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Abstract Ambient fine particulate matter (PM2.5) is the leading global environmental determinant 11 

of mortality. However, large gaps exist in ground-based PM2.5 monitoring. Satellite remote sensing 12 

of aerosol optical depth (AOD) offers information to fill these gaps worldwide, when augmented 13 

with a modeled PM2.5 to AOD relationship (h). This study aims to understand the spatial pattern 14 

and driving factors of η the relationship by examining η (= !"!.#
#$%

), from both observations and 15 

modeling. A global observational estimate of η for the year 2019 is inferred from 6,118 870 16 

ground-based PM2.5 measurement sites and satellite retrieved AOD from the MAIAC algorithm. 17 

The GEOS-ChemA global chemical transport model,  GEOS-Chem, in its high performance 18 

configuration (GCHP), is used to interpret the observed spatial pattern of annual mean h. 19 

Measurements and the GCHP simulation consistently identify a global population-weighted mean 20 

η of 92 – 10096-98 μg/m3, with regional values ranging from 60.359.8 μg/m3 for in North America 21 

to more than 130 190 μg/m3 in Africa. The highest h is found in arid regions where aerosols are 22 

less hygroscopic due to mineral dust, followed by regions strongly influenced by surface aerosol 23 

sources. Relatively low h is found over regions distant from strong aerosol sources. The spatial 24 

correlation of observed η with meteorological fields, aerosol vertical profiles, and aerosol chemical 25 

composition reveals that the spatial variation of η is strongly influenced by aerosol composition 26 

driven by its effects on aerosol hygroscopicityand aerosol vertical profile. Sensitivity tests with 27 

globally uniform parameters reveal that aerosol composition leads to the strongest η spatial 28 
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variabilityquantify their effects on η spatial variability, with a population-weighted normalized 29 

mean difference of 12.3 μg/m3, for aerosol composition that  higher than that from aerosol vertical 30 

profile (8.4 μg/m3), reflectings the determinant composition effects on aerosol hygroscopicity and 31 

aerosol optical properties; and a population-weighted mean difference . of 8.4 μg/m3 for aerosol 32 

vertical profile that reflects spatial variation in the column to surface relationship. 33 

1 Introduction  34 

Exposure to ambient fine particulate matter (PM2.5) has been recognized as the predominant 35 

environmental risk factor for the global burden of disease, leading to millions of deaths annually 36 

(Brauer et al., 2024). Even at low PM2.5 concentrations, long-term exposure can increase 37 

circulatory and respiratory related mortality (Christidis et al., 2019; Pinault et al., 2016; 38 

Weichenthal et al., 2022). Despite the importance of PM2.5, many of the world’s countries do not 39 

provide publicly accessible PM2.5 data (Martin et al., 2019). Satellite remote sensing of aerosol 40 

optical depth (AOD), an optical measure of aerosol abundance, offers information about the 41 

distribution of PM2.5 (Kondragunta et al., 2022). A large community relies upon the spatial 42 

distribution of PM2.5 concentrations inferred from satellite AOD and a modeled PM2.5 to AOD 43 

relationship, satellite remote sensing for health impact assessment and epidemiological analyses 44 

of long-term exposure (Brauer et al., 2024; Burnett et al., 2018; Cohen et al., 2017; Hao et al., 45 

2023). Quantitative application of satellite AOD for long-term characterization of the spatial 46 

distribution of PM2.5 would benefit from a better understanding of the factors affecting the PM2.5-47 

AOD relationship. 48 

The relationship between satellite AOD and surface PM2.5 can be established through a statistical 49 

method, a geophysical method, or their combination. A statistical method uses ground-based 50 

monitors for training and is well suited for regions with dense monitors (Di et al., 2016; Hu et al., 51 

2014; Xin et al., 2014). A geophysical approach utilizes a chemical transport model to simulate 52 

the relationship (η) between PM2.5 and AOD for application to satellite AOD (van Donkelaar et 53 

al., 2006, 2010; He et al., 2021), and thus depends on accurate model representation of η. Vvan 54 

Donkelaar et al. (2015, 2016) combined the two methods by applying geographically weighted 55 

regression (GWR) on the geophysical PM2.5, which further constrains geophysical PM2.5 using 56 

ground measurements and other predictors. However, accuracy of geophysical PM2.5 remains 57 
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critical over vast areas with sparse monitoring, and knowledge about the factors affecting η spatial 58 

variability are needed to guide improvements of modeled η and geophysical PM2.5.  59 

Previous studies have identified several factors that affect η variability, including aerosol vertical 60 

distribution, aerosol hygroscopicity, aerosol optical properties, and ambient meteorological factors 61 

such as relative humidity (RH), planetary boundary layer height (PBLH), wind speed, temperature, 62 

and fire events (van Donkelaar et al., 2013; Ford and Heald, 2015; Guo et al., 2017; Jin et al., 2019; 63 

Li et al., 2015; Wendt et al., 2023). Most studies focused on the temporal variability of η and found 64 

association with meteorological variables such as PBLH (Chu et al., 2015; Damascena et al., 2021; 65 

