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Abstract 15 

Ocean alkalinity enhancement (OAE), one of the marine carbon dioxide removal strategies, is 16 

gaining recognition in its ability to mitigate climate change and ocean acidification (OA). OAE is 17 

based on adding alkalinity to open-ocean and coastal marine systems through a variety of different 18 

approaches, which raises carbonate chemistry parameters (such as pH, total alkalinity, aragonite 19 

saturation state), and enhances the uptake of carbon dioxide (CO2) from the atmosphere. There are 20 

large uncertainties in both short- and long-term outcomes related to potential environmental 21 

impacts, which would ultimately have an influence on the social license and success of OAE as a 22 

climate strategy. This paper represents a synthesis effort, leveraging on the OA studies and 23 

published data, observed patterns and generalizable responses. Our assessment framework was 24 

developed to predict the sensitivity of marine calcifiers to OAE by using data originating from OA 25 

studies. The synthesis was done using raw experimental OA data based on 68 collected studies, 26 

covering 84 unique species and capturing the responses of eleven biological groups (calcifying 27 

algae, corals, dinoflagellates, mollusks, gastropods, pteropods, coccolithophores, annelids, 28 

crustacean, echinoderms, and foraminifera), using regression analyses to predict biological 29 

responses to NaOH or Na2CO3 addition and their respective thresholds. Predicted responses were 30 

categorized into six different categories (linear positive and negative, threshold positive and 31 

negative, parabolic and neutral) to delineate responses per species. The results show that 34.4% of 32 

responses are predicted to be positive (N=33), 26.0% negative (N=25), and 39.2% (N=38) neutral 33 

upon alkalinity addition. For the negatively impacted species, biological thresholds, which were 34 

based on 50% reduction of calcification rate, were in the range of 50 to 500 µmol/kg NaOH 35 

addition. Thus, we emphasize the importance of including much lower additions of alkalinity in 36 

experimental trials to realistically evaluate in situ biological responses. The primary goal of the 37 

research was to provide an assessment of biological rates and thresholds predicted under 38 

NaOH/Na2CO3 addition that can serve as a tool for delineating OAE risks, guiding and prioritizing 39 

future OAE biological research and regional OAE monitoring efforts and communicate the risks 40 

with stakeholders. This is important given the fact that at least some of the current OAE approaches 41 

do not always assure safe biological space. With 60% of responses being non-neutral, a 42 

precautionary approach for OAE implementation is warranted, identifying the conditions where 43 

potential negative ecological outcomes could happen, which is key for scaling up and avoiding 44 

ecological risks.  45 
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1. Introduction 46 

Anthropogenic carbon dioxide (CO2) emissions have increased at an unprecedented rate and have 47 

contributed to global climate change and negative ecological and biogeochemical impacts in the 48 

oceans (Feely et al., 2004; Gattuso et al., 2018), to the extent of crossing six different planetary 49 

boundaries (Richardson et al., 2023). Oceans play a crucial role in attenuating the increase in 50 

atmospheric CO2 through the absorption of the excess atmospheric CO2 of roughly a quarter of 51 

anthropogenic carbon dioxide (CO2) emissions, drawing down around 2–3 Pg C yr-1 in recent 52 

decades (Friedlingstein et al., 2022). However, without substantial CO2 emissions abatement and 53 

CO2 removal strategies, profound repercussions on climate, extreme weather events, and 54 

socioeconomic implications will follow. Ocean-based CO2 removal and sequestration strategies 55 

(broadly referred to as marine CDR) are among the proposed CDR approaches that remove CO2 56 

and store it for geologically relevant times (National Academies of Sciences, Engineering, and 57 

Medicine, 2021). These mCDR approaches only complement CO2 emission reductions and 58 

contribute to the portfolio of climate response strategies needed to meet the global goal of limiting 59 

warming to well below 2°C as established by the Paris Agreement. Various mCDR approaches 60 

have unique benefits and costs but differ in their value depending on their state of implementation, 61 

and whether they act globally and/or locally (Oschlies et al., 2023). 62 

Ocean alkalinity enhancement (OAE) has the potential to mitigate climate change through 63 

increasing ocean uptake of CO2, while simultaneously reversing ocean acidification (OA) and 64 

improving marine habitats. Despite mostly being in the concept stage, OAE is viewed with a high 65 

level of confidence as to its effectiveness: medium on environmental risk, but low on the 66 

underlying knowledge base (Eisaman et al., 2023; Gattuso et al., 2021; National Academies of 67 

Sciences, Engineering, and Medicine, 2021). One of the major concerns about OAE is large 68 

uncertainties in both short- and long-term OAE outcomes related to potential environmental 69 

impacts of OAE (Kheshgi, 1995; Bach et al., 2019), especially if OAE were to induce novel 70 

conditions in the marine systems that are outside the range of the natural variability, exposing 71 

organisms to conditions not experienced in their evolutionary history. The outcome of OAE as a 72 

successful climate strategy depends on a thorough and advanced understanding of the impacts of 73 

OAE implementation while avoiding or minimizing negative biological effects.  74 
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1.1 Leveraging ocean acidification research on marine calcifiers 75 

Increased CO2 uptake, which initially is absorbed by the ocean as dissolved CO2, causes a decline 76 

in pH, shoaling of the saturation state horizon (Ωar) and reduced carbonate ion amount content in 77 

a process termed ocean acidification (Feely et al., 2004), causing negative consequences to marine 78 

biota, especially marine calcifiers, the structure and function of the vulnerable marine ecosystem, 79 

and alteration of the carbon cycle. On the other hand, chemical changes induced by OAE are 80 

inherently linked to reversing the OA process: increasing pH, shifting carbonate chemistry 81 

speciation towards lower aqueous carbon dioxide (pCO2) and higher carbonate ion (CO3
2-) content, 82 

as well as higher aragonite saturation state (Ωar). Such changes could either be within the ranges 83 

of the variability of the natural systems to which species are acclimatized, or outside them, creating 84 

novel conditions for which species might not have developed suitable acclimation strategies. As 85 

such, the biological outcomes are, due to their complexity, highly unpredictable.  86 

Scientific progress over the past 30+ years of OA research has brought substantial insights into the 87 

biological effects, with the most fundamental outcome being that calcifying organisms would be 88 

primarily affected (Riebesell and Gattuso, 2015), with the calcification process being one of the 89 

most susceptible pathways, underpinned by species differences in calcification mechanisms (Ries 90 

et al., 2009; 2011; Bach et al., 2013; 2015; Leung et al., 2022). However, OA focused heavily on 91 

investigating biological effects on the higher acidity range of the carbonate chemistry conditions 92 

predicted under future scenarios and most of the studies focused on manipulating the level of pCO2 93 

rather than alkalinity. This resulted in poor understanding of the biological effects at the higher pH 94 

end of the carbon chemistry range (Renforth and Henderson, 2017). Some biological inferences 95 

can be made based on the understanding of the physiological mechanisms underlying the 96 

calcification mechanisms (Bach et al., 2019), but such insights are not adequate to provide 97 

sufficient understanding. Despite the lack of biological data at the upper ranges of pH and Ωar, this 98 

study builds on the premise that previous OA studies could be leveraged for assessment of 99 

biological responses under OAE. Comparative experimental work, meta-analyses, and the 100 

threshold work (Kroeker et al., 2013; Leung et al., 2022; Bednaršek et al., 2019; 2021b,c) have 101 

indicated that even very diverse responses can be grouped into categorical responses.  102 

Calcification is a primary pathway through which organismal sensitivity to OA is expressed. It is 103 
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directly involved in growth and (abnormal) development across most marine calcifiers, and it 104 

indirectly influences susceptibility to predation. As such, calcification can serve as an early 105 

warning indicator of stress, while also playing a crucial role in the ecological success of numerous 106 

marine calcifiers. Studies have shown that the thresholds for calcification occur at similar pH and 107 

saturation state (Ω) values as those affecting energy metabolism processes (Lutier et al., 2022; 108 

Bednaršek et al., 2019; 2021b,c). Furthermore, calcification is directly linked to carbon export, 109 

which has significant biogeochemical implications that may influence the efficiency of OAE. This 110 

study aims to systematically assess the calcification responses of various species under predicted 111 

conditions following carbonate-based OAE compound addition. 112 

1.2. Complex carbonate chemistry changes induced by various OAE compounds 113 

Various OAE compounds added to the water change carbonate chemistry in a multifaceted way 114 

and require complex calculations of a multi-parameter problem. As the values of TA and DIC 115 

change, a variety of other parameters, such as pH, CO3
2-, Ωar, and pCO2 exhibit approximately 116 

linear relationships, with slopes that vary along these lines (see Fig. 1). This means that if TA and 117 

DIC vary in proportion to one another, then the values of these displayed parameters hardly change 118 

at a particular salinity, temperature, and pressure. With TA, DIC and the hydrographic conditions 119 

(salinity, temperature and pressure), one can constrain the carbonate system. Our method requires 120 

us to have one variable constraining the entire carbonate system. TA and DIC have the benefit that 121 

they can both be directly measured with high precision and accuracy or calculated from other 122 

carbonate parameters. They are also both directly linked to OAE, as we are enhancing the TA 123 

which then allows DIC to increase over time due to the gradual uptake of atmospheric CO2.  124 

To demonstrate the changes of the carbonate system in the experimental system, Figure 1 shows 125 

the changes in carbonate parameters with the addition of two OAE compounds, i.e. NaOH (solid 126 

line) and Na2CO3 (dashed line) to seawater. When NaOH is added, only TA increases and when 127 

Na2CO3 is added, TA and DIC increase at a 2:1 ratio. This results in corresponding changes in pH 128 

(Fig. 1a), Ωar (Fig. 1b) and pCO2 (Fig. 1c) and shows how much of a change is required to bring 129 

the system back to equilibrium with respect to the atmosphere.  130 

 131 



 

6 

 

 132 

Figure 1: The effect of changes in TA and DIC on the properties of seawater (S= 34.68, T=16°C, 133 

[SiO2] = 50 µmol/kg, [PO4
3-] = 0.5 µmol/kg, TA = 2303 µmol/kg, DIC = 2034 µmol/kg), adapted 134 

from Schulz et al. (2023). Pink dots represent experimental TA and DIC data used in our synthesis. 135 

