Supplementary Material

Unifying framework for assessing sensitivity of marine calcifiers to ocean alkalinity enhancement identifies potential winners, losers and biological thresholds - importance of precautionary principle

Nina Bednaršek ${ }^{1 *}$, Greg Pelletier ${ }^{2}$, Hanna van de Mortel ${ }^{3}$, Marisol García-Reyes ${ }^{4}$, Richard A. Feely ${ }^{5}$, Andrew G. Dickson ${ }^{6}$
${ }^{1 *}$ Cooperative Institute for Marine Ecosystem and Resources Studies, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive Newport, OR 97365, USA
${ }^{2}$ Washington Department of Ecology, Olympia, 300 Desmond Dr SE, WA 98503, USA (Emeritus)
${ }^{3}$ National Institute for Biology, Marine Biological Station, Fornače 41, Piran, Slovenia
${ }^{4}$ Farallon Institute, 101 St. Suite Q, Petaluma, CA 94952, United States
${ }^{5}$ NOAA Pacific Marine Environmental Laboratory, Seattle, WA, 98115 USA
${ }^{6}$ University of California at San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA (Emeritus)

Correspondence to: nina.bednarsek @oregonstate.edu

Supplementary Table 1: Regression analyses with fitted second-order polynomial equation exploring TA:DIC and $\Omega_{\text {ar }}$ correlation over the 0-50 using various regional datasets and global GLODAP datasets. Shown are the coefficients for the second-order polynomial equation (see also Fig. 1), as well as goodness of fit (R2), significance (p), standard error of regression (ser) and number of observations (\#).

Region	b1	b2	b3	b4	rsquared	pvalue	ser	\# obs
Arctic	66.84	-206.99	199.39	-58.81	0.96	0	0.094	8991
N-Pacific	346.73	-972.25	896.08	-269.98	0.991	0	0.05	6085
C-Pacific	297.07	-817.72	737.24	-215.9	0.99	0	0.063	13101
N-Atlantic	411.4	-1135.05	1030.06	-305.76	0.993	0	0.044	4914
C-Atlantic	166.02	-500.37	483.06	-148.61	0.968	0	0.109	5466
Indian	189.24	-528.16	479.47	-139.8	0.971	0	0.063	3560
Southern	436.42	-1216.31	1116.76	-336.22	0.997	0	0.022	7052
Global	86.94	-254.47	233.73	-65.8	0.99	0	0.095	56138

Supplementary Figure 1: The range of observed pH and DIC and TA values (as represented by the TA:DIC ratio) values and the relationship with the best fitted curve between TA:DIC vs. pH across regional ($a-g$) and global (h) scales based on the observational GLODAP data set averaged over 0-50 m depth.

Supplementary Figure 2: Raw experimental data extracted from the OA studies or data bases to which the regression line with prediction error margins was fitted at various additions of alkalinity for the examined species (in alphabetical order). The uncertainty interval indicates four standard deviations. Blue horizontal dotted line indicates reduction of the half of the calcification rate, the red line indicates zero net dissolution (calcification rate is equal to 0; dissolution rate $=$ calcification rate).

Crustacean

Mollusks

Crustacean

Coral

Foraminifera

Mollusks (Argopecten purpuratus)

Foraminifera
(Ammonia sp.)

Echinoderm (Arbacia punctulata)

Mollusks
(Azumapecten farreri)

	Exxerimental data species response
$=$	Preaicted response to TA adation Calc ate
- Pre-idustrial calicifation 10	
	${ }^{10}$ umolkg NaOH addition
等	200 umolkg NaOH adadion
	300 umol/kg Noot adadition
	350 mmolkg NaoCH adation
	400 mmolkg N Noin adatition
	450 umolkg NaoH adation
\%	10 umolkg Narcoi adatition
	50 umolkg Nacco addition 100 umolkg Nacoio addition
,	150 umolugg Narcoo, adatition
	${ }^{200}$ umolkg NasCO, adation
\%	${ }^{250}$ umolkg NazCOa adadition
	350 umolugg Narcoio adatition
	${ }^{400} \mathbf{4 0}$ umolkg Narcor adation
	450 umolkg NazCOa adition 500 umolkg Nacoios adation

Mollusks

Gastropod (Urosalpinx cinerea)

Dinoflagellate (Symbiodinium sp.)