Gupta et al., 2006; He et al., 2021; Yang et al., 2019; Zhang et al., 2009). A few studies have 66 

examined the regional-scale spatial variation of η with meteorological, land type variables, and 67 

aerosol vertical profile in North America (van Donkelaar et al., 2006; Jin et al., 2020; Li et al., 68 

2015) and China (Yang et al., 2019). To our knowledge, none have examined the factors at the 69 

global scale affecting the spatial variation of η or the effects of chemical composition. 70 

In this work, we examine this knowledge gap about the spatial variation in η at a global scale. We 71 

first collect data from more than 6,000 PM2.5 monitoring sites provided by nine ten networks and 72 

satellite AOD to obtain an observationally based map of η. We further interpret the global η 73 

distribution using the GEOS-Chem model of atmospheric composition with recent improvements 74 

in aerosol size representation, PM2.5 diel variation, and vertical allocation. By decomposing the 75 

simulated η, we identify 2 strong drivers of η spatial variability: aerosol composition and aerosol 76 

vertical profile. We conduct sensitivity tests using GEOS-Chem to study how the two factors vary 77 

globally and how they contribute to the spatial variation in h.  78 

2 Methods 79 

2.1 Ground Measured PM2.5  80 

We collect ground-based measurements of PM2.5 for the year 2019 from which to produce 81 

observational constraints on η (!"!.#	
#$%

), the spatially and temporally varying ratio between 24-hour 82 

surface PM2.5 concentrations and total column AOD at satellite sampling time. At the time of 83 

manuscript preparation, the year 2019 offered the greatest density of measurements and the most 84 

current emission inventory. We obtain PM2.5 measurements from 7 regional networks and 32 85 
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global networks, as shown in Figure A1. For the United States, we access data from the United 86 

States Environmental Protection Agency’s Air Quality System (https://www.epa.gov/outdoor-air-87 

quality-data/download-daily-data), including both Federal Reference Method and non-Federal 88 

Reference Methods PM2.5 (e.g. IMPROVE network). PM2.5 data for Canada are from the 89 

Environment Canada’s National Air Pollution Surveillance (NAPS) program. PM2.5 data for 90 

Europe are from the European Environment Agency Air Quality e-Reporting system 91 

(https://www.eea.europa.eu/data-and-maps/data/aqereporting). Over mainland China, PM2.5 92 

measurements from the National and Provincial Environmental Protection Agencies are 93 

downloaded from http://beijingair.sinaapp.com/, which provides instantaneous air quality data 94 

records from the National and Provincial Environmental Protection Agencies. Over India, PM2.5 95 

data are originally from the Central Pollution Control Board Continuous Ambient Air Quality 96 

Monitoring network and the U.S. embassies. Over Australia, observations are downloaded for the 97 

Northern Territory (http://ntepa.webhop.net/NTEPA/), Queensland 98 

(https://www.data.qld.gov.au/dataset/), and New South Wales (https://www.dpie. nsw.gov.au/air-99 

quality/air-quality-data-services/data-download-facility). We require at least 5 days of 100 

measurements for each month for a monitor to be included. Additionally, we obtain PM2.5 101 

measurements over other regions provided by the World Health Organization (WHO) Global 102 

Ambient Air Quality Database (https://www.who.int/data/gho/data/themes/air-pollution/who-air-103 

quality-database/2022), OpenAQ (https://openaq.org/), and by the Surface PARTiculate mAtter 104 

Network Network (SPARTAN, https://www.spartan-network.org/), which is co-located with the 105 

Aerosol Robotic Network (AERONET). SPARTAN also provides filter based PM2.5 chemical 106 

composition, which is initially described in Snider et al., (2016). Subsequent developments to the 107 

sampling and analysis procedure of SPARTAN include an upgrade to the AirPhoton SS5 sampling 108 

station to use a cyclone inlet, an automated weighing system (MTL AH500E) to improve precision 109 

and throughput, additional black carbon analysis by Hybrid Integrating Plate/Sphere (White et al., 110 

2016), trace metal elements measured by X-ray Fluorescence (Liu et al., 2024) and a global mineral 111 

dust equation (Liu et al., 2022). We require at least 50 days of coincident PM2.5 and AERONET 112 

AOD measurements for a SPARTAN site to be included in our analysis.  113 

We also collected publicly available PM2.5 compositional data to assess GCHP simulated 114 

composition. Long-term PM2.5 compositional data are included from the United States 115 

https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.eea.europa.eu/data-and-maps/data/aqereporting
http://beijingair.sinaapp.com/
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Environmental Protection Agency’s Air Quality System, the European Environment Agency Air 116 

Quality e-Reporting system, and SPARTAN, with a total of 365 sites covering the U.S. (306), 117 

Europe (37), and the Global South (22).   118 

2.2 Satellite AOD  119 

We obtain AOD at 550 nm from the Multi-Angle Implementation of Atmospheric Correction 120 

(MAIAC) algorithm, which offers AOD at a high spatial resolution of 1 km worldwide over both 121 

land and coastal regions (Lyapustin et al., 2018). The radiances used in the retrieval are measured 122 

by the twin MODerate resolution Imaging Spectroradiometer (MODIS) instruments onboard the 123 

