), favoring the occurrence of dust activities in North China. When both 312 

the NAO and ENSO are in their negative phases, the meridional circulation in the mid-latitude 313 

region is enhanced (Figure 6h). The southward shift of the trough-ridge pattern significantly 314 

increases wind speeds in the upstream dust source regions of North China, providing a substantial 315 

source of dust for North China. Additionally, the presence of cyclonic circulation anomalies over 316 

the WNP reduces the transport of warm and moist air from the south, which is unfavorable for 317 

precipitation. This reduction in precipitation suppresses the wet deposition , favoring the occurrence 318 

and intensification of dust activities in North China. 319 

As for the SLP, significant positive anomalies appear in Eastern Europe and Russia during the 320 

negative NAO situation, indicating the Siberian High (SH) is intensified and extended southward to 321 

the dust source regions upstream of North China (Figure 6c). The intensification of the SH is 322 

typically accompanied with strong northerlies and dry conditions, which favor the transport of dust, 323 

thereby supplying abundant material sources for dust activities in North China. In the negative 324 

ENSO case, although the high-latitude region exhibits a weaker SH signal, significant circulation 325 

anomalies occur over the WNP. This cyclonic circulation anomalies inhibit the northward transport 326 

of warm and moist air from the south, leading to unfavorable precipitation conditions in North China 327 

(Figure 6f). When both the NAO and ENSO are in their negative phases, the intensify and extent of 328 

the SH are more pronounced compared to that when the NAO sole is in negative phase. Additionally, 329 

cyclonic circulation anomalies persist over the WNP, which are conducive to the occurrence of dust 330 

activities in North China (Figure 6i). 331 

The results suggest that when both the NAO and ENSO are in their negative phases, synergistic 332 

effects emerge, rendering the atmospheric circulation anomalies in the troposphere more conducive 333 

to dust activities in North China. The synergistic effects likely result from the superposition and 334 

interaction of various atmospheric levels modulated by the NAO and ENSO, forming favorable 335 

circulation conditions for dust activities in North China.  336 
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 337 
Figure 6. Upper, the composite anomalies of (a) 200 hPa zonal wind (shading, unit: m·s-1), (b) 500 338 

hPa geopotential height (shading, unit: gpm) and 850 hPa wind field (arrows, unit: m·s-1), (c) sea-339 

level pressure (shading, unit: Pa) and 1000 hPa wind field (arrows, unit: m·s-1) during the negative 340 

NAO phases. Middle-Lower, as in the upper, but during the negative ENSO phases and co-occurred 341 

negative phases of NAO and ENSO, respectively. The green box represents North China. Only wind 342 

anomalies statistically significant at the 0.1 level are shown. Thick and fine stippled areas are 343 

statistically significant at the 0.05 and 0.1 level, respectively. 344 

Dust activities are not only impacted by large-scale circulation patterns, and also influenced by 345 

local surface conditions and meteorological processes. Surface properties and local meteorological 346 

factors play ignore roles in the initiation, development, and dissipation of dust activities (Liu et al., 347 

2004; Huang et al., 2021). In particular, humidity and precipitation are decisive factors in 348 

determining the frequency and intensity of dust activities (Prospero et al., 1987; Kim and Choi, 349 

2015). Low humidity leads to drier soil conditions in dust source regions, reducing soil particle 350 

cohesion and facilitating dust lifting and transport (Csavina et al., 2014). Similarly, less precipitation 351 

weakens wet deposition, resulting in higher dust content (Zheng et al., 2016b). Therefore, we further 352 

analyzed the potential impacts of the NAO and ENSO on humidity and precipitation. During the 353 

negative NAO phase, humidity and precipitation slightly decrease in northern northwest China, 354 

impacting dust lifting and transport in the dust source regions (Figures 7a-b). In the negative ENSO 355 

phase, the variations in humidity and precipitation are similar to that as in the negative NAO, but 356 

with greater amplitude (Figures 7c-d). When both the NAO and ENSO are in their negative phases, 357 

the humidity and precipitation anomalies in the dust source regions are more intense than those 358 

caused by the individual factors (Figure 7e-h). The NAO and ENSO modulate humidity and 359 
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precipitation by affecting atmospheric circulation anomalies, ultimately affecting dust activities in 360 

