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Abstract. Viticulture is tied to climate, it influences the suitability of an area, yield and quality of wine grapes. 

Therefore, traditional wine-growing regions could be threatened by a changing climate. Italy is at-risk being part of 

the Mediterranean climatic hotspot and judged in 2022 the second-largest exporter of wine worldwide.  The article 

explores the potential of climate models to predict wine grape productivity at local scale. To this end, both single and 10 

multi-regression approaches are used to link productivity data provided by two Italian wine consortia with bioclimatic 

indices. Temperature and precipitation-based bioclimatic indices are computed by using the observational dataset E-

OBS, the high-resolution climate reanalysis product SPHERA, and both the Regional and the Convection-permitting 

Climate Model (RCM and CPM). The potential of CPMs to represent the impact of climate variability on wine grape 

productivity at local scale in Italy is evaluated. The results indicate high correlations between some bioclimatic indices 15 

and productivity. Climate models appear to be a useful tool to explain productivity variance, however, the added value 

of CPM, became evident only when precipitation-based indices are considered. This assessment opens the path for 

using climate models, especially at convection-permitting scale, to investigate future climate change impact on wine 

production. 

1 Introduction 20 

Wine-growing has a strong socio-economic impact and is one of the principal agricultural economic activities in Italy, 

that in 2022 was the world's leading wine producer (49.8 million hl), and second largest wine exporter, with a value 

of 7.8 billion euros.  

Climate plays a significant role in viticulture, determining the suitability of an area and influencing wine grape yield 

and quality. Over the coming decades, the wine sector is expected to be affected by climate change especially in Italy 25 

that is part of the Mediterranean climatic hotspot (Tuel and Eltahir, 2020), where the impact of climate change is 

expected to be more severe than the global average (Bernetti et al., 2012; Sacchelli et al., 2016). In this context, many 

studies investigated the impact of rising temperatures and changing rainfall patterns on grape growth (Bagagiolo et 

al., 2021; Gentilucci, 2020). Temperature is the primary driver for the phenological phases (Fraga et al., 2016), and a 

warmer climate may lead to an earlier onset of phenological phases and to a shorter growing cycle, increase frost-30 

related risks, as budburst occurring earlier in spring, when frost events are still frequent (Lamichhane, 2021; Trought 

et al., 1999). Furthermore, traditional wine-producing regions, as Douro in Portugal, La Rioja in Spain, Bordeaux in 
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France, and Tuscany in Italy, are expected to experience important shifts in viticulture suitability that can consequently 

causes a decline in production (Adão et al., 2023; Rafique et al., 2023; Sgubin et al., 2023; Tóth and Végvári, 2016). 

A common tool to investigate the impact of climate variability and change on the wine sector is the use of bioclimatic 35 

indices, developed from climate variables for specific plants and crops (Badr et al., 2018; Chou et al., 2023; Gaitán 

and Pino-Otín, 2023). A set of bioclimatic indices, based on temperature and heat accumulation (OIV, 2015), was 

proposed by the International Organisation of Vine and Wine (OIV), while precipitation-based indices were developed 

by Badr et al., (2018) considering the research of Blanco-Ward et al. (2007). Bioclimatic indices are commonly used 

to assess a region's suitability for viticulture or zoning purposes, as well as in relation to phenology, harvest date and 40 

alcohol concentration (Dalla Marta et al., 2010; Koufos et al., 2014; Sánchez et al., 2019; Teslić et al., 2018). A novel 

application linking bioclimatic indices directly to wine grape productivity data in Italy was proposed by Massano et 

al., (2023) at regional level. 

In Italy the vineyards are planted in extremely different areas, from the coasts to the hills, in some case also at 

considerable altitude (Tarolli et al., 2023). The wine production system is complex and fragmented, including both 45 

small farms and large companies. To valorise the designation of origin and guarantee a defined level of quality, 

producers are organized in wine consortia (Consorzi di Tutela) according to the EU and national regulations (e.i. 

Regulation (EU) No 1308/2013, Disciplinari regionali) (Gori and Alampi Sottini, 2014; Ugaglia et al., 2019). To 

address this fragmentation and account for the typicity of the wine business (Agnoli et al., 2023; Spielmann and 

Charters, 2013), yield data from the wine consortia and high-resolution climate data are of prominent importance for 50 

local-scale impact studies and, thus for effective adaptation strategies.  

In the context of impact studies at local scale, requiring high-resolution climatic data, the use of km-scale convection 

permitting models (CPM) is increasing (Bamba et al., 2023; Le Roy et al., 2021; Tradowsky et al., 2023). Thanks to 

their high spatial resolution (less than 4 km), CPMs can represent convection explicitly without the need for 

parameterisation, thus reducing the associated model uncertainty (Fosser et al., 2024). Compared to coarser resolution 55 

regional climate models (RCMs), the CPMs represent more realistically hourly rainfall intensity, the diurnal cycle of 

precipitation and the extremes and are thus consider more reliable in terms of climate projections of precipitation 

(Brisson et al., 2016; Coppola et al., 2020; Fosser et al., 2020, 2015; Kendon et al., 2017; Pichelli et al., 2021; Ban et 

al., 2021). The advantages of CPMs versus RCMs has been also explored in the assessment of the impact of climate 

change on agriculture and crop production (Agyeman et al., 2023; Berthou et al., 2019; Chapman et al., 2020, 2023). 60 

This study assesses the potential of a CPM to represent the impact of climate variability on wine grape productivity at 

the local scale, by relating temperature and precipitation-based bioclimatic indices to wine productivity data provided 

by two wine consortia in northern and central Italy. The CPM performance is validated against climate observations 

and a reanalysis product, as well as compared to the driving RCM simulation to investigate the added-value of the 

higher resolution. Single and multiple regression approaches are used to determine the extent to which bioclimatic 65 

indices can explain changes in wine grape productivity at local scale. The multiple regression approach accounts for 

the potential interplay between the bioclimatic indices, potentially increasing the portion of total productivity 

variability explained by the individual indices, as found by Massano et al. (2023). 
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2 Data and Methods 

2.1 Wine grape data 70 

Wine grape yield data, as well as the hectares devoted to viticulture, are collected from two wine consortia in Italy: 

'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di Montepulciano' (MON). The first 

one lies in Franciacorta, a small (200 km2) wine-growing region in Lombardia (LOM), in northern Italy, mostly 

known for sparkling wine (Figure 1a). The area is characterised by a humid subtropical climate according to the 

Koppen classification (Costantini et al., 2013). The Iseo lake, located at the northern border of this region, is the sixth 75 

largest lake in Italy and tempers the typical heat of the plain in summer, while in winter protects the vineyards from 

the freezing air arriving from the north (Leoni et al., 2019). The consortium was born in 1990 thanks to the endeavour 

of local producers that felt the need to preserve the original production method of the Franciacorta wine. Today the 

consortium is composed by 200 winemakers and preserves three designations: Sebino IGT (Typical Geographical 

Indication), Franciacorta DOCG (Denomination of Controlled and Guaranteed Origin) and Curtefranca DOC 80 

(Denomination of Controlled Origin), known as “Terre di Franciacorta” before 2011 (https://franciacorta.wine/en/). 