Terra and Aqua satellites. Terra follows a descending orbital path, crossing the equator at 10:30 124 

local time, while Aqua is on an ascending orbit with 13:30 equatorial crossing local time. Both 125 

MODIS instruments offer a wide swath width of 2330 km, enabling nearly global daily coverage 126 

of the Earth (Sayer et al., 2014). PM2.5 monitoring sites with annual mean satellite AOD less than 127 

0.05 (background AOD level over land) are excluded to reduce the influence of retrieval 128 

uncertainties on our analysis. 129 

2.3 AERONET AOD 130 

AERONET is a worldwide sun photometer network that provides long-term measurement of AOD. 131 

We use the Version 3 Level 2 database, which includes an improved cloud screening algorithm 132 

(Giles et al., 2019). We sample AERONET AOD within ±15 min of the satellite overpass time and 133 

interpolate to 550 nm wavelength, based on the local Ångström exponent at 440 and 670 nm. For 134 

SPARTAN sites, we sample AERONET data coincidentally with SPARTAN aerosol composition 135 

to obtain the ground-based observation of η.   136 

2.4 GEOS-Chem Simulation 137 

We simulate η with the GEOS-Chem chemical transport model (www.geos-chem.org, last access: 138 

26 October 2023), driven by offline meteorological data, MERRA-2, from the Goddard Earth 139 

Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (Schubert et 140 

al., 1993). We use the high-performance configuration of GEOS-Chem (GCHP) (Eastham et al., 141 

2018) version 13.4.0 (DOI: 10.5281/zenodo.7254268), which includes advances in performance 142 

and usability (Martin et al., 2022). The simulation is conducted for the year 2019, on a C90 cubed-143 
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sphere grid corresponding to a horizontal resolution of about 100 km, with a spin-up time of 1 144 

month.  145 

The GEOS-Chem aerosol simulation includes the sulfate-nitrate-ammonium (SNA) system 146 

(Fountoukis and Nenes, 2007), primary and secondary carbonaceous aerosols (Pai et al., 2020; 147 

Park et al., 2003; Wang et al., 2014), sea salt (Jaeglé et al., 2011), and natural (Fairlie et al., 2007; 148 

Meng et al., 2021) and anthropogenic (Philip et al., 2017) dust. Emissions are processed with the 149 

Harmonized Emissions Component (HEMCO) (Lin et al., 2021). The primary emission data are 150 

from the Community Emissions Data System version 2 (CEDSGBD-MAPSV2;  (Hoesly et al., 2018; 151 

CEDS, 2024) McDuffie et al., 2020)for the year 2019. Emissions from stacks are distributed 152 

vertically (Bieser et al., 2011). Diel variation of anthropogenic emissions is included (Li et al., 153 

2023). Resolution-dependent soil NOx, sea salt, biogenic VOC, and natural dust emissions are 154 

calculated offline at native meteorological resolution to produce consistent emissions across 155 

resolutions (Meng et al., 2021; Weng et al., 2020). Biomass burning emissions use the Global Fire 156 

Emissions Database, version 4 (GFED4) at daily resolution (van der Werf et al., 2017) for the year 157 

2019. We estimate organic matter (OM) from primary organic carbon using an OM/OC 158 

parameterization (Canagaratna et al., 2015; Philip et al., 2014b). For secondary aerosol 159 

components, the concentration at 2 m above the surface is used to calculate PM2.5, following Li et 160 

al.  (2023). A 50% reduction of the surface nitrate concentration is applied to account for the long-161 

persisting standing bias in surface nitrate simulated by GEOS-Chem (Heald et al., 2012; Miao et 162 

al., 2020; Travis et al., 2022; Zhai et al., 2021; Zhang et al., 2012); also Figure A22 in this 163 

manuscript) and other models  such as CMAQ (Shimadera et al., 2014), WRF-Chem (Sha et al., 164 

2019), and EMEP/MSC-W (Prank et al., 2016)(Zakoura and Pandis, 2018; Shimadera et al., 2014). 165 

Despite this bias, GEOS-Chem can sufficiently represent the variability of nitrate for applications 166 

to studies at global (McDuffie et al., 2021; Weagle et al., 2018) and regional (Geng et al., 2017; 167 

Kim et al., 2015; Philip et al., 2014a; Zhai et al., 2021) scales. Dry and wet deposition follows 168 

Amos et al. (2012), with a standard resistance-in-series dry deposition scheme (Wang et al., 1998). 169 

Wet deposition includes scavenging processes from convection and large-scale precipitation (Liu 170 

et al., 2001). 171 

Global RH-dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS) 172 

(Kopke et al., 1997), as originally implemented by Martin et al. (2003), with updates for SNA and 173 
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OM dry size (Zhu et al., 2023), hygroscopicity (Latimer and Martin, 2019), mineral dust size 174 

distribution (Zhang et al., 2013), and absorbing brown carbon (Hammer et al., 2016). These 175 

updates enable GEOS-Chem to capture 74% of the AOD spatial variability versus AERONET 176 

(Zhu et al., 2023). A slight systematic low bias against MAIAC AOD is found, with an intercept 177 

of -0.05 and a population-weighted mean difference (PWMD) of -0.04. Low bias in simulated 178 

