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Abstract.  

The fraction of urban volatile organic compounds (VOC) emissions attributable to fossil fuel combustion has been declining 

in many parts of the world, resulting in a need to better constrain other anthropogenic sources of these emissions. During the 25 

National Institute of Environmental Research (NIER) and National Aeronautics and Space Administration (NASA) Korea-

United States Air Quality (KORUS-AQ) field study in Seoul, South Korea during May-June 2016, air quality models 

underestimated ozone, formaldehyde, and peroxyacetyl nitrate (PAN) indicating an underestimate of VOCs in the emissions 

inventory. Here, we use aircraft observations interpreted with the GEOS-Chem chemical transport model (version 13.4.0) to 

assess the need for increases in VOC emissions and for a revised chemical mechanism to improve treatment of VOC speciation 30 

and chemistry. We find that the largest needed VOC emissions increases are attributable to compounds associated with volatile 

chemical products, liquefied petroleum gas (LPG) and natural gas emissions, and long-range transport. Revising model 

chemistry to better match observed VOC speciation together with increasing model emissions of underestimated VOC species 

increased calculated OH reactivity by +2 s-1 and ozone production by +2 ppb hr-1. Ozone increased by +6 ppb below 2 km and 

+9 ppb at the surface, and formaldehyde and acetaldehyde increased by +30% and +120% aloft, respectively, all in better 35 

agreement with observations. The larger increase in acetaldehyde was attributed to ethanol emissions which we found to be as 

important for ozone production as isoprene or alkenes. The increased acetaldehyde significantly reduced the model PAN bias. 
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The need for additional unmeasured VOCs however was indicated by a remaining model bias of -0.8 ppb in formaldehyde and 

-57% and -52% underestimate in higher peroxynitrates (PNs) and alkyl nitrates (ANs), respectively. We added additional 

chemistry to the model to represent an additional six PNs from observed VOCs but were unable to account for the majority of 40 

missing PNs. However, four of these PNs were modeled at concentrations similar to other commonly measured PNs (>2% of 

PAN) indicating that these should be measured in future campaigns as well as considered from other VOC emission sources 

(e.g., fires). We hypothesize that emissions of oxygenated VOCs (OVOCs) such as >C5 aldehydes from cooking and/or alkenes 

associated with volatile chemical products could produce both PNs and ANs and improve remaining model biases. Emerging 

research on the emissions and chemistry of these species will soon allow for modeling of their impact on local and regional 45 

photochemistry. 

1 Introduction 

Ozone pollution in urban areas may be limited by availability of nitrogen oxides (NOx) or volatile organic compounds (VOCs). 

Emissions inventories of VOCs are more difficult to estimate than for NOx due to the large number of compounds that must 

be included and the lack of measurements of many of these species. In general, VOC emission inventories have been shown 50 

to perform poorly around the globe against observations (von Schneidemesser et al., 2023; Rowlinson et al., 2023). Non-

combustion sources such as volatile chemical product (VCP) emissions are becoming a larger fraction of urban VOC emissions 

in many cities and have only recently become a focus of emissions inventory development (McDonald et al., 2018; Coggon et 

al., 2021). In some cities, non-combustion anthropogenic emissions of VOCs from diverse products and processes may be 

equivalent to or greater than motor vehicle emissions (Khare and Gentner, 2018; McDonald et al., 2018; Simpson et al., 2020). 55 

This has implications for simulating ozone production in cities where ozone production is VOC-limited including several U.S. 

cities (Koplitz et al., 2021) and across much of East Asia (Lee et al., 2021). 

 

The joint National Institute of Environmental Research (NIER) and National Aeronautics and Space Administration (NASA) 

Korea-United States Air Quality (KORUS-AQ) field study in May-June 2016 (Crawford et al., 2021) presented an opportunity 60 

to better constrain VOC emissions and VOC-limited ozone chemistry in East Asia, with a focus on South Korea and eastern 

China. Observations included airborne measurements using the NASA DC-8 aircraft and ground-based measurements at the 

Olympic Park supersite in Seoul. The suite of models run for this campaign generally underestimated ozone and formaldehyde, 

a common oxidation product of VOCs, suggesting underestimation of VOCs in the emissions inventory (Park et al., 2021). 

Models also underestimated peroxyacetyl nitrate (PAN), a product of VOC oxidation in the presence of NOx and a reservoir 65 

for ozone precursors that can be transported long distances from source regions (Wolfe et al., 2007; Bertram et al., 2013). This 

has implications for the ability of models to attribute the relative impact of upwind versus local emissions on downwind 

pollution.  
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Several studies have discussed model biases in ozone and formaldehyde concentrations in East Asia. Kim et al. (2022) showed 70 

that modeled VOCs significantly underestimated the overall OH reactivity during KORUS-AQ indicating that modeled ozone 

production was underestimated. Gaubert et al. (2020) found that persistent underestimates in modeled carbon monoxide (CO) 

in both South Korea and China were partially responsible for the modeled ozone underestimate in both locations. Miyazaki et 

al. (2019) assimilated multiple species observed from satellite observations including CO and PAN into a model which 

improved performance for ozone but not formaldehyde, indicating that the assimilation was missing a correction for 75 

underestimated VOCs. Choi et al. (2022) used satellite formaldehyde observations to improve modeled VOCs and ozone, but 

biases still remained, likely due to remaining errors in CO emissions and VOC emission speciation. Using airborne remote 

sensing formaldehyde data, Kwon et al. (2021) found differences in the KORUS-AQ anthropogenic VOC emissions inventory 

of up to a factor of 6.9 although they were limited by their sparse observational dataset. Kim et al. (2024) also discussed the 

importance of detailed VOC observations to constraining ozone precursors, as errors in biogenic emissions in urban areas can 80 

result in better agreement with ozone observations for the wrong reasons. This study also found that modeled CO was 

underestimated over both China and South Korea and large increases were needed in both CO and VOCs to improve model 

simulations. 

 

Studies have paid less attention to model underestimates of specific VOCs, errors in model VOC speciation, and to the 85 

underestimate of PAN. For example, ethanol, a major PAN precursor (Fischer et al., 2014), was not included in the KORUS-

AQ emissions inventory but has been measured at high concentrations in East Asia (Kim et al., 2016; Wu et al., 2020). Yang 

et al. (2023) performed modeling of South Korea with an inventory for volatile chemical products and found that this source 

greatly increased simulated ethanol, methanol, and acetone. However, this study’s scope did not include a detailed comparison 

against observations or their oxidation products such as acetaldehyde or PAN. In addition to missing PAN precursors, models 90 

generally simulate few other peroxynitrate (PN) species. Lee et al. (2022) used a box model of observed VOCs during KORUS-

AQ to estimate that PNs other than PAN and peroxypropionyl nitrate (PPN) could be up to 40% of total peroxy acyl nitrates 

(∑𝑃𝑁𝑠), in contrast to previous findings that this fraction is less than 20% (Wooldridge et al., 2010). In a study of a 

petrochemical region of Korea, the major PNs identified by Lee et al. (2022) were produced from oxidation of 1,3-butadiene 

and glycolaldehyde but this chemistry is not included in most atmospheric chemistry models. Alkyl nitrates (ANs) are another 95 

reservoir of NOx produced during VOC oxidation that competes with ozone production in urban regions and can serve as an 

ozone source downwind (Perring et al., 2010; Farmer et al., 2011). Total ANs (∑𝐴𝑁𝑠) were underestimated by -50% in models 

during KORUS-AQ (Park et al., 2021). 