This analysis focuses on the designations of Franciacorta DOCG and Curtefranca DOC from 1997 to 2019 (23 years), 

discarding Sebino IGT, for which data are only available for a limited period.  

a) b) 

  

Figure 1 a) Area of Franciacorta Consortium (FRA), Lombardia (LOM) region, North of Italy. b) Area of the Consorzio 

del Vino Nobile di Montepulciano (MON), Toscana (TOS) region, centre of Italy (base layer : © OpenStreetMap 85 
contributors 2019. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.). 

The “Consorzio del Vino Nobile di Montepulciano” (MON) (https://www.consorziovinonobile.it/) is located within 

the Montepulciano territory in Toscana (TOS) region in the centre of Italy  (Figure 1b). The area is characterized by 

a Mediterranean climate with hot and dry summer, and mild and rainy winters (Costantini et al., 2013). The consortium 

preserves three designations, namely Vino Nobile di Montepulciano DOCG, Rosso di Montepulciano DOC and Vin 90 

Santo di Montepulciano DOC. The study focuses on the first two designations that have the longest time series 

covering 31 years between 1989 and 2019.  

For each wine designation, the FRA consortium directly reports the quantity of grapes harvested in quintals (q), while 

MON indicates the hectolitres of wine produced (hl) and the maximum percentage of the grape yield convertible into 

wine (70%). For the analysis, the hectolitres are converted into quintals using the maximum percentage allowed, and 95 

then the productivity (q/ha) is calculated by dividing the quintals of grapes by the vineyard area.  

To check the consistency of productivity data between local and regional scales, and thus contextualise this work 

within the broader framework of previous studies (e.g. Di Paola et al., 2023), the productivity at the local scales (FRA 
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and MON) is compared with the productivity at regional scale provided by the Italian National Institute of Statistics 

(ISTAT). ISTAT provides the harvested wine grape (in quintals) and the area devoted to vines (in hectares) from 1980 100 

onwards. However, the data are not homogenous over time in terms of spatial aggregation. Wine grape productivity 

data are available at the provincial level between 1980 and 1993 and from 2006 to 2019; at regional level between 

1994 and 2000; at national scale while from 2000 to 2005. Following Massano et al (2023), the data were aggregated 

at regional level for Lombardia (LOM) and Toscana (TOS) region, where the FRA and MON consortia are 

respectively located, for the period 1980–2019, with a six-year gap between 2000 and 2005. Considering the 105 

overlapping periods between ISTAT and consortia time series, it is found that the regional and local productivity data 

are significantly correlated (p<=0.05) for both FRA and MON (Table A 1). In addition, the Welch's t-test proves that 

both consortium distributions are part of the regional population (Table A 1 and Figure A 1).  

2.2 Observational climate data 

The observational dataset used is E-OBS, a gridded daily data set covering Europe from January 1950 to the present 110 

day. E-OBS is constructed using data from meteorological stations provided by the European National Meteorological 

and Hydrological Services (NMHSs) or other data holding institutions (Photiadou et al., 2017; Van Der Schrier et al., 

2013). The analysis is based on the latest available version (v28) at 0.1 deg (~11 km). Although the E-OBS database 

is frequently used to validate climate models (Lorenz and Jacob, 2010; Retalis et al., 2016; Christensen et al., 2008; 

Jaeger and Seneviratne, 2011) , some studies have pointed out limitations in the E-OBS representation of precipitation 115 

and temperature, mainly due to the inhomogeneity of the station network used for interpolation (Kyselý and Plavcová, 

2010; Van Der Schrier et al., 2013; Liakopoulou and Mavromatis, 2023). 

In addition to observations, the analysis uses a high-resolution convection-permitting reanalysis product, called 

SPHERA (High rEsolution ReAnalysis over Italy; Cerenzia et al., 2022; Giordani et al., 2023), produced by ARPAE-

SIMC (Agency for Environmental Protection of the Emilia Romagna Region, Italy). Based on the non-hydrostatic 120 

limited-area model COSMO (Schättler et al., 2018; Baldauf et al., 2011), SPHERA dynamically downscales the global 

reanalysis ERA5 (Hersbach et al., 2020) assimilating regional in situ observations to improve the quality of the 

simulation. This new reanalysis product covers Italy at a horizontal resolution of 2.2 km with a temporal coverage of 

26 years (1995-2020). SPHERA reanalysis, validated against ERA5 by Giordani et al. (2023), shows added value for 

the description of moderate to severe local precipitation events and extreme rainfall. The performance of SPHERA 125 

demonstrates that it can be a valuable resource for improving climate monitoring by providing insights into regional 

climate change impacts (Giordani et al., 2023). 

2.3 Climate model data 

The French Centre National de Recherches Météorologiques (CNRM) provides two climate simulations for the period 

2000-2018. The first simulation is based on an RCM model, CNRM-ALADIN (Nabat et al., 2020), covering the Med-130 

CORDEX domain, driven by the ERA-Interim (80 km) reanalysis (Dee et al., 2011), while the second one is based on 

a CPM model, CNRM-AROME, covering the pan-Alpine domain defined within the CORDEX FPS on Convection 

programme (Lucas-Picher et al., 2023; Coppola et al., 2020).  CNRM-ALADIN (hereafter RCM) has a horizontal 
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resolution of 12.5 km and is the limited area version of ARPEGE-Climate. CNRM-AROME (hereafter CPM), is a 

convection-permitting model dynamically downscaled form CNRM-ALADIN, with a resolution of 2.5 km. CPMs are 135 

kilometer-scale regional climate models, with typically horizontal gridding of less than 4 km, which allows a more 

accurate representation of surface and orographic features. They are also non-hydrostatic models that can explicitly 

resolve deep convection and therefore better represent convective phenomena, such as heavy convective precipitation. 

Further information on these climate model simulations can be found in (Caillaud et al., 2021) 

2.4 Bioclimatic indices 140 

This study considers ten bioclimatic indices (summarised in Table 1): eight of them, recommended by the International 

Organisation of Vine and Wine (OIV), are based on temperature and heat accumulation, while the other two are based 

on rainfall accumulation.  

The temperature-based indicators are: 

1. Daily mean temperature during vegetation period (TmVeg) calculated between 1st April to 31st October (Jones et 145 

al., 2005). Temperature in spring plays a key role in determining the timing of the phenological events, as underlined 

by Malheiro et al., (2013). In general, higher TmVeg leads to an anticipation of the phenological phases, while TmVeg 

values above 24 °C or below 12 °C are considered unfavourable to wine-growing (Eccel et al., 2016). 