AOD is also reported for other models, such as CMAQ (Jin et al., 2019) and WRF-Chem 179 

(Benavente et al., 2023). We artificially increase simulated AOD by 0.04 globally to address thisa 180 

poorly understood systematic bias that, although minor, is useful for the representation of η 181 

(PWMD reduced from 20.6 μg/m3 to 1.9 μg/m3).. PM2.5 is calculated as the sum of each component 182 

at 35% RH to align with common measurement protocols. PM2.5 is calculated as the sum of each 183 

component at 35% RH to align with common measurement protocols. 184 

2.5 Population 185 

Global population information is obtained from the Gridded Population of the World provided by 186 

the NASA Socioeconomic Data and Applications Center (Center for International Earth Science 187 

Information Network - CIESIN, 2018).  188 

2.6 Sensitivity Tests with Globally Uniform Parameters 189 

We conduct sensitivity tests of factors affecting the spatial variation of η, with a focus on aerosol 190 

composition and aerosol vertical profile. To understand the relative importance of these factors, 191 

we impose a constant for each factor and simulate the corresponding η. The difference between 192 

the test scenario and the base scenario reflects the change due to variation of the factor. We use 193 

the global population-weighted mean (PWM) and population-weighted mean difference (PWMD) 194 

to summarize changes with a focus on relevance to population exposure:  195 

 
𝑋!&" =

∑ ∑ 𝑃',)𝑋',)')

∑ ∑ 𝑃',)')
  

 196 

 
𝑃𝑊𝑀𝐷 =

∑ ∑ 𝑃',)|𝑋',) − 𝑌',)|')

∑ ∑ 𝑃',)')
  

where i and j are grid box identifiers. X and Y could be any variable of interest. |Xi,j –Yi,j| is the 197 

absolute value of their difference. P represents population density in each grid box. 198 
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The first test imposes globally uniform aerosol chemical composition calculated as the global 199 

PWM aerosol component fraction (𝐹*,+,*,!&"): 200 

 
𝐹*,+,*,!&" =

∑ ∑ 𝑃',)𝐹',),*,+,*')

∑ ∑ 𝑃',)')
  

where i, j, and k are grid box identifiers along latitude, longitude, and vertical layer. P represents 201 

population density in each grid box. FS P represents population density in each grid box. Fs is the 202 

fraction of aerosol component S s in total aerosol mass. This test keeps the total columnar aerosol 203 

mass and aerosol vertical profile unchanged.  204 

The second test imposes a globally uniform aerosol vertical profile calculated as the PWM column 205 

relative vertical profile (𝑅*,+,*,!&"):  206 

 
𝑅*,+,*,!&" =

∑ ∑ 𝑃',)𝑅',),+,*')

∑ ∑ 𝑃',)')
  

where 𝑅',),+,* is the relative dry mass ratio compared to the surface. The total mass loading and 207 

relative chemical composition are unchanged.  208 

We analyze global and regional variations of η, as well as that for the driving factors. The definition 209 

of each region used in this study is summarized in Figure A3.  210 

3 Results and Discussion  211 

3.1 Global Spatial Pattern of h 212 

The top panel of Figure 1Figure 1 shows the observationally based annual mean h, inferred from 213 

the ratio of ground-measured PM2.5 to MAIAC AOD. Measurements are most dense in North 214 

America, Europe, and East Asia. The annual mean h varies substantially, from 7.8 μg/m3 in Hawaii 215 

to 321 504 μg/m3 in Central AsiaMongolia, with a PWM of 95.796.1 μg/m3 and standard deviation 216 

(σ) of 36.6 μg/m3. Higher PWM h of 132 196 μg/m3 to 154 154 μg/m3 exist over desert regions 217 

such as Africa and West Asia, followed by PWM η of 97 μg/m3 to 121 119 μg/m3 by over regions 218 

strongly influenced by anthropogenic aerosols, such as East Asia and, South Asia (Figure A4 and 219 

Table A1). Over North America, η is around 60 μg/m3 in the east and in California, which is more 220 

than double that in the Rockies, driven by the spatial pattern of surface PM2.5 (Figure A4). The 221 

PWM η in North America of 60.359.8 μg/m3 is about 30% lower than the global PWM. The η 222 
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pattern found here is similar to that reported by Jin et al. (2020) for the U.S. In Europe, η also 223 

varies noticeably between the east and the west, driven by the spatial pattern of surface PM2.5, as 224 

PM2.5 increases by 60% from west to east while AOD increases by only 8%. The PWM η in Europe 225 

is 94.0 2.3 μg/m3, slightly lower than the global PWM. In Asia, measured η is concentrated in 226 

China and India. In China, the η spatial pattern shows a clear distinction between the northern and 227 

southern regions, driven by the higher AOD in the south (Figure A5), where relative humidity is 228 

high. A similar η spatial pattern and a negative correlation between η and RH are reported by Yang 229 

et al. (2019). In India, η is highest in the northwest, with a PWM η of 128 129 μg/m3, and decreases 230 

to about 80 μg/m3 toward the east and the south. Both PM2.5 and AOD follow the same spatial 231 

pattern, while PM2.5 exhibits a stronger decreasing tendency (Figure A4 and Figure A5). PWM η 232 

in Asia is 100 102 μg/m3, the highest among the populous regions and 4.56.0% higher than the 233 

global PWM. Globally, from west to east, η increases by about 6270%, despite that both PM2.5 and 234 