 

Nault et al. (2024) showed that in the Seoul Metropolitan Area (SMA), ∑𝑃𝑁𝑠 accounted for 33% of observed NOz (≡100 

∑𝑃𝑁𝑠 +	∑𝐴𝑁𝑠 + 𝐻𝑁𝑂! + 𝑎𝑒𝑟𝑜𝑠𝑜𝑙	𝑛𝑖𝑡𝑟𝑎𝑡𝑒), where only 50% of ∑𝑃𝑁𝑠 was PAN. ∑𝐴𝑁𝑠 were 10% of observed NOz with 

only ~20% of ∑𝐴𝑁𝑠	accounted for by speciated observations. This is similar to the finding of Kenagy et al. (2021) that their 

model could only account for 30% of ∑𝐴𝑁𝑠 across all data (not just the SMA) collected during KORUS-AQ. Nault et al. 
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(2024) found that between 20 – 70% of the PAN precursor budget was attributable to ethanol, depending on proximity to the 

emissions source. Additional higher peroxy acyl nitrates (PNs) were shown to be produced by observed VOCs including 105 

glycolaldehyde, aromatics, monoterpenes, 1,3-butadiene, and methyl ethyl ketone (MEK). Here, we use the KORUS-AQ 

aircraft observations of ozone-NOx-VOC chemistry interpreted with the GEOS-Chem chemical transport model to assess 

underestimated modeled VOCs on a species-by-species basis, and determine the impact on model biases in ozone, 

formaldehyde, ∑𝑃𝑁𝑠, and ∑𝐴𝑁𝑠. We build on the findings of Nault et al. (2024) to add additional chemistry to the model to 

form higher PNs from observed VOCs and assess indicators of additional missing sources of VOCs to close remaining biases 110 

in ozone, formaldehyde, ∑𝑃𝑁𝑠, and ∑𝐴𝑁𝑠. 

 

2 Observations during KORUS-AQ 

The KORUS-AQ campaign took place from May 1 to June 10, 2016, in Seoul, South Korea (Crawford et al., 2021). KORUS-

AQ was a joint field campaign organized by South Korea’s National Institute of Environmental Research (NIER) and the 115 

United States National Aeronautics and Space Administration (NASA). The campaign included 20 flights using the NASA 

DC-8 aircraft which performed 55 missed approaches at multiple times per day over the heavily instrumented Olympic Park 

supersite in Seoul. Ground-based ozone and NO2 observations were available from the NIER’s AirKorea monitoring network 

including locations near Olympic Park. Crawford et al. (2021) provide a full listing of all observations made during KORUS-

AQ. Table 1 describes the aircraft and ground observations used in this work.  120 

 

KORUS-AQ did not measure ethanol concentrations either from aircraft or ground-based instruments. During the MAPS-

Seoul campaign in May-June 2015, Kim et al. (2016) measured concentrations at Olympic Park of methanol and ethanol of 

11.1 ppb and 3.9 ppb, respectively. Wu et al. (2020) measured methanol at 11.4 ppb and ethanol at 5.6 ppb at Guangzhou in 

China in September-November 2018. We used these observations to estimate that ethanol was equivalent to methanol/2.5 as 125 

was done in Schroeder et al. (2020). In the U.S., similar ratios were observed in the Northeast (Sommariva et al., 2011), and 

even higher levels of ethanol than methanol have been observed in California (de Gouw et al., 2018). 

3 Modeling Setup and Improvements 

We used the GEOS-Chem chemical transport model version 13.4.0 (10.5281/zenodo.6511970) described in Travis et al. (2022) 

with modifications described below to VOC speciation and chemistry. Kim et al. (2022) showed that the model had errors in 130 

OH reactivity during KORUS-AQ of ~34% for >C4 alkanes (ALK4) due to lumping. Alkanes with larger carbon numbers 

(e.g., n-hexane) are more reactive than ALK4 which is parameterized in the model as a butane/pentane mixture (Lurmann et 

al., 1986). We added a new lumped species for >C6 alkanes, ALK6, with associated chemistry including the formation of a 

lumped alkyl nitrate species according to Lurmann et al. (1986).  

 135 
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GEOS-Chem includes chemistry for the aromatic species benzene, toluene, and xylenes. Significant effort was made during 

KORUS-AQ to improve emissions estimates of these species, particularly toluene, which was determined to be a major 

contributor to chemistry in the SMA (Schroeder et al., 2020; Simpson et al., 2020). However, emissions improvements did not 

take into consideration the fraction of ethylbenzene (EBZ) or trimethylbenzene (TMB) in modeled aromatic emissions, both 

of which are more reactive than benzene or toluene. Similarly, the styrene (STYR) fraction of emitted olefines (alkenes) was 140 

not considered. KORUS-AQ measurements included observations of EBZ, TMB, and STYR (Simpson et al., 2020). Emitted 

olefins also include a fraction of 1,3-butadiene (C4H6), especially from petrochemical facilities in western Korea, which were 

identified by (Lee et al., 2022) as a source of PNs through production of peroxyacrylic nitric anhydride (APAN). 1,3-Butadiene 

mixing ratios were over 3 ppb near the petrochemical facilities although the maximum levels in Seoul were much lower at 

<200 pptv (Simpson et al., 2020). We added chemistry for STYR, EBZ, and TMB from Bates et al. (2021) and for C4H6 from 145 

the MCMv3.3.1 (Jenkin et al., 1997; Saunders et al., 2003). Finally, we included updated monoterpene chemistry that is a 

condensation of the mechanism from the MCMv3.3.1 (Saunders et al., 2003), including production of aldehydes that could 

form PNs such as pinonaldehyde. Tables S1 and S2 provide the new model chemistry implementation. 

 

Table 2 shows the VOC emission species in the KORUSv5 inventory, which was developed by Konkuk University for the 150 

campaign, speciated according to the SAPRC99 mechanism. We translated this mechanism to the GEOS-Chem model for the 

base chemistry, and updated chemistry, according to Carter (1999) with the exception of ARO1, which was speciated based 

on observations as discussed in Travis et al. (2022). We specifically re-speciated base model emissions for ALK4 into ALK4 

and ALK6, emissions for PRPE into PRPE, C4H6, and STYR, emissions for benzene and toluene into benzene, toluene, and 

EBZ, and emissions of xylenes into xylenes and TMB. The KORUSv5 inventory does not include ethanol emissions, which 155 

we took from the Community Emissions Data System (CEDS) inventory described in (McDuffie et al., 2020). 