2. Heliothermic Huglin index (HI), which is calculated by summing, when positive, the average between the mean 

and the maximum temperature, in relation to the baseline temperature of 10°C i.e. the physiological threshold for the 150 

start of the vine growth cycle (Huglin M, 1978; Teslić et al., 2018), over the period from 1st April to 30th September 

and corrected by a coefficient of day duration. The HI index is tied to vine growing and grape sugar concentration 

with higher HI leading to an increased vine vigour and higher sugar content in the grapes. According to Tonietto and 

Carbonneau (2004), a climate with a heat index (HI) of more than 3000 degrees per day is classified as 'very warm', 

while below 1200 degrees per day is “too cold”. Both these situations are associated to plant stress and thus lead to a 155 

production reduction. 

3. Winkler degree days (WI), which provides a measure of heat accumulation during the growing season, is the sum 

of daily mean temperatures above 10°C from 1st April to 31st October (Amerine and Winkler, 1944; Piña-Rey et al., 

2020). Similarly, to HI, WI index is linked to the rate of growth of the vines and the development of the fruits, with 

values between 850 and 2700 degree days being optimal for the wine production (Eccel et al., 2016). 160 

4. Biologically Effective Degree Days (BEDD), which is the sum of daily mean temperatures in the range between 10 

°C and 19 °C, from 1st April to 31st of October. The BEDD index uses the same baseline temperature (10 °C) as WI 

and HI indices but also take into consideration that vine growth is unlikely to occur above the upper temperature 

threshold of 19°C (Anderson et al., 2012; Gladstones, 1992). As the previous temperature-based indices, too high 

(above 2000 degrees per day) or too low (below 1000 degrees per day) values of BEDD can potentially reduce 165 

productivity. 

5. Cool Night Index (CNI), defined as the average minimum air temperature during the month of September. Low 

minimum temperatures in September increase the polyphenolics in the grapes and are beneficial for the overall quality 
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of the harvest (Tonietto and Carbonneau, 2004). Although CIN is more related to grape quality than quantity, Massano 

et al (2023) found that this index can help explaining changes in productivity especially when used in combination 170 

with other bioclimatic indices.  

6. Minimum temperature during vegetative period (TnVeg), which is the minimum temperature recorded during the 

vegetative period (1st April to 31st October). This index is important to assess the occurrence of spring frosts that 

pose a significant risk to viticultural practices and production. The damage threshold is fixed at -2 °C (Sgubin et al., 

2018).   175 

7. Maximum temperature during vegetative period (TxVeg), which is the maximum temperature recorded during the 

vegetative period. This index is useful for assessing the occurrence and the severity of summer hot-spells that can 

damage to vineyard, thus reducing the wine productivity (Cabré and Nuñez, 2020). The heat stress threshold is set at 

35°C, above which physiological damage to the vines is expected (Hunter and Bonnardot, 2011). 

8. Minimum temperature during rest period (TnRest), defined as the minimum temperature during rest period, i.e. 1st 180 

November to 31st March. This index is used to determine winter severity. Grapevines can tolerate temperatures as -

25 °C (Düring, 1997; Lisek, 2012), although damage can already occurs at -15 °C  (Eccel et al., 2016) 

The indices based on precipitation are: 

1. Growing season precipitation index (GSP), defined as rainfall accumulated from 1st April to 30th September and 

used to assess the water stress for non-irrigated grapevines (Blanco-Ward et al., 2007; Piña-Rey et al., 2020), as in 185 

Italy where irrigation is only allowed in extreme cases (e.g. long drought periods). 

2. Spring Rain index (SprR), which measures the amount of rain accumulated between the 21st of April and the 21st 

of June (Raül Marcos-Matamoros et al., 2020). This indicator of spring wetness can be related to production. In fact, 

while dry springs can delay vegetative growth, wet ones can increase plant vigour but also lead to a higher risk of 

fungal diseases (Alessandro Dell’Aquila, 2022). 190 

Table 1: Acronyms and formulas of the bioclimatic indices used. 

 Definition Formula Suitable class range 

Te
m

p
er

at
u

re
-b

as
ed

 

Mean temperature during 

vegetation period (TmVeg) 

𝑇𝑚𝑉𝑒𝑔 = 𝑇𝑚𝑒𝑎𝑛          (1) 

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 1𝑠𝑡 𝐴𝑝𝑟𝑖𝑙 𝑎𝑛𝑑 31𝑡ℎ 𝑂𝑐𝑡𝑜𝑏𝑒𝑟 

13-24 °C 

(Eccel et al., 2016) 

Heliothermic Huglin index (HI) 

𝐻𝐼 = 𝐾 ∑ 𝑚𝑎𝑥 [(
(𝑇𝑚𝑒𝑎𝑛−10)+(𝑇𝑚𝑎𝑥−10)

2
) ; 0]

30𝑆𝑒𝑝
01𝐴𝑝𝑟           (2) 

K=1.04 length of days coefficient 

1200-3000 °C 

(Tonietto and 

Carbonneau, 2004) 

Winkler degree days (WI) 𝑊𝐼 = ∑ 𝑚𝑎𝑥 [(
𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
− 10) ; 0]31𝑂𝑐𝑡

01𝐴𝑝𝑟           (3) 

850-2700 °C 

(Eccel et al., 2016) 

Biologically Effective Degree Days 

(BEDD) 
𝐵𝐸𝐷𝐷 = ∑ 𝑚𝑖𝑛{𝑚𝑎𝑥 [(

𝑇𝑚𝑖𝑛+𝑇𝑚𝑎𝑥

2
− 10) ; 0] ; 9}31𝑂𝑐𝑡

01𝐴𝑝𝑟           (4) 
1000-2000 °C 

(Gladstones, 1992) 

Cool Night Index (CNI) 𝐶𝑁𝐼 =
1

30
∑ 𝑇𝑚𝑖𝑛

30𝑆𝑒𝑝
01𝑆𝑒𝑝           (5) 

12-18 °C (Tonietto 

and Carbonneau, 
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2004) 

Minimum temperature during 

vegetative period (TnVeg) 𝑇𝑛𝑉𝑒𝑔 = 𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 𝑎𝑛𝑑 31 𝑂𝑐𝑡          (6) 

Damage threshold -

2 °C (Sgubin et al., 

2018) 

Maximum temperature during 

vegetative period (TxVeg) 
𝑇𝑥𝑉𝑒𝑔 = 𝑇𝑚𝑎𝑥 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝐴𝑝𝑟 𝑎𝑛𝑑 31 𝑂𝑐𝑡          (7) 

Upper threshold 35 

°C (Hunter and 

Bonnardot, 2011) 

 

Minimum temperature during 

rest period (TnRest) 
𝑇𝑛𝑅𝑒𝑠𝑡 = 𝑇𝑚𝑖𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 01 𝑁𝑜𝑣 𝑎𝑛𝑑 31 𝑀𝑎𝑟          (8) 

Above -25 °C 

(Düring, 1997; Lisek, 

2012) 

P
re

ci
p

it
at

io
n

-

b
as

ed
 

Growing season precipitation 

index (GSP) 

𝐺𝑆𝑃 = ∑ 𝑃𝑟𝑒𝑐
30𝑆𝑒𝑝
01𝐴𝑝𝑟           (9) 

Prec: total precipitation 

200-600 mm 

(Badr et al., 2018) 

Spring Rain index (SprR) 𝑆𝑝𝑟𝑅 = ∑ 𝑃𝑟𝑒𝑐21𝐽𝑢𝑛
21𝐴𝑝𝑟           (10) (Dell’Aquila, 2022) 

2.5 Validation of climate simulations and calculation of bioclimatic indices 

In this work, temperature and precipitation data from the observational dataset E-OBS, the climate reanalysis product 

SPHERA and the climate model simulations, at regional (RCM) and convection-permitting scale (CPM), are used for 

the calculation of the above-described bioclimatic indices. The analysis focuses on the 19 years from 2000 to 2018 195 

that is the longest period available for RCM and CPM simulations and in common with E-OBS, SPHERA as well as 

FRA and MON productivity data. 