AOD increased more than threefold (Figure A6). The coefficient of variation (standard deviation 235 

divided by mean) in η is higher in Europe (μ = 0.31) and Asia (μ = 0.3436), than North America 236 

(μ = 0.253, Figure A6). 237 

The bottom panel in Figure 1Figure 1 shows the GCHP simulated h, the ratio between simulated 238 

24-hour mean surface PM2.5 and simulated total column AOD at satellite overpass time. The 239 

simulation generally reproduces the global observations of h with a tendency for high values in 240 

arid regions influenced by dust and low values in regions distant from strong surface sources. The 241 

simulated global simulated PWM η is 24% higher than the observations (99.598.1 μg/m3 vs. 242 

95.796.1 μg/m3), mostly driven by an overestimation in East Asia (1087 μg/m3 vs. 100 96.9 μg/m3), 243 

that reflects an overestimation of PWM PM2.5 (47.03.3 μg/m3 vs. 43.638.0 μg/m3). The simulation 244 

generally reproduces the regional spatial pattern in North America and Asia but underestimates 245 

the η variability in Europe as it overestimates η in central Europe and underestimates η in Eastern 246 

Europe, due to positive bias in simulated PM2.5 in central Europe and positive bias in simulated 247 

AOD in Eastern Europe. Nonetheless, the PWM η in Europe (84.183.6 μg/m3) is within 119.4% 248 

of observations. Globally, there is overall consistency between the simulated η and observed η, 249 

with a correlation of 0.6459, resulting in a high degree of consistency between geophysical PM2.5 250 

and measured PM2.5 (r = 0.9089, Figure A6). Evaluation of the simulation of PM2.5 chemical 251 
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composition versus ground-based measurements reveals a high degree of consistency (Figure A2) 252 

that supports their further assessment of the factors affecting η. 253 
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254 
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 255 

Figure 1. Observed (top) and simulated (bottom) annual mean h for 2019. Circles represent ground 256 
measurement sites from regional networks or the World Health Organization. Squares represent co-257 
located ground measured PM2.5 from SPARTAN and AOD from AERONET. PWM = population-258 
weighted mean, μ = coefficient of variation (standard deviation divided by mean).  259 

We explore the dominant driving factors for η spatial variation by calculating the spatial 260 

correlation between each candidate factor and the observation-based η. Candidate factors 261 

examined include meteorological fields (MERRA-2), aerosol vertical profile, and aerosol 262 

composition as collected from the GCHP simulation or SPARTAN. Meteorological fields include 263 

those commonly considered to represent the temporal variation in η, such as PBLH, RH at 700 264 

hPa, wind speed at 10 m, and temperature at 2 m (Chu et al., 2015; Damascena et al., 2021; He et 265 

al., 2021; Yang et al., 2019). The aerosol vertical profile is represented as the AOD fraction below 266 

1 km (AOD % below 1 km). Aerosol composition includes SNA, OM, dust, black carbon, and sea 267 

salt, all represented as the fractional contributions (%) to surface PM2.5. Figure 2 shows the spatial 268 

correlation of annual mean factors versus observation-based η. Aerosol components, particularly 269 
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those with strong primary sources (dust, OM, and black carbon), exhibit the strongest correlations 270 

(>0.327) with observationally based η. Significant positive correlations are found for mineral dust 271 

and black carbon, both of which are non- or weakly-hygroscopic. Significant negative correlations 272 

are found for organic matter and sea salt, reflecting a weak connection between surface 273 

concentrations and AOD aloft. Processes are further discussed in sections 3.2 and 3.4. The aerosol 274 

vertical profile exhibits a moderate correlation with η (0.1814), which is notably higher than any 275 

meteorological factors (<0.12⩽0.10). Ground-based data from SPARTAN and AERONET 276 

corroborate the correlation between aerosol composition and η (Figure A7). We thus focus further 277 

analysis in Sections 3.2-3.4 on the two main drivers in η: aerosol composition and aerosol vertical 278 

profile.  279 

The indicators drivers of spatial variation in η found here differ from that for temporal variation 280 

of η in prior work (e.g. He et al. 2021), reflecting the different processes involved. Meteorological 281 

parameters drive short-term variability in the aerosol vertical profile, such as day-to-day variation 282 

in mixed layer depth or in advection from a point source. In contrast, the spatial variation in annual 283 

mean η reflects the spatial variation in processes affecting the long-term relation of surface PM2.5 284 

at controlled RH of 35% with AOD at ambient RH. Aerosol composition and the aerosol vertical 285 

profile reflect spatial variation in aerosol hygroscopicity, mass extinction efficiency, and sources. 286 

The following sections explore how aerosol composition and aerosol vertical profile vary globally 287 

and examine how they affect the spatial pattern of η by conducting two sensitivity tests. In each 288 

sensitivity test, we replace the spatial variability of a factor with a globally uniform value. The 289 

variability of aerosol composition and aerosol vertical profile are discussed in sections 3.2 and 3.3, 290 

respectively. The sensitivity test results are discussed in section 3.4.   291 



 