 

Figure S1 shows model and observed mean vertical profiles in the SMA for the key species identified by Schroeder et al. 

(2020) for ozone production (C7+ aromatics, isoprene, alkenes, methanol), additional species identified by Nault et al. (2024) 

for PAN and PN production (ethanol, monoterpenes, methyl ethyl ketone (MEK)), and CO, identified as an additional source 160 

of model errors in ozone chemistry during the campaign (Gaubert et al., 2020). Fried et al. (2020) found that emissions of the 

top producers of formaldehyde, particularly propene and ethene were underestimated by the KORUSv5 emissions inventory 

over the industrial area to the southwest of Seoul. We did not find these species to be underestimated in the SMA. Figure S1 

shows that model underestimates in CO and VOCs range from more than -70% (methanol, ethanol, propane, MEK, 

monoterpenes) to -30 to -50% (acetone, ALK4, benzene, CO, acetylene, ethylbenzene, toluene, xylenes). We applied scaling 165 

factors to the individual KORUSv5 VOC emissions over South Korea until modeled concentrations matched average 

observations below 2 km within 30% or better (Table S3). The one exception is trimethylbenzenes where we improved the 

model bias from +93% to only -43%, but the absolute bias was < 10 ppt Ethanol was scaled from the emissions in the CEDS 

inventory. For species with lifetimes long enough to be transported from upwind (e.g., acetone, CO) some of the model bias 
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may be due to underestimated emissions from other countries. Here, we only scaled South Korean emissions given the lack of 170 

constraints on emissions upwind. Table 3 provides the applied scale factor for each species. Figure S1 shows the model with 

applied scaling factors for each scaled species which shows significantly improved comparison with observations. Given the 

difficulty of achieving perfect scaling factors to achieve model agreement across this large suite of VOCs, and the likelihood 

that some scale factors are needed for upwind emissions, we present these scale factors not as exact values that need to be 

implemented in emissions inventories but rather strong indicators of missing sources that need further study. 175 

 

The largest scaling factor (650x) was required for methanol (Table 3), which averaged 20 ppb in the observations but only 2 

ppb in the base model. Given the relatively long lifetime of methanol (~5 days), we expect that this very large anthropogenic 

scaling factor is needed to account for underestimated emissions both upwind in China and in South Korea and for the 

contribution of biogenic methanol to model concentrations. According to Simpson et al. (2020), methanol in the SMA 180 

correlated well with ethylbenzene suggesting that the missing anthropogenic source is from solvent emissions. Underestimated 

solvent emissions may also be the reason for underestimated model xylenes and ethylbenzene (Simpson et al., 2020). The 

second largest scaling factor was for monoterpenes (450x) which averaged 50 ppt in the observations but 15 ppt in the base 

model. This large scaling factor is needed to account for the minimal anthropogenic emissions in the model as the base model 

concentration is driven almost entirely by biogenic emissions. Monoterpenes, particularly limonene, have been shown to have 185 

a large source from fragranced VCPs in some urban areas (Coggon et al., 2021; Peng et al., 2022; Wernis et al., 2022). Large 

scaling factors were also required for acetone (85x), MEK (70x), and ethanol (40x). Acetone is a common ingredient in paint 

thinners. Ethanol is an ingredient in many VCPs (pesticides, personal care products, cleaning, coatings, adhesives, inks 

(Gkatzelis et al., 2021; McDonald et al., 2018)) and cooking (Arata et al., 2021). Ethanol and monoterpenes were also large 

sources of missing model VOC reactivity and ozone production in a study in Los Angeles and Las Vegas (Zhu et al., 2023) 190 

suggesting that inventories generally have difficulty capturing VCP emission levels. MEK is also a common VCP marker 

(McDonald et al., 2018). Underestimated model propane and C3/C4 alkanes (ALK4) may be attributable to underestimated 

liquified petroleum gas (LPG) or natural gas emissions, which is used for residential heating and cooking and some vehicles 

in South Korea (Simpson et al., 2020). The modeled underestimate of the long-lived combustion tracers carbon monoxide 

(CO), ethyne (C2H2), and benzene (Simpson et al., 2020) is expected given the general underestimate in CO identified in East 195 

Asia by Gaubert et al. (2020) and the expectation that underestimated emissions in South Korea likely reflect underestimated 

emissions across East Asia. Overall, we find that the KORUSv5 emissions inventory appears to underestimate VCP and LPG 

emissions likely both in South Korea and upwind in East Asia.  

4 Impact of improved representation of VOCs on model photochemistry 

Increasing model VOCs to better match observations resulted in improved representation of calculated OH reactivity (cOHR). 200 

We determined cOHR for the suite of observed VOCs, CH4, and CO (Table 1), and included the non-measured VOC oxidation 
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products calculated from the F0AM box-modeling results of the SMA from Nault et al. (2024). Figure 1a compares this cOHR 

(observed CO+CH4+VOCs+F0AM oxidation products) to modeled cOHR as a function of altitude below 2 km for the SMA. 

Figure 1 includes a calculation of the estimated missing reactivity (grey dashed line) which is discussed further in Section 6. 

Data is restricted to after 11 am local time according to Nault et al. (2024) to ensure that the aircraft data is minimally affected 205 

by rapid changes in boundary layer growth, the nighttime residual layer, and titration of O3 by NO. The base model cOHR was 

only 4.7 s-1 in the lowest altitude bin (~0.2km) compared to 8.8 s-1 in the observations. Unmeasured VOC oxidation products 

(calculated by F0AM) made up 19% of the cOHR, while in GEOS-Chem this was only 11%. Increasing modeled emissions 

of CO and VOCs (called “scaled VOCs hereafter) in South Korea as described in Section 2 increased modeled cOHR by 2.3 

s-1 to 7.0 s-1 and significantly reduced this bias.  210 

 

The increase of model cOHR had a significant impact on ozone production. On average, modeled OH (Fig. 1b) was largely 

unchanged but ozone production increased by +2 ppb hr-1 (Fig. 1c). This implies that the increased OH sink from VOCs was 

balanced by increased OH production from recycling (HO2 + NO) and/or photolysis of VOC oxidation products (e.g., 

formaldehyde). The average model overestimate of ~30% in OH below 2 km (after scaling VOCs) is partially attributed to 215 

insufficient model resolution and dilution of NOx given that increasing resolution to ~7 km largely resolved the model bias in 