To compare the observational datasets and climate simulations among each other (Berg et al., 2013), they are first all 

remapped on a common grid, i.e. E-OBS regular grid, at ~11 km. Tests performed to investigate the effects of the 

remapping strategy on the climate variables showed that the results are not impacted by the resolution chosen for the 200 

remapping (not shown).  

Then, the climatic variables (i.e. P: Precipitation; TM: mean temperature, TX: max temperature and TN: min 

temperature) are retained on all available grid cells within the areas of interest (LOM and TOS). Subsequently, the 

consortium territory is cropped using the respective shape files of FRA and MON. Finally, the spatial average is 

calculated by weighing the contribution of each grid cell according to the percentage of the cell falling within the 205 

consortium territory. The shape file of the FRA consortium's territory is provided directly by the consortium’s 

technical office, while the shape file for MON is created by selecting the municipality listed in the appellation 

regulation for the relevant denominations (i.e., Montepulciano municipality). The same methodology is used to 

calculate the bioclimatic indices.  

The precipitation and temperature time series of the climate simulations are analysed against the observational datasets 210 

to evaluate the biases in the climatic conditions in the region of interest, prior to examine the bioclimatic indices. In 
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particular, the CPM performance is evaluated for the common period 2000-2018 against both SPHERA and E-OBS 

and compared to the RCM. In this study, the new SPHERA reanalysis product is used as a reference dataset together 

with the E-OBS dataset, which is already widely used for model validation (Kyselý and Plavcová, 2010). SPHERA 

and E-OBS time series together provide a range within which the CPM and the RCM time series are expected to fall, 215 

similar to a ‘confidence interval’.  

The comparison between SPHERA (E-OBS) and CPM, as well as SPHERA (E-OBS) and RCM, is carried out by 

computing the Spearman correlation and RSME, the percentage differences of RMSE with the mean of the reference 

(SPHERA and E-OBS) (RMSE%) is also indicated for the cumulable variables (i.e. BEDD, HI, WI,GSP, SprR and 

precipitation). This allows to analyse whether the variability of SPHERA and E-OBS data is reproduced by CPM and 220 

RCM simulations and asses the biases between model simulations and both reanalysis and observations. Statistical 

significance of the differences between model simulations and both reanalysis and observations is assessed by a 

Welch’s two-tailed t-test, with a 95% level of confidence.  

Finally, a trend analysis for both the climatic variables and the bioclimatic indices is performed to assess the evolution 

of the climatic condition in FRA and MON in the period 2000-2018; the same analysis is also carried out for 225 

productivity data. The non-parametric Mann-Kendall test and the Sen's slope estimator are used to determine the 

presence and the magnitude of trends with a significance level of 95% (Hanif et al., 2022; Mann, 1945). The 

assessment of possible trends aims to investigate whether the long-term component of variability may be dominant 

over the interannual component. 

2.6 Single and multi-regression approach 230 

The Spearman correlation coefficient between each bioclimatic index and wine grape productivity is calculated for 

both consortia area and the threshold for statistical significance is set to 95%. This analysis aims at assessing the 

fraction of wine grape productivity variability explained by the bioclimatic indices and the ability of climate models 

to represent this relationship compared to the observational datasets.  

Furthermore, a multi-regressive (MR) approach is applied to determine whether a linear combination of indices can 235 

enhance the total productivity variability explained by the bioclimatic indices (Massano et al., 2023). The best subsets 

regression technique is used to establish the most suitable combination of indices. This approach seeks the predictor 

subset of bioclimatic indices that most accurately predicts the outcome variable, i.e. the productivity. It examines all 

feasible predictor combinations and removes irrelevant ones to streamline the model. The k-fold cross validation 

method is employed to identify the optimal model (Kassambara, 2017). This method performs cross-validation by 240 

randomly dividing the data into k subsets (k-fold) approximately of equal size, with k typically set to 5 or 10 (here k 

= 5 is used). One of the folds serves as test set and the remaining as training. This process is repeated k times, whereby 

varying groups of data are utilized as training or testing sets. Subsequently, the mean squared error is computed. The 

average of the mean squared errors of all iterations is the model prediction error (CV - cross validation error) (James 

et al., 2021; Kuhn and Johnson, 2013; Wassennan, 2004). The performance of the multi regressive model is assessed 245 
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by the adjusted R-squared coefficient of determination (AdjR2), while the p-value is used to determine statistical 

significance at 95% level. The so optimised multi-regression model is then used to predict the past productivity, which 

is compared to the observed productivity using the Pearson correlation. When the MR method provides statistically 

significant results, the variance explained by the MR model is compared with the maximum variance explained by SR 

to determine which method provides the best performances. 250 

3 Results 

3.1 Validation of the climate simulations 

The precipitation and temperature time series of both CPM and RCM are validated against the observational datasets 

to evaluate the biases in the climatic conditions of the consortia (FRA and MON), which could lead to biases in the 

bioclimatic indices. To this end, Figure A 2 for FRA, and Figure A 3 for MON, show the precipitation (P) and 255 

temperature (TM: mean temperature, TX: max temperature and TN: min temperature) time series of E-OBS, 

SPHERA, RCM and CPM for the common period 2000-2018. In MON, E-OBS minimum temperature time series 

shows a strong decrease of almost 2°C between 2015 and 2018 (Figure A 3), which is not observed in any of the other 

datasets. Further investigations highlighted that this temperature fall affects the entire TOS and is inconsistent with 

other observational records (not shown). This E-OBS misrepresentation of the temperature field affects 260 

consequentially the mean temperature time series (Figure A 3), the temporal correlations (Table A 2), and is likely to 

be reflected in the temperature-based indices. Previous studies have shown that E-OBS underestimates monthly and 

seasonal average temperatures when compared to stations observations (Liakopoulou and Mavromatis, 2023). In 

general, both RCM and CPM show high and significant temporal correlations with SPHERA for all the climate 

variables in both consortia (Table A 2), indicating that RCM and CPM reproduce the same variability of SPHERA, 265 

although the climate simulations tend to overestimate mean and maximum temperature while underestimating the 

minimum, as reflected by the statistical differences in mean values (Table A 3). In FRA the variability observed in E-

OBS is always reproduced also in RCM and CPM simulations. The Welch's t-test confirmed that E-OBS is closer in 

mean value to RCM than CPM simulations. Figure 2 and Figure 3 show the ten bioclimatic indices time series 

computed in the two consortia areas for E-OBS, SPHERA, RCM and CPM. All the bioclimatic indices show very 270 

high and significant temporal correlation between SPHERA and both RCM and CPM in both consortia (Table 2). 