Subfigures show pHT, Ωar and pCO2 (in µatm). Calculations were carried out with the Python 136 

version of CO2SYS (Humphreys et al., 2022) using the stoichiometric dissociation constants for 137 

carbonic acid from Sulpis et al. (2020), for sulfuric acid by Dickson et al. (1990) and for total 138 

boron from Uppström (1974). The solid white line indicates the effect of adding NaOH and the 139 

dashed white line indicates the effect of adding Na2CO3. This grouping of lines can be translated 140 

so that its initial position moves elsewhere to visualize different initial conditions. Note that at TA 141 

< 1000 µmol/kg and DIC < 500 µmol/kg the isolines are no longer straight when considering Ωar, 142 

however, such conditions are rare in the ocean and not widely applicable. The same contour plot 143 

utilizing GLODAP data plotted instead of experimental data is shown in Supplemental Figure 1.  144 

1.3 Testable conceptual framework based on the existing OA studies 145 

Based on Ries et al. (2009), calcification responses can be categorized into six categories (Fig. 2): 146 

linear positive or negative response; threshold positive or negative response (exponential fit); 147 

parabolic response; and neutral (no significant) response. We hypothesize that these categories of 148 

responses based on ocean acidification data and delineated by Ries et al. (2009, 2011), could also 149 

be applicable to OAE dosing. For this meta-analysis, we have undertaken three steps: first, 150 

synthesize carbonate chemistry data at regional and global scales to obtain TA, DIC and Ωar 151 

correlations; second, conduct a literature review and collect available data from OA literature 152 

related to the calcification rate responses across the species of eleven groups of marine calcifiers; 153 

and third, run regression analyses and determine the category of calcification rate response to 154 

TA:DIC, further extending it with addition of NaOH and Na2CO3. 155 
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The most accurate way of predicting the responses to OAE addition is done based on the 156 

mechanistic understanding of calcification response to specific carbonate chemistry parameter(s). 157 

The hypothesis was that if mechanistic relationships with identified carbonate chemistry driver(s) 158 

are available for species, calcification rate under various feasible OAE scenarios can be predicted 159 

with greater accuracy and lower uncertainty. We further focused on investigating if the empirical 160 

results were consistent with mechanistic calcification predictions for a few selected species for 161 

which the mechanisms were known. 162 

Here, we demonstrate the TA:DIC relationship with calcification rates and show the application 163 

for the TA:DIC thresholds beyond which the responses become negative. Ultimately, we 164 

synthesize which calcifying species or groups are predicted to benefit or lose due to OAE, what 165 

constitutes a species-specific safe operating space related to OAE, and we delineate what 166 

experiments are most urgently needed to fill in critical knowledge gaps before massive OAE field 167 

implementation can be considered. 168 

2. Methodology 169 

2.1 Literature review of data on marine calcification impact by OA 170 

To assess the impact of OAE on a range of marine calcifiers, we used existing studies on marine 171 

species calcification response to OA that had aligned raw biological (calcification rate) data along 172 

with corresponding carbonate chemistry. We searched within Scopus, Web of Science, and 173 

PubMed and used datasets that were archived in NCEI, OA-ICC and Pangaea. Through personal 174 

correspondence, we have additionally contacted lead authors of the studies whose data are not or 175 

are insufficiently archived. Searches for biological datasets relating to calcification rate and 176 

corresponding carbonate chemistry were conducted through November 2023, encompassing 68 177 

existing studies. The aim was to cover a wide range of calcifying organisms across various 178 

functional groups and 84 species. For several functional groups data was easy to find (algae, 179 

coccolithophores, corals, foraminifera, mollusks and dinoflagellates), so no new studies were 180 

added after 10 to 15 studies were found. Seven studies were found for pteropods, five for 181 

gastropods, four for echinoderms, three for crustaceans and one for annelids. When reviewing the 182 

literature, we included data from the OA experimental studies related to the physical-chemical 183 

parameters (temperature, salinity, TA, DIC) and biological data related to calcification rate. 184 
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2.2 Use of TA:DIC instead of Ωar or pH 185 

Understanding the change in carbonate chemistry upon alkalinity addition is essential for the 186 

biological experimentalists who are conducting biological assessments to report on the effects of 187 

OAE. However, complex changes in the carbonate chemistry induced by alkalinity addition are 188 

not intuitive or straightforward; in fact, they are multi-parameter problems that require complex 189 

carbonate chemistry calculations. Using the TA:DIC ratio is a more practical way of looking at the 190 

impacts of the OAE treatment instead of using a single carbonate parameter because of the high 191 

degree of correlation between TA:DIC and other carbonate system parameters (see Fig. 1).  192 

With TA, DIC and the hydrographic conditions (salinity, temperature and pressure), one can fully 193 

constrain the carbonate system. Our method allows one variable constraining the entire carbonate 194 

system. TA and DIC have the benefit that they can both be directly measured or calculated from 195 

other carbonate and physical parameters. They are also both directly linked to OAE, as we are 196 

enhancing the TA which then allows DIC to increase over time due to the gradual uptake of 197 

atmospheric CO2 (Fig. 1 shows the changes in the carbonate chemistry system upon NaOH and 198 

Na2CO3 addition).  199 

Our focus was on streamlining the process of expressing experimental results and subsequently 200 

reporting responses, with the goal of reducing the multi-parameter complexity into a single-201 

parameter simplification. This step reduces multiple degrees of freedom into just two, i.e. TA and 202 

DIC, with the ratio allowing us to consider this as a 1-parameter problem. As such, TA:DIC is a 203 

simplistic and convenient way of describing the system, where we only need to understand the 204 

change in TA and DIC ratio, which is feasible for every OAE compound added to the experimental 205 

system. In addition, TA:DIC is also the best approximation for the CO3
2- concentration. The 206 

insights from multiple biological experimental studies show that the CO3
2- concentration is the 207 

representative driver of the calcification process for multiple calcifying groups, although not all, 208 

compared to Ωar, which represents an empirical approximation based on a number of physical and 209 

chemical parameters. Furthermore, by using TA:DIC we do not have to choose a particular 210 

parameter to describe the changes in calcification. It could also work for the species in which other 211 

parameters drive the calcification, e.g. bicarbonate in autotrophic species, Ωar in bivalves and H+ 212 

flux in foraminifera. In that way, we standardize all the parameters that would otherwise influence 213 

the carbonate system and come up with a more uniform way to express the experimental 214 
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conditions, which would then be useful for easier comparisons among the conducted experiments. 215 

For the ease of comparing TA:DIC with pH and Ωar, we refer the reader to Supplemental Table 1 216 

and Supplemental Fig. 2. 217 

 2.3 Experimental biological and biogeochemical data  218 

Based on the collected data, the range of pH and Ωar, experimental conditions used and their 219 

TA:DIC relationship was determined (Supplemental Fig. 2 and Supplemental Table 1). Most 220 

studies covered pH conditions from 7.5 to 8.5 and Ωar from <1.0 to values up to 5.0, with a few 221 

studies increasing pH up to 9 and exceeding Ωar of 10. This indicates the potential of leveraging 222 

such experimental studies as a baseline for predictive regression models of biological responses to 223 

a range of Ωar conditions, as expected under OAE studies.  224 

Once the biological data was compiled, units were standardized where possible. The main issue 225 

when compiling data was the lack of standardization of the calcification rates. A variety of 226 

calcification rate units were used across different studies. Where possible, the units were converted 227 

to mmol of CaCO3 g weight-1 hr-1. However, the data required to do so was not always readily 228 

available. Other units used for calcification rate were mmol of CaCO3 m
-2 h-1 and mmol of CaCO3 229 

m-3 hr-1, and there was also data used as an indication of calcification rate with units mmol #-1 h-1, 230 

mmol h-1, mmol cm-2, % h-1, where ‘#’ indicates one individual. Growth rates and PIC production 231 

rates were used as indicators of calcification rate for single-cell organisms. For some species, direct 232 

calcification rates were not reported in the literature, instead only relevant parameters related to 233 

calcification (shell length, density, thickness) over time were available from the experimental 234 

studies. The decision was made to also collect these additional datasets because the statistical 235 

analyses of this study focus on the trend in the absolute numbers and would not change by being 236 

transformed into the rates. Data were analyzed on a species level, wherever rate units were the 237 

same. Hereafter, this is referred to as the species rate group. Where there were multiple studies 238 

available for the calcification rate of one species using the same rate units, the data were combined 239 

(e.g. Emiliania huxleyi). 240 

2.4 Sorting species-specific responses into categories per calcification response 241 

Responses were split into 6 categories: linear positive and linear negative, parabolic, threshold 242 
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positive and negative, and neutral. The response was determined with a best-fit regression model, 243 

using the ordinary least squares method in Statsmodels for Python (see Seabold et al., 2010). See 244 

Fig. 2 for examples of these responses of calcification rate to increasing TA:DIC ratio.  245 

The final response for each species was determined by the regression with the lowest p-value. This 246 

method is in contrast with the Ries et al. (2009) study where they chose the regression analysis 247 

that yielded the lowest square root of the mean squared error (RMSE) for a given species, and that 248 

was statistically significant (p ≤ 0.05). When applying their method to our data, parabolic and 249 

exponential regressions were always favored over linear regressions. When examining these 250 

regressions, we found that choosing the best fit based on the lowest p-value yielded better fits, as 251 

this method prevents overfitting due to noise in the data. Where a linear regression had the best fit, 252 

we assigned a linear response, which could be either positive or negative based on the slope. The 253 

species with a significant exponential fit were categorized as threshold positive (+) or threshold 254 

negative (-), which was distinguished from the parabolic response with the fitted parabolic curve. 255 

The best fit regression was assigned to each species and plotted, but only if the p-value was 256 

considered significant, i.e. lower than 0.05. These regressions were plotted along with a 90% 257 

prediction interval, which accounts for the variability of the experimental data. The species with a 258 

p-value > 0.05 were categorized as having no correlation (neutral response). 259 

When multiple datasets were obtained from different studies for the same species and rate units 260 

could not be combined, we took each response into consideration and reported the p-value and 261 

RMSE for each of the studies. Even when different studies reported varying calcification rates for 262 

the same species, we refrained from selecting a single overall species response; rather, we analyzed 263 

each species individually. The TA:DIC threshold was computed to indicate the point at which the 264 

current calcification rate (i.e. the calcification rate at the baseline) is reduced by a half for linear 265 

negative, threshold negative and parabolic responders. The thresholds and the amount of NaOH 266 

and Na2CO3 required (starting at 10 µmol/kg and then in steps of 50 µmol/kg) to reach this 267 

threshold were determined. For parabolic responders, the inflection points that tell us when the 268 

rate is predicted to change slope are also included in Supplemental Table 2. Once the species’ 269 

responses were determined, an attempt was made to group them based on functional groups. 270 