OH in Jo et al. (2023). The modeled average net production of ozone + NO2 (POx) was overestimated compared to 

observationally constrained POx (Fig. 1c) which was calculated as described in Nault et al. (2024) using steady-state 

assumptions and observed VOC concentrations which we also attribute to insufficient model resolution and the modeled OH 

overestimate. 220 

 

Figure 2 shows the same observations as in Figure 1 but as a function of NOx concentration instead of altitude. The modeled 

OHR is closer to the observations at lower NOx concentrations in part due to the smaller influence of VOC oxidation products 

that are underestimated against the F0AM box modeling results. Below ~8 ppb NOx, increasing VOCs reduced OH by up to -

1E6 molec cm-3 while at higher NOx OH increased by as much as +0.3E6 molec cm-3 (Fig. 2b). The larger absolute reduction 225 

in OH at lower NOx is consistent with the main sinks being HO2 + RO2 to form organic peroxides and HO2 + HO2 to form 

hydrogen peroxide (Nault et al, 2024). Modeled POx increased by up to 2.7 ppb hr-1 at higher NOx under VOC-limited 

conditions. The model does not fully capture the behavior of POx in the observations which clearly show a shift from increasing 

to decreasing POx with increasing NOx at approximately 6 ppb NOx. Presenting only average conditions for the SMA in Fig. 

1 masks the two differing chemical regimes present in the observations. We hypothesize that model difficulty in capturing the 230 

behavior of POx and the separation of these two regimes is also due to insufficient model resolution.  

 

Scaled VOC emissions as described in Section 2 increased VOC-oxidation products such as formaldehyde and acetaldehyde 

in addition to ozone production. Figure 3 shows that formaldehyde and acetaldehyde were biased by -47% and -67%, 

respectively in the base model, and increased by 30% and 120% after increasing the VOC emissions. The larger impact of 235 
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increased VOC emissions on acetaldehyde is attributable to the significant increase in modeled ethanol (Table 3), a key 

precursor. Unlike in the F0AM box-modeling work in Nault et al. (2024), we were unable to fully reproduce observed 

formaldehyde in GEOS-Chem after scaling VOCs and CO. Section S1 describes a sensitivity test in F0AM where we reduced 

the VOCs and CO in F0AM by the base model bias (Table S3). This test illustrated that important impacts of insufficient 

VOCs and CO in Seoul are 1) underestimated loss of OH by reaction with VOCs and CO, 2) missing production of ozone from 240 

VOCs and CO through HO2/RO2 + NO, 3) underestimated conversion of NO to NO2 by ozone which results in underestimated 

loss of OH by reaction with NO2. These impacts help explain the consequences of underestimated model VOCs and CO on 

successfully simulating overall ozone photochemistry. We explain the remaining formaldehyde low bias in GEOS-Chem by 

the fact that 1) the model underestimates reactivity of intermediate species which provide additional HCHO production, and 

conversion of NO to NO2 by HO2 and RO2; 2) we are not able to achieve perfect agreement with VOC observations, which is 245 

possible with F0AM; and 3) model ozone remains underestimated leading to underestimated NO2 and thus insufficient loss of 

OH and a HCHO lifetime against OH that is too short. This NO2 underestimate is made worse by insufficient model resolution. 

 

Despite the model shortcomings listed above, after scaling VOCs and CO, model ozone increased by +6 ppb, reducing the 

model underestimate from -21 ppb to -15 ppb (Fig. 3c). Previous work attributed underestimated modeled ozone to 250 

underestimated influx of stratospheric ozone (Park et al., 2021) or photolysis of particulate nitrate (Colombi et al., 2023; Yang 

et al., 2023) although this latter mechanism is uncertain (Shi et al., 2021; Gen et al., 2022; Sommariva et al., 2023). Model 

resolution is unlikely the primary factor as a similar ozone bias was found in a recent study with a range of resolutions in 

simulating KORUS-AQ ozone observations in the SMA (Jo et al., 2023). Here, we found that a significant fraction of this 

underestimate is due to underestimated VOCs. Additional bias could be attributable to underestimated ozone production 255 

upwind, as here we only increased VOC emissions in South Korea. Future work should assess how much underestimated 

VOCs in the rest of East Asia (e.g., China) could contribute to underestimated free tropospheric and surface ozone in models 

over South Korea. Finally, as formaldehyde is still underestimated in the model by -1 ppb, additional unmeasured VOCs could 

be present, and this possibility is further discussed in Section 5. We do not anticipate that the formaldehyde bias is entirely 

caused by the modeled OH overestimate as increased resolution and improved OH did not resolve the model bias in Jo et al. 260 

(2023) implying that underestimated VOC emissions may be the root cause. 

 

Schroeder al. (2020) identified C7+ aromatics (toluene, xylenes, ethylbenzene) as being the largest driver of ozone production 

(32%) in the SMA followed by isoprene and alkenes (14-15%), but a sensitivity test for the impact of ethanol was not included 

in their calculations. We performed two simulations, one removing ethanol and the other removing C7+ aromatics, over South 265 

Korea. Figure S2b shows that reducing ethanol resulted in a 50% reduction in acetaldehyde while removing C7+ aromatics 

only reduced acetaldehyde by ~10%. C7+ aromatics had a larger impact than ethanol on formaldehyde (8% vs. 6%, Fig. S2a). 

Removing C7+ aromatics reduced ozone by -3.4 ppb while removing ethanol reduced ozone by -1.7 ppb (Fig. S2c). This result 

implies that ethanol was similar in importance during the campaign to isoprene or alkenes which produced ozone at 
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approximately half the rate as C7+ aromatics in Schroeder et al. (2020). Both ethanol and C7+ aromatics had a similar impact 270 

on PAN (15-20%, Fig. S2f). Ethanol produces PAN through production of acetaldehyde. C7+ aromatics produce PAN from 

methylglyoxal and have a larger impact on the NO to NO2 ratio (Fig. S2d). Removing ethanol had minimal impact on OH as 

the reduced loss from both ethanol and acetaldehyde appeared to be balanced by decreased recycling from HO2 + NO (not 

shown), while reducing C7+ aromatics decreased OH by -10% from reduced recycling.  

 275 

Figure 4a shows the diurnal cycle of surface ozone at the Olympic Park supersite where scaled VOCs increased modeled ozone 

by +9 ppb, largely reducing the midday bias. However, the model overestimated the average ozone in the 15 AirKorea sites 

contained within the model grid box (shown in Fig. 1b, Travis et al. (2022)). This is likely attributable to the model’s inability 

to resolve the NO2 levels in the grid-box (Fig. 4b) due to insufficient model resolution (e.g, Jo et al., 2023) which were on 

average higher than at Olympic Park resulting in suppressed ozone production. Nighttime model overestimates in NO2 are 280 

likely attributable to an overly shallow nighttime mixed layer height which results in excessive ozone titration (Travis et al., 

2022). There was a large gradient of 16 ppb between the observed ozone from aircraft (Fig. 3c) and the daytime (11-16 LT) 

average surface ozone from the EPA monitor on flight days (Fig. 4a). This gradient would be even larger comparing to the 

grid-box average ozone value which is lower as discussed above. The model shows no gradient. Park et al. (2021) attributed 

the strong ozone gradient observed in the boundary layer to suppressed HOx at high NOx and increased ozone destruction by 285 

NO and VOCs. Insufficient model resolution here (~25 km) may be the cause of the lack of model gradient below 1 km as Jo 

et al. (2023) showed a decreasing gradient in the lowest 1 km at high resolution (< 14 km) compared to an increasing gradient 

at low resolution (> 56 km).  