Similar conclusion can be draw for the comparison of the climate models with E-OBS in FRA, while in MON four 

temperature-base indices (i.e. BEDD, WI, TnVeg, CNI) are not significantly correlated, likely due to the low 

correlations in medium and minimum temperature (Table A 2). The correlations, especially with SPHERA, tend to be 

slightly higher for the CPM than for the RCM for most indices, despite the higher RMSE in the CPM (Table 2). The 275 

strong correlation between SPHERA and climate simulations ( Table 2) indicates that RCM and CPM reproduce the 

same variability of SPHERA, despite the statistical differences in mean values (Table A 4). The same conclusion is 

valid also for the comparison of RCM and CPM to E-OBS. This analysis suggests both CPM and RCM could be a 

valid alternative to observational datasets to investigate the impact of climate on viticulture, despite the biases affecting 

the climate simulations. 280 
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Figure 2: Bioclimatic indices time series 2000-2018, averaged on the FRA consortium area.  
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Figure 3 Bioclimatic indices time series 2000-2018, averaged on the MON consortium area. 
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Table 2: Spearman correlation coefficient the root mean square error (RMSE) of the indices time series and the percentage 285 
differences of RMSE with the mean of the reference (SPHERA and E-OBS) (RMSE%) for the cumulative variables. Bold 

font and asterisk (*) indicate a statistically significant result (p>=0.05) 

FRA 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index ρ RMSE RMSE% ρ RMSE  RMSE% ρ RMSE  RMSE% ρ RMSE RMSE% Index 

BEDD 
(GDD) 

0.97* 26.62 1.8 0.96* 19.39 1.3 0.85* 37.29 2.5 0.91* 45.78 3 
BEDD 
(GDD) 

HI 
(GDD) 

0.98* 305.88 13.7 0.96* 308.59 13.8 0.88* 128.56 5.2 0.87* 117.36 4.7 
HI 

(GDD) 

WI 
(GDD) 

0.99* 264.91 14 0.98* 247.63 13.1 0.85* 209.55 10.7 0.85* 191.23 9.7 
WI 

(GDD) 

TmVeg 
(°C) 

0.99* 1.24 - 0.98* 1.14 - 0.85* 0.98 - 0.84* 0.87 - 
TmVeg 

(°C) 

TnVeg 
(°C) 

0.63* 1.4 - 0.95* 2.59 - 0.65* 1 - 0.72* 1.53 - 
TnVeg 

(°C) 

TxVeg 
(°C) 

0.81* 5.11 - 0.48* 4.42 - 0.52* 3.56 - 0.64* 2.77 - 
TxVeg 

(°C) 

CNI (°C) 0.95* 0.81 - 0.87* 1.24 - 0.85* 1.2 - 0.85* 0.91 - CNI (°C) 

TnRest 0.81* 0.76 - 0.85* 1.99 - 0.75* 2.14 - 0.8* 1.17 - TnRest 

GSP 
(mm) 

0.64* 295.39 37.6 0.74* 410.3 52.3 0.5* 204.67 59.9 0.55* 103.91 30.4 
GSP 

(mm) 

SprR 
(mm) 

0.91* 43.28 18.6 0.77* 65.38 28 0.68* 111.33 79.2 0.84* 57.54 40.9 
SprR 
(mm) 

MON 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index ρ RMSE  RMSE% ρ 
RMSE 
(°C) 

RMSE% ρ RMSE RMSE% ρ RMSE  RMSE% Index 

BEDD 
(GDD) 

0.92* 55.33 4 0.91* 51.04 3.7 0.35 96.32 6.4 0.43 96.27 6.4 
BEDD 
(GDD) 

HI 
(GDD) 

0.86* 232.29 9.9 0.94* 233.54 10 0.82* 151.35 6.3 0.72* 158.76 6.6 
HI 

(GDD) 

WI 
(GDD) 

0.93* 284.54 16.1 0.93* 284.39 16 0.45* 217.68 11.2 0.31 224.69 11.6 
WI 

(GDD) 

TmVeg 
(°C) 

0.93* 1.34 - 0.92* 1.34 - 0.42 1.02 - 0.31 1.05 - 
TmVeg 

(°C) 

TnVeg 
(°C) 

0.69* 0.94 - 0.77* 1.76 - 0.67* 1.36 - 0.62* 1.58 - 
TnVeg 

(°C) 

TxVeg 
(°C) 

0.75* 2.75 - 0.83* 2.52 - 0.86* 2.02 - 0.82* 1.84 - 
TxVeg 

(°C) 

CNI (°C) 0.97* 0.84 - 0.95* 0.58 - 0.49* 1.9 - 0.4 1.38 - CNI (°C) 

TnRest 0.9* 1.43 - 0.86* 1.09 - 0.8* 1.94 - 0.79* 1.58 - TnRest 

GSP 
(mm) 

0.48* 128.26 39.1 0.49* 106.85 32.6 0.71* 136.38 48.3 0.71* 45.89 16.2 
GSP 

(mm) 

SprR 
(mm) 

0.84* 60.96 49.9 0.82* 40.48 33.1 0.75* 68.15 60.7 0.81* 34.61 30.8 
SprR 
(mm) 

 

3.3 Bioclimatic indices control on wine grape productivity 

3.3.1 Single regression analysis  290 

A Spearman correlation analysis is performed to investigate the relation between the different bioclimatic indices and 

wine grape productivity and consequently determine the amount of total productivity variability (interannual and long-

term) explained by these indices.  
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In FRA, the correlation coefficients are similar between climate simulations, observations, and reanalysis for the 

temperature-based indices, while diverge and are not significant for the precipitation-based ones (Figure 4). Few cases 295 

are statistically significant: CNI with model simulations, SPHERA, and E-OBS; the BEDD index only when RCM 

and E-OBS are used. In these cases, the long-term component of the total variability may be dominant, since BEDD, 

CNI, as well as the FRA productivity, have significant trends (Table A 5). RCM presents a statistically significant 

outcome also for TnRest, which does not show trend over the period 2000-2018. In this case, the interannual variability 

might be more relevant to explain productivity. The statistically significant coefficients are all positive indicating a 300 

positive effect on productivity of BEDD, CNI and TnRest. 

In a previous study, conducted at regional scale using ISTAT productivity data and E-OBS (v26), Massano et al. 

(2023) did not find any statistically significant correlations for LOM neither with temperature-based nor precipitation-

based indices. This indicates that working at a local scale is crucial to improve the portion of productivity variance 

explained by the bioclimatic indices, while the use of CPM for FRA does not provide any advantage compared to the 305 

RCM. Productivity data show a significant positive trend in FRA (Table A 6) 

 

Figure 4: Spearman correlations coefficients between bioclimatic indices and wine grape productivity in FRA. Full coloured 

circles indicate significant correlations (p<=0.05). 

