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Abstract Ambient fine particulate matter (PM2.5) is the leading global environmental determinant 10 

of mortality. However, large gaps exist in ground-based PM2.5 monitoring. Satellite remote sensing 11 

of aerosol optical depth (AOD) offers information to fill these gaps worldwide, when augmented 12 

with a modeled PM2.5 to AOD relationship. This study aims to understand the spatial pattern and 13 

driving factors of the relationship by examining η (= !"!.#
#$%

), from both observations and modeling. 14 

A global observational estimate of η for the year 2019 is inferred from 6,870 ground-based PM2.5 15 

measurement sites and satellite retrieved AOD. The GEOS-Chem global chemical transport model 16 

in its high performance configuration (GCHP), is used to interpret the observed spatial pattern of 17 

annual mean h. Measurements and the GCHP simulation consistently identify a global population-18 

weighted mean η of 96-98 μg/m3, with regional values ranging from 59.8 μg/m3 in North America 19 

to more than 190 μg/m3 in Africa. The highest h is found in arid regions where aerosols are less 20 

hygroscopic due to mineral dust, followed by regions strongly influenced by surface aerosol 21 

sources. Relatively low h is found over regions distant from strong aerosol sources. The spatial 22 

correlation of observed η with meteorological fields, aerosol vertical profiles, and aerosol chemical 23 

composition reveals that the spatial variation of η is strongly influenced by aerosol composition 24 

and aerosol vertical profile. Sensitivity tests with globally uniform parameters quantify their 25 

effects on η spatial variability, with a population-weighted mean difference of 12.3 μg/m3 for 26 

aerosol composition that reflects the determinant composition effects on aerosol hygroscopicity 27 

and aerosol optical properties; and a population-weighted mean difference of 8.4 μg/m3 for aerosol 28 

vertical profile that reflects spatial variation in the column to surface relationship. 29 
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1 Introduction  30 

Exposure to ambient fine particulate matter (PM2.5) has been recognized as the predominant 31 

environmental risk factor for the global burden of disease, leading to millions of deaths annually 32 

(Brauer et al., 2024). Even at low PM2.5 concentrations, long-term exposure can increase 33 

circulatory and respiratory related mortality (Christidis et al., 2019; Pinault et al., 2016; 34 

Weichenthal et al., 2022). Despite the importance of PM2.5, many of the world’s countries do not 35 

provide publicly accessible PM2.5 data (Martin et al., 2019). Satellite remote sensing of aerosol 36 

optical depth (AOD), an optical measure of aerosol abundance, offers information about the 37 

distribution of PM2.5 (Kondragunta et al., 2022). A large community relies upon the spatial 38 

distribution of PM2.5 concentrations inferred from satellite AOD and a modeled PM2.5 to AOD 39 

relationship, for health impact assessment and epidemiological analyses of long-term exposure 40 

(Brauer et al., 2024; Burnett et al., 2018; Cohen et al., 2017; Hao et al., 2023). Quantitative 41 

application of satellite AOD for long-term characterization of the spatial distribution of PM2.5 42 

would benefit from a better understanding of the factors affecting the PM2.5-AOD relationship. 43 

The relationship between satellite AOD and surface PM2.5 can be established through a statistical 44 

method, a geophysical method, or their combination. A statistical method uses ground-based 45 

monitors for training and is well suited for regions with dense monitors (Di et al., 2016; Hu et al., 46 

2014; Xin et al., 2014). A geophysical approach utilizes a chemical transport model to simulate 47 

the relationship (η) between PM2.5 and AOD for application to satellite AOD (van Donkelaar et 48 

al., 2006, 2010; He et al., 2021), and thus depends on accurate model representation of η. Van 49 

Donkelaar et al. (2015, 2016) combined the two methods by applying geographically weighted 50 

regression (GWR) on the geophysical PM2.5, which further constrains geophysical PM2.5 using 51 

ground measurements and other predictors. However, accuracy of geophysical PM2.5 remains 52 

critical over vast areas with sparse monitoring, and knowledge about the factors affecting η spatial 53 

variability are needed to guide improvements of modeled η and geophysical PM2.5.  54 

Previous studies have identified several factors that affect η variability, including aerosol vertical 55 

distribution, aerosol hygroscopicity, aerosol optical properties, and ambient meteorological factors 56 

such as relative humidity (RH), planetary boundary layer height (PBLH), wind speed, temperature, 57 

and fire events (van Donkelaar et al., 2013; Ford and Heald, 2015; Guo et al., 2017; Jin et al., 2019; 58 

Li et al., 2015; Wendt et al., 2023). Most studies focused on the temporal variability of η and found 59 
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association with meteorological variables such as PBLH (Chu et al., 2015; Damascena et al., 2021; 60 

Gupta et al., 2006; He et al., 2021; Yang et al., 2019; Zhang et al., 2009). A few studies have 61 

examined the regional-scale spatial variation of η with meteorological, land type variables, and 62 

aerosol vertical profile in North America (van Donkelaar et al., 2006; Jin et al., 2020; Li et al., 63 

