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Abstract.

The Swedish Meteorology and Hydrology Institute (SMHI) provides a national aggregated climate indicator from 1860 to

present. We present a new method to compute the national climate indicator based on Empirical Orthogonal Functions (EOF).

EOF are computed during the 1961 – 2018 calibration period, and later applied to the full experiment period 1860–2020. This

study focuses the climate indicator for precipitation; it follows the same methodology as for the national climate indicator for5

temperature, described in the companion article (Sturm, 2024a).

The new method delivers results in good overall agreement with the reference method (i.e. arithmetic mean from selected

stations in the reference network). Discrepancies are found prior to 1900, primarily related to the reduced number of active

stations: the robustness of the indicator estimation is assessed by an ensemble computation with added random noise, which

confirms that the ensemble spread increases significantly prior to 1880.10

The present study establishes that the 10-year running averaged precipitation indicator rose from −8.37 mm.month−1 in

1903 to 4.08 mm.month−1 in 2010 (with respect to the mean value of 54.18 mm.month−1 for the 1961–2018 calibration

period), i.e. a 27% increase over a century. Winter (DJF) precipitation rose by +20 mm.month−1 between 1890–2010, summer

precipitation by +25 mm.month−1 .

The leading EOF patterns illustrate the spatial modes of variability for climate variability. For precipitation, the first EOF15

pattern displays more pronounced regional features (maximum over the West coast), which is completed by a north-south

seesaw pattern for the second EOF. We illustrate that EOF patterns calculated from observation data reproduce the major

features of EOF calculated from GridClim, a gridded dataset over Sweden, for annual and seasonal averages. The leading EOF

patterns vary significantly for seasonal averages (DJF, MAM, JJA, SON) for precipitation.

Finally, future developments of the EOF-method are discussed for calculating regional aggregated climate indicators, their20

relationship to synoptic circulation patterns and the benefits of homogenisation of observation series.

The EOF-based method to compute a spatially aggregated indicator for temperature is presented in a companion article

(Sturm, 2024a), which includes a detailed description of the datasets and methods used in this study

. The code and data for this study is available on Zenodo (Sturm, 2024b).
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1 Introduction25

The latest IPCC – Physical science basis report (Masson-Delmotte et al., 2021; Gulev et al., 2021)) emphasises the importance

of instrumental climate records: they provide an unequivocal proof of the ongoing climate change. At a national level, a

spatially aggregated climate indicator illustrates the climate variability: it is a relevant tool for researchers, decision-makers

and the general public.

Establishing a national climate indicator (hereafter referred to as CI) requires a numerical methods that aggregate time-series30

from individual observation stations over larger area into a single time-series. The goal of the present method is to compute a

bias-free estimator, despite the fact that data availability (i.e. station activity) varies over time. In other words, the challenge is

to define a uniform method, whose results for the early part of part of the record (with only few active observation stations, not

necessarily spread uniformly over the territory) will be consistent with later results (with numerous, evenly spaced stations).

Defining a climate indicator for precipitation is more challenging than for temperature, as presented in Sturm (2024a). First,35

the de-correlation distance (i.e. the distance between to stations where observations are no longer significantly correlated) is

significantly smaller for precipitation than temperature. This requires thus a higher station density to account for the spatial

heterogeneities. Second, the geographical patterns for the departure from climatology of annual and seasonal precipitation

means display larger regional differences than for temperature. Therefore, the national climate indicator for precipitation is

likely to be more sensitive to the station locations (i.e. the evolution of the station network) than for temperature.40

The Swedish Meteorology and Hydrology Institute (SMHI) has collected and compiled quality-ensured observations of

precipitation across Sweden since the eighteenth century: in the current study, we present a total of 2115 time-series for

precipitation over the 1860–2020 period from observation stations across Sweden. The new method, described extensively in

Sturm (2024a), uses a gridded climate dataset (GRIDCLIM (Andersson et al., 2021)), available over 1961–2018, to replace

missing observation values . The (now complete) calibration dataset of observations are analysed with Empirical Orthogonal45

Functions (EOF).

The analysis of the EOF patterns for annual and seasonal means reveal new insights into the characteristics of precipitation

over Sweden. Leading EOF patterns computed from the full GRIDCLIM gridded dataset illustrate the behaviour of poorly

sampled areas, e.g. in remote, high-elevation areas. In order words, this study evaluates the representativeness of the MORA

observation network for the entire Swedish territory.50

In order to test the robustness of the new climate indicator, we blend random noise and random sub-sampling from the

original station observations: this ensemble computation allows to define the 25% and 75% percentiles (in other words, the

range between which 50% of all ensemble computations are found).