However, since species within the same functional group had varying responses, grouping them 271 
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together meant these responses were no longer visible due to a wide spread of data. Therefore, 272 

most of the analysis remained on the species level (Table 1). 273 

 274 

Figure 2: Examples of the categories of responses between carbonate chemistry parameters 275 

(TA:DIC) and calcification rate: a) linear positive (calcification increase with increased TA:DIC); 276 
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b) linear negative (calcification decrease with increased TA:DIC); c) exponential for the threshold 277 

positive response (calcification increase, plateauing at higher TA:DIC); d) exponential for the 278 

threshold negative response (calcification decline, plateauing at lower TA:DIC), e parabolic 279 

(calcification increase followed by a decrease at higher TA:DIC) and f) neutral (non-significant) 280 

response. Responses were only considered significant when p < 0.05, otherwise they were 281 

categorized as neutral. Yellow shading represents the 90% prediction interval. Note that TA:DIC 282 

on the x-axis corresponds to pHT and Ωar, as these variables have an approximately linear 283 

relationship at a particular salinity, temperature and pressure (see Fig. 1). 284 

2.5 Conceptual framework to evaluate increases in TA:DIC 285 

The regression models applied to each species could be used to predict calcification rates at higher 286 

TA:DIC ratio. We conceptually added alkalinity from the current calcification rate baseline. This 287 

baseline was computed for each species using CO2SYS with pCO2 = 425 ppm and pHT = 8.1, for 288 

the average temperature and salinity for each species rate group, based on their respective OA 289 

dataset(s) (see Supplemental Table 3). All CO2SYS calculations in this study were carried out 290 

with the Python version of CO2SYS (Humphreys et al., 2022) using the stoichiometric dissociation 291 

constants for carbonic acid from Sulpis et al. (2020), for sulfuric acid by Dickson et al. (1990) and 292 

for total boron from Uppström (1974). From this baseline, TA was added in the form of both NaOH 293 

and Na2CO3 to approximate changes in the the carbonate chemistry settings, with NaOH changing 294 

TA:DIC in the 1:1 ratio, and Na2CO3 inducing a 2:1 TA:DIC change. For example, 10 µmol/kg of 295 

NaOH addition will increase TA by 10 µmol/kg and not affect DIC. For Na2CO3, 10 µmol/kg 296 

addition will increase TA by 10 µmol/kg and increase DIC by 5 µmol/kg. Figure 1 demonstrates 297 

the usefulness of this approach. For both NaOH and Na2CO3, 10 µmol/kg was conceptually added 298 

using the principles of mass balance approach for the carbonate system via CO2SYS. This was 299 

repeated for increments of 50 µmol/kg. We show this incremental addition in the plots up to a total 300 

of 500 µmol/kg when generating the plots. When computing the thresholds, we added up to 1400 301 

µmol/kg NaOH. The new TA:DIC ratios were estimated by adding the direct effect of ∆TA and 302 

∆DIC due to chemical additions of NaOH (assume ∆DIC = 0) or Na2CO3 (assume ∆DIC = 303 

0.5*∆TA). A maximum of 500 µmol/kg was chosen to have more realistic additions of TA that 304 

resemble those appropriate within the OAE field trials (e.g. Wang et al., 2023). With the new 305 

TA:DIC ratios after TA addition, the species’ regression models based on the fitted OA response 306 
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data were used to compute respective calcification rates (note that added points with NaOH or 307 

Na2CO3 were not calculated as part of the regression). These data points were all plotted along 308 

with the experimental data, regression model and prediction intervals as shown in Fig. 3.  309 

We also determine the amount of NaOH needed to reach pHT 9 for each study. This was computed 310 

for each species rate group using CO2SYS starting from pCO2 = 425 ppm and pHT = 8.1, using 311 

the average temperature and salinity, and by adding NaOH in increments of 50 µmol/kg until pHT 312 

9 was reached. 313 

 2.6 Evaluation of the biological responses based on alkalinity addition 314 

The individual species with significant correlations were grouped visually based on their best-fit 315 

regression models and are classified into positive, negative, and neutral as the following: 316 

1) Positive responders: species with predicted linear positive and threshold positive calcification 317 

rate response with increased TA addition. 318 

2) Negative responders: species with predicted linear negative, parabolic and threshold negative 319 

response in calcification rate upon (a certain amount of) TA addition. For the parabolic responders, 320 

a concentration of NaOH was determined that indicates the threshold in TA:DIC beyond which 321 

the response becomes negative (see inflection points in Supplemental Table 2).  322 

3) Neutral responders: species with no significant correlation (p < 0.05) in calcification rate upon 323 

TA addition. 324 



 

14 

 

 325 

Figure 3: Conceptual diagrams for five types of responses; a) linear positive; b) linear negative; 326 

c) threshold positive; d) threshold negative and e) parabolic response, plotted with experimental 327 

data from OA studies (green dots), predicted values at various additions of alkalinity (stars and 328 

diamonds), the regression line and prediction error margins fitted for a given species. The red 329 

horizontal line indicates zero net dissolution (calcification rate is equal to 0; dissolution rate = 330 

calcification rate). The grey vertical line indicates the baseline from which alkalinity is added. 331 

NaOH and Na2CO3 addition is shown up to 500 µmol/kg. 332 



 

15 

 

2.7 Determining threshold values indicative of negative biological response to OAE 333 

The metrics to evaluate the sensitivity of calcification rate of the negative responders in this study 334 

were based on the amount of NaOH or Na2CO3 addition required to reduce the current calcification 335 

rate by a half. The greater the TA:DIC ratio value was required to trigger half calcification rate 336 

reduction, the less sensitive species was to NaOH addition. We refer to this TA:DIC ratio as the 337 

biological threshold, which we also report along with corresponding pH and Ωar and the associated 338 

uncertainty. TA:DIC thresholds were converted to their respective pH and Ωar, which are affected 339 

by temperature and salinity. To calculate threshold pH and Ωar we used the average temperature 340 

and salinity per species rate group, as done for calculating the baseline. 341 

2.8 Extraction of the carbonate chemistry data from the GLODAP dataset 342 

We extracted total alkalinity, dissolved inorganic carbon, Ωar, and pHT from the Global Ocean 343 

Data Analysis Project GLODAPv2.2023 dataset (https://glodap.info). We used the regression 344 

application in MATLAB with a second-order polynomial equation to predict Ωar from the TA:DIC. 345 

The regression analysis was performed using data from various depth intervals (0–10m, 0–30m, 346 

0–50m, 0–100m, 0–200m) regionally and globally. The regional analysis divided the global oceans 347 

into the following groupings: Arctic (north of 65°N), Southern (south of 40°S), North Pacific 348 

(north of 40°N), Central Pacific (40°S to 40°N), North Atlantic (North of 40°N), Central Atlantic 349 

(40°S to 40°N), and Indian Ocean (north of 40°S). 350 

 3. Results 351 

 3.1 Data collection for the calcification rate responses of different biological groups 352 

We examined 68 datasets, which covered 84 different species that were divided into 11 different 353 

groups (Fig. 4). These functional groups were corals (20% of datasets), calcifying algae (18%), 354 

mollusks (14%), foraminifera (10%), dinoflagellates (10%), coccolithophores (4%), gastropods 355 

(8%), crustaceans (5%), echinoderms (4%), pteropods (5%), and annelids (1%). In the mollusks 356 

group, we have separated out the gastropod and pteropod because of a higher number of studies 357 

that explicitly cover these two groups. The group of gastropods refers to all gastropods that are not 358 

pteropods. If all three groups were combined (mollusks, gastropods, pteropods), this group would 359 

be the largest.  360 
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 361 

 362 

Figure 4: Percent of studies for multiple groups (N=11) with available data for the calcification 363 

rate responses as part of data compilation of 68 studies covering 84 species). 364 

3.2 Species-specific responses to NaOH/Na2CO3 addition 365 

Calcification rate responses of species from different groups were correlated to TA:DIC and 366 

summarized to obtain calcification rate response. The calcification rate responses encompassed 367 

linear (positive and negative), threshold (positive and negative), parabolic, and neutral responses, 368 

with the slope and the intercept of the response determining the type and the magnitude of the 369 

response. We present fitted responses of calcification rate per TA:DIC ratio for each examined 370 

species (Table 1; Supplemental Fig. 4). When possible, we fit a regression to multiple datasets of 371 

the same species that used the same calcification units. We also present the response with the 372 

additions of NaOH and Na2CO3 for each species per examined study and corresponding rate unit 373 

and their biological TA:DIC thresholds (Table 2; Supplemental Table 4). 374 

Table 1: The summary of all the OA studies from which the chemical and biological data was 375 

collected, including the name of the species and group and the accompanying calcification rate 376 

unit. The response for each species rate group was determined by the regression with the lowest 377 
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p-value, where the p-value was smaller than 0.05. We also include the p-value, goodness of fit (R2) 378 

and Root Mean Square Error (RMSE). Non-significant responses are categorized as having a 379 

‘neutral’ response. The type of response (linear positive or negative, threshold positive or 380 

negative, parabolic, and neutral) is indicated, as well as if this response is positive, negative or 381 

neutral. 382 

Studies n Group Species Rate unit Response 

Pos/Neg/

Neut p-value R2 RMSE 

Vasquez-Elizondo et al. (2016) 4 Algae Amphiroa tribulus mmol/m²/hr neutral Neutral    

Sinutok et al. (2011) 16 Algae Halimeda cylindracea mmol/hr neutral Neutral    

Comeau et al. (2013) 71 Algae Halimeda macroloba mmol/g/hr parabolic Negative 0.0127 0.1200 0.0028 

Meyer et al. (2015) 24 Algae Halimeda macroloba mmol/m²/hr neutral Neutral    

Sinutok et al. (2011) 16 Algae Halimeda macroloba mmol/hr parabolic Negative 0.0108 0.5000 0.0001 

Comeau et al. (2013) 62 Algae Halimeda minima mmol/g/hr neutral Neutral    

Meyer et al. (2015) 24 Algae Halimeda opuntia mmol/m²/hr linear + Positive 0.0080 0.2800 0.0222 

Comeau et al. (2013) 72 Algae Hydrolithon reinboldii mmol/g/hr linear + Positive 0.0053 0.1100 0.0026 