2015) and China (Yang et al., 2019). To our knowledge, none have examined the factors at the 64 

global scale affecting the spatial variation of η or the effects of chemical composition. 65 

In this work, we examine this knowledge gap about the spatial variation in η at a global scale. We 66 

first collect data from more than 6,000 PM2.5 monitoring sites provided by ten networks and 67 

satellite AOD to obtain an observationally based map of η. We further interpret the global η 68 

distribution using the GEOS-Chem model of atmospheric composition with recent improvements 69 

in aerosol size representation, PM2.5 diel variation, and vertical allocation. By decomposing the 70 

simulated η, we identify 2 strong drivers of η spatial variability: aerosol composition and aerosol 71 

vertical profile. We conduct sensitivity tests using GEOS-Chem to study how the two factors vary 72 

globally and how they contribute to the spatial variation in h.  73 

2 Methods 74 

2.1 Ground Measured PM2.5  75 

We collect ground-based measurements of PM2.5 for the year 2019 to produce observational 76 

constraints on η (!"!.#	
#$%

), the spatially and temporally varying ratio between 24-hour surface PM2.5 77 

concentrations and total column AOD at satellite sampling time. At the time of manuscript 78 

preparation, the year 2019 offered the greatest density of measurements and the most current 79 

emission inventory. We obtain PM2.5 measurements from 7 regional networks and 3 global 80 

networks, as shown in Figure A1. For the United States, we access data from the United States 81 

Environmental Protection Agency’s Air Quality System (https://www.epa.gov/outdoor-air-82 

quality-data/download-daily-data), including both Federal Reference Method and non-Federal 83 

Reference Methods PM2.5 (e.g. IMPROVE network). PM2.5 data for Canada are from the 84 

Environment Canada’s National Air Pollution Surveillance (NAPS) program. PM2.5 data for 85 

Europe are from the European Environment Agency Air Quality e-Reporting system 86 

(https://www.eea.europa.eu/data-and-maps/data/aqereporting). Over mainland China, PM2.5 87 

https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.eea.europa.eu/data-and-maps/data/aqereporting
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measurements from the National and Provincial Environmental Protection Agencies are 88 

downloaded from http://beijingair.sinaapp.com/. Over India, PM2.5 data are originally from the 89 

Central Pollution Control Board Continuous Ambient Air Quality Monitoring network and the U.S. 90 

embassies. Over Australia, observations are downloaded for the Northern Territory 91 

(http://ntepa.webhop.net/NTEPA/), Queensland (https://www.data.qld.gov.au/dataset/), and New 92 

South Wales (https://www.dpie. nsw.gov.au/air-quality/air-quality-data-services/data-download-93 

facility). We require at least 5 days of measurements for each month for a monitor to be included. 94 

Additionally, we obtain PM2.5 measurements over other regions provided by the World Health 95 

Organization (WHO) Global Ambient Air Quality Database 96 

(https://www.who.int/data/gho/data/themes/air-pollution/who-air-quality-database/2022), 97 

OpenAQ (https://openaq.org/), and the Surface PARTiculate mAtter Network (SPARTAN, 98 

https://www.spartan-network.org/), which is co-located with the Aerosol Robotic Network 99 

(AERONET). SPARTAN also provides filter based PM2.5 chemical composition, which is initially 100 

described in Snider et al., (2016). Subsequent developments to the sampling and analysis 101 

procedure of SPARTAN include an upgrade to the AirPhoton SS5 sampling station to use a 102 

cyclone inlet, an automated weighing system (MTL AH500E) to improve precision and throughput, 103 

additional black carbon analysis by Hybrid Integrating Plate/Sphere (White et al., 2016), elements 104 

measured by X-ray Fluorescence (Liu et al., 2024) and a global mineral dust equation (Liu et al., 105 

2022). We require at least 50 days of coincident PM2.5 and AERONET AOD measurements for a 106 

SPARTAN site to be included in our analysis.  107 

We also collected publicly available PM2.5 compositional data to assess GCHP simulated 108 

composition. Long-term PM2.5 compositional data are included from the United States 109 

Environmental Protection Agency’s Air Quality System, the European Environment Agency Air 110 

Quality e-Reporting system, and SPARTAN, with a total of 365 sites covering the U.S. (306), 111 

Europe (37), and the Global South (22).   112 

2.2 Satellite AOD  113 

We obtain AOD at 550 nm from the Multi-Angle Implementation of Atmospheric Correction 114 

(MAIAC) algorithm, which offers AOD at a high spatial resolution of 1 km worldwide over both 115 

land and coastal regions (Lyapustin et al., 2018). The radiances used in the retrieval are measured 116 

http://beijingair.sinaapp.com/
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by the twin MODerate resolution Imaging Spectroradiometer (MODIS) instruments onboard the 117 

