
Reviewer 1: 
general overview: 

The manuscript (egusphere-2024-950) entitled “Global Spatial Variation in the PM2.5 to AOD 
Relationship Strongly Influenced by Aerosol Composition” presented an attractive aspect of the 
relation between PM2.5 and AOD. Under the consideration of such relationships, as the 
manuscript title itself declared, PM2.5 composition is quite an important point. However, the 
current presentation severely lacked the description and validation of them. Without the 
clarification of these points, I do not go through to further discussion points. Please address the 
following comments before the possible publication from the journal of ACP. 

We appreciate reviewer 1 for the valuable suggestions. We revised the manuscript to incorporate 
additional datasets, more descriptions of our methods, and further discussion of the results. To 
address reviewer 1’s major concern, an additional figure (Figure A2) comparing GCHP 
simulated surface PM2.5 chemical composition to ground measurements, is included in the 
Appendix. Please find our detailed response to each comment below.  

critical concerns: 

From Section 2.4, we can follow the description of PM2.5 components. However, for example, 
“A 50% reduction of the surface nitrate concentration is applied to account for the long 
persisting bias in surface nitrate simulated by GEOS-Chem” was quite an unusual treatment 
considering the modeling results. In addition, “We artificially increase simulated AOD by 0.04 
globally to address a poorly understood systematic bias.” also seems to be a trick. Despite such 
unusual post-analysis for PM2.5 components, we can only find the modeling evaluation for η, 
PM2.5, and AOD. It is desired to present the modeling evaluation for PM2.5 components such as 
SNA, black carbon, organic matter, sea salt, and dust. Without the detailed information for them, 
the result and discussion based on Fig. 3 cannot be understood. 

To demonstrate the model’s performance on global scale PM2.5 composition simulation and 
inform readers about the potential uncertainties in our analysis, we collected publicly available 
PM2.5 compositional data from USEPA (306 sites), EU Environmental Protection Agency (37 
sites), and the Surface PARTiculate mAtter Network (SPARTAN; 22 sites). We added a 
paragraph in section 2.1, lines 108-112, to clarify the source and coverage of PM2.5 
compositional data: “We also collected PM2.5 compositional data to assess GCHP simulated 
composition. Long-term PM2.5 compositional data are publicly available from the United States 
Environmental Protection Agency’s Air Quality System, the European Environment Agency Air 
Quality e-Reporting system, and SPARTAN. A total of 365 sites covering the U.S. (306), Europe 
(37), and the Global South (22) are included.” 

Our adjustment of 50% reduction in nitrate significantly mitigates the normalized mean bias 
(NMB) between simulated and ground measured nitrate, when compared an out-of-box GCHP 
simulation. Here are our results added to the Appendix: “ 



 
Figure A2. Normalized mean bias (NMB) between GCHP simulated PM2.5 chemical composition and 
ground measurements from CSN, IMPROVE, EBAS, and SPARTAN. The original simulation is the out-
of-box version of GCHP v13.4.0, the updated simulation includes adjustments such as GFED4.1s emission 
at daily scale, diel variation and vertical distribution of anthropogenic emissions, and 50% reduction in 
nitrate concentration.”  

In response to the concern about nitrate reduction, we want to point out GEOS-Chem has been 
widely used for high-quality studies on PM2.5 composition at global (McDuffie et al., 2021; 
Weagle et al., 2018) and regional (Geng et al., 2017; Kim et al., 2015; Philip et al., 2014; Zhai et 
al., 2021) scales. Even though there is a systematic high bias in nitrate, same as other models 
such as CMAQ (Shimadera et al., 2014), WRF-Chem (Sha et al., 2019), and EMEP/MSC-
W(Prank et al., 2016), the variability of composition can reveal valuable information guiding 
future research. For example, Geng et al. (2017) show a correlation of 0.65 between satellite-
derived and measurement PM2.5 nitrate over China, leveraging the nitrate fraction from GEOS-
Chem. In another study, Zhai et al. (2021) show that GEOS-Chem well captures the vertical 
variability of all PM2.5 composition during KORUS-AQ campaign (Figure 1 in Zhai et al. 2021).  