North China. During the negative NAO case, the diminished atmospheric pressure gradient in the 361 

mid-high latitude regions of the North Atlantic leads to the intensification and southward shift of 362 

the SH (Zhou et al., 2023), accompanied by strong wind, making the environment drier and 363 

conducive to dust lifting and transport in dust source regions. In the negative ENSO case, the upper 364 

atmosphere over the WNP is dominated by significant negative anomalies in geopotential height 365 

and northeasterly winds (Zhang et al., 2015), reducing moist air transport. When both the NAO and 366 

ENSO are in their negative phases, their regulation on the atmospheric circulation produces 367 

synergistic effects, further promoting the occurrence of dust activities in North China. 368 

  369 

Figure 7. As in Figure 6, but for the composite percentage anomalies of (Left) special humidity and 370 

(Right) precipitation. 371 

3.3 Physical Mechanisms of the NAO and ENSO on the dust activities 372 

The above results demonstrate that the previous winter NAO and ENSO significantly impact 373 

spring dust activities in North China. Consequently, an examination of the underlying physical 374 

mechanisms is warranted. The previous ENSO signal can alter the atmospheric circulation over the 375 

WNP through the persistent impact of SST, affecting subsequent weather and climate in China (Kim 376 

and Kug, 2018; Jiang et al., 2019). Given the relatively short memory of NAO as an atmospheric 377 
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phenomenon, we will employ the theory of ocean-atmosphere coupling bridge to elucidate the 378 

involved processes. The tripole configuration of SST is the leading mode of SST variation in the 379 

North Atlantic, and its variabilities are closely associated with the NAO (Wu et al., 2009). This 380 

association allows the previous NAO signal to exert a long-term influence on subsequent weather 381 

and climate in China (e.g., Chen et al., 2020; Wu and Chen, 2020; Song et al., 2022). The variation 382 

of the SDI is linked with an anomalous tripole SST in the North Atlantic (Figure 8a), paralleling the 383 

SST anomalies associated with the negative phase of the NAO. Therefore, the North Atlantic tripole 384 

index (NATI) is defined to depict the characteristics of SST anomalies (Equations 4-7). The 385 

correlation analysis between the high and low years of SDI and SST reveals a pronounced difference, 386 

indicating an asymmetric correlation (Figures 8b-c). Specifically, the significant relationship 387 

between SDI and NATI only exists in the positive SDI years, with a significant correlation 388 

coefficient of -0.47, implying that the occurrence of NATI would associate with more dust activities 389 

over North China. 390 

 391 
Figure 8. (a) Spatial distribution of the correlation coefficients between the SDI and simultaneous 392 

SST. (b)-(c) As in (a), but for the positive and negative phases of SDI. Thick and fine stippled areas 393 

are statistically significant at the 0.05 and 0.1 level, respectively. The black box represents NATI. 394 

SSTA = [15−25
°N, 32−20°W] (4) 395 

SSTB = [22−32
°N, 75−60°W] (5) 396 

SSTC = [50−60
°N, 50−32°W] (6) 397 
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NATI = SSTB −
1

2
(SSTA + SSTC) (7) 398 

Moreover, the relationship between the previous winter NAOI and spring NATI is only 399 

manifested during the negative phase of NAO, with a statistical significant correlation coefficient 400 

of 0.41 (figures not shown). This elucidates the reason why the significant impact of NAO on dust 401 

activities in North China only existed during its negative phase. The correlations between the 402 

previous winter NAO and North Atlantic SST reveal that NAO is linked with an anomalous tripole 403 

SST pattern during the NAO negative situation (Figure 9a). Similar findings are observed during 404 

negative ENSO situation (Figure 9d). When both the NAO and ENSO are in their negative phases, 405 

the anomalous tripole SST pattern is more pronounced (Figure 9g). This suggests that ENSO 406 

enhances the connection between the negative NAO and NATI, providing an explanation for the 407 

synergistic effects of the NAO and ENSO on dust activities in North China.  408 

In the negative NAO phase, there is a notable correlation between the previous winter NATI 409 

and the spring SST and SSTp (Figures 9b-c), indicating that the previous winter NATI can persist 410 

into spring, with the self-persistence of SST playing an important role. Similar findings are observed 411 

during the negative ENSO phase (Figures 9e-f) and when both the NAO and ENSO are in their 412 

negative phases (Figures 9h-i). Additionally, the correlation coefficients between the NAOI and 413 