Terra and Aqua satellites. Terra follows a descending orbital path, crossing the equator at 10:30 118 

local time, while Aqua is on an ascending orbit with 13:30 equatorial crossing local time. Both 119 

MODIS instruments offer a wide swath width of 2330 km, enabling nearly global daily coverage 120 

of the Earth (Sayer et al., 2014). PM2.5 monitoring sites with annual mean satellite AOD less than 121 

0.05 (background AOD level over land) are excluded to reduce the influence of retrieval 122 

uncertainties on our analysis. 123 

2.3 AERONET AOD 124 

AERONET is a worldwide sun photometer network that provides long-term measurement of AOD. 125 

We use the Version 3 Level 2 database, which includes an improved cloud screening algorithm 126 

(Giles et al., 2019). We sample AERONET AOD within ±15 min of the satellite overpass time and 127 

interpolate to 550 nm wavelength, based on the local Ångström exponent at 440 and 670 nm. For 128 

SPARTAN sites, we sample AERONET data coincidentally with SPARTAN aerosol composition 129 

to obtain the ground-based observation of η.   130 

2.4 GEOS-Chem Simulation 131 

We simulate η with the GEOS-Chem chemical transport model (www.geos-chem.org, last access: 132 

26 October 2023), driven by offline meteorological data, MERRA-2, from the Goddard Earth 133 

Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (Schubert et 134 

al., 1993). We use the high-performance configuration of GEOS-Chem (GCHP) (Eastham et al., 135 

2018) version 13.4.0 (DOI: 10.5281/zenodo.7254268), which includes advances in performance 136 

and usability (Martin et al., 2022). The simulation is conducted for the year 2019, on a C90 cubed-137 

sphere grid corresponding to a horizontal resolution of about 100 km, with a spin-up time of 1 138 

month.  139 

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium (SNA) system 140 

(Fountoukis and Nenes, 2007), primary and secondary carbonaceous aerosols (Pai et al., 2020; 141 

Park et al., 2003; Wang et al., 2014), sea salt (Jaeglé et al., 2011), and natural (Fairlie et al., 2007; 142 

Meng et al., 2021) and anthropogenic (Philip et al., 2017) dust. Emissions are processed with the 143 

Harmonized Emissions Component (HEMCO) (Lin et al., 2021). The primary emission data are 144 
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from the Community Emissions Data System version 2 (CEDSV2; Hoesly et al., 2018; CEDS, 2024) 145 

for the year 2019. Emissions from stacks are distributed vertically (Bieser et al., 2011). Diel 146 

variation of anthropogenic emissions is included (Li et al., 2023). Resolution-dependent soil NOx, 147 

sea salt, biogenic VOC, and natural dust emissions are calculated offline at native meteorological 148 

resolution to produce consistent emissions across resolutions (Meng et al., 2021; Weng et al., 149 

2020). Biomass burning emissions use the Global Fire Emissions Database, version 4 (GFED4) at 150 

daily resolution (van der Werf et al., 2017) for the year 2019. We estimate organic matter (OM) 151 

from primary organic carbon using an OM/OC parameterization (Canagaratna et al., 2015; Philip 152 

et al., 2014b). For secondary aerosol components, the concentration at 2 m above the surface is 153 

used to calculate PM2.5, following Li et al.  (2023). A 50% reduction of the surface nitrate 154 

concentration is applied to account for the long-standing bias in surface nitrate simulated by 155 

GEOS-Chem (Heald et al., 2012; Miao et al., 2020; Travis et al., 2022; Zhai et al., 2021; Zhang et 156 

al., 2012; also Figure A2 in this manuscript) and other models such as CMAQ (Shimadera et al., 157 

2014), WRF-Chem (Sha et al., 2019), and EMEP/MSC-W (Prank et al., 2016). Despite this bias, 158 

GEOS-Chem can sufficiently represent the variability of nitrate for applications to studies at global 159 

(McDuffie et al., 2021; Weagle et al., 2018) and regional (Geng et al., 2017; Kim et al., 2015; 160 

Philip et al., 2014a; Zhai et al., 2021) scales. Dry and wet deposition follows Amos et al. (2012), 161 

with a standard resistance-in-series dry deposition scheme (Wang et al., 1998). Wet deposition 162 

includes scavenging processes from convection and large-scale precipitation (Liu et al., 2001). 163 

Global RH-dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS) 164 

(Kopke et al., 1997), as originally implemented by Martin et al. (2003), with updates for SNA and 165 

OM dry size (Zhu et al., 2023), hygroscopicity (Latimer and Martin, 2019), mineral dust size 166 

distribution (Zhang et al., 2013), and absorbing brown carbon (Hammer et al., 2016). These 167 

updates enable GEOS-Chem to capture 74% of the AOD spatial variability versus AERONET 168 

(Zhu et al., 2023). A slight systematic low bias against MAIAC AOD is found, with an intercept 169 

of -0.05 and a population-weighted mean difference (PWMD) of -0.04. Low bias in simulated 170 