In MON, the correlations between productivity and bioclimatic indices are similar across all the datasets for BEDD, 310 

HI, WI and TmVeg but show greater variation for all other temperature-based and the precipitation-based indices 

(Figure 5). Significant results are found for TnVeg, only using CPM, and for TxVeg in all datasets. We highlight that 

TxVeg displays a negative correlation, indicating that extreme temperatures during the growing period have a negative 

impact on production. This aligns with wine makers expectations and is partially supported by results from FRA 

(Figure 4), despite not being statistically significant. Both TnVeg and TxVeg indices show a significant positive trend 315 
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(Table A 7), which suggests productivity being more sensitive to the long-term component of variability, at least for 

CPM. Productivity data do not show any trend in MON (Table A 8). 

Only the CPM simulation shows significant correlation for the precipitation-based index GSP. This could be linked 

to the more realistic representation of the precipitation field (Prein et al., 2015), although positive correlations with 

GSP are not expected, as an excessively wet season is usually detrimental to production. Thus, it is possible that other 320 

factors influence this correlation, such as specific viticultural practices or vintage management (Priori et al., 2019). 

For example, harvesting immediately after rainfall may result in the collection of larger grapes, thus increasing the 

productivity. Additionally, specific trimming techniques can improve ventilation between the branches, reducing the 

risk of mould and fungus, and thus limiting the negative impact of precipitation on the harvest (Evers et al., 2010).  

The MON case shows improvements compared to the analysis done with ISTAT data by Massano et al. (2023). In 325 

their analysis, TOS did not show any correlation between wine grape productivity and any bioclimatic indices, despite 

considering a longer time series. Being FRA and MON productivity data from the same population as the ISTAT 

productivity data (Table A 1 and Figure A 1), these results confirm that the use of the local scale and including a larger 

variety of bioclimatic indices can enhance the portion of productivity variability explained by the bioclimatic indices 

considered. 330 

 

Figure 5: Spearman correlations between bioclimatic indices and wine grape productivity in MON. Full coloured circles 

indicate significant correlations (p<=0.05). 
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3.3.2 Multi-regression analysis 

A multi regression (MR) analysis is carried out and compared with the single regression (SR) approach to see if 335 

considering a linear combination of bioclimatic indices increases the proportion of productivity variability explained 

by the indices. 

Table 3 shows the results of the MR model, highlighting the selected bioclimatic indices and the variance explained 

in comparison with the SR method, for each case in both FRA and MON. The authors highlight that, even when the 

MR selects just one index, this can differ from the single regression due to the correlation method chosen. The MR 340 

confirms that the temperature-based bioclimatic indices are more relevant than precipitation-based ones in explaining 

productivity variability, especially in FRA, where only for RCM the GSP is selected as a predictor. In MON, 

precipitation-based indices are selected as predictors in the MR model when using the CPM simulation and SPHERA 

reanalysis, confirming the relative higher importance of precipitation on productivity in this area compared to FRA. 

Thus, for MON, the improved representation of the precipitation field at convection-permitting scale could be a 345 

relevant factor, since in the other cases precipitation-based indices are excluded by the MR.  

 

Table 3: Donuts chart indicating, for E-OBS, SPHERA, CPM and RCM, the best-performing index for the single regression 

(SR) and the indices included in the multi-regression model (MR), as well as the percentage of variance explained by each 

model (centre of the donut), in FRA and MON. Orange (blue) colour indicates temperature-based (precipitation-based) 350 
indices. The MR Adjusted R2 is expressed in the MR Adj R2 column. 

FRA MON 

Data SR MR 
MR 

AdjR2 
Data SR MR 

MR 

AdjR2 

E-OBS 

 

0.31 E-OBS 

 

0.28 

SPHER

A 

 

0.43 SPHERA 

 

0.31 

CPM 

 

0.42 CPM 

 

0.34 
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RCM 

 

0.57 RCM 

 

0.25 

 

The overview on the performance of the single-regression method (SR) and the multi-regression method (MR) is 

presented in Figure 6, showing that using a linear combination of bioclimatic indices increases the proportion of 

explained total productivity variability, especially for FRA. 355 

Overall, the bioclimatic indices explain a higher proportion of productivity variance in FRA compared to MON (Figure 

6a and Table A 9), in line with previous findings at regional level for LOM and TOS  (Massano et al., 2023). The 

highest proportion of explained variance in productivity is obtained in FRA with the MR approach and RCM data 

(64%), followed by SPHERA (56%) and CPM (48%). The variance explained in MON is lower, with a maximum of 

45% obtained for CPM and the MR approach, very close to SPHERA with MR (42%) and to E-OBS with SR (44%). 360 

The maximum variance in productivity explained by the SR is compared with the MR variance (Figure 6b), 

demonstrating that the MR better represents productivity variability in FRA in all cases except E-OBS, which shows 

a slight decrease in performance (-7%). Meanwhile, SPHERA gains 20%, CPM 14% and RCM 29% when MR is 

compared to SR. In MON, MR provides a better explanation for productivity variance in SPHERA reanalysis and 

CPM simulation, accounting for an increase of 11% and 21% respectively. However, for the E-OBS dataset and RCM 365 

simulation, MR performance decreases slightly (-12% and -3% respectively).  

 

a)

 

b)

 

Figure 6: a) The maximum fraction of the wine grape productivity variance (%) explained by SR and MR in each 

consortium, colours indicate the type of climatic data used, squared (triangular) shape indicates multi regressive (single 

regressive) approach. b) Variance differences in percentage between MR and SR for FRA and MON. 370 

4 Discussion and conclusion 

The study assesses the potential of a CPM to investigate the impact of climate variability on wine grape productivity 

at a local scale, using bioclimatic indices for the period 2000-2018. The CPM simulation is compared with RCM 
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simulation, SPHERA reanalysis, and E-OBS observations. The study uses wine grape productivity data from two 

Italian wine consortia, namely 'Consorzio per la tutela del Franciacorta' (FRA) and 'Consorzio Del Vino Nobile di 375 

Montepulciano' (MON). Single and multiple regression approaches are used to account for the possible interplay of 

bioclimatic indices in explaining wine grape productivity variability.  

Overall, the single regression exhibits high correlation coefficients, but statistically significant results are only found 

in a small number of cases at the 95% confidence level. The multi-regression method consistently enhances the 

productivity variability explained by the bioclimatic indices and delivers predictors with potential for usability. 380 

In FRA, the correlation coefficients are exclusively positive, but statistically significant only for temperature-based 

indices such as BEDD, CNI, and TnRest. There is a high degree of agreement between CPM and SPHERA reanalysis, 

but E-OBS and RCM presents the highest correlation. Correlations with precipitation-based indices in FRA are not 

significant and tend to show negative relationships with productivity. These findings suggest that temperature is the 

main factor affecting production, while precipitation has a negative impact on productivity, potentially resulting in 385 

losses due to fungal diseases in the region. 