 

Figure 5a shows model maps of maximum daily 8-hour average (MDA8) surface ozone for the campaign (May 1st-June 10th, 290 

2016). Suppressed ozone production in VOC-limited conditions is evident in the model in the SMA and to a lesser extent in 

Busan on the southeastern coast where MDA8 ozone is significantly lower than the surrounding areas. MDA8 ozone over both 

areas increased by as much as +10 ppb (Fig. 5b) due to scaled VOCs over South Korea. 

5 Model simulation of peroxy acyl nitrates (∑𝑷𝑵𝒔) 

Peroxyacetyl nitrate (PAN) is the simplest and most abundant peroxy acyl nitrate (PN). It is produced in the SMA largely from 295 

ethanol, isoprene, C8 aromatics, toluene, and MEK oxidation (Nault et al., 2024). As discussed in Section 3, all these species 

except for isoprene were increased to better match observations during KORUS-AQ (Fig. S1, Table 3). Figure 3d shows that 

this scaling reduced the modeled PAN underestimate from -50% to -23%. PAN formation is sensitive to the ratio of NO/NO2 

(Nihill et al., 2021). The modeled NO/NO2 ratio below 0.2 km decreased from 0.27 to 0.25 when the VOC scaling was applied 

due to increased conversion of NO to NO2 (Figure S3c) but was still overestimated compared to the observed ratio (0.20) likely 300 
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contributing to the remaining model bias. This may be due to the model’s inability to resolve higher levels of NO2 as well as 

the need for further radical sources to increase NO to NO2 conversion. 

 

Observed PAN averaged 1.1 ppb below 2 km (Fig. 3d) and made up only approximately 50% of ∑𝑃𝑁𝑠 which averaged 2.5 

ppb (Fig. 3d+e). Peroxypropionyl nitrate (PPN) averaged 80 ppt, or 7% of PAN. Together, PAN and PPN are generally 305 

expected to account for 75-90% of observed ∑𝑃𝑁𝑠 (Wooldridge et al., 2010) but here only account for 50% (Nault et al., 

2024, Fig. 3e). Table 4 lists the PN species in the observations and the base model along with their main precursor and fraction 

relative to PAN. Figure 6a+b shows the speciation of ∑𝑃𝑁𝑠 in the base model and with increased VOCs. The base model 

included two other higher PNs: MPAN formed from methacrolein and BZPAN formed from benzaldehyde. Each were 2% or 

less of model PAN (Table 4). Figure 6a illustrates that the base model therefore had no ability to represent the larger fraction 310 

of higher PNs compared to ∑𝑃𝑁𝑠 in the observations. Alkyl nitrates (ANs), another product of VOC oxidation in the presence 

of NOx, also showed a large missing speciated fraction where individual measurements were only able to account for 

approximately one quarter of total observed ∑𝐴𝑁𝑠 (Fig. S4a). More ANs were modeled than were measured but model ∑𝐴𝑁𝑠 

were still underestimated by 50% in the base model below 2km (Fig. 3f). Speciated model ANs for the model (with scaled 

VOCs and added PN chemistry discussed below) are given in Fig. S4b. The finding here of missing model ∑𝐴𝑁𝑠 is similar 315 

to the 50% underestimate in Fisher et al. (2016) in the U.S. and the 70% underestimate in Kenagy et al. (2021) during KORUS-

AQ attributed to missing precursors and/or chemistry from non-biogenic precursors such as S/IVOCs. Here we simulate more 

ANs than in Kenagy et al (2021) partially due to our addition of the ALK6 alkylnitrate (R6N2, Table S1) described in Section 

3 that had an average concentration of ~60 ppt below 2km (Fig. S4b). 

 320 

Lee et al. (2022) performed box modeling of VOCs during KORUS-AQ near the Daesan petrochemical complex (DPCC) to 

the southwest of Seoul and identified two higher PNs, peroxyhydroxyacetic nitric anhydride (PHAN) and peroxybenzoic nitric 

anhydride (PBZN), that contributed 17% and 6% to ∑𝑃𝑁𝑠, respectively. They also identified an additional PN, peroxyacrylic 

nitric anhydride (APAN) that contributed up to 14% of ∑𝑃𝑁𝑠 near the emission source. APAN, formed from 1,3-butadiene 

(C4H6) and acrolein, has been previously observed over petrochemical industrial areas (Roberts et al., 2001) and in fire plumes 325 

(M. Roberts et al., 2022). A PN formed from a-pinene oxidation through pinonaldehyde (PINPAN) was identified by Noziere 

and Barnes (1998) and estimated to be similar in concentration to MPAN. Nault et al. (2024) performed box-modeling using 

the MCMv3.3.1 in the F0AM box model to calculate potential additional PNs from the suite of observed VOCs during 

KORUS-AQ similar to Lee et al. (2022) but for the SMA. Identified PNs included PHAN, APAN, and PINPAN, as well as 

PNs from methyl ethyl ketone (MEKPN), limonene (LIMPAN), and aromatics (AROMPN). We devised a chemical 330 

mechanism to produce these PNs for GEOS-Chem which is provided in Table S1 and Table S2.  

 

Figure 6c shows the model results with scaled VOCs and a revised scheme for producing additional PNs (listed in Table 4). 

APAN is less important in the SMA (<1% of PAN) than in the results of Lee et al. (2022) which used observations closer to 
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the source of C4H6 emissions (Daesan chemical complex). We found that 4 out of the 6 added higher PNs had a ratio to PAN 335 

at least as large as MPAN (2%), with PHAN having the largest ratio (9%) followed by PINPAN (6%). PAN itself decreased 

by 8% in the revised scheme, which we attribute to both the re-speciation of the PAN acetylperoxy radical (CH3CO3) into 

other acetylperoxy radicals such as the 2-hydroxyacetylperoxy radical (GCO3) that makes PHAN (Table S2), and the removal 

of more peroxy radicals overall by the added higher PNs that would otherwise participate in ongoing photooxidation.  