AOD is also reported for other models, such as CMAQ (Jin et al., 2019) and WRF-Chem 171 

(Benavente et al., 2023). We artificially increase simulated AOD by 0.04 globally to address this 172 

poorly understood systematic bias that, although minor, is useful for the representation of η 173 
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(PWMD reduced from 20.6 μg/m3 to 1.9 μg/m3). PM2.5 is calculated as the sum of each component 174 

at 35% RH to align with common measurement protocols.  175 

2.5 Population 176 

Global population information is obtained from the Gridded Population of the World provided by 177 

the NASA Socioeconomic Data and Applications Center (Center for International Earth Science 178 

Information Network, 2018).  179 

2.6 Sensitivity Tests with Globally Uniform Parameters 180 

We conduct sensitivity tests of factors affecting the spatial variation of η, with a focus on aerosol 181 

composition and aerosol vertical profile. To understand the relative importance of these factors, 182 

we impose a constant for each factor and simulate the corresponding η. The difference between 183 

the test scenario and the base scenario reflects the change due to variation of the factor. We use 184 

the global population-weighted mean (PWM) and population-weighted mean difference (PWMD) 185 

to summarize changes with a focus on relevance to population exposure:  186 

 
𝑋!&" =

∑ ∑ 𝑃',)𝑋',)')

∑ ∑ 𝑃',)')
  

 187 

 
𝑃𝑊𝑀𝐷 =

∑ ∑ 𝑃',)|𝑋',) − 𝑌',)|')

∑ ∑ 𝑃',)')
  

where i and j are grid box identifiers. X and Y could be any variable of interest. |Xi,j –Yi,j| is the 188 

absolute value of their difference. P represents population density in each grid box. 189 

The first test imposes globally uniform aerosol chemical composition calculated as the global 190 

PWM aerosol component fraction (𝐹*,+,!&"): 191 

 
𝐹*,+,!&" =

∑ ∑ 𝑃',)𝐹',),*,+')

∑ ∑ 𝑃',)')
  

where i, j, and k are grid box identifiers along latitude, longitude, and vertical layer. Fs is the 192 

fraction of aerosol component s in total aerosol mass. This test keeps the total columnar aerosol 193 

mass and aerosol vertical profile unchanged.  194 
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The second test imposes a globally uniform aerosol vertical profile calculated as the PWM column 195 

relative vertical profile (𝑅*,+,!&"):  196 

 
𝑅*,+,!&" =

∑ ∑ 𝑃',)𝑅',),*,+')

∑ ∑ 𝑃',)')
  

where 𝑅',),*,+ is the relative dry mass ratio compared to the surface. The total mass loading and 197 

relative chemical composition are unchanged.  198 

We analyze global and regional variations of η, as well as that for the driving factors. The definition 199 

of each region used in this study is summarized in Figure A3.  200 

3 Results and Discussion  201 

3.1 Global Spatial Pattern of h 202 

The top panel of Figure 1 shows the observationally based annual mean h, inferred from the ratio 203 

of ground-measured PM2.5 to MAIAC AOD. Measurements are most dense in North America, 204 

Europe, and East Asia. The annual mean h varies substantially, from 7.8 μg/m3 in Hawaii to 504 205 

μg/m3 in Mongolia, with a PWM of 96.1 μg/m3. Higher PWM h of 196 μg/m3 to 154 μg/m3 exist 206 

over desert regions such as Africa and West Asia, followed by PWM η of 97 μg/m3 to 119 μg/m3 207 

over regions strongly influenced by anthropogenic aerosols, such as East Asia and South Asia 208 

(Figure A4 and Table A1). Over North America, η is around 60 μg/m3 in the east and in California, 209 

which is more than double that in the Rockies, driven by the spatial pattern of surface PM2.5 (Figure 210 

A4). The PWM η in North America of 59.8 μg/m3 is about 30% lower than the global PWM. The 211 

η pattern found here is similar to that reported by Jin et al. (2020) for the U.S. In Europe, η also 212 

varies noticeably between the east and the west, driven by the spatial pattern of surface PM2.5, as 213 

PM2.5 increases by 60% from west to east while AOD increases by only 8%. The PWM η in Europe 214 

is 92.3 μg/m3, slightly lower than the global PWM. In Asia, measured η is concentrated in China 215 

and India. In China, the η spatial pattern shows a clear distinction between the northern and 216 

southern regions, driven by the higher AOD in the south (Figure A5), where relative humidity is 217 

high. A similar η spatial pattern and a negative correlation between η and RH are reported by Yang 218 

et al. (2019). In India, η is highest in the northwest, with a PWM η of 129 μg/m3, and decreases to 219 

about 80 μg/m3 toward the east and the south. Both PM2.5 and AOD follow the same spatial pattern, 220 
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while PM2.5 exhibits a stronger decreasing tendency (Figure A4 and Figure A5). PWM η in Asia 221 

is 102 μg/m3, the highest among the populous regions and 6.0% higher than the global PWM. 222 