Cornwall et al. (2018) 23 Algae Hydrolithon reinboldii mmol/m²/hr neutral Neutral    

Comeau et al. (2013) 72 Algae Lithophyllum flavescens mmol/g/hr neutral Neutral    

Johnson et al. (2021) 420 Algae Lithophyllum sp. mmol/g/hr linear + Positive 0.0000 0.1000 0.1136 

Vasquez-Elizondo et al. (2016) 4 Algae Lithothamnion sp. mmol/m²/hr neutral Neutral    

Monserrat et al. (2022) 62 Algae Neogoniolithon brassica-florida mmol/m²/hr neutral Neutral    

Ries et al. (2009) 42 Algae Neogoniolithon sp. mmol/g/hr parabolic Negative 0.0000 0.4100 0.0003 

Vasquez-Elizondo et al. (2016), 

Comeau et al. (2018) 26 Algae Neogoniolithon sp. mmol/m²/hr neutral Neutral    

Briggs-Carpenter et al. (2019) 425 Algae Porolithon onkodes mmol/m²/hr linear + Positive 0.0010 0.0300 0.8093 

Comeau et al. (2018, 2019) 64 Algae Sporolithon durum mmol/m²/hr parabolic Negative 0.0012 0.2000 0.1704 

Ries et al. (2009) 41 Annelid Hydroides crucigera mmol/g/hr neutral Neutral    

Fiorini et al. (2011), 

Langer et al. (2006, 2011) 14 Cocco. Calcidiscus leptoporus mmol/#/hr neutral Neutral    

* 233 Cocco. Emiliania huxleyi mmol/#/hr parabolic Negative 0.0000 0.1600 0.0000 

Casareto et al. (2009) 14 Cocco. Pleurochrysis carterae mmol/m³/hr neutral Neutral    

White et al. (2018) 118 Cocco. Pleurochrysis carterae mmol/# neutral Neutral    

Meyer et al. (2016) 24 Coral Acropora millepora mmol/m²/hr neutral Neutral    

Camp et al. (2017), 

Comeau et al. (2013) 74 Coral Acropora pulchra mmol/m²/hr parabolic Negative 0.0000 0.2900 1.3257 

Agostini et al. (2021) 18 Coral Acropora solitaryensis mmol/m²/hr neutral Neutral    

Comeau et al. (2018), 

Comeau et al. (2019) 81 Coral Acropora yongei mmol/m²/hr linear + Positive 0.0000 0.2900 1.9447 

Bove et al. (2020) 27 Coral Duncanopsammia axifuga mmol/m²/hr linear + Positive 0.0016 0.3300 5.0785 

Cornwall et al. (2018) 44 Coral Goniopora sp. mmol/m²/hr neutral Neutral    

Maier et al. (2009) 237 Coral Lophelia pertusa mmol/g/hr linear + Positive 0.0030 0.0400 0.0002 

Bove et al. (2020) 65 Coral Montastraea cavernosa mmol/m²/hr linear + Positive 0.0154 0.0900 0.5047 

Ries et al. (2009) 54 Coral Oculina arbuscula mmol/g/hr parabolic Negative 0.0000 0.8600 0.0001 

Comeau et al. (2013) 72 Coral Pavona cactus mmol/m²/hr parabolic Negative 0.0002 0.2200 0.9093 

Comeau et al. (2019) 49 Coral Plesiastrea versipora mmol/m²/hr linear + Positive 0.0069 0.1500 0.6003 

Brown et al. (2022) 4 Coral Pocillopora damicornis mmol/g/hr neutral Neutral    

Comeau et al. (2013, 2018), 

Putnam-Gates et al. (2015) 117 Coral Pocillopora damicornis mmol/m²/hr neutral Neutral    
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Studies n Group Species Rate unit Response 

Pos/Neg/

Neut p-value R2 RMSE 

Evensen-Edmunds et al. (2016) 60 Coral Pocillopora verrucosa mmol/m²/hr linear + Positive 0.0132 0.1000 0.8297 

Agostini et al. (2021) 18 Coral Porites heronensis mmol/m²/hr neutral Neutral    

Comeau et al. (2013) 72 Coral Porites rus mmol/m²/hr linear + Positive 0.0020 0.1300 2.0281 

Okazaki et al. (2013) 75 Coral Siderastrea radians mmol/m²/hr linear + Positive 0.0004 0.1600 2.7886 

Okazaki et al. (2013) 64 Coral Solenastrea hyades mmol/m²/hr threshold + Positive 0.0004 0.2300 2.0385 

Krueger et al. (2017) 36 Coral Stylophora pistillata mmol/m²/hr neutral Neutral    

Pansch et al. (2014) 36 Crust. Amphibalanus improvisus mmol/g/hr linear + Positive 0.0000 0.4300 0.0004 

Ries et al. (2009) 36 Crust. Callinectes sapidus mmol/g/hr linear - Negative 0.0000 0.4000 0.0082 

Ries et al. (2009) 18 Crust. Homarus americanus mmol/g/hr linear - Negative 0.0014 0.4800 0.0079 

Ries et al. (2009) 12 Crust. Penaeus plebejus mmol/g/hr linear - Negative 0.0124 0.4800 0.0006 

Findlay et al. (2010) 6 Crust. Semibalanus balanoides mmol/g/hr neutral Neutral    

Tatters et al. (2013) 45 Dino. Alexandrium sp. 1/hr neutral Neutral    

Hansen et al. (2007) 19 Dino. Ceratium lineatum #/hr linear - Negative 0.0000 0.6700 0.0043 

Tatters et al. (2013) 45 Dino. Gonyaulax sp. 1/hr neutral Neutral    

Hansen et al. (2007) 31 Dino. Heterocapsa triquetra #/hr threshold - Negative 0.0000 0.9100 0.0027 

Wang et al. (2019) 4 Dino. Karenia mikimotoi 1/hr neutral Neutral    

Tatters et al. (2013) 45 Dino. Lingulodinium polyedrum 1/hr neutral Neutral    

Tatters et al. (2013) 45 Dino. Prorocentrum micans 1/hr neutral Neutral    

Hansen et al. (2007) 21 Dino. Prorocentrum minimum #/hr threshold - Negative 0.0000 0.8800 0.0019 

Brading et al. (2011) 175 Dino. Symbiodinium sp. #/hr linear - Negative 0.0010 0.0600 0.0066 

Van de Waal et al. (2013) 12 Dino. Thoracosphaera heimii mmol/hr parabolic Negative 0.0002 0.8500 0.0000 

Ries et al. (2009) 17 Echino. Arbacia punctulata mmol/g/hr parabolic Negative 0.0000 0.8900 0.0003 

Courtney et al. (2013) 4 Echino. Echinometra viridis %/hr linear + Positive 0.0244 0.9500 2.3854 

Courtney et al. (2015) 28 Echino. Echinometra viridis % linear + Positive 0.0009 0.3500 13.0388 

Ries et al. (2009) 18 Echino. Eucidaris tribuloides mmol/g/hr threshold + Positive 0.0000 0.8400 0.0004 

Keul et al. (2013) 205 Foram. Ammonia sp. mmol/#/hr linear - Negative 0.0277 0.0200 0.0000 

Prazeres et al. (2015) 32 Foram. Amphistegina lessonii %/hr parabolic Negative 0.0008 0.3900 0.0010 

Kisakurek et al. (2011) 16 Foram. Globigerinella siphonifera mmol/hr neutral Neutral    

Kisakurek et al. (2011) 14 Foram. Globigerinoides ruber mmol/#/hr neutral Neutral    

Reymond et al. (2013) 179 Foram. Marginopora rossi %/hr linear + Positive 0.0000 0.1900 0.0090 

Uthicke-Fabricius et al. (2012) 47 Foram. Marginopora vertebralis mmol/g/hr threshold + Positive 0.0000 0.4000 0.0004 

Sinutok et al. (2011) 16 Foram. Marginopora vertebralis mmol/hr neutral Neutral    

Prazeres et al. (2015) 32 Foram. Marginopora vertebralis %/hr linear - Negative 0.0006 0.3300 0.0005 

Manno et al. (2012) 192 Foram. Neogloboquadrina pachyderma mmol/#/hr linear + Positive 0.0000 0.7100 0.0000 

Oron et al. (2020) 96 Foram. Operculina ammonoides mmol/g/hr linear - Negative 0.0031 0.0900 0.0017 

Manriquez et al. (2016) 74 Gastropod Concholepas concholepas mmol/g/hr linear + Positive 0.0000 0.2400 0.0009 

Noisette et al. (2016), 

Ries et al. (2009) 173 Gastropod Crepidula fornicata mmol/g/hr parabolic Negative 0.0000 0.2100 0.0028 

Garilli et al. (2015) 68 Gastropod Cyclope neritea mmol/g/hr linear - Negative 0.0020 0.1400 0.0037 

Ries et al. (2009) 42 Gastropod Littorina littorea mmol/g/hr linear + Positive 0.0001 0.3400 0.0002 

Bibby et al. (2007) 4 Gastropod Littorina littorea 

µm (shell 

thickness) neutral Neutral    

Garilli et al. (2015) 315 Gastropod Nassarius corniculus mmol/g/hr parabolic Negative 0.0000 0.2500 0.0064 

Ries et al. (2009) 21 Gastropod Strombus alatus mmol/g/hr linear + Positive 0.0000 0.6400 0.0001 

Ries et al. (2009) 33 Gastropod Urosalpinx cinerea mmol/g/hr linear + Positive 0.0000 0.5700 0.0001 

Ries et al. (2009) 18 Mollusks Argopecten irradians mmol/g/hr linear + Positive 0.0097 0.3500 0.0002 

Ramajo et al. (2016) 6 Mollusks Argopecten purpuratus mmol/g/hr neutral Neutral    

Zhang et al. (2011) 5 Mollusks Azumapecten farreri mmol/g/hr linear + Positive 0.0106 0.9200 0.0001 

Ong et al. (2017) 24 Mollusks Cerastoderma edule mmol/g/hr neutral Neutral    
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Studies n Group Species Rate unit Response 

Pos/Neg/

Neut p-value R2 RMSE 

Sordo et al. (2021) 27 Mollusks Chamelea gallina mmol/g/hr neutral Neutral    

Gazeau et al. (2007) 20 Mollusks Crassostrea gigas mmol/g/hr linear + Positive 0.0001 0.6100 0.0000 

Ries et al. (2009), 

Waldbusser et al. (2011) 28 Mollusks Crassostrea virginica mmol/g/hr threshold + Positive 0.0000 0.5600 0.0003 