Therefore we revised line 154 to 161 to clarify the bias and its impact on our analysis: “A 50% 
reduction of the surface nitrate concentration is applied to account for the long-standing bias in 
surface nitrate simulated by GEOS-Chem (Heald et al., 2012; Miao et al., 2020; Travis et al., 
2022; Zhai et al., 2021; Zhang et al., 2012; also Figure A2 in this manuscript) and other models 
such as CMAQ (Shimadera et al., 2014), WRF-Chem (Sha et al., 2019), and EMEP/MSC-W 
(Prank et al., 2016). Despite this issue, GEOS-Chem can sufficiently represent the variability of 
nitrate for applications to studies at global (McDuffie et al., 2021; Weagle et al., 2018) and 
regional (Geng et al., 2017; Kim et al., 2015; Philip et al., 2014; Zhai et al., 2021) scales.” 

In section 2.4, lines 167 – 174, we added the rationale behind the minor change in AOD, “Global 
RH-dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS) 
(Kopke P., 1997), as originally implemented by Martin et al. (2003), with updates for SNA and 
OM dry size (Zhu et al., 2023), hygroscopicity (Latimer and Martin, 2019), mineral dust size 
distribution (Zhang et al., 2013), and absorbing brown carbon (Hammer et al., 2016). These 



updates enable GEOS-Chem to capture 74% of the AOD spatial variability when evaluated with 
AERONET AOD, although a slight low bias (slope = 0.94) persists (Zhu et al., 2023). Low bias 
in simulated AOD is also reported for other models such as CMAQ (Jin et al., 2019) and WRF-
Chem (Benavente et al., 2023). We artificially increase simulated AOD by 0.04 globally to 
address this poorly understood systematic bias that, although minor, is useful for the 
representation of η.”. 

specific comments: 

• Line 14 and Line 46: Under the context of the abstract, the meaning of η is not clear. In 
addition, the meaning of η is not clear even in the main text. How about defining η 
with a mathematical formula? Although a clear definition could be followed from the 
authors’ previous studies, this manuscript should be standalone. 

To make the definition clearer, we make the following changes: 

In the Abstract, on line 14 - “This study aims to understand the spatial pattern and 
driving factors of the relationship by examining simulated η (= !"!.#

#$%
).”  

In the Introduction, on line 38 to 40 – “A large community relies upon the spatial 
distribution of PM2.5 concentrations inferred from satellite AOD and a modelled PM2.5 
to AOD relationship for health impact assessment and epidemiological analyses of 
long-term exposure” 

In Methods, on line 76 to 78: “We collect ground-based measurements of PM2.5 for the 
year 2019 from which to produce observational constraints on η (!"!.#	

#$%
), the spatially 

and temporally varying ratio between 24-hour surface PM2.5 concentrations and AOD 
at satellite sampling time.” 

• Line 74: Taking into consideration the year-to-year variation of dust, why the year 2019 
was focused in this study? Were there severe dust events? The motivation for the 
selection of a target year will be helpful for readers. 

The regions of most interest for this study are the populous regions. We consider 
anthropogenic emissions a more important factor compared to natural dust. The year 
2019 was the year with the most ground-based PM2.5 monitoring data and the most 
recent global-scale anthropogenic emission data when the manuscript was in 
preparation. Despite the year-to-year variation of natural dust, the relative contribution 
to PM2.5 in populous regions is less variable.  

We add to line 78 to 80 to explain: “At the time of manuscript preparation, the year 
2019 offered the greatest density of measurements and the most current emission 
inventory.” 



• Line 132-139: The target year is 2019 in this study but did these emission datasets 
correspond to the year 2019? Or, was there a difference between the simulation year 
and the emission year? This point should be clarified, and if the latter, how about their 
impacts on modeling reproducibility? 

Yes, the anthropogenic emissions are from CEDSv2 for the year 2019. This was the 
most recent year available as of March 2024, when the manuscript was submitted. The 
major natural emissions are fire and dust. We used GFED4 (van der Werf et al., 2017) 
and offline dust (Meng et al., 2021), both for the year 2019.  

To clarify , we revised lines 145 to 146: “The primary emission data are from the 
Community Emissions Data System version 2 (CEDSV2; Hoesly et al., 2018; CEDS, 
2024) for the year 2019.” and line 150 to 151 “Biomass burning emissions use the 
Global Fire Emissions Database, version 4 (GFED4) at daily resolution (van der Werf 
et al., 2017) for the year 2019.” 