Globally, from west to east, η increases by about 70%, despite that both PM2.5 and AOD increased 223 

more than threefold (Figure A6). The coefficient of variation (standard deviation divided by mean) 224 

in η is higher in Europe (μ = 0.31) and Asia (μ = 0.36), than North America (μ = 0.25, Figure A6). 225 

The bottom panel in Figure 1 shows the GCHP simulated h, the ratio between simulated 24-hour 226 

mean surface PM2.5 and simulated total column AOD at satellite overpass time. The simulation 227 

generally reproduces the global observations of h with a tendency for high values in arid regions 228 

influenced by dust and low values in regions distant from strong surface sources. The simulated 229 

global PWM η is 2% higher than the observations (98.1 μg/m3 vs. 96.1 μg/m3), mostly driven by 230 

an overestimation in East Asia (108 μg/m3 vs. 96.9 μg/m3), that reflects an overestimation of PWM 231 

PM2.5 (43.3 μg/m3 vs. 38.0 μg/m3). The simulation generally reproduces the regional spatial pattern 232 

in North America and Asia but underestimates the η variability in Europe as it overestimates η in 233 

central Europe and underestimates η in Eastern Europe, due to positive bias in simulated PM2.5 in 234 

central Europe and positive bias in simulated AOD in Eastern Europe. Nonetheless, the PWM η 235 

in Europe (83.6 μg/m3) is within 9.4% of observations. Globally, there is overall consistency 236 

between the simulated η and observed η, with a correlation of 0.59, resulting in a high degree of 237 

consistency between geophysical PM2.5 and measured PM2.5 (r = 0.89, Figure A6). Evaluation of 238 

the simulation of PM2.5 chemical composition versus ground-based measurements reveals a high 239 

degree of consistency (Figure A2) that supports their further assessment of the factors affecting η. 240 
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 241 

Figure 1. Observed (top) and simulated (bottom) annual mean h for 2019. Circles represent ground 242 
measurement sites from regional networks or the World Health Organization. Squares represent co-243 
located ground measured PM2.5 from SPARTAN and AOD from AERONET. PWM = population-244 
weighted mean, μ = coefficient of variation (standard deviation divided by mean).  245 

We explore the dominant driving factors for η spatial variation by calculating the spatial 246 

correlation between each candidate factor and the observation-based η. Candidate factors 247 

examined include meteorological fields (MERRA-2), aerosol vertical profile, and aerosol 248 

composition as collected from the GCHP simulation or SPARTAN. Meteorological fields include 249 

those commonly considered to represent the temporal variation in η, such as PBLH, RH at 700 250 

hPa, wind speed at 10 m, and temperature at 2 m (Chu et al., 2015; Damascena et al., 2021; He et 251 

al., 2021; Yang et al., 2019). The aerosol vertical profile is represented as the AOD fraction below 252 

1 km (AOD % below 1 km). Aerosol composition includes SNA, OM, dust, black carbon, and sea 253 

salt, all represented as the fractional contributions (%) to surface PM2.5. Figure 2 shows the spatial 254 
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correlation of annual mean factors versus observation-based η. Aerosol components, particularly 255 

those with strong primary sources (dust, OM, and black carbon), exhibit the strongest correlations 256 

(>0.27) with observationally based η. Significant positive correlations are found for mineral dust 257 

and black carbon, both of which are non- or weakly-hygroscopic. Significant negative correlations 258 

are found for organic matter and sea salt, reflecting a weak connection between surface 259 

concentrations and AOD aloft. Processes are further discussed in sections 3.2 and 3.4. The aerosol 260 

vertical profile exhibits a moderate correlation with η (0.14), which is notably higher than any 261 

meteorological factors (⩽0.10). Ground-based data from SPARTAN and AERONET corroborate 262 

the correlation between aerosol composition and η (Figure A7). We thus focus further analysis in 263 

Sections 3.2-3.4 on the two main drivers in η: aerosol composition and aerosol vertical profile.  264 

The drivers of spatial variation in η found here differ from that for temporal variation of η in prior 265 

work (e.g. He et al. 2021), reflecting the different processes involved. Meteorological parameters 266 

drive short-term variability in the aerosol vertical profile, such as day-to-day variation in mixed 267 

layer depth or in advection from a point source. In contrast, the spatial variation in annual mean η 268 

reflects the spatial variation in processes affecting the long-term relation of surface PM2.5 at 269 

controlled RH of 35% with AOD at ambient RH. Aerosol composition and the aerosol vertical 270 

profile reflect spatial variation in aerosol hygroscopicity, mass extinction efficiency, and sources. 271 

The following sections explore how aerosol composition and aerosol vertical profile vary globally 272 

and examine how they affect the spatial pattern of η by conducting two sensitivity tests. In each 273 

sensitivity test, we replace the spatial variability of a factor with a globally uniform value. The 274 

variability of aerosol composition and aerosol vertical profile are discussed in sections 3.2 and 3.3, 275 

respectively. The sensitivity test results are discussed in section 3.4.   276 
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 277 