Ries et al. (2009) 25 Mollusks Mercenaria mercenaria mmol/g/hr threshold + Positive 0.0000 0.8300 0.0000 

Ries et al. (2009) 14 Mollusks Mya arenaria mmol/g/hr linear + Positive 0.0001 0.7300 0.0003 

Ninokawa et al. (2020) 13 Mollusks Mytilus californianus mmol/m²/hr neutral Neutral    

Ries et al. (2009), 

Gazeau et al. (2007) 86 Mollusks Mytilus edulis mmol/g/hr linear + Positive 0.0119 0.0700 0.0002 

Gazeau et al. (2014) 11 Mollusks Mytilus galloprovincialis mmol/g/hr neutral Neutral    

Cameron et al. (2019) 30 Mollusks Pecten maximus mmol/g/hr neutral Neutral    

Comeau et al. (2010b) 5 Pteropod Cavolinia inflexa 

mm (shell 

length) neutral Neutral    

Comeau et al. (2009, 2010a) 12 Pteropod Limacina helicina mmol/g/hr linear + Positive 0.0000 0.8500 0.0001 

Lischka et al. (2011, 2012) 119 Pteropod Limacina helicina 

mm (shell 

length) threshold + Positive 0.0003 0.1300 0.1303 

Bednarsek (2021a), 

Mekkes et al. (2021) 117 Pteropod Limacina helicina 

µm (shell 

thickness) parabolic Negative 0.0000 0.1800 0.0038 

Lischka et al. (2012) 28 Pteropod Limacina retroversa 

mm (shell 

length) neutral Neutral   

 

*Barcelos-Ramos et al. (2010), Fiorini et al. (2011), Iglesias-Rodriguez et al. (2008), Richier et al. (2011), Sciandra et al. (2003), Stoll et al. (2012), 383 

Gafar et al. (2018), Bach et al. (2011), Sett et al. (2014). 384 

Within each of the 11 functional groups, several categories of calcification response occur within 385 

each functional group, with the most varied being the group of dinoflagellates and foraminifera, 386 

both showing 4 or 5 different categories of calcification responses (Fig. 5). Of the six types of 387 

responses of calcification rate vs. TA:DIC, 28% were linear positive (N=27), 9% linear negative 388 

(N=9), 6% threshold positive (N=6), 2% threshold negative (N=2), 15% parabolic (N=14) and 389 

40% neutral (N=38). 390 

Such responses could be further summed up into positive (linear and threshold positive), negative 391 

(linear and threshold negative, parabolic) and neutral responses (Fig. 6) when generalized for 392 

calcification rate against TA:DIC ratio. A summary of responses includes 34.4% positive (N=33), 393 

26.0% negative (N=25), while 39.6% show a neutral response (N=38). 394 

 395 
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 396 

Figure 5: Categories of calcification rate responses and percentage (%) response across eleven 397 

groups (calcifying algae, annelids, coccolithophores, corals, crustaceans, dinoflagellate, 398 

echinoderms, foraminifera, gastropods, mollusks, pteropods). The number on the bar indicates 399 

the number of studies of species included. 400 

 401 

 402 

Figure 6: Summary of percentage (%) responses in calcification rates as positive (linear and 403 

threshold positive), negative (linear and threshold negative, parabolic) and neutral across 404 

eleven groups (calcifying algae, annelids, coccolithophores, corals, crustaceans, dinoflagellate, 405 
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echinoderms, foraminifera, gastropods, mollusks, pteropods). The number on the bar indicates 406 

the number of studies with species included. 407 

 408 

3.3 Evaluation of the responses to NaOH/Na2CO3 addition 409 

Upon added TA, the calcification rate in positive responders will increase, either in a linear or 410 

threshold positive response, where calcification plateaus, with the concentration being dependent 411 

on the species-specific rate of response (Fig. 2; Supplemental Fig. 4). The negative responders 412 

(linear or threshold negative and parabolic) will be negatively impacted as follows: first, for the 413 

linear negative responders, addition of the Na2CO3 will linearly decrease calcification rate, but 414 

there is no associated threshold to it; second, for the threshold negative responders, calcification 415 

rate will decline in an exponential way until reaching a TA:DIC value where the response plateaus; 416 

and third, for the parabolic responders, the calcification rate will initially increase until reaching a 417 

certain TA:DIC threshold upon which calcification starts declining. The TA:DIC thresholds for 418 

negative responders are species-specific (Table 2; Supplemental Table 4). 419 

3.4 Threshold values indicative of negative biological response to OAE 420 

The TA:DIC biological thresholds in Table 2 are determined by the amount of NaOH addition 421 

required to reduce calcification rate by a half (see Supplemental Table 4 for Na2CO3 thresholds). 422 

These thresholds demonstrate the range of carbonate chemistry conditions over which the negative 423 

biological effects of OAE deployment might occur and are shown alongside the corresponding 424 

pHT and Ωar. Uncertainties are higher for the experimental studies where the experimental 425 

temperature and salinity ranges were high (see Supplemental Table 5), seeing as we use the average 426 

for each species rate group to compute the baseline and thresholds.  427 

For the negative responders, TA:DIC thresholds range from 1.13 to 1.74. The majority of species 428 

have reached their thresholds by an addition of 500 µmol/kg NaOH, though for 3 species a NaOH 429 

addition of more than 500 µmol/kg is required to cross the thresholds in the TA:DIC range of 1.39 430 

to 1.74. Crepidula fornicata (gastropod), Neogoniolithon sp. (algae), Homarus americanus 431 

(crustacean) and Oculina arbuscula (coral) reach their thresholds by 100 µmol/kg addition of 432 

NaOH, indicating they are more sensitive to alkalinity addition. Foraminifera, dinoflagellates and 433 
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coccolithophores generally require higher concentrations of NaOH to reach their thresholds, with 434 

the linear negative responder Ammonia sp. of the foraminifera group requiring 1400 µmol/kg to 435 

reduce calcification rate in half. 436 

For some negative responders (Arbacia punctulata, Nassarius corniculus, Penaeus plebejus, 437 

Callinectes sapidus, Cyclope neritea, and Symbiodinium sp.), the baseline from which NaOH 438 

addition occurs was outside of the range of the experimental data and very close to a calcification 439 

rate of 0. These were omitted from Table 2 since our defined threshold does not give an accurate 440 

representation of their sensitivity to alkalinity addition. Limacina helicina was also omitted since 441 

the indicator of calcification (shell thickness) was not an actual rate.  442 

Table 2: Studies with negative responders (linear and threshold negative, parabolic) with 443 

demonstrated TA:DIC thresholds, indicating the amount of NaOH needed to halve the current 444 

calcification rate (i.e. at the baseline). The value for TA:DIC threshold is used to determine the 445 

pHT and Ωar (at average temperature and average salinity per species). See Supplemental Table 4 446 

for Na2CO3 thresholds. 447 
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Studies Group Species 

Temp 

(°C) 

Salini

ty 

Rate 

unit 

Thresh

old 

TA 

addition 

pHT at 

threshold 

ΔpHT 

from 

baseline 

Ωar at 

threshold Exposure time 

Noisette et 

al. (2016), 

Ries et al. 

(2009) 

Gastrop

od 

Crepidula 

fornicata 15.31 34.33 

mmol/g/

hr 1.13 50 8.17 0.07 3.77 

6 months 

60 days 

Ries et al. 

(2009) Algae 

Neogoniolithon 

sp. 25.00 31.70 

mmol/g/

hr 1.17 50 8.16 0.06 4.87 60 days 

Ries et al. 

(2009) 

Crustac

ean 

Homarus 

americanus 25.02 31.96 

mmol/g/

hr 1.19 100 8.22 0.12 5.49 60 days 

Ries et al. 

(2009) Coral 

Oculina 

arbuscula 25.01 31.61 

mmol/g/

hr 1.19 100 8.22 0.12 5.46 60 days 

Prazeres et 

al. (2015) 

Forami

nifera 

Amphistegina 

lessonii 24.18 33.46 %/hr 1.21 150 8.27 0.17 6.10 30 days 

Hansen et 

al. (2007) 

Dinofla

gellate 

Ceratium 

lineatum 15.00 30.00 #/hr 1.18 200 8.38 0.28 5.15 

14 d acclimation to irradiance; 7 days 

acclimation to experimental conditions; 14 

days exposure to irradiance; 22 days 

stationary growth phase 

Sinutok et 

al. (2011) Algae 

Halimeda 

macroloba 27.23 36.27 

mmol/g/

hr 1.26 200 8.30 0.20 7.38 2 weeks acclimation, 2 weeks incubation 

Comeau et 

al. (2019) Algae 

Sporolithon 

durum 20.60 35.87 

mmol/m

²/hr 1.22 200 8.32 0.22 6.31 27 weeks 

Van de 

Waal et al. 

(2013) 

Dinofla

gellate 

Thoracosphaer

a heimii 15.00 34.00 mmol/hr 1.23 300 8.46 0.36 6.56 

21 days acclimation, 8 days experiment = 

total of >10 generations 

Oron et al. 

(2020) 

Forami

nifera 

Operculina 

ammonoides 25.00 37.00 

mmol/g/

hr 1.33 400 8.46 0.36 9.44 65 - 120 hours 

Prazeres et 

al. (2015) 

Forami

nifera 

Marginopora 

vertebralis 24.18 33.46 %/hr 1.33 450 8.53 0.43 9.78 30 days 

Camp et al. 

(2017), 

Comeau et 

al. (2013) Coral 

Acropora 

pulchra 27.30 36.27 

mmol/m

²/hr 1.38 500 8.52 0.42 11.05 

n/a (natural conditions) 

2 weeks acclimation; 2 weeks incubation 

Hansen et 

al. (2007) 

Dinofla

gellate 

Heterocapsa 

triquetra 15.00 30.00 #/hr 1.30 500 8.66 0.56 8.81 

14 d acclimation to irradiance; 7 days 

acclimation to experimental conditions; 14 

days exposure to irradiance; 22 days 

stationary growth phase 

Comeau et 

al. (2013) Coral Pavona cactus 27.23 36.28 

mmol/m

²/hr 1.38 500 8.52 0.42 11.03 2 weeks acclimation; 2 weeks incubation 

Hansen et 

al. (2007) 

Dinofla

gellate 

Prorocentrum 

minimum 15.00 30.00 #/hr 1.39 700 8.81 0.71 11.35 

14 d acclimation to irradiance; 7 days 

acclimation to experimental conditions; 14 

days exposure to irradiance; 22 days 

stationary growth phase 

* 

Coccoli

thophor

e 

Emiliania 

huxleyi 17.30 35.12 

mmol/#/

hr 1.46 850 8.83 0.73 13.65 ** 

Keul et al. 