• Line 171-172: The sentence “P represents population density in each grid box” can be 
moved into Line 167-168 because these definitions used P. 

We revised the manuscript accordingly. 

• Line 169-177: The order of i, j, k, and S are confusing in the definitions of F and R. Why 
the order was different between them? If there is no specific reason, these orders 
should be unified through variables.  

We revised the subscript order to make them consistent, following the order - i, j, k, s. 

technical corrections: 

• Line 255: Correct “coorelation” in this Fig. 2. 

Thank you. Typo corrected. 

 
  



Reviewer 2: 

Based on analysis of 2019 modeled PM2.5 and AOD, the manuscript claims that global spatial 
variation in the PM2.5 to AOD relationship is strongly influenced by aerosol composition. The 
study finds that the relationship is affected by aerosol composition and vertical profile. Although 
this seems to be an important thing, the manuscript has drawbacks in supporting the conclusions, 
which must be addressed before publication. 

We appreciate reviewer 2 for the valuable comments. The manuscript is revised to incorporate 
additional PM2.5 ground measurements in the Global South, as well as measured PM2.5 chemical 
composition from 3 networks. We updated the descriptions of our methods and included further 
discussion of the results. To address reviewer 2’s major concern, an additional figure - Figure A2 
- comparing GCHP simulated surface PM2.5 chemical composition to ground measurements, is 
included in the Appendix. Figure 1, Figure 2, Figure A1, A4 to A6 and Table A1 are updated to 
reflect to changes. Please find our detailed response to each comment below.   

1. Why the ratio of a modeled PM2.5 to AOD is important? Model simulation of PM2.5 is 
totally based on emissions, meteorological and the modeling algorithm, there is no 
necessary connection with AOD. 

The simulated PM2.5 and AOD relationship provides the opportunity to derive surface 
PM2.5 using observationally based data (satellite observed total column AOD). The 
satellite-derived PM2.5 can fill gaps in ground-based monitoring. Understanding and 
better simulating the PM2.5 and AOD relationship will provide a better estimation of 
surface PM2.5, which is particularly important for regions with sparse ground-based PM2.5 
measurements. We revised lines 36 to 41 to emphasize the importance of this 
relationship: 

 “Satellite remote sensing of aerosol optical depth (AOD), an optical measure of aerosol 
abundance, offers information about the distribution of PM2.5 (Kondragunta et al., 2022). 
A large community relies upon the spatial distribution of PM2.5 concentrations inferred 
from satellite AOD and a modeled PM2.5 to AOD relationship for health impact 
assessment and epidemiological analyses of long-term exposure (Brauer et al., 2024; 
Burnett et al., 2018; Cohen et al., 2017; Hao et al., 2023).” 

2. GEOS-Chem settings are not detailed enough. What is the resolution? How are the 
emissions processed? How is the model performance against observations of chemical 
composition? We have no idea if the model results are good enough for following 
analysis with only validation of PM total mass. 

The model resolution is elaborated in the first paragraph of section 2.4, lines 137-139:  

“The simulation is conducted for the year 2019, on a C90 cubed-sphere grid 
corresponding to a horizontal resolution of about 100 km, with a spin-up time of 1 
month.”  



The emission information, including the anthropogenic ones and the natural ones are 
elaborated in the second paragraph in section 2.4, from line 143 to 151: “Emissions are 
processed with the Harmonized Emissions Component (HEMCO) (Lin et al., 2021). The 
primary emission data are from the Community Emissions Data System version 2 
(CEDSV2; Hoesly et al., 2018; CEDS, 2024) for the year 2019. Emissions from stacks are 
distributed vertically (Bieser et al., 2011). Diel variation of anthropogenic emissions is 
included (Li et al., 2023). Resolution-dependent soil NOx, sea salt, biogenic VOC, and 
natural dust emissions are calculated offline at native meteorological resolution to 
produce consistent emissions across resolutions (Meng et al., 2021; Weng et al., 2020). 
Biomass burning emissions use the Global Fire Emissions Database, version 4 (GFED4) 
at daily resolution (van der Werf et al., 2017) for the year 2019.” 
To demonstrate the model’s performance on global scale PM2.5 composition simulation 
and inform readers about the potential uncertainties in our analysis, we collected publicly 
available PM2.5 compositional data from USEPA (306 sites), EU Environmental 
Protection Agency (37 sites), and the Surface PARTiculate mAtter Network (SPARTAN; 
22 sites). We added a paragraph in section 2.1, lines108-112, to clarify the source and 
coverage of PM2.5 compositional data: “We also collected PM2.5 compositional data to 
assess GCHP simulated composition. Long-term PM2.5 compositional data are publicly 
available from the United States Environmental Protection Agency’s Air Quality System, 
the European Environment Agency Air Quality e-Reporting system, and SPARTAN. A 
total of 365 sites covering the U.S. (306), Europe (37), and the Global South (22) are 
included.” 