Figure 2. Spatial correlation between annual mean modeled parameters and observationally-based η. Blue 278 
bars indicate positive correlations. Red bars indicate negative correlations. Stars above each bar indicate 279 
the p-value associated with each correlation. ‘***’ indicates the p-value is lower than 0.001 and ‘**’ 280 
indicates lower than 0.01.  281 

3.2 Spatial Variability in Aerosol Composition 282 

Figure 3 shows the simulated PWM aerosol composition globally and regionally, as well as the 283 

global area-weighted mean (AWM). The top panel shows the compositional contribution to PM2.5. 284 

Globally, dust is the leading PWM PM2.5 component (34.7%), followed by OM (31.9%) and SNA 285 

(29.3%). The bottom panel shows the compositional contribution to AOD. PWM AOD 286 

composition is more evenly distributed, with more contribution from SNA (49.9%), followed by 287 

OM (27.2%) and dust (16.1%). Overall, more hygroscopic aerosols such as SNA tend to contribute 288 

a larger fraction of AOD which is at ambient RH, while less hygroscopic aerosols, such as mineral 289 

dust tend to contribute a larger fraction of PM2.5 which is at controlled RH of 35%. The AWM 290 

PM2.5 and AOD composition exhibit weaker contributions from SNA, primarily reflecting a larger 291 

contribution from dust in remote regions than in more densely populated areas. Over populous 292 

regions such as North America, Europe, and Southeast Asia, there are greater SNA and OM 293 

fractions than the global mean (Figure 3). Arid regions, such as West Asia, the Middle East, North 294 

Africa, and Sub-Saharan Africa, have large fractions of non-hygroscopic mineral dust that (1) 295 

reduce aerosol mass extinction efficiency, yielding less AOD per unit mass, and (2) are unaffected 296 
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by the controlled RH of PM2.5. Both of these factors increase η in dusty regions compared with 297 

regions dominated by hygroscopic SNA aerosols.  298 

 299 

Figure 3. Global and regional PWM contributions of aerosol composition to surface PM2.5 (top) and AOD 300 
(bottom). The global area-weighted mean (AWM) over land is also included as the second column.   301 

3.3 Spatial Variability in Aerosol Vertical Profile 302 

Figure 4 shows the AOD fraction below 1 km in the GEOS-Chem simulation. Globally, 35.3% of 303 

the PWM AOD is below 1 km. The PWM value is greater than the AWM value since populated 304 

areas tend to have more surface emissions of particles and precursors. Over North America, Europe, 305 

and East Asia, the PWM surface AOD fractions are much higher than the medians and AWM, 306 

indicating high spatial heterogeneity between urban and remote areas. Europe exhibits the highest 307 

variation and the largest discrepancy between PWM and AWM, reflecting the largest spatial 308 

heterogeneity in aerosol vertical profile, driven by influences from regional pollution, marine 309 
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aerosols, and transported dust (Zhao et al., 2018). Southeast Asia has the highest surface AOD 310 

fraction and a large variation. Local sources, long-range transported dust, and the influence of 311 

trade winds all contribute to the unique spatial variation in aerosol vertical profile in this region 312 

(Banerjee et al., 2021; Nguyen et al., 2019). Globally, PWM values exhibit less variation than 313 

AWM, indicating moderate variation in aerosol profile across populous areas.  314 

 315 

Figure 4. (Top) Map of AOD fraction below 1 km. (Bottom) Global and regional statistics for AOD 316 
fraction below 1 km. Black triangles show the area-weighted mean. Red circles show the PWM. The line 317 
inside each box is the sample median. Each box's top and bottom edges are the 75 and 25 quartiles, 318 
respectively. Vertical bars are the maximum and minimum values within 1.5 times the interquartile range. 319 
The dashed line indicates global PWM. 320 

3.4 Sensitivity Tests with Globally Uniform Parameters 321 

Figure 5 shows the global changes in the spatial variation in η due to variations in aerosol chemical 322 

composition (top) and aerosol vertical profile (bottom), the two main drivers found in Figure 2. 323 
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Globally, neglect of spatial variation in aerosol composition induces a 12.3 μg/m3 PWMD in η 324 

spatial variation. Both PM2.5 and AOD are strongly affected by aerosol composition, following a 325 

similar spatial pattern (Figure A8). Over mid- and low-latitude areas, the change in AOD is 326 

stronger than in PM2.5, since AOD at ambient RH is more sensitive to hygroscopicity changes. 327 

This yields the opposite pattern in the η. Neglect of spatial variation in chemical composition 328 

reduces η over North Africa and the Middle East, desert regions where aerosols contain more 329 

weakly hygroscopic components such as mineral dust, compared to populous areas, which contain 330 

more secondary inorganic aerosol (Figure 3). For smaller deserts in the Southwest U.S., Argentina, 331 

and Southwest Africa, the dust fractions of surface aerosols are higher than the global mean (36%, 332 