 340 

Figure 1c shows that the inclusion of additional higher PNs reduced ozone production by -1% against aircraft observations, 

with a net impact on ozone of -1 ppb which also occurs at the surface (Fig. 4a). This result agrees with the finding from Nault 

et al. (2024) that PNs were a net sink for ozone production in the SMA during KORUS-AQ. The addition of higher PNs 

reduced formaldehyde by -2% and acetaldehyde by -3% (Fig. 3a-b), which we attribute to the increased radical sink as modeled 

OH decreased by -5%. Figure 5c shows the impact on MDA8 ozone from adding modeled higher PNs to the simulation with 345 

scaled VOCs (Fig. 5b). Ozone decreased across South Korea with the largest differences of -1 to -2 ppb in the SMA and Busan. 

Figure 7 shows PAN (a) and higher PNs (b) compared to formaldehyde. The PAN-formaldehyde relationship improved in the 

model with scaled VOCs and added PN chemistry, with the remaining bias in formaldehyde evident above approximately 6 

ppb. The model underestimates the production of higher PNs as a function of formaldehyde which suggests that an additional 

VOC source of these species is needed.  350 

 

We performed global simulations at 2×2.5o with the base model and the addition of higher PNs (without scaling VOCs in 

South Korea) to test the global relevance of these species. Figure 8 shows the global average surface concentrations from May 

1 to June 10, 2016, of base model PNs (PAN, MPAN, PPN, BZPAN), newly added higher PNs (PHAN, LIMPAN, PINPAN, 

AROMPN, MEKPN, APAN), and the difference in the revised model ∑𝑃𝑁𝑠 compared to the base model. The individual 355 

concentrations of the added PNs are shown in Figure S5. Over land, ∑𝑃𝑁𝑠 increased from +2 to +46% with the newly added 

higher PNs (Fig. 8c), with the largest increase over the Amazon from monoterpene-derived PNs (LIMPAN and PINPAN, Fig. 

S5). C4H6 (1,3-butadiene) emissions were only included in the KORUSv5 inventory and therefore APAN was only simulated 

in East Asia with a maximum in China. AROMPN only increased in the Northern Hemisphere due to higher aromatic 

emissions. Globally, in order of importance, the maximum concentration of PAN was 1.3 ppb followed by PPN at 0.5 ppb. 360 

The maximum concentrations of PINPAN, PHAN, and LIMPAN were between 100 and 160 ppt. AROMPN, MPAN, BZPAN, 

and MEKPAN were between 20 and 70 ppt. APAN was negligible (2 ppt), however future work should consider fire-related 

emissions of acrolein which would increase the importance of APAN in some regions. All higher PNs are expected to be more 

important near source regions and APAN likely has greater relevance to local photochemistry, as in higher resolution studies 

such as in Lee et al. (2022). Over land, ozone was reduced by -1 ppb by the added PNs (Fig. 8d), with differences in NO2 and 365 

OH of up to -20% and -5%, respectively. Smaller increases in ozone, NO2, and OH were simulated over the ocean due to 

transport of ∑𝑃𝑁𝑠. 
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Figure 9 shows the global average model fraction of more commonly measured PNs (PAN, MPAN, PPN) compared to ∑𝑃𝑁𝑠 

(PAN, MPAN, PPN, BZPAN, PHAN, LIMPAN, PINPAN, AROMPN, MEKPN, APAN) in the model with the new PN 370 

chemical scheme (Table S2). The global fraction is reduced from largely 100% to between 50% and 100% (up to a 50% 

reduction) with the largest change in regions dominated by monoterpene PNs (LIMPAN and PINPAN, Fig. S5). Over the 

United States, Europe, and Asia, this fraction is reduced from approximately 100% to between 80 and 90%. Globally, PAN 

itself decreases similarly to the results shown for the SMA in Fig. 3d.  

6 Evidence for unmeasured VOCs and their effects on ozone chemistry 375 

Figure 3a shows that despite better simulating the suite of observed VOCs (Fig. S1), the model with scaled VOCs and PN 

chemistry still underestimated average formaldehyde below 2km in the SMA by -0.8 ppb (-20 %). Ozone, higher PNs, and 

∑𝐴𝑁𝑠	also remained underestimated by -16 ppb (-17 %), -720 ppt (-57%), and -370 ppt (-52%) below 2 km, respectively. 

This implies that additional unmeasured VOCs must be present. Nault et al. (2024) used the observed relationship between Ox 

and ∑𝐴𝑁𝑠 in the SMA during KORUS-AQ to estimate that there must be an average of 1.7 s-1 of additional OH reactivity 380 

from unmeasured VOCs (shown on Fig. 1a). As in Nault et al. (2024) we calculated that this additional reactivity could further 

increase calculated ozone production by +2 ppb hr-1 (Fig. 1c). This additional OH reactivity would likely bring the modeled 

OH overestimate at lower NOx (Fig. 2b) into better agreement with observations as observed by our sensitivity study with 

increased VOCs and would further improve the model NO to NO2 ratio (Fig. S3c). 

 385 

Nault et al. (2024) suggested that likely sources of missing reactivity could be oxygenated VOCs, such as nonanal, and 

cycloalkenes/alkenes, such as monoterpenes. Nonanal is reactive with a lifetime against oxidation by OH of ~3 hrs for the 

conditions in the SMA (OH = 3E6 molecules cm-3) and would produce both higher PNs and ∑𝐴𝑁𝑠 (Bowman et al., 2003). 

Nonanal as well as octanal were recently measured at levels of 1 ppb or greater in several cities in the U.S. (Coggon et al., 

2023b, a). In addition to other smaller carbonyls, such as formaldehyde and acetaldehyde, >C5 aldehydes such as nonanal are 390 

emitted from cooking activities (Ho et al., 2006; Coggon et al., 2023a). VOCs from cooking are minimally represented in 

emissions inventories but could have a mass contribution nearly as large as emissions from mobile sources (Coggon et al., 

2023a). Similarly, anthropogenic monoterpene emissions are a poorly represented source in models that could make up as 

much as half of total monoterpenes even in a biogenically active area (Peng et al., 2022; Borbon et al., 2023; Peron et al., 

2024). We hypothesize that OVOCs such as >C5 aldehydes or cycloalkenes/alkenes such as monoterpenes could be a potential 395 

source of unaccounted for OH reactivity in some cities and would contribute to resolving missing ∑𝑃𝑁𝑠 (Fig. 3d) and ∑𝐴𝑁𝑠 

(Fig. 3f). These species could also help reconcile modeled formaldehyde (Fig. 3a) and ozone (Fig. 3c) and would improve the 

model OH overestimate at lower NOx levels (Fig. 2b).  
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7 Conclusions 

Simulations of ozone pollution in urban areas, particularly those that are VOC-limited, rely on a successful representation of 400 

VOC emissions in the model inventory. These VOCs also produce organic NOx and radical reservoirs which serve as a local 

ozone sink but can produce ozone downwind. However, inventories of VOC emissions are more difficult to produce than for 

NOx given the larger number of compounds involved. Globally, VOC inventories have been shown to poorly represent local 

measurements (von Schneidemesser et al., 2023; Rowlinson et al., 2023). During the joint National Institute of Environmental 

Research (NIER) and National Aeronautics and Space Administration (NASA) Korea-United States Air Quality (KORUS-405 

AQ) field study during May and June 2016, models underestimated ozone, formaldehyde, ∑𝑃𝑁𝑠, and ∑𝐴𝑁𝑠 in the Seoul 

Metropolitan Area. This points to underestimated VOCs in the emissions inventory as the regional photochemistry is VOC-

limited. 