NATI under different scenarios can illustrate the synergistic influence of the NAO and ENSO on 414 

the persistence of SST anomalies (Table 2). Specifically, when the negative phases of NAO and 415 

ENSO co-occur, the correlation coefficients between the NAOI and NATI are greater than those 416 

influenced by a single factor alone. The impacts of previous winter NAO on the spring dust activities 417 

over North China are mainly include, 1) The previous winter NAO would stimulate the anomalous 418 

NAT SST pattern; 2) The NAT can persist from previous winter to the following spring due to the 419 

thermal persistence of the SST; 3) The spring NAT plays significant modulation on the circulation 420 

pattern over North China through teleconnection wave-train, affecting the spring dust activities over 421 

North China. It is seen from Table 2 that although the correlation coefficients of previous winter 422 

NATI and spring NATI are same in the case of ENSO- phase and NAO- & ENSO- phase. However, 423 

the correlations between the NAOI and NATI is higher during NAO- & ENSO- phase (0.66) than 424 

during ENSO- phase (0.52), highlighting the a more significant contribution of NAO in influencing 425 

NAT in the case of NAO- & ENSO- phase. 426 
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 427 

Figure 9. Upper, correlation distributions of (a) winter NAOI with winter SST, (b) winter NATI 428 

with spring SST, and (c) winter NATI with SSTp during negative NAO phases. Middle-Lower, as 429 

in the upper, but during the negative ENSO phases and concurrent negative phases of NAO and 430 

ENSO, respectively. Thick and fine stippled areas are statistically significant at the 0.05 and 0.1 431 

level, respectively. The black box represents NATI. 432 

Table 2. Correlation coefficients between the NAOI and NATI in different categories. * indicates 433 

statistically significant at the 0.1 level. 434 

Scenarios DJF_NAO & DJF _NATI DJF_NATI & MAM_NATI 

NAO- phase 0.41* 0.51* 

ENSO- phase 0.52* 0.69* 

NAO- & ENSO- phase 0.66* 0.69* 

Given the distance across the Eurasian continent between the North Atlantic and North China, 435 

the role of teleconnection wave-train is particularly important in influencing dust activities over 436 

North China. Figure 10a presents the geopotential height field at 200 hPa regressed onto the spring 437 

NATI during the negative NAO case. This reveals a pronounced north-south reversed dipole pattern 438 

in the North Atlantic, i.e., negative over Azores and positive over Iceland, representing a typical 439 

negative NAO structure (Wallace and Gutzler, 1981; Li and Wang, 2003). Additionally, a negative-440 

positive-negative teleconnection wave-train structure centered around eastern Europe, Middle East, 441 

and North China is observed, suggesting that disturbance energy propagates downstream from the 442 

A

C

B
A

C

B
A

C
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North Atlantic through waveguide effects. The teleconnection wave-train characteristics are also 443 

observed in the 200 hPa meridional wind and vorticity fields (Figures 10b-c). During the negative 444 

ENSO case, modulated by the NATI, similar teleconnection structures are also seen in the 445 

circulation field (Figures 10d-f). Notably, when both the NAO and ENSO are in their negative 446 

phases, the correlation patterns of the teleconnection structure are similar, however the anomalies 447 

over North China is enhanced, showing significant anomalies in the vorticity field (Figures 10g-i), 448 

confirming their synergistic effects on the circulation processes affecting dust activities in North 449 

China.  450 

 451 

Figure 10. Upper, regression distribution of spring NATI against the spring (a) geopotential height 452 

(unit: gpm), (b) meridional wind (unit: m·s-1), and (c) vorticity (unit: 10-5·m·s-1) at 200 hPa during 453 

the negative NAO phase. Middle-lower, as in the upper, but during the negative ENSO phases and 454 

concurrent negative phases of NAO and ENSO, respectively. The green box represents North China. 455 

Regression fields have multiplied by -1 (to facilitate a direct comparison between the NAO&ENSO 456 

associated circulation anomalies and the climatology). Thick and fine stippled areas are statistically 457 

significant at the 0.05 and 0.1 level, respectively. 458 
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To further examine the impact mechanisms of NAO and ENSO on spring dust activities in 459 

North China, based on the propagation characteristics of the teleconnection wave-train shown in 460 