76%, and 49%, respectively), but the dust fraction for AOD is similar to the global mean (15%, 333 

25%, and 14%, respectively). Therefore, neglect of the spatial variation of chemical composition 334 

increases η over these small deserts by increasing the fraction of hygroscopic components in PM2.5 335 

and leaving AOD almost unchanged (Figure A8). Neglect of spatial variation in chemical 336 

composition also reduces η over the boreal forests, where surface aerosols are more hygroscopic 337 

compared to populous areas and show strong changes, while less so for column aerosol (Figure 338 

A8). Neglect of spatial variation in chemical composition increases η over the eastern U.S. and 339 

eastern China, where PM2.5 contains more hygroscopic SNA and less dust than the global mean. It 340 

also increases η in coastal regions where aerosol contains more hygroscopic sea salt than the global 341 

mean. 342 

Neglect of spatial variation in the aerosol vertical profile induces an 8.4 μg/m3 PWMD in η spatial 343 

variation (Figure 5), following the spatial pattern of the change in surface PM2.5 (Figure A9). The 344 

most apparent feature is an increase in η throughout the remote northern hemisphere, driven by an 345 

increased aerosol fraction near the surface where the fraction is normally small (Figure 4). The 346 

uniform aerosol vertical profile decreases η over northern Africa and biomass burning regions of 347 

the boreal forests, the Amazon, and Indonesia, driven by a decreased aerosol fraction near the 348 

surface in regions where that fraction is normally high. 349 
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  350 

Figure 5. Changes in h (test -base) for each sensitivity test. In the first test, a global PWM aerosol 351 
composition replaces the actual composition (top). In the second test, a global PWM aerosol profile 352 
replaces the actual profiles (bottom). Numbers inset indicate population-weighted mean difference 353 
(PWMD). 354 

Conclusion  355 

Understanding the global variation of the PM2.5 and AOD relationship (η) offers insight into the 356 

geophysical inference of PM2.5 from satellite AOD observations. We collected ground-based PM2.5 357 

measurements from 6,870 sites and MODIS MAIAC satellite AOD throughout the year 2019 to 358 

obtain, for the first time, a global scale observationally based η map. Observed annual mean η 359 

ranges from 7.8 μg/m3 in Hawaii to 504 μg/m3 in Mongolia. We observed enhanced η of 196 μg/m3 360 

to 154 μg/m3 over arid regions such as Africa and West Asia, due to their low aerosol extinction 361 

efficiency. Moderate η of 97 μg/m3 to 119 μg/m3 was found in industrial areas such as East Asia 362 

and South Asia, where anthropogenic emissions increase the near-surface PM2.5 concentrations. 363 

Over remote areas, low η (< 50 μg/m3) was usually observed.  364 
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We simulated the global annual mean η with the GEOS-Chem chemical transport model in its high 365 

performance configuration (GCHP). The simulation generally represented observed η with PWM 366 

within 3% (98.1 μg/m3 vs 96.1 μg/m3) and a correlation of 0.59 over the 6,780 measurement sites. 367 

We examined the correlation between simulation and measurements to identify the two most 368 

impactful drivers for η spatial variation - aerosol composition and aerosol vertical profile, both of 369 

which strongly affect the annual mean relation of columnar AOD at ambient RH with surface 370 

PM2.5 at controlled RH of 35%. We subsequently conducted sensitivity tests by eliminating the 371 

spatial variation of each of the two drivers and quantified the impact on η spatial variability. 372 

Imposing a globally uniform aerosol composition led to pronounced changes (PWMD = 12.3 373 

μg/m3), reflecting how changes in aerosol composition affect both AOD and surface PM2.5, due to 374 

the effects of aerosol hygroscopicity on both quantities. Imposing a globally uniform aerosol 375 

vertical profile had a moderate effect (PWMD = 8.4 μg/m3), reflecting changes in the fraction of 376 

aerosol near the surface. 377 

These findings motivate additional efforts to develop the simulation of aerosol composition and 378 

aerosol vertical profile. Promising avenues include: (1) enhancing global long-term measurements 379 

of PM2.5 chemical composition to evaluate and improve simulations, (2) exploiting new and 380 

emerging information about aerosol type from satellite remote sensing (e.g. PACE, MAIA), (3) 381 

advancing simulations at finer spatial resolution to better represent processes affecting aerosol 382 

composition and vertical profile, (4) leveraging aircraft, lidar, and collected AOD-to-PM2.5 383 

measurements for constraints on the vertical profile, and (5) exploiting nascent capabilities in 384 

applying satellite remote sensing (e.g. TROPOMI, TEMPO, GEMS) for top-down constraints on 385 

emissions that affect aerosol composition.  386 

  387 
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Appendix  388 

 389 

Figure A1. PM2.5 measurement sites from publicly available networks. 390 

 391 

Figure A2. Normalized mean bias (NMB) between simulated PM2.5 chemical composition and ground 392 
measurements from CSN, IMPROVE, EBAS, and SPARTAN. The original simulation is the out-of-box 393 
version of GCHP v13.4.0, the updated simulation includes adjustments such as GFED4.1s emission at daily 394 
scale, diel variation and vertical distribution of anthropogenic emissions, and 50% reduction in nitrate 395 
concentration.  396 
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 397 