Our adjustment significantly mitigates the normalized mean bias (NMB) between 
simulated and ground measured nitrate, when compared an out-of-box GCHP simulation. 
Here are our results added to the Appendix: “ 

 
Figure A2. Normalized mean bias (NMB) between GCHP simulated PM2.5 chemical composition 
and ground measurements from CSN, IMPROVE, EBAS, and SPARTAN. The original simulation 
is the out-of-box version of GCHP v13.4.0, the updated simulation includes adjustments such as 



GFED4.1s emission at daily scale, diel variation and vertical distribution of anthropogenic 
emissions, and 50% reduction in nitrate concentration.”  

We therefore added the following to section 3.1, line 237-240: “Evaluation of the 
simulation of PM2.5 chemical composition versus ground-based measurements reveals a 
high degree of consistency (Figure A2; normalized mean bias = -0.67 to 0.94) that 
supports their further assessment of the factors affecting η.” 

3. The study does not use all available observations. With very sparse observations sites in 
Africa, South American, it is quite challenging to obtain solid conclusions as claimed. 

We found and added to our analysis 752 more PM2.5 sites. This includes 58 more sites in 
South Asia, 96 more sites in the Middle East, 3 more sites in Africa, although no new 
sites in South America. We updated Figure 1, Figure 2, Figure A1, Figure A4-A6, Table 
A1, and the relevant texts to reflect this update.   

4. The importance of chemical composition or vertical profile is simply depending on a 
sensitivity test to a global uniformed value. There is no logic here. It can’t be claimed by 
just Figure 5 with a sensitivity test and global averages. I believe you can find other 
things important if you do a sensitivity test. 

We clarify that the importance of chemical composition and vertical profile is determined 
by Figure 2, not Figure 5. Figure 2 examines other factors, such as boundary layer height, 
wind speed, and surface temperature. Based on these results, we narrow down to aerosol 
chemical composition and aerosol vertical profile for a more detailed analysis – the 
sensitivity tests in Figure 5. Although the sensitivity tests can certainly be done with 
more details (e.g., for certain regions and seasons), our goal is to addresses a global-scale 
study focusing on annual mean representation. The results are elaborated and explained 
in lines 254 to 264: “Figure 2 shows the spatial correlation of annual mean factors versus 
observation-based η. Aerosol components, particularly those with strong primary sources 
(dust, OM, and black carbon), exhibit the strongest correlations (>0.27) with 
observationally based η. Significant positive correlations are found for mineral dust and 
black carbon, both of which are non- or weakly-hygroscopic. Significant negative 
correlations are found for organic matter and sea salt, reflecting a weak connection 
between surface concentrations and AOD aloft. Processes are further discussed in 
sections 3.2 and 3.4. The aerosol vertical profile exhibits a moderate correlation with η 
(0.14), which is notably higher than any meteorological factors (<0.10). Ground-based 
data from SPARTAN and AERONET corroborate the correlation between aerosol 
composition and η (Figure A7). We thus focus further analysis in Sections 3.2-3.4 on the 
two main drivers in η: aerosol composition and aerosol vertical profile.” 

We also revised lines 22 to 25 for clarification: “The spatial correlation of observed η 
with meteorological fields, aerosol vertical profiles, and aerosol chemical composition 
reveals that the spatial variation of η is strongly influenced by aerosol composition and 
aerosol vertical profile.” 



5. Vertical profile also influences the results a lot (8.4 compared to 12.3 of chemical 
composition), I think it is worth noting in the title. 
We revised the title to “Importance of Aerosol Composition and Aerosol Vertical Profile 
in Global Spatial Variation in the PM2.5 to AOD Relationship” 
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