(2013) 

Forami

nifera Ammonia sp. 26.00 32.75 

mmol/#/

hr 1.74 1400 9.11 1.01 22.27 59-96 days of culturing 

*Barcelos-Ramos et al. (2010), Fiorini et al. (2011), Iglesias-Rodriguez et al. (2008), Richier et al. (2011), Sciandra et al. (2003), Stoll et al. (2012), 448 

Gafar et al. (2018), Bach et al. (2011), Sett et al. (2014). 449 

**26hrs, Acclimation for 7 generations, experiment/sampling for 2-3 generations, n/a, 8 days, 16 days, Acclimation for 12 generations, Pre-450 

acclimation for 8-12 generations, 9 generations, Acclimated for at ~7 generations (5-15 days) 451 

3.5 Regulatory pHT 9 threshold 452 

We also compute how much NaOH needs to be added before reaching a pHT threshold of 9, as per 453 

the US Environmental Protection Agency’s rule for waste water not exceeding a pHT of 9 when 454 

entering the coastal ocean (NPDES manual, 2010). This amount averages at 1200 µmol/kg of 455 

NaOH for most of the examined species. For some species (Amphibalanus improvisus, 456 

Neogloboquadrina pachyderma, Limacina helicina, Limacina retroversa, Lophelia pertusa, and 457 

https://www.epa.gov/sites/default/files/2015-09/documents/pwm_2010.pdf
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Semibalanus balanoides), their threshold was reached below 1000 µmol/kg, with Amphibalanus 458 

improvisus reaching a threshold at 750 µmol/kg.  459 

3.6 Global and regional carbonate chemistry data coverage based on GLODAP datasets 460 

The compilation of chemical observational data (pH, Ωar, TA, DIC) was done for the GLODAP 461 

data across the regional ocean and global scales to determine the range of Ωar, TA and DIC (as 462 

represented by the TA:DIC ratio) and TA:DIC vs Ωar correlation down to the depths averaged over 463 

200 m. This allowed us to apply the thresholds even for the regions for which we do not have 464 

sufficient or reliable data or experimental coverage, making the inferences about the OAE impact 465 

even in those regions.  466 

Here, we focused on showing the results ranging over the 0–50m because this covers most of the 467 

biological habitat for examined species and it is where the OAE enhancement would induce the 468 

greatest changes. Over the 0–50 m depth, Ωar ranges from 0.2 to 5 and TA:DIC ranges from 0.1 to 469 

1.25 and both parameters are correlated across all the regions, as demonstrated by the fitted second-470 

order polynomial regressions, with R2 of 0.96 or higher, and all the correlations being significant 471 

(Fig. 7), with regional specific relationships not impacting the fit. All the correlation parameters 472 

are presented in Supplemental Table 4. Similar fits were found at different depths. The conditions 473 

in the higher latitude regions are located at the lower range of Ωar vs TA:DIC, while the conditions 474 

in the low latitudes and temperate regions are at the upper range, with the highest values present 475 

in the central Atlantic and Pacific region. Such strong correlation as observed for Ωar vs TA:DIC 476 

does not exist with pH, regardless of the depth interval examined. While the correlations are still 477 

significant, they are broadly distributed and represented over a shorter TA:DIC range, with 478 

significantly lower goodness of fit (Supplemental Fig. 4), with the correlations being highly 479 

regionally dependent due to pH and temperature co-linearity. Because of this, all further biological 480 

analyses are only done using the Ωar vs TA:DIC ratio. 481 
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 482 

Figure 7: The range of observed Ωar, TA and DIC values (as represented by the TA:DIC ratio) 483 

values and the relationship with the best fitted curve between Ωar vs TA:DIC across regional (a-484 

g) and global (h) scales based on the observational GLODAP dataset averaged over the 0-50 m 485 

depth range.  486 

3.7 TA:DIC vs Ωar for experimental data and GLODAP  487 

We compared the ranges of TA:DIC and Ωar of biological experimental data with field 488 

biogeochemical data (GLODAP) to examine if similar range of conditions and TA:DIC 489 

correlations are applicable over a broader, global dataset. For this, we plotted Ωar vs TA:DIC along 490 

with the GLODAP regression line for Ωar vs TA:DIC (Fig. 8). For each TA and DIC datapoint, the 491 

corresponding salinity and temperature specific values for that data point were used to compute 492 

Ωar. We show the similarity in the conditions, which gives the validity of our experimentally-493 

derived thresholds to be extrapolated within the global GLODAP dataset.  494 

Figure 8 also shows that various biological groups are clustered around specific TA:DIC ratios, 495 

for example, mollusks, coral and coccolithophores are represented on the lower, mid, and higher 496 

TA:DIC spectra, respectively, while dinoflagellates are randomly scattered off the TA:DIC line. 497 

This indicates that there is a general lack of data distribution in the upper ranges of TA:DIC ratio, 498 

especially for the groups that are lying at the lower and mid end of the TA:DIC ratio spectra. 499 
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Plotting biological data from the OA datasets against the regional and global TA:DIC gradient 500 

derived from GLODAP (Fig. 7), we also observed that experimental data ranges were not always 501 

consistent with natural conditions, for example, having a lower Ωar at a higher TA:DIC ratio. 502 

 503 

Figure 8: Ωar values from experimental biological studies for eleven investigated functional 504 

groups (see legend) plotted against TA:DIC, with the latter being computed using experimental 505 

TA and DIC. The black line represents the regression line of TA:DIC and Ωar data from the 506 

GLODAP dataset (covering 0-50m depth). See Supplemental Fig. 5 for GLODAP Ωar vs TA:DIC, 507 

from which the black regression line shown here is derived. The vertical dotted lines represent 508 

the thresholds shown in Table 2. 509 

4. Discussion 510 

OAE is a quickly developing strategy that is in the field-testing phase despite extremely limited 511 

understanding of the sequestration potential, biological implications and environmental concerns. 512 

Hence, gaining insights of potential risks for the biological species and communities is essential 513 

and timely. In retrospect, it took decades for the OA research community to get a more accurate 514 

and comprehensive understanding leading to predictions of biological responses to OA (Riebesell 515 
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and Gattuso, 2015). Without a very clear conceptual strategy for the OAE testing, the research 516 

community might also need years to decades before OAE-related implications are 517 

comprehensively understood. Consequently, there is an essential need to develop an assessment 518 

framework of predictive responses and testing strategies that will assist in OAE scaling and risk 519 

avoidance. This paper aims at developing such an assessment, where calcification responses 520 

against TA:DIC are categorized per species. We propose to use the TA:DIC ratio in the biological 521 

studies reporting OAE results, as we believe it simplifies the system and makes it easier to use and 522 

translate the carbonate chemistry in the experimental setting. Such a TA:DIC ratio allows to 523 

ultimately standardize the biogeochemical and biological data and is useful for easier comparisons 524 

among the conducted experiments.  525 

4.1. Identified strengths and limitations of the synthesis approach based on OA studies 526 

Prior to conducting this study, several drawbacks were identified that could potentially limit such 527 

a synthesis work: first, an insufficient amount of data at the upper range of carbonate chemistry 528 

conditions (high pH, high Ωar); second, experimental data under conditions with no relevance to 529 

natural settings (Fig. 8); and third, an insufficient number of validation studies under high TA 530 

conditions to validate the results of this synthesis. To overcome the first two limitations, the 531 

decision was made to combine multiple OA datasets for a single species with the aim to achieve a 532 

greater range in carbonate chemistry conditions, including higher pH, Ωar experimental values, 533 

which should reduce the uncertainty of the predictions. However, combining raw data on species 534 

calcification rate proved to be more challenging because even across the same species the reporting 535 

of the calcification rates was highly variable. The use of different measuring approaches of 536 

calcification rates while conducting OA studies generated data with divergent units that do not 537 

allow for the intercomparison of data and results. As different studies for a single species could 538 

not be combined, we chose to increase the number of studies and thus, the number of examined 539 

species. Based on the response categories from the OA studies (Ries et al., 2009), our hypothesis 540 

was that OAE will elucidate the same categories of responses, i.e. positive, negative and neutral. 541 

Within each of the groups examined, multiple categories of predicted calcification response were 542 

found. In this way, we demonstrated that it was possible to develop a useful framework for 543 

assessing and predicting species-specific OAE responses that can delineate different responders, 544 

identify species with greater OAE sensitivity and determine the thresholds where such negative 545 
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responses could happen. 546 

4.2 Synthesizing biological response under OAE identifies positive and negative responders 547 

The responses were summarized across three emerging groups of responses: positive, negative, 548 

and neutral (Fig. 6). We observe species-specific variability at the species level, which is related 549 

to various calcification mechanisms across the observed groups. The greatest variability upon 550 

NaOH addition within each group in calcification rate was evident in corals, dinoflagellates, 551 

foraminifera, gastropods and pteropods, where four to five different categories of responses were 552 

found.  553 

Positive responders (34%) show an increased calcification rate upon alkalinity addition, observed 554 

within all functional groups besides annelids, coccolithophores and dinoflagellates. Corals mostly 555 

have positive and neutral responses, suggesting that coral species would not be negatively 556 

impacted during OAE field trials. This mostly positive response is validated by increased coral 557 

calcification, shown for two coral species of Acropora and Siderastre in experiments conducted 558 

by Palmer et al. (2022). 559 

The metrics to evaluate the sensitivity of calcification rate for the negative responders (negative 560 

linear and threshold) to alkalinity addition was based on the amount of alkalinity addition required 561 

to halve the current calcification rate (Fig. 3; Tables 1, 2). The most negative responses were found 562 

in dinoflagellates (6% of all species), algae and foraminifera (both 5% of all species). However, 563 

these numbers are affected by the difference in data coverage per functional group. When 564 

comparing the ratio of negative to positive and neutral responses, crustaceans and dinoflagellates 565 

are expected to be most negatively affected. As such, these groups are one of the priorities for the 566 

future OAE experimental work to determine at which TA:DIC negative response happens. 567 

Dinoflagellates demonstrate negative response in 5 cases, 5 neutral responses and 0 positive (see 568 