The MON results indicate that only CPM provides statistically significant results for a precipitation-based index 

(GSP), which is positively correlated with productivity. Also, SPHERA, RCM and E-OBS in this region show positive 

correlations between precipitation-based indices and productivity, even if they are not significant. This differs from 

the findings for FRA, where the correlations are negative, even if not significant. However, it is worth noting that 390 

there are many differences in the geographical features and types of wine produced in FRA and MON. FRA is in the 

humid subtropical climatic zone, while MON is situated in the hot summer Mediterranean zone. Other factors, such 

as vintage management techniques and cultivar selection, can also influence productivity variability in addition to 

climate, but investigation of these factors is beyond the scope of this paper. Meanwhile, the productivity for both FRA 

and MON exhibits a negative correlation with TxVeg with all the climatic data considered, but it is only significant 395 

for MON. This suggests that extreme maximum temperatures during the vegetative season (1st April - 30th October) 

may have harmful effects.  

These results, which are obtained at a local scale using data from consortia, complement the previous study conducted 

at regional scale by Massano et al. (2023). The climate models appear to be a useful tool to explain productivity 

variance using a MR approach, improving the results compared to the E-OBS. However, the use of the CPM does not 400 

show a clear added value compared to the RCM since it performs better in MON, but not in FRA. This could be link 

to the fact that temperature is generally the main driver of wine grape production, and the added value of the CPM 

may be more evident when precipitation is a dominant factor. 

However, the analysis presented here pave the path to the use of climate models to investigate the impact of climate 

change on wine production in the future. In this context, CPMs can provide new climate information, such as hail risk, 405 

which is a convections-related phenomenon that impact grape productivity. Moreover, this work shows an application 

of the bioclimatic indices to wine grape productivity that is rarely used. 
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Appendix A 

 685 

Figure A 1: Boxplot of the regional productivity (cyan) and consortia productivity (green). The series of LOM and TOS 

come from ISTAT database and cover the period 1980-2019, whit a six-year gap between 2000-2005, the period available 

for FRA is 1997-2019 (calculated by aggregating the Franciacorta DOCG and Curtefranca DOC denominations) and for 

MON is 1989-2019 (calculated by aggregating the Vino Nobile and Rosso di Montepulciano denominations), with no gap in 

the series. 690 

Table A 1: results of Welch's t test (t.stat), the reference value for t.stat (t.tab), the degrees of freedom (DoF) for the t test 

based on the number of observations computed according to the Welch’s equation for effective degrees of freedom (Welch, 

1947) and temporal correlation between regional ad consortia productivity data. The * symbol indicates statistically 

significant results (p<=0.05). 

Consortium t.stat t.tab DoF Cor.Coef. 

FRA 1.17 2.01 47.94 0.62* 

MON 0.1 2 63.99 0.55* 

 695 
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Figure A 2: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and precipitation (P) 

over FRA area for the period 2000-2018. All the time series are based on data remapped on E-OBS grid (~ 11 km).  
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Figure A 3: Time series of mean (TM), maximum Temperature (TX), minimum (TN) temperature and precipitation (P) 700 
over MON area for the period 2000-2018. All the time series are based on data remapped on E-OBS grid (~ 11 km).  

Table A 2: Spearman correlation coefficient (ρ) , the root mean squared error (RMSE) between SPHERA (E-OBS) and 

CPM, as well as  SPHERA (E-OBS) and RCM time series and the percentage differences of RMSE with the mean of the 

reference (SPHERA and E-OBS) (RMSE%).  in the FRA and MON area. 

FRA 

 TM TX TN P 

 ρ RMSE (°C) ρ RMSE (°C) ρ RMSE (°C) ρ RMSE (mm) RMSE% 

SPHERA CPM  0.95* 0.78 0.94* 1.54 0.96* 0.39 0.84* 233.52 18.2 

SPHERA vs RCM 0.95* 0.38 0.96* 1.73 0.91* 1.37 0.73* 415.05 32.4 

E-OBS vs CPM 0.76* 0.64 0.78* 0.6 0.55* 0.78 0.76* 435.99 62.4 

E-OBS vs RCM 0.85* 0.37 0.82* 0.43 0.58* 0.61 0.77* 266.65 38.2 

MON 

 TM TX TN P 

 ρ RSME (°C) ρ RSME (°C) ρ RSME (°C) ρ RSME (mm) RMSE% 

SPHERA CPM  0.79* 1.06 0.81* 1.15 0.78* 0.58 0.78* 196.26 27.9 

SPHERA vs RCM 0.86* 0.91 0.92* 1.66 0.77* 0.77 0.78* 133.12 18.9 

E-OBS vs CPM 0.16 0.79 0.65* 0.85 -0.08 1.39 0.86* 177.98 26.2 

E-OBS vs RCM 0.06 0.83 0.52* 0.57 0.04 0.94 0.8* 128.03 18.8 
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Table A 3: Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and RCM time series in 

the FRA and MON.  For each variable (TM, TX, TN and P) the test statistics (t.stat), the t tabulated or critic (t.tab) for a 

95% confidence interval and the degree of freedom (Dof) computed using Welch’s formula are reported. Bold font and an 

asterisk (*) indicate the p-value <= 0.05, i.e. the rejection of the null hypothesis (h0) and a statistically significant difference 

between the mean value of the series. 710 

FRA 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

4.16* 2.03 35.2 6.7* 2.03 34.25 -2.31* 2.03 35.96 -2.07* 2.03 35.85 

SPHERA vs 

RCM 

1.8 2.03 34.77 7.77* 2.03 34.83 -8.26* 2.03 35.59 -4.48* 2.03 35.47 

E-OBS vs CPM 2.98* 2.03 33.1 -1.54 2.03 35.76 3.84* 2.03 36 4.93* 2.04 29.22 

E-OBS vs RCM 0.5 2.04 32.45 -0.75 2.03 35.95 -2.24* 2.03 35.83 2.91* 2.04 32.58 

MON 

 TM TX TN P 

 t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof 

SPHERA vs 

CPM  

6.45* 2.03 35.57 5.24* 2.03 35.97 3.38* 2.04 32.37 2.33* 2.03 35.69 

SPHERA vs 

RCM 

5.72* 2.03 35.03 8.15* 2.03 35.83 -4.8* 2.04 32.12 1.3 2.03 35.91 

E-OBS vs CPM -0.24 2.04 30.12 -3.29* 2.03 35.99 4.89* 2.06 24.89 2.37* 2.03 35.57 

E-OBS vs RCM -0.95 2.04 29.09 -0.81 2.03 35.76 -0.87 2.06 24.71 1.34 2.03 35.96 

Table A 4: Welch’s t-test between SPHERA (E-OBS) and CPM, as well as the SPHERA (E-OBS) and RCM time series in 

the FRA and MON.  For each bioclimatic index the test statistics (t.stat), the t tabulated or critic (t.tab) for a 95% confidence 

interval and the degree of freedom (Dof) computed using Welch’s formula are reported. Bold font and an asterisk (*) 

indicate a p-value  <= 0.05, i.e. the rejection of the null hypothesis (h0) and a statistically significant difference between the 

mean value of the series. 715 

FRA 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof Index 

BEDD 
(GDD) -0.92 2.03 35.97 -0.17 2.03 35.97 0.67 2.03 35.36 1.47 2.03 35.35 

BEDD 
(GDD) 