Finally, we discuss the discrepancies between the new EOF-based method and the original SMHI method, using an arithmetic

mean of observations from the reference station network.55

2 Data and methods

We refer to the companion article (Sturm, 2024a) for detailed description of the datasets used in this study

2

https://doi.org/10.5194/egusphere-2024-940
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



. The most important aspects are listed hereafter.

Two datasets are used in this study: SMHI’s database for station observations over 1860–2020 called SMHI-MORA, and

the gridded dataset SMHI-GridClim (Andersson et al., 2021) produced as a combination of SMHI-MORA observations with60

UERRA regional reanalysis over the 1961–2018 period. The datasets SMHI-MORA and SMHI-GridClim will hereafter be

referred to as MORA and GRIDCLIM.

The method currently used to compute the national climate indicator for precipitation is based on an arithmetic average

of available observations: we recall the reference method, along with its underlying equations. We then introduce the new

method based on empirical orthogonal functions (EOF), computed over the 1961–2018 period for which UERRA reanalysis is65

available. Leading EOF patterns established over the 1961–2018 period are used to reconstruct the climate indicator over the

MORA period 1860–2020.

We finally describe a method to evaluate the robustness of various climate indicator estimators: the span of estimator reali-

sations is computing by adding normally-distributed noise and restricting the computation to a subset of MORA stations.

2.1 Observational data sets70

2.1.1 MORA observation station network

The MORA 1 database centralises meteorological and hydrological observations in Sweden. Each station in MORA is identified

with a unique numeric ID, station name, geographic coordinates (longitude, latitude, altitude) as meta-data. If a station is

relocated (e.g. if increasing nearby urbanisation leads to the station no longer), a new station ID is created; after a few years

overlap, the old station is usually closed. The MORA thus contains many missing values, as illustrated in Fig. (1). Table (1)75

summarises the maximum number of simultaneously active stations –which occurs in the early 1960’s– amounts to 46.5% for

precipitation of the total number of stations in the network.

The lower plot in Fig. (1) indicate the median latitude (as thick red line) and [25%; 75%] percentiles (in thin dashed red

lines) of active stations over time. The median latitude is used in the present study as a proxy for the progressive extension of

the observation network, in particular the increased station density in Sweden’s northern regions over 1860–2020. It is worth80

noticing that the relative decrease of active observations in MORA since 1960 proportionally favoured observation stations in

northern parts of Sweden.

Historical observations are continuously added to the MORA database, with ongoing digitalisation of historic observation

reports (from printed records). Newly rescued observations are quality-controlled, but currently not (yet) homogenised: hence

possible biases related to changes in measure instruments or modifications in the station’s environment are not corrected.85

The present study considers annually resolved observations, representing the annual average (hereafter referred to as ANN),

or seasonal averages 2 (winter – DJF, spring – MAM, summer – JJA and autumn – SON).

1The MORA acronym stands for "Meteorologiska observationer för realtid och arkiv", meaning "Meteorological observations for real-time and archive".
2In season’s acronyms, the capital letter represents the first letter of the month (e.g. DJF: December–January–February).

3

https://doi.org/10.5194/egusphere-2024-940
Preprint. Discussion started: 25 April 2024
c© Author(s) 2024. CC BY 4.0 License.



1860 1880 1900 1920 1940 1960 1980 2000 2020
0

200

400

600

800

Years

p
r-

A
N

N
: N

um
b

er
 o

f a
ct

iv
e 

st
at

io
ns

.

1860 1880 1900 1920 1940 1960 1980 2000 2020

58

59

60

61

62

63

Years

M
ea

n 
L

at
.

Figure 1. Upper plot: Number of active temperature stations in MORA over time (as bars). The dark grey line represents the number of active

in the original reference station network; they light grey line represents the number of stations for the calibration network (i.e. individual

stations being active at least 15 years during the calibration period 1961–2018, as highlighted by the dashed box). Lower plot: Median

latitude for active stations in the calibration dataset over time (incl. the [25%–75%] bounds). The median latitude is used as a proxy for the

distribution of the observation network.

Observations in the MORA database extend to the mid-18th century for selected stations, e.g. Uppsala since 1722 (Bergström

and Moberg, 2002