Figure 10, the cross-section distribution of the geopotential height field is presented (Figure 11). 461 

Under the scenarios where either the NAO or ENSO is in the negative phase, the NATI anomalies 462 

correspond to the teleconnection wave-train extending from the upper to lower troposphere, which 463 

is specifically characterized by a negative-positive-negative teleconnection pattern centered around 464 

eastern Europe, Middle East, and North China (Figures 11 a-b). This wave-train propagate across 465 

Eurasian continent, ultimately influencing dust activities over North China. Furthermore, the 466 

analysis of cross-section at different levels of the troposphere reveals that under the negative NAO 467 

and ENSO situations, the teleconnection wave-train excited by the NATI exhibits quasi-barotropic 468 

features, with the anomalous structure primarily concentrated in the middle-upper troposphere. 469 

When both the NAO and ENSO are in their negative phases, the intensity and scope of the 470 

teleconnection wave-train are enhanced and expanded compared to the influence of a single factor 471 

(Figure 11c), demonstrating synergistic effects.  472 

 473 
Figure 11. Vertical section of regression of spring NATI against the geopotential height along the 474 

solid line labeled A (42°W, 58°N), B (30°E, 55°N), C (60°E, 42°N), and D (115°E, 38°N) in Figure 475 
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10g for (a) negative NAO case in the previous winter. (b)-(c) as in (a), but during the negative ENSO 476 

case and co-occurring negative phases of NAO and ENSO, respectively (unit: gpm). Regression 477 

fields have multiplied by -1 (to facilitate a direct comparison between the NAO&ENSO associated 478 

circulation anomalies and the climatology). Shading indicates the absolute value is greater than 10 479 

gpm. 480 

To provide a more comprehensive analysis of the transport process of disturbance energy in 481 

the atmosphere, the horizontal distribution of the WAF associated with spring NATI variations is 482 

examined. Under the scenarios where either the NAO or ENSO is in the negative phase, the WAF 483 

can be clearly observed originating from the North Atlantic, traversing the Eurasian continent, and 484 

extending to North China (Figures 12a-b). When both factors occur simultaneously, the transport 485 

intensity of the WAF is not only enhanced, but its impact range on dust activities in North China is 486 

also broadened (Figure 12c). Through the analysis of teleconnection wave-train and WAF, it is 487 

determined that the synergistic effects not only enhance the disturbance intensity in the atmosphere, 488 

but also expand impacted extent, thereby promoting the occurrence of spring dust activities in North 489 

China. The enhancement and expansion of atmospheric disturbances may be related to large-scale 490 

circulation anomalies and local climate condition variations induced by the synergistic effects of the 491 

NAO and ENSO, which in turn affect the transport and deposition processes of dust. 492 
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  493 

Figure 12. As in Figure 10, but for the regression distribution of spring NATI against the T-N wave 494 

activity flux (units: m²·s⁻²). The green box represents North China. Regression fields have 495 

multiplied by -1 (to facilitate a direct comparison between the NAO&ENSO associated circulation 496 

anomalies and the climatology). Green arrows are statistically significant at the 0.1 level. 497 

4. Conclusions and discussions 498 

Although North China is not the primary dust source, dust activities are notably active during 499 
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spring in this region. This study highlights that the previous winter NAO and ENSO exert essential 500 

influences on the following spring dust activities in North China. Their impacts are asymmetric, 501 

manifesting only when both of them are in their negative phases. Furthermore, the results indicate 502 

that NAO and ENSO in their negative phases have synergistic effects on the spring dust activities 503 

in North China, promoting dust activities and with greater impacts than their sole effect. 504 

Under the influence of the negative phases of the NAO and ENSO, atmospheric circulation in 505 

the troposphere from the lower to upper layers, exhibits significant anomalies. These include 506 

variations in the upper-level zonal winds, mid-latitude trough-ridge systems, and atmospheric 507 

circulation at the SLP. These variations promote the occurrence of dust activities in North China. 508 

Simultaneously, accompanying anomalies in the atmospheric circulation pattern also affect local 509 

meteorological factors, including humidity and precipitation, which in turn impact dust activities in 510 