 

We assessed average model biases in observed VOCs and we increased emissions estimates in South Korea to improve model 410 

agreement. Large model scale factors were required to reproduce observations for species related to volatile chemical products 

(methanol, acetone, monoterpenes, methyl ethyl ketone, xylenes, ethylbenzene), LPG and natural gas emissions (propane, 

butanes), and long-range transport (CO, C2H2, benzene). We expect that scale factors were overestimated given that we only 

considered underestimated VOCs in South Korea and not upwind in East Asia where we had minimal constraints on emissions. 

Scaling modeled VOC emissions individually to better match observations resulted in an increase in modeled OH reactivity 415 

from 4.7 to 7.0 s-1 and an increase in modeled average POx by +2 ppb hr-1. Scaled VOC emissions improved formaldehyde by 

+30% and acetaldehyde by +120%. Ozone increased by +6 ppb aloft and up to +9 ppb at the surface. We found that ethanol 

emissions were largely responsible for the improved model acetaldehyde and had a similar impact as isoprene or alkenes on 

ozone production. Therefore, ethanol emissions may be important to consider in policy decisions regarding VOC reductions. 

 420 

Peroxyacetyl nitrate (PAN) is produced in the SMA from many of the VOCs that were scaled to match observations including 

ethanol. This scaling improved the modeled PAN underestimate from -50% to -23%. We added model chemistry to produce 

six additional acyl peroxy nitrates (PNs) and found that four were at least as abundant as MPAN (2% of PAN. Efforts should 

be made to look for these species (PHAN, LIMPAN, PINPAN, AROMPN) in future urban campaigns. The addition of these 

species reduced the fraction of commonly measured PNs (PAN, PPN, MPAN) globally from 100% in the base model to 425 

between 50 and 100% depending on location. Over continents, the additional PNs reduced ozone by -1 ppb and OH by -

5%.Species found to be less important during KORUS-AQ here, such as APAN, have been detected in larger amounts in 

studies of fire plumes (Decker et al., 2019; M. Roberts et al., 2022). While we do not consider fire emission precursors for 

APAN such as acrolein in this work here, the chemistry scheme provided in this work will aid in modeling studies of the 

impacts of fire emissions on atmospheric composition.  430 
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Remaining model underestimates below 2 km in formaldehyde (-0.8 ppb, -20%), ozone (-16 ppb, -17%), higher PNs (-720 

ppt, -57%), and ∑𝐴𝑁𝑠 (-370 ppt, -52%) are consistent with recent work finding that there is an average missing OH reactivity 

of 1.7 s-1 in the SMA (Nault et al., 2024). Likely sources of this reactivity, which would also produce formaldehyde, ozone, 

PNs, and ANs, are OVOCs such as >C5 aldehydes (e.g., nonanal) from cooking emissions and anthropogenic sources of 435 

cycloalkenes/monoterpenes such as limonene. Both VCPs and cooking emissions are poorly represented or missing from most 

VOC inventories. Recent work focusing on these emissions and their chemistry (Coggon et al., 2023a; Warneke et al., 2023; 

Peng et al., 2022) should greatly improve models’ ability to simulate urban air quality in regions around the world. Future 

work will evaluate the ability of the revised model chemistry here to simulate observations from the Atmospheric Emissions 

and Reactions Observed from Megacities to Marine Areas (AEROMMA) field study in the United States during June to August 440 

2023 (https://csl.noaa.gov/projects/aeromma/), and the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) 

field study (https://www-air.larc.nasa.gov/missions/asia-aq/index.html) from January to March 2024. We find that to best 

simulate these studies, models with higher resolution that used here (<25km) would better be able to capture the behavior of 

OH and POx at varying levels of NOx, but resolution alone will not resolve model underestimates in HCHO and OH reactivity 

without improvements to VOC emissions inventories. 445 
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Table 1. Description of the ground site and aircraft observations used in this work.1 

Instrument PI Measured species used 
in this work 

Reference2 

Ground Observations 
Olympic Park3 
2B Tech 211, Teledyne T200U, 
Teledyne T500U CAPS, Aerodyne QCL 

James Szykman and 
Andrew Whitehill O3, NO2 N/A 

Dasibi Model 2108 Oxides of Nitrogen 
Analyzer NIER O3, NO2 N/A 

DC8 Aircraft 

Caltech CIMS (CIT-CIMS) Paul Wennberg 

glycolaldehyde, 
C5O3H10, C3O3H6, 
cresol, phenol, 
glycolaldehyde, 
hydroxyacetone, 
CH3OOH, peroxyacetic 
acid, hydroxynitrates 

St. Clair et al., (2010; 
Crounse (2006) 

Proton-transfer-reaction time-of-flight 
mass spectrometer (PTR-ToF-MS) Armin Wisthaler 

acetaldehyde, methanol, 
acetone, monoterpenes, 
benzene, toluene, methyl 
ethyl ketone 

Tomsche et al. (2023) 

Compact Atmospheric Multispecies 
Spectrometer (CAMS) Alan Fried formaldehyde Richter et al. (2015) 

Airborne Tropospheric Hydrogen 
Oxides Sensor (ATHOS) William Brune OH 

Faloona et al. (2004); 
Brune et al. (2020) 
 

NCAR 4-Channel chemiluminescence 
instrument Andrew Weinheimer O3, NO, NO2 Weinheimer et al. 