 

14 

292 

 293 

Figure 2. Spatial correlation between annual mean modeled parameters and observationally-based η. Blue 294 
bars indicate positive correlations. Red bars indicate negative correlations. Stars above each bar indicate 295 
the p-value associated with each correlation. ‘***’ indicates the p-value is lower than 0.001 and ‘**’ 296 
indicates lower than 0.01.  297 

3.2 Spatial Variability in Aerosol Composition 298 

Figure 3Figure 3 shows the simulated PWM aerosol composition globally and regionally, as well 299 

as the global area-weighted mean (AWM). The top panel shows the compositional contribution to 300 

PM2.5. Globally, dust is the leading PWM PM2.5 component (34.7%), followed by OM (31.9%) 301 

and SNA (29.3%). The bottom panel shows the compositional contribution to AOD. PWM AOD 302 
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composition is more evenly distributed, with more contribution from SNA (49.9%), followed by 303 

OM (27.2%) and dust (16.1%). Overall, more hygroscopic aerosols such as SNA tend to contribute 304 

a larger fraction of AOD which is at ambient RH, while less hygroscopic aerosols, such as mineral 305 

dust tend to contribute a larger fraction of PM2.5 which is at controlled RH of 35%. The AWM 306 

PM2.5 and AOD composition exhibit weaker contributions from SNA, primarily reflecting a larger 307 

contribution from dust in remote regions than in more densely populated areas. Over populous 308 

regions such as North America, Europe, and Southeast Asia, there are greater SNA and OM 309 

fractions than the global mean (Figure 3Figure 3). Arid regions, such as West Asia, the Middle 310 

East, North Africa, and Sub-Saharan Africa, have large fractions of non-hygroscopic mineral dust 311 

that (1) reduce aerosol mass extinction efficiency, yielding less AOD per unit mass, and (2) are 312 

unaffected by the controlled RH of PM2.5. Both of these factors increase η in dusty regions 313 

compared with regions dominated by hygroscopic SNA aerosols.  314 

 315 
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Figure 3. Global and regional PWM contributions of aerosol composition to surface PM2.5 (top) and AOD 316 
(bottom). The global area-weighted mean (AWM) over land is also included as the second column.   317 

3.3 Spatial Variability in Aerosol Vertical Profile 318 

Figure 4 shows the AOD fraction below 1 km in the GEOS-Chem simulation. Globally, 35.3% of 319 

the PWM AOD is below 1 km. The PWM value is greater than the AWM value since populated 320 

areas tend to have more surface emissions of particles and precursors. Over North America, Europe, 321 

and East Asia, the PWM surface AOD fractions are much higher than the medians and AWM, 322 

indicating high spatial heterogeneity between urban and remote areas. Europe exhibits the highest 323 

variation and the largest discrepancy between PWM and AWM, reflecting the largest spatial 324 

heterogeneity in aerosol vertical profile, driven by influences from regional pollution, marine 325 

aerosols, and transported dust (Zhao et al., 2018). Southeast Asia has the highest surface AOD 326 

fraction and a large variation. Local sources, long-range transported dust, and the influence of 327 

trade winds all contribute to the unique spatial variation in aerosol vertical profile in this region 328 

(Banerjee et al., 2021; Nguyen et al., 2019). Globally, PWM values exhibit less variation than 329 

AWM, indicating moderate variation in aerosol profile across populous areas.  330 
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 331 

Figure 4. (Top) Map of AOD fraction below 1 km. (Bottom) Global and regional statistics for AOD 332 
fraction below 1 km. Black triangles show the area-weighted mean. Red circles show the PWM. The line 333 
inside each box is the sample median. Each box's top and bottom edges are the 75 and 25 quartiles, 334 
respectively. Vertical bars are the maximum and minimum values within 1.5 times the interquartile range. 335 
The dashed line indicates global PWM. 336 

3.4 Sensitivity Tests with Globally Uniform Parameters 337 

Figure 5Figure 5 shows the global changes in the spatial variation in η due to variations in aerosol 338 

chemical composition (top) and aerosol vertical profile (bottom), the two main drivers found in 339 

Figure 2. Globally, neglect of spatial variation in aerosol composition induces a 12.3 μg/m3 340 

PWMD in η spatial variation. Both PM2.5 and AOD are strongly affected by aerosol composition, 341 

following a similar spatial pattern (Figure A8). Over mid- and low-latitude areas, the change in 342 

AOD is stronger than in PM2.5, since AOD at ambient RH is more sensitive to hygroscopicity 343 

changes. which givesThis yields the opposite pattern in the η. Neglect of spatial variation in 344 

chemical composition reduces η over North Africa and the Middle East, desert regions where 345 
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aerosols contain more weakly hygroscopic components such as mineral dust, compared to 346 

populous areas, which contain more secondary inorganic aerosol (Figure 3Figure 3). For smaller 347 

deserts in the Southwest U.S., Argentina, and Southwest Africa, the dust fractions of surface 348 

aerosols are higher than the global mean (36%, 76%, and 49%, respectively), but the dust fraction 349 

for AOD is similar to the global mean (15%, 25%, and 14%, respectively). Therefore, neglect of 350 

the spatial variation of chemical composition increases η over these small deserts by increasing 351 

the fraction of hygroscopic components in PM2.5 and leaving AOD almost unchanged (Figure A8). 352 