Table 1; Supplemental Fig. 4). The reason for negative response to OAE in this group is related to 569 

the fact that their growth gets limited at higher pH, with further carbon limitation playing a role at 570 

very high pH levels and low DIC concentration (Hansen et al., 2002; 2007). On the other hand, 571 

crustaceans only demonstrated positive response in one study (Pansch et al., 2014), while 572 

remaining results predict either negative or neutral response. While crustaceans are effective in 573 

retaining homeostasis at lower pH, they might be less so at higher pH, which was shown in the 574 
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OA experiments by Ries et al. (2009) for three crustacean species (Callinectes sapidus, Homarus 575 

americanus, Penaeus plebejus), confirmed in the OAE study by Cripps et al. (2013) in Carcinus 576 

maenas. While studies are still lacking, physiological acid-base regulation at higher pH is 577 

associated with higher costs (Cripps et al., 2013). Crustaceans show a disrupted acid–base balance, 578 

evident through the increase in hemolymph pH, K+, Na+ ions and osmolality, coupled with a 579 

decrease in extracellular pCO2 and HCO3
-, indicative of respiratory alkalosis (Truchot, 580 

1984;1986). This is often associated with hyperventilation, the aim of which is to flush out the 581 

hemolymph CO2 to increase the affinity of oxygen uptake. However, while this might be a 582 

temporary physiological relief it also implies energetic costs, potentially also for calcification.  583 

For the neutral responders or groups with no significant correlation between calcification rates and 584 

TA:DIC, it is somewhat uncertain to predict if such responses will be retained under OAE. While 585 

parabolic responders show a physiologically understandable parabolic type of dose-response, 586 

positioning the TA:DIC values where the threshold occurs is also highly species-specific and 587 

potentially uncertain, meaning that it might depend on other environmental factors. 588 

With respect to the coccolithophores, we note that this was the only group where data compilation 589 

on calcification rate across the group was possible because the OA studies were conducted in a 590 

more uniform way, using similar approaches, and reporting the result in the same units. When data 591 

for E. huxleyi across the comparable studies was compiled (Barcelos-Ramos et al., 2010; Fiorini 592 

et al., 2011; Iglesias-Rodrigues et al., 2008; Sciandra et al., 2003; Stoll et al., 2012; Richier et al., 593 

2011), a significant parabolic response was obtained (Table 1), although the goodness of fit was 594 

fairly low (R2=0.16). Despite lower R2, we decided to use the compiled dataset because of the 595 

increased statistical power. The parabolic response obtained aligns with Langer et al. (2006) and 596 

also with the parabolic type responses found in the synthesis studies by Paul and Bach (2020) and 597 

Bach et al. (2015). The threshold indicates the mechanisms of coccolithophore growth that are 598 

driven by CO2, which is shown to decline with alkalinity addition. The threshold based on all 599 

studies for E. huxleyi combined was positioned at a TA:DIC of 1.46 (Ωar = 13.65, see Table 2), 600 

which would be triggered at 850 µmol/kg of added NaOH and at a pCO2 of 60 µatm. 601 

Comparatively with the phytoplanktonic diatoms, such growth limitation is predicted at a pCO2 602 

amount at 100 µatm (Riebesell et al., 1993). It is important to note that when these studies were 603 

analyzed individually, a mixture of different responses was observed. We emphasize the variability 604 

https://link.springer.com/article/10.1007/BF00684414
https://link.springer.com/article/10.1007/BF00684414
https://www.jstor.org/stable/1541858


 

30 

 

within the coccolithophore responses, which are species-specific and inherently related to the 605 

strain adaptation to their innate regional settings and dependent on a variety of other factors (Bach 606 

et al., 2015; Gafar and Schultz, 2018), including the longevity of the species, the experimental 607 

settings used in the study (e.g. nutrient-replete vs nutrient deficient conditions) and the presence 608 

or absence of (un)suitable light conditions. Interestingly, for all the coccolithophore species other 609 

than E. huxleyi, responses were neutral. For validation purposes, the results of our study could not 610 

be compared, either because the calcification rates were not studied or the calcification units were 611 

not comparable (e.g. Diner et al., 2015). 612 

4.3 Parameters impacting derivation of thresholds and their application 613 

We developed a set of species-specific thresholds in this study, with demonstrated application 614 

across the global Ωar vs TA:DIC conditions (Table 2; Fig. 8). The range of alkalinity additions to 615 

result in a threshold of 50% decline in calcification rate varied significantly between the species 616 

and the type of response. The TA:DIC thresholds upon TA application ranged between 50 to 1400 617 

µmol/kg of NaOH addition, and the pHT 9 thresholds averaged at 1200 µmol/kg of NaOH for all 618 

species. However, there are many parameters that impact threshold derivation and application, 619 

which we discuss in greater detail.  620 

First, we note that differences in experimental conditions for different species make it difficult to 621 

directly compare different species’ thresholds among each other. Instead, they are intended to 622 

delineate sensitivity to alkalinity addition of individual species at given experimental conditions. 623 

In the case that the lab experimental conditions mimic species’ natural habitat, this threshold-624 

related sensitivity can be extrapolated to their natural habitats.  625 

Second, we emphasize that the threshold application should not only consider the magnitude of 626 

NaOH added, but also the duration or exposure time of the experimental study. As such, when 627 

applying the thresholds to respective model outputs or observation data, both duration and 628 

exposure time should be considered. For all the derived thresholds, we have added duration 629 

exposure information to Table 2. Additional parameters that need to be included when applying 630 

these thresholds are related to local temperature and salinity. The extracted threshold values are 631 

calculated with the temperature and salinity from the experimental conditions, which means that 632 

this threshold should not be applied to very different conditions without adjusting for salinity and 633 
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temperature. 634 

Third, we assumed global surface ocean conditions to be standardized at a pCO2 of 425 ppm and 635 

a pHT of 8.1 as a control point for OAE compound additions. However, we note that in different 636 

habitats, pHT 8.1 may not represent the baseline from where OAE should be considered adding, 637 

because the average pH might be different. This means that the amount of TA required to reach a 638 

certain threshold could vary and is dependent on the baseline carbonate chemistry at the site of 639 

deployment and its variability. This is especially relevant in habitats with a lower baseline pH, 640 

where more TA would need to be added for the threshold to be reached, meaning less negative 641 

biological implications.  642 

 643 

In addition, physical parameters of importance are related to the dilution effect, mixing, retention 644 

capacity, as well as the rate of the equilibration effects of the air-sea CO2 uptake (Ferderer et al., 645 

2022; He and Tyka, 2023; Schulz et al., 2023; Wang et al., 2023), because they determine relevant 646 

exposure duration and the variability of carbonate chemistry parameters across spatial and vertical 647 

depths. Therefore, to obtain the most accurate and regionally applicable threshold for the species 648 

of interest, it is recommended that the baseline for OAE additions be determined based on local 649 

conditions. 650 

Lastly, if similar conditions as induced by the OAE field trial are present in the habitats that species 651 

inhabit, it is more likely that the species might be pre-adapted to such conditions. However, if 652 

species have not been exposed to such conditions, OAE might induce rapid change in conditions 653 

and species exposure, which could be more challenging for the species. As such, it is worth 654 

considering that OAE deployments could be, at least for the most sensitive species, carried out not 655 

as a single high dosage deployment, but rather as a more continuous, lower dosage application. 656 

This would eliminate the swings and maxima in conditions, while also allowing more time for 657 

species acclimation or migration during the initial injection of the OAE deployment. Ultimately, 658 

it is the combination of all these factors that creates baseline exposure conditions that are relevant 659 

in the context of biological outcomes (Wang et al., 2023). 660 

4.4 Direction of laboratory OAE experiments should change to incorporate field conditions 661 

The lab OAE experiments that are being conducted right now are done under different conditions 662 
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than in the field. The former are conducted with the aim of gaining a wide-ranging empirical 663 

response, which implies high treatment levels of OAE additions. However, biogeochemical model 664 

outputs show that OAE-related concentrations at the injection site are high for a short-time, while 665 

the realistic field dosing upon rapid dilution due to mixing is low. Wang et al. (2023) reported that 666 

the nearfield maxima in the respective investigation area of the Bering Sea is to increase TA by 667 

about 10 µmol/kg in the nearfield and by about 1 µmol/kg of NaOH in the farfield region. As such, 668 

we should be more concerned about the threshold of exceedance occurring at the low NaOH 669 

dosing, rather than at high NaOH additions, because these are more realistic and point to the most 670 

sensitive species. As a result, we explicitly emphasize the importance of including much lower 671 

additions of TA in the experimental treatment levels to better support biological understanding and 672 

OAE application in the field. In addition, prior to the lab experiments it would be important to 673 

identify what type of response is predicted in the experimental species. This is especially pertinent 674 

for the groups for which OA experimental data is limited and skewed towards the lowest TA:DIC 675 

ratio (Fig. 8; Supplemental Fig. 4). 676 

What is needed urgently for the safe biological field trial experiments is a set of protocols that are 677 

species-, habitat- and local conditions- specific, which would allow for comprehensive and 678 

comparative risk analyses and threshold determination. As part of this, we also need to develop 679 

regionally specific indicators for biological monitoring. Ideally, such biological and environmental 680 

risk monitoring and assessment would be accompanied by the application of the physical mixing 681 

models with site-specific biogeochemical processes (Ho et al., 2023; Fennel et al., 2023) that can 682 

predict the maximum expected TA increase in the nearfield and farfield regions of the study site, 683 

representing a more realistic exposure and better informing further experimental work. 684 

4.5 Validating OAE responses based on the mechanistically-derived calcification  685 

This study establishes the predictions of responses that relied upon empirical experimental studies. 686 

A good alternative to validating the predicted responses is to use species-specific mechanistic 687 

responses, a more accurate representation of responses compared to empirical studies. Here, we 688 

conducted a subset synthesis study for the two species of coccolithophores, using the results from 689 

this study and compared it to the literature-derived mechanistic responses where the responses are 690 

described with a different set of carbonate chemistry parameters. We wanted to determine to what 691 
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extent mechanistic relationships can contribute to improved, i.e. more accurate and certain, OAE 692 

predictions.  693 

For Emiliania huxleyi, we used experimental TA and DIC data to calculate the [HCO3
-], [H+] and 694 

[CO2] concentrations to be able to use the mechanistic rate equation from Bach et al. (2015). We 695 

calculated and plotted the rate derived via mechanistic approach and applied linear, polynomial 696 