(1993, 1994) 

Georgia Tech–Chemical Ionization Mass 
Spectrometer (GT-CIMS) L. Greg Huey PAN, PPN 

Slusher (2004); Lee et 
al. (2020) 

Diode laser spectrometer (Differential 
Absorption Carbon monOxide 
Measurement, DACOM) 

Glenn Diskin CO, CH4 Sachse et al. (1987) 

Thermal Dissociation–Laser-Induced 
Fluorescence (TD-LIF) 

Ronald Cohen 
 

ΣANs, ΣPNs 
 

Wooldridge et al. 
(2010); Day et al. 
(2002) 

Whole Air Sampler (WAS) Donald Blake 

H2, 1,3-butadiene, 
butenes, styrene, propene, 
isoprene, ethene, xylenes, 
ethyne, ≥C2 alkanes, 
aromatics, halocarbons, 
alkyl nitrates 

Simpson et al. (2020) 

NCAR Charged-coupled device Actinic 
Flux Spectroradiometers (CAFS) Samuel R. Hall j-values Shetter and Müller 

(1999) 
1For a full description of all KORUS-AQ observations, see Crawford et al. (2021). 
2For specific measurement descriptions including uncertainty information, see the KORUS-AQ data archive (doi: 730 
10.5067/Suborbital/KORUSAQ/DATA01) 
3Olympic Park site in Seoul, 37.522°N,127.124°E 

http://doi.org/10.5067/Suborbital/KORUSAQ/DATA01
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Table 2. Speciation of SAPRC991 for GEOS-Chem.2  

SAPRC99 Base Model New chemistry 
ALK1 C2H6 C2H6 
ALK2 59% C3H8, 41% C2H2 59% C3H8, 41% C2H2 
ALK3 ALK4 ALK4 
ALK4 ALK4 ALK4 
ALK5 ALK4 ALK6 
ARO1 10% BENZ, 90% TOLU 7% BENZ, 83% TOLU, 10% EBZ 
ARO2 XYLE 63% XYLE, 37% TMB 
OLE1 PRPE PRPE 
OLE2 PRPE 7% STYR, 5% C4H6, 88% PRPE 
TRP1 MTPA (apinene, bpinene, sabine, carene) MTPA 

1Definitions of SAPRC99 species are given in (Carter, 1999). 2Definitions of GEOS-Chem species are given in 735 
species_database.yml in (Community, 2022), with some details in Table 3 and Table S1. 
 

Table 3. Scale factors for modeled anthropogenic VOC and CO emissions. 

Species Full name Scale Factor 
ACET Acetone 85x 
ALK4 >C4 alkanes 3x 
BENZ Benzene 2.4x 
C2H2 Acetylene 2.5x 
C3H8 Propane 9x 
CO Carbon monoxide 3.6x 
EBZ Ethylbenzene 2.1x 
EOH Ethanol 40x 
MEK Methyl ethyl ketone 70x 
MOH Methanol 650x 
MTPA Monoterpenes 450x 
TMB Trimethylbenzene 0.32x 
TOLU Toluene 1.3x 
STYR Styrene 5x 
XYLE Xylenes 1.5x 

 

Table 4. Model PN species descriptions, precursor, and observed and modeled PAN fraction. 740 

Model PN 
species 

Full name Main precursor % of PAN  
Modeled 
(Observed) 

In standard model 
PPN Peroxypropionyl nitrate > C3 aldehydes (RCHO) 24% (6%) 
MPAN Peroxymethacroyl nitrate Methacrolein (MACR) 2% 
PBZN Peroxybenzoyl nitrate Benzaldehyde (BALD) 2% 

Added to model 
APAN Peroxyacrylic nitric anhydride Acrolein (ACR) 0.1% (1%) 
AROMPN Lumped aromatic PN Lumped furanones (TLFUONE) 4% 
PINPAN a-Pinonyl peroxynitrate Pinonaldehyde (PINAL) 6% 
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LIMPAN Limononyl peroxy nitrate Limonaldehyde (LIMAL) 2% 
MEKPN Hydroxypropanonyl peroxy nitrate Methyl ethyl ketone (MEK) 1% 
PHAN Peroxyhydroxyacetic nitric anhydride Glycolaldehyde (GLYC) 9% 

  

 

Figure 1 – Mean vertical profile and standard deviation in the Seoul Metropolitan Area (SMA) (127.1 to 127.7oE, 37.2 to 37.7 

oN) from May 1 to June 10, 2016, for data collected after 11am local time for a) calculated OH reactivity (OHR) for VOCs + 745 

CO (Table 1), b) OH, and c) net production of Ox (POx=O3 + NO2). Data are averaged into 8 bins of approximately 240 m for 

the observations (black), the base model (red), the model with scaled VOCs (blue), and improved peroxynitrate (PN) chemistry 

(purple). Calculation of OHR, the inclusion of estimated missing OHR (est. OHR), and net POx, and descriptions of model 

simulations are given in Sections 3 and 4.  

 750 

 

Figure 2 – Same as Fig. 1 but for a) calculated OH reactivity for VOCs + CO (Table 1), b) OH, and c) net production of Ox 

(POx=O3 + NO2) plotted against NOx concentrations.  

 755 
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Figure 3 – Same domain and model simulations as Fig. 1 but for a) formaldehyde, b) acetaldehyde, c) ozone, d) PAN, e) 

higher PNs, and f) ANs. Surface ozone at Olympic Park between 11 and 16 local time during flight days is also plotted on 

panel c) (+ symbols). 760 
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Figure 4 – Mean diurnal cycle for a) ozone and b) NO2 for the AirKorea sites within the GEOS-Chem grid box at Olympic 

Park. The dashed line represents the EPA monitor at Olympic Park (Table 1). The gray shading represents the standard 

deviation across the AirKorea sites (see Fig. 1b, Travis et al., 2022). KST is Korean standard time (UTC+9). 765 

 

 

 
Figure 5 – a) Maximum daily eight-hour average (MDA8) ozone from May 1 to June 10, 2016, and the impact from b) 

scaled VOCs as described in Section 2 and c) adding peroxynitrate (PN) chemistry to the simulation in b) described in 770 

Section 5. The white box designates the Seoul Metropolitan Area (SMA).  

 

 

 Figure 6 – Speciated mean vertical profiles of modeled PNs for the domain of Fig. 1 compared against observed PNs (solid 775 
black line) and PAN (dashed black line) for a) base model, b) scaled VOCs, and c) added PN chemistry. 
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Figure 7 – Comparison of a) PAN and b) higher PNs against formaldehyde for individual modeled and observed datapoints 

in the domain of Fig. 1. Model sensitivity studies for scaled VOCs and added PN chemistry are described in Section 2 and 5, 780 

respectively. 

 

 
Figure 8 – Global average surface concentrations at 2×2.5o from May 1 to June 10, 2016 for a) base PNs = PAN, MPAN, 

PPN, and BZPAN (Table 4), b) added PNs = PHAN, LIMPAN, PINPAN, AROMPN, MEKPN, APAN (Table 4), c) 785 

percentage change in the revised model (Base + added PNs) compared to the base model, d) difference in surface ozone, e) 

difference in surface NO2, and f) difference in surface OH.  
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 790 
Figure 9 – a) Modeled global average fraction of commonly measured PNs (PAN, MPAN, PPN) compared to ∑𝑃𝑁𝑠 (PAN, 

MPAN, PPN, BZPAN, PHAN, LIMPAN, PINPAN, AROMPN, MEKPN, APAN). b) Reduction in commonly measured PNs 

vs. ∑𝑃𝑁𝑠 in the revised model simulation (Section 5) compared to the base simulation (approximately 100%). 
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