It Neglect of spatial variation in chemical composition also reduces η over the boreal forests,  and 353 

the Amazon, where surface aerosols contain little dust and are more hygroscopic compared to 354 

populous areas and show strong changes, while less so for column aerosol (Figure A8). (Figure 3). 355 

Neglect of spatial variation in chemical composition increases η over the eastern U.S. and eastern 356 

China, where PM2.5 contains more hygroscopic SNA and less dust than the global mean. It also 357 

increases η in coastal regions where aerosol contains more hygroscopic sea salt than the global 358 

mean. 359 

Neglect of spatial variation in the aerosol vertical profile induces an 8.4 μg/m3 PWMD in η spatial 360 

variation (Figure 5Figure 5), following the spatial pattern of the change in surface PM2.5 (Figure 361 

A9). The most apparent feature is an increase in η throughout the remote northern hemisphere, 362 

driven by an increased aerosol fraction near the surface where the fraction is normally small 363 

(Figure 4). The uniform aerosol vertical profile decreases η over northern Africa and biomass 364 

burning regions of the boreal forests, the Amazon, and Indonesia, driven by a decreased aerosol 365 

fraction near the surface in regions where that fraction is normally high. 366 
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  367 

Figure 5. Changes in h (test -base) for each sensitivity test. In the first test, a global PWM aerosol 368 
composition replaces the actual composition (top). In the second test, a global PWM aerosol profile 369 
replaces the actual profiles (bottom). Numbers inset indicate population-weighted mean difference 370 
(PWMD). 371 

Conclusion  372 

Understanding the global variation of the PM2.5 and AOD relationship (η) offers insight into the 373 

geophysical inference of PM2.5 from satellite AOD observations. We collected ground-based PM2.5 374 

measurements from 6188 6,870 sites and MODIS MAIAC satellite AOD throughout the year 2019 375 

to obtain, for the first time, a global scale observationally based η map. Observed annual mean η 376 

ranges from 7.8 μg/m3 in Hawaii to 321 504 μg/m3 in Central AsiaMongolia. We observed 377 

enhanced η of 132 196 μg/m3 to 154 μg/m3 over arid regions such as Africa and West Asia, due to 378 

their low aerosol extinction efficiency. Moderate η of 97 μg/m3 to 121 119 μg/m3 was found in 379 

industrial areas such as East Asia and South Asia, where anthropogenetic emissions increase the 380 

near-surface PM2.5 concentrations. Over remote areas, low η (< 50 μg/m3) was usually observed.  381 
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We simulated the global annual mean η with the GEOS-Chem chemical transport model in its high 382 

performance configuration (GCHP). The simulation generally represented observed η with PWM 383 

within 34% (99.598.1 μg/m3 vs 95.796.1 μg/m3) and, a correlation of 0.5964 over the 6,118 780 384 

measurement sites, and a slope of 0.81. We examined the correlation between simulation and 385 

measurements to identify the two most impactful drivers for η spatial variation - aerosol 386 

composition and aerosol vertical profile, both of which strongly affect the annual mean relation of 387 

columnar AOD at ambient RH with surface PM2.5 at controlled RH of 35%.  We subsequently 388 

conducted sensitivity tests by eliminating the spatial variation of each of the two drivers and 389 

quantified the impact on η spatial variability. Imposing a globally uniform aerosol composition led 390 

to more pronounced changes (PWMD = 12.3 μg/m3), reflecting how changes in aerosol 391 

composition affect both AOD and surface PM2.5, due to the effects of aerosol hygroscopicity on 392 

both quantities. Imposing a globally uniform aerosol vertical profile had a moderate effect (PWMD 393 

= 8.4 μg/m3), reflecting changes in the fraction of aerosol near the surface. 394 

These findings motivate additional efforts to develop the simulation of aerosol composition and 395 

aerosol vertical profile. Promising avenues include: (1) enhancing global long-term measurements 396 

of PM2.5 chemical composition to evaluate and improve simulations, (2) exploiting new and 397 

emerging information about aerosol type from satellite remote sensing (e.g. PACE, MAIA), (3) 398 

advancing simulations at finer spatial resolution to better represent processes affecting aerosol 399 

composition and vertical profile, (4) leveraging aircraft, lidar, and collected AOD-to-PM2.5 400 

measurements for constraints on the vertical profile, and (5) exploiting nascent capabilities in 401 

applying satellite remote sensing (e.g. TROPOMI, TEMPO, GEMS) for top-down constraints on 402 

emissions that affect aerosol composition.  403 

  404 
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Appendix  405 

406 

 407 

Figure A1. PM2.5 measurement sites from publicly available networks. 408 
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 409 

Figure A2. Normalized mean bias (NMB) between simulated PM2.5 chemical composition and ground 410 
measurements from CSN, IMPROVE, EBAS, and SPARTAN. The original simulation is the out-of-box 411 
version of GCHP v13.4.0, the updated simulation includes adjustments such as GFED4.1s emission at daily 412 
scale, diel variation and vertical distribution of anthropogenic emissions, and 50% reduction in nitrate 413 
concentration.  414 