HI (GDD) 
-

4.50* 2.04 32.50 -4.71* 2.03 33.34 -0.88 2.04 32.14 -0.96 2.03 33.01 HI (GDD) 

WI (GDD) 
-

4.48* 2.04 32.68 -4.13* 2.04 32.65 -3.25* 2.04 30.29 -2.89* 2.04 30.26 WI (GDD) 

TmVeg 
(°C) 

-

4.59* 2.04 32.60 -4.17* 2.04 32.59 -3.28* 2.04 30.54 -2.85* 2.04 30.53 

TmVeg 
(°C) 

TnVeg (°C) 2.86* 2.03 32.92 5.35* 2.03 35.87 -0.16 2.04 30.41 2.42* 2.03 34.63 TnVeg (°C) 

TxVeg (°C) 
-

8.32* 2.03 32.82 -8.62* 2.03 35.95 -5.47* 2.04 30.10 -5.30* 2.03 34.76 TxVeg (°C) 

CNI (°C) 0.99 2.03 33.37 2.29* 2.03 35.16 -1.22 2.03 33.70 -0.11 2.03 35.37 CNI (°C) 

TnRest -0.23 2.03 35.51 2.69* 2.03 35.40 -2.53* 2.03 35.77 0.15 2.03 35.84 TnRest 

GSP (mm) 5.55* 2.03 35.93 8.76* 2.03 33.94 -4.23* 2.04 32.17 -1.48 2.03 35.20 GSP (mm) 

SprR 

(mm) -0.03 2.03 36.00 1.92 2.03 35.18 -3.80* 2.04 31.84 -1.86 2.03 34.38 

SprR 

(mm) 

MON 

 SPHERA vs CPM SPHERA vs RCM E-OBS vs CPM E-OBS vs RCM  

Index t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof t.stat t.tab Dof Index 

BEDD - 2.03 35.88 -2.13* 2.03 35.84 1.91 2.03 34.16 2.04* 2.03 34.04 BEDD 
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(GDD) 2.25* (GDD) 

HI (GDD) 
-

3.31* 2.03 34.11 -3.71* 2.03 35.41 -1.37 2.03 33.35 -1.65 2.03 34.90 HI (GDD) 

WI (GDD) 
-

5.21* 2.03 34.38 -5.66* 2.03 35.53 -2.14* 2.03 36.00 -2.37* 2.03 35.56 WI (GDD) 

TmVeg 
(°C) 

-

5.38* 2.03 34.59 -5.79* 2.03 35.61 -2.06* 2.03 35.96 -2.24* 2.03 35.38 

TmVeg 
(°C) 

TnVeg (°C) -0.54 2.03 35.91 2.90* 2.03 35.78 -1.35 2.03 33.90 1.70 2.03 33.44 TnVeg (°C) 

TxVeg (°C) 
-

5.43* 2.03 35.98 -5.36* 2.03 35.06 -3.74* 2.03 35.86 -3.57* 2.03 34.60 TxVeg (°C) 

CNI (°C) -1.61 2.03 33.38 0.98 2.03 34.58 -3.31* 2.03 34.96 -0.92 2.03 35.70 CNI (°C) 

TnRest 
-

2.27* 2.03 35.17 -0.82 2.03 34.45 -2.35* 2.03 33.56 -1.01 2.04 32.57 TnRest 

GSP (mm) -1.05 2.04 31.29 2.46* 2.03 35.02 -3.06* 2.05 26.93 -0.04 2.03 35.74 GSP (mm) 

SprR 

(mm) 
-

2.44* 2.05 27.64 -0.44 2.04 31.33 -2.75* 2.04 32.09 -0.95 2.03 35.18 

SprR 

(mm) 
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Table A 5: Sen's slope FRA, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

 FRA 
TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS 0.05* 0.05 0.06* -5.91 4.59* 14.96* 11.67 0.06* 0 0.1 0.09 0.03 -4.77 -1.33 

SPHERA 0.04 0.03 0.04* 12.89 4.5 9.25 6.65 0.04 0.02 0.05 0.1 0.02 13.32* 4.57* 

CPM 0.04 0.03 0.04 6.54 3.35 13.34 12.61 0.06 0.01 0.12 0.13* 0.05 -1.31 0.7 

RCM 0.05* 0.04 0.04* -2.14 4.19 11.51 11.94 0.06 0.05* 0.12* 0.12 0.07 -2.41 -0.15 

Table A 6: Sen's slope productivity FRA bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

FRA 

Productivity 

(q/ha)/yr 

slope 1.28* 
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Table A 7: Sen's slope MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 720 

MON TM 

(°C/yr) 

TX 

(°C/yr) 

TN 

(°C/yr) 

P 

(mm/yr) 

BEDD 

(GDD/yr) 

HI 

(GDD/yr) 

WI 

(GDD/yr) 

TmVeg 

(°C/yr) 

TnVeg 

(°C/yr) 

TxVeg 

(°C/yr) 

CNI 

(°C/yr) 

TnRest 

(°C/yr) 

GSP 

(mm/yr) 

SprR 

(mm/yr) 

E-OBS -0.07* 0.04 -0.11* 8.64 -7.89* 1.23 -17.42* -0.08* -0.09 0.07 -0.07 0.03 4.38 0.07 

SPHERA 0.03 0.01 0.03* 19.47* 2.94 5.05 7.22 0.03 0.1* -0.08* 0.12* 0 10.36* 0.99 

CPM 0.03 0.02 0.03* 5.28 2.42 6.84 3.68 0.02 0.05* 0.05* 0.15 0 0.74 1 

RCM 0.04 0.03 0.03* 6.28 1.2 10.5 9.31 0.04 0.06* 0.01 0.11* 0.06 -0.08 0.34 

 

Table A 8: Sen's slope productivity MON, bold font, and asterisk (*) indicate a significant trend (p<=0.05) 

MON 

Productivity 

(q/ha)/yr 

slope 0.43 
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Table A 9: ranking of the maximum variance (%) explained for each dataset for each consortium, with the indication of type of 

method used (SR: single regression, MR multi-regression.) 725 

 

FRA MON 

Model var.value % type Model var.value % type 

RCM 64 % MR CPM 45 % MR 

SPHERA 56 % MR E-OBS 44 % SR 

CPM 48 % MR SPHERA 42 % MR 

E-OBS 42 % SR CPM 34 % SR 

SPHERA 36 % SR RCM 32 % SR 

E-OBS 35 % MR E-OBS 32 % MR 

RCM 35 % SR RCM 29 % MR 

CPM 34 % SR SPHERA 21 % SR 
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