(second-order) and exponential regressions and chose the best fit based on the lowest p-value, 697 

using the same method as for our experimental calcification rate data regressions. Like the 698 

mechanistic rate regression based on three carbonate chemistry parameters was a parabolic fit 699 

(Bach et al., 2015), we also obtained the same fit using the experimental calcification rate data (see 700 

Fig. 9). However, when using the same approach for another coccolithophore species Calcidiscus 701 

leptoporus (Bach et al., 2015), our best fit did not align with the proposed mechanistic response; 702 

instead, a non-significant relationship was obtained using experimental data (Supplemental Fig. 703 

5). Such comparisons reveal species-specific relationships are likely dependent on a lot of 704 

parameters, with one equation alone not being operable among different species from different 705 

experiments or over varied regional settings.  706 

 707 

Figure 9: Mechanistic rate equation and parameters (a = 9.56e-1, b = 7.04e-4 mol/kg, c = 2.1e6 708 

kg/mol, d = 8.27e6 kg/mol) taken from Bach et al. (2015) and fitted using experimental data for 709 
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E. huxleyi (used data from the studies indicated in legend). Shading represents the 90% 710 

prediction interval. 711 

 712 

For most of the species, such mechanistic relationships are not available. Often, substrate-to-713 

inhibitor ratio (SIR) (i.e. the bicarbonate ion to hydrogen ion concentration ratio) has been used to 714 

describe a calcification relationship that was based on the single-parameter relationships. To 715 

compare if our experimental results can reproduce SIR, we computed and plotted the SIR ratio for 716 

the mollusk, coral and coccolithophore groups, and applied a best-fit regression model. We 717 

compared these SIR regressions to the respective best-fit regressions based on the empirical data 718 

from the experiments. We found large differences between our proposed response and the SIR-719 

proposed mechanisms (Supplemental Fig. 6). For most of the coccolithophore groups, the 720 

experimental rate regressions cannot be explained using SIR mechanisms (i.e. the responses are 721 

different). Only in the case of Calcidiscus leptoporus, the experimental and mechanistic responses 722 

remain the same (neutral). Reasons for these discrepancies could potentially be that SIR might 723 

insufficiently explain the multitude of biological processes involved in the calcification (e.g. how 724 

carbon is provisioned or the ability to regulate calcifying fluid pH), as well as other environmental 725 

parameter variations. For mollusks, a third of the mechanistic rate regressions based on the SIR 726 

agreed with the experimental calcification rate regressions. The other two-thirds did not agree, 727 

especially for the studies with experimental conditions of Ωar > 1. For corals, the majority of the 728 

coral species (N=14) were classified as having a linear positive mechanistic relationship when 729 

using SIR relationships. When comparing this to our experimental rate regressions, we only found 730 

agreements between the experimental and mechanistic regressions in 6 out of 18 species. Based 731 

on these results, the general consensus is that the SIR ratio tends to oversimplify species’ 732 

calcification rate responses. However, for corals it does seem to validate experimental results.  733 

 734 

Mechanistic models can offer better insights into calcification responses for some species, 735 

especially when multiple environmental factors are accounted for, but they are not generally 736 

applicable across taxa. Species-specific responses are influenced by unique biological and 737 

physiological factors, which can lead to significant deviations between mechanistic and empirical 738 

predictions. Therefore, mechanistic approaches will only provide valuable frameworks for species 739 

with well-understood calcification processes. By comparing mechanistic studies with experimental 740 
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data, we hoped to validate the predictive results of our experimental studies. Mechanistic models 741 

can offer better insights into calcification responses for some species, especially when multiple 742 

environmental factors are accounted for. However, for many species covered in this study the 743 

calcification process is not well-understood. This meant the mechanistic relationship did not exist, 744 

and when they did exist they were often based on one parameter only. Ninokawa et al. (2024) and 745 

Li et al. (2023) emphasized that using only one parameter to describe the calcification process is 746 

insufficient and strongly recommended using at least two parameters for more accurate 747 

calcification predictions. Our findings agree with Ninokawa et al. (2024), for example, we observe 748 

that using SIR relationships to successfully describe calcification was limited to only a few species 749 

and that there are no generalizable patterns that could be applicable across multiple groups. This 750 

clearly delineates a major gap in the mechanistic understanding of calcification so far, the lack of 751 

which significantly limits our ability of ecological and biogeochemical predictions to OAE. As 752 

such, more research is urgently needed on broader mechanistic understanding of calcification 753 

across different species, and additionally, one parameter calcification processes should be replaced 754 

with more accurate and comprehensive methods using two or three parameters.  755 

4.6 Unknowns about ecological and biogeochemical implications call for the precautionary 756 

approach 757 

The value of calcification as the response proxy is indicative of organismal fitness, which directly 758 

relates to OAE effects as harmful or beneficial for the species. From an ecological perspective, a 759 

total of 26.0% negative responders demonstrates a potential for negative implications. In addition, 760 

we note that this study did not include diatoms in the analyses, which are predicted to be negatively 761 

impacted by carbonate-based OAE (Ferderer et al., 2022), leading to possible community-based 762 

ecological shifts (Bach et al., 2019). The possibility of the ecological shifts should not be neglected 763 

given the variety of the positive responders, understudied effects of OAE in non-calcifiers and 764 

their relationship with the calcifiers through the grazing impact, and lastly, unknown and highly 765 

unpredictable indirect effects. In addition, the inferences on the neutral responders should also 766 

remain cautious.  767 

From a biogeochemical perspective, it is reasonable to infer that OAE will introduce changes in 768 

calcification rate across species, potentially resulting in changing the carbon export or carbonate 769 
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counter pump. Species-specific responses in major carbonate producers, i.e. coccolithophores, 770 

foraminifera and pteropods show both, negative and positive response, which could have strong 771 

effects on biogeochemical fluxes (Riebesell et al., 2017; Bach et al., 2019). Increased calcification 772 

could result in thicker and denser shells, contributing to faster sinking and increased carbonate 773 

fluxes, while decreased calcification has the opposite effect. This could potentially induce changes 774 

on the subsurface total alkalinity at intermediate and deeper depths in the water column, and 775 

dissolution at or near the seafloor (Gehlen et al., 2011) or result in a potential feedback of increased 776 

CO2 flux to the atmosphere (Gattuso et al., 2021). The full scope of ecological and biogeochemical 777 

shifts remains a high priority topic for future investigations and until these huge uncertainties are 778 

resolved, we should exercise a precautionary principle in considering the next steps of OAE field 779 

implementations.  780 

4.7 Potential confounding effects 781 

This study only considered the changes in carbonate chemistry due to the addition of NaOH and 782 

Na2CO3. However, other OAE feedstocks contain compounds that could induce biological toxicity 783 

due to the presence of trace metals (Ni, Cu, Ca, Si; Bach et al., 2019), as well as potential negative 784 

environmental impacts due to secondary precipitation (Hartmann et al., 2022; Moras et al., 2022). 785 

This study also did not focus on the sensitivity across different life stages, even though stage-786 

specific sensitivities to OAE are expected based on previous OA results. Furthermore, we did 787 

include data from experimental lab and field studies that involve multiple stressors in their 788 

experimental designs. As such, an additional impact of warming, dissolved oxygen, and light 789 

intensity on the OAE-induced responses was not determined, although they could elicit different 790 

biological pathways than OAE alone or have additional confounding effects.  791 

The synthesis of the experimental studies always includes implicit biases that are based on the 792 

published experimental studies, the range and species used, regional coverage and heterogeneity. 793 

Important consideration is the adaptation of the species used in the experimental studies because 794 

their calcification optimum might be pre-determined based on their local habitat conditions. Given 795 

that the baseline for the OAE-compound addition was chosen at the global current surface pH 796 

value, some of the thresholds might actually be lower than expected.  797 

4.8 Applications within the existing governmental regulations and the guiding principle 798 
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Our results, especially related to the use of biological thresholds or NaOH dosing, could have 799 

wider applications, most notably with policy-management governmental regulations. For example, 800 

we calculated the amount of alkalinity addition required to reach the pHT threshold of 9, the 801 

maximum pH allowed by the US Environmental Protection Agency’s for waste water entering the 802 

coastal ocean (see NPDES manual, 2010). To reach this threshold, 1200 µmol/kg of NaOH was 803 

required on average for all species, with the lowest threshold reached at 750 µmol/kg addition for 804 

Amphibalanus improvisus. This is a high concentration, and the thresholds for most of the negative 805 

responders with identified thresholds (Table 2) will be exceeded far below the regulatory standards 806 

of pHT 9 (Table 2), especially if the exposure occurred over a duration period that matters for 807 

calcification and for the organism’s physiological status. This case demonstrates discrepancy of 808 

the current chemical pH regulation and associated biological effects, where safe biological limits 809 

are not considered, and biological harm might not be prevented. Despite the fact that achieving 810 

such a high pH through NaOH implementation is unlikely to occur in the field, such regulations 811 

currently do not assure safety space for marine biota and they need to be urgently addressed.  812 

5. Conclusions and next steps  813 

Sufficient certainty in predicting biological responses reduces the risks and supports safe operating 814 

space for OAE implementation and scaling up. Overall, given that almost 60% of examined species 815 

showed non-neutral response (either positive or negative), this calls for careful implementation of 816 

OAE until the safe operational temporal and spatial scales are identified and OA mitigation 817 

measures are established. The goal of this study is to serve as a baseline for prioritizing 818 

experimental and field OAE research and assess environmental risks. Such prioritization identifies 819 

those species for which experimental work needs to be conducted first. This would involve species 820 

with the greatest OAE-related sensitivity (negative responders), species with the greatest 821 

uncertainty in response, as well as the species with very strong predicted positive response that 822 

could potentially introduce a shift on the community level. In addition, it would also recognize the 823 

species for which the existing knowledge is sufficient and there is less immediate need for the 824 

OAE experiments. We hope that all presented tools provide guidance for the practicing and 825 

regulatory community considering OAE field application within the safe limits.  826 

It is important to emphasize that this study is the first comprehensive synthesis of the effects of 827 

https://www.epa.gov/sites/default/files/2015-09/documents/pwm_2010.pdf


 

38 

 

OAE. Ongoing updates and additional data would enhance its value, particularly when 828 

complemented by further experimental research. Similar datasets on OA exist for various 829 

biological parameters, including genetics, physiology, and survival data, as well as for non-830 

calcifying organisms. This availability allows for the exploration of ecological implications and 831 

contributes to developing an ecosystem-based predictive risk assessment for OAE. 832 
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