Figure A3. Region definition.  398 

 399 

Figure A4. Observed (top) and simulated (bottom) annual mean PM2.5 for 2019. Circles represent 400 
measurement sites from regional networks or reported by the WHO. Squares represent measured PM2.5 401 
from SPARTAN. PWM = population-weighted mean, μ = coefficient of variation.  402 
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 403 

Figure A5. Satellite retrieved (top) and GCHP simulated (bottom) annual mean AOD for 2019. Squares 404 
represent ground-measured AOD from AERONET. PWM = population-weighted mean, μ = coefficient of 405 
variation.  406 

 407 
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 408 

Figure A6. Scatter plots of simulated and observed η (top row), simulated and ground measured PM2.5 409 
(second row), simulated and MAIAC AOD (third row), and geophysical and observed PM2.5 (bottom 410 
row).  The red line shows the line of best fit using Reduced Major Axis Linear Regression. Insets on the 411 
top left show the coefficient of determination (R2), line of best fit, normalized root mean square deviation 412 
(NRMSD), and total number of data points (N). The bottom right insets show the population-weighted 413 
mean of observed, simulated, or geophysical estimation of each dataset, coefficients of variation are 414 
bracketed. Detailed regional mean and coefficients of variation for other regions can be found in Table 415 
A1. 416 
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Table A1. Regional population-weighted mean η, PM2.5, and AOD from both observation and 417 
simulations. Geophysical PM2.5 is also included. Coefficients of variation are bracketed. Regional mean 418 
and coefficients of variation for North America, Europe, and East Asia can be found in Figure A6. 419 

Region South 
Asia 

Southeast 
Asia 

West 
Asia 

Latin 
America 

Middle 
East 

North 
Africa 

Sub-
Sahara 
Africa 

Australia 

Number of sites 220 5 43 2 142 32 3 6 

η 
[μg/m3] 

Observed 119.5 
(0.36) 

111.4 
(0.21) 

154.0 
(0.23) 

72.0 
(0.29) 

117.5 
(0.51) 

135.0 
(0.32) 

196.0 
(0.01) 

187.8 
(0.34) 

Simulated 95.0 
(0.14) 

93.8 
(0.18) 

93.4 
(0.03) 

74.1 
(0.04) 

86.6 
(0.18) 

135.8 
(0.19) 

105.9 
(0.01) 

128.4 
(0.54) 

 
PM2.5 
[μg/m3] 

Observed 75.7 
(0.45) 

40.6 
(0.26) 

22.0 
(0.21) 

12.0 
(0.23) 

20.4 
(0.36) 

32.2 
(0.53) 

24.0 
(0.00) 

46.3 
(0.29) 

Simulated 64.9 
(0.37) 

38.1 
(0.23) 

20.8 
(0.08) 

20.9 
(0.06) 

10.1 
(0.30) 

47.2 
(0.52) 

16.7 
(0.03) 

56.6 
(0.87) 

Geo-
physical 

59.9 
(0.31) 

36.1 
(0.43) 

13.9 
(0.08) 

12.4 
(0.08) 

17.6 
(0.39) 

33.0 
(0.40) 

12.9 
(0.03) 

37.0 
(0.99) 

AOD 
[unitless] 

Observed 0.63 
(0.29) 

0.38 
(0.30) 

0.14 
(0.08) 

0.17 
(0.03) 

0.20 
(0.32) 

0.23 
(0.30) 

0.12 
(0.01) 

0.27 
(0.52) 

Simulated 0.69 
(0.36) 

0.40 
(0.12) 

0.22 
(0.09) 

0.28 
(0.02) 

0.21 
(0.23) 

0.33 
(0.34) 

0.16 
(0.01) 

0.37 
(0.47) 

  420 
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 421 
Figure A7. Correlation with η of ground-measured aerosol fractional composition from SPARTAN. 422 
Organic matter is inferred through residual (Snider et al., 2016). Blue bars indicate positive correlations. 423 
Red bars indicate negative correlations. Stars above each bar indicate the p-value associated with each 424 
correlation. ‘***’ means the p-value is lower than 0.001, ‘**’ means lower than 0.01, and ‘*’ means 425 
lower than 0.5.  426 
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  427 

Figure A8. Changes in PM2.5 (top) and AOD (bottom) (test - base) when imposing a global PWM aerosol 428 
composition. 429 
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  430 

Figure A9. Changes in PM2.5 (top) and AOD (bottom) (test - base) when imposing a global PWM aerosol 431 
profile. 432 

Data availability. GEOS-Chem in its high-performance configuration version 13.4.0 can be 433 

downloaded at https://zenodo.org/records/6564711.  434 
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