 415 

 416 

Figure A3. Region definition.  417 
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 419 

Figure A4. Observed (top) and simulated (bottom) annual mean PM2.5 for 2019. Circles represent 420 
measurement sites from regional networks or reported by the WHO. Squares represent measured PM2.5 421 
from SPARTAN. PWM = population-weighted mean, μ = coefficient of variation.  422 
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 424 

Figure A5. Satellite retrieved (top) and GCHP simulated (bottom) annual mean AOD for 2019. Squares 425 
represent ground-measured AOD from AERONET. PWM = population-weighted mean, μ = coefficient of 426 
variation.  427 

 428 
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 430 

Figure A6. Scatter plots of simulated and observed η (top row), simulated and ground measured PM2.5 431 
(second row), simulated and MAIAC AOD (third row), and geophysical and observed PM2.5 (bottom 432 
row).  The red line shows the line of best fit using Reduced Major Axis Linear Regression. Insets on the 433 
top left show the coefficient of determination (R2), line of best fit, normalized root mean square deviation 434 
(NRMSD), and total number of data points (N). The bottom right insets show the population-weighted 435 
mean of observed, simulated, or geophysical estimation of each dataset, coefficients of variation are 436 
bracketed. Detailed regional mean and coefficients of variation for other regions can be found in Table 437 
A1. 438 
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Table A1. Regional population-weighted mean η, PM2.5, and AOD from both observation and 439 
simulations. Geophysical PM2.5 is also included. Coefficients of variation are bracketed. Regional mean 440 
and coefficients of variation for North America, Europe, and East Asia can be found in Figure A6. 441 

Region South 
Asia 

Southeast 
Asia 

West 
Asia 

Latin 
America 

Middle 
East 

North 
Africa 

Sub-
Sahara 
Africa 

Australia 

Number of sites 16222
0 35 43 2 46142 2932 3 56 

η 
[μg/m3] 

Observed 

121.61
19.5 

(0.367
) 

128111.4
.6 

(0.2112) 

154.0 
(0.23) 

72.0 
(0.29) 

94.111
7.5 

(0.516) 

135.0
2.3 

(0.325
) 

196.0 
(0.01) 

133.9187
.8 

(0.34) 

Simulated 

95.03.
4 

(0.140
) 

82.493.8 
(0.1809) 

93.4 
(0.03) 

74.1 
(0.04) 

83.686.
6 

(0.1821
) 

126.6
135.8 
(0.197

) 

105.9 
(0.01) 

187.3128
.4 

(0.5426) 

 
PM2.5 
[μg/m3] 

Observed 

81.075
.7 

(0.451
) 

35.740.6 
(0.4426) 

22.0 
(0.21) 

12.0 
(0.23) 

21.720.
4 

(0.3651
) 

28.73
2.2 

(0.536
1) 

24.0 
(0.00) 

35.546.3 
(0.29) 

Simulated 

70.264
.9 

(0.370
) 

31.838.1 
(0.230) 

20.8 
(0.08) 

20.9 
(0.06) 

10.12 
(0.3025

) 

38.34
7.2 

(0.525
3) 

16.7 
(0.03) 

90.056.6 
(0.3187) 

Geo-
physical 

62.759
.9 

(0.310
) 

22.736.1 
(0.4329) 

13.9 
(0.08) 

12.4 
(0.08) 

20.417.
6 

(0.397) 

27.33
3.0 

(0.404
9) 

12.9 
(0.03) 

58.137.0 
(0.9974) 

AOD 
[unitless] 

Observed 
0.637 
(0.295

) 

0.27 38 
(0.305) 

0.14 
(0.08) 

0.17 
(0.03) 

0.204 
(0.3221

) 

0.231 
(0.302

8) 

0.12 
(0.01) 

0.2730 
(0.5266) 

Simulated 
0.6973 
(0.362

8) 

0.4038 
(0.128) 

0.22 
(0.09) 

0.28 
(0.02) 

0.2112 
(0.2314

) 

0.29 
33 

(0.342
) 

0.16 
(0.01) 

0.3751 
(0.4726) 

 442 

  443 
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 444 

 445 
Figure A7. Correlation with η of ground-measured aerosol fractional composition from SPARTAN. 446 
Organic matter is inferred through residual (Snider et al., 2016). Blue bars indicate positive correlations. 447 
Red bars indicate negative correlations. Stars above each bar indicate the p-value associated with each 448 
correlation. ‘***’ means the p-value is lower than 0.001, ‘**’ means lower than 0.01, and ‘*’ means 449 
lower than 0.5.  450 
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  451 

Figure A8. Changes in PM2.5 (top) and AOD (bottom) (test - base) when imposing a global PWM aerosol 452 
composition. 453 
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  454 

Figure A9. Changes in PM2.5 (top) and AOD (bottom) (test - base) when imposing a global PWM aerosol 455 
profile. 456 

Data availability. GEOS-Chem in its high-performance configuration version 13.4.0 can be 457 

downloaded at https://zenodo.org/records/6564711.  458 
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