North China. Notably, when both the NAO and ENSO are in their negative phases, synergistic 511 

effects occur, making the anomalies in atmospheric circulation from the lower to upper layers, and 512 

local meteorological factors, more conducive to the occurrence of dust events in North China. The 513 

impact of the NAO on the underlying SST pattern is predominantly observed during its negative 514 

phase, elucidating why the NAO significantly influences dust activities in North China only during 515 

its negative phase. Furthermore, when both the NAO and ENSO are in their negative phases, the 516 

teleconnection wave-train and WAF stimulated from the North Atlantic are more intense, thereby 517 

more effectively influencing dust activities in North China. This indicates the synergistic effects of 518 

these two variabilities on dust activities over North China. 519 

In the process where the previous winter NAO influences the following spring dust activities 520 

in North China, the NAT plays a crucial role. The NAO signal from the previous winter can be 521 

stored in the NAT and persist into spring. In spring, the NAT regulates the circulation pattern in 522 

North China through teleconnection wave-train, ultimately affecting dust activities in North China. 523 

The signal of previous winter ENSO can persist into spring, and it effects on the dust activities in 524 

North China mainly through two pathways: i.e., directly influence the dust activities by affecting 525 

the circulation anomalies over the WNP, and facilitating the process of which the NAO excites NAT, 526 

thereby affecting the dust activities in North China. This provides a plausible explanation for why 527 

the previous winter NAO and ENSO exert synergistic effects on the following spring dust activities 528 

in North China.  529 

This study investigated the impacts of NAO and ENSO on dust activities in North China and 530 

the associated physical processes, indicating that one season ahead signals provide as the useful 531 

predictors for spring dust activities in North China. Future work will focus on developing a 532 
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prediction model using the NAO and ENSO as predictors and validating its effectiveness. The 533 

present work mainly focuses the interannual modulation of NAO and ENSO on the dust activities 534 

over North China, however, the NAO and ENSO (Woollings et al., 2015; Feng et al., 2024), as well 535 

as dust activities over North China, bear strong interdecadal variations, long-term datasets are 536 

needed to further explore their impacts on the dust activities. The present study focuses on the period 537 

1979-2022, due to the longevity of the MERRA-2 dust content dataset. There are only 7 co-538 

occurrence years of negative NAO and ENSO, which take up to 17% of the whole study period. It 539 

is noted that the co-occurrence events are not as many as either the negative NAO or ENSO, thus a 540 

significance level of 0.1 is displayed. It is worthy to examine their joint impacts by employing longer 541 

datasets or models outputs, to further explore their synergistic effects and any possible variations in 542 

their modulations. Moreover, as reported that the state-of-art models can reproduce the individual 543 

impact of NAO and ENSO on dust activities in North China (Yang et al., 2022), whether their 544 

synergistic effects on the dust activities could be well simulated, requiring further researches. 545 

Additionally, the potential impacts of interdecadal signals, such as the AMO, on dust activities in 546 

China is not discussed. Future work will investigate the interdecadal variations of dust activities in 547 

China and their connection to interdecadal climatic variabilities. Previous studies have indicated 548 

that the uncertainty in ENSO variability is likely to increase under the background of global 549 

warming (Cai et al., 2021; Chen et al., 2024). Therefore, it is crucial to investigate the future changes 550 

in the ENSO and its synergistic effects with NAO on the dust activities over China, to better 551 

understand the plausible trends of future dust activities in North China.  552 

 553 

Code and data availability. The MERRA-2 dust content dataset can be downloaded from 554 

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (last access: 22 July 2024). The atmospheric 555 

reanalysis datasets can be downloaded from 556 

https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset (last access: 22 July 2024). 557 

The oceanic reanalysis data can be downloaded from https://www.metoffice.gov.uk/hadobs/hadisst 558 

(last access: 22 July 2024). The NAO indices defined by Li and Wang can be downloaded from 559 

http://lijianping.cn/dct/page/65610 (last access: 22 July 2024). The NAO indices produce by Hurrell 560 

and Jones can be downloaded from https://climatedataguide.ucar.edu/climate-data/hurrell-north-561 

atlantic-oscillation-nao-index-pc-based (last access: 22 July 2024) and 562 

https://crudata.uea.ac.uk/cru/data/nao (last access: 22 July 2024), respectively. The ENSO indices 563 

can be downloaded from https://psl.noaa.gov/data/timeseries/monthly/NINO34 (last access: 22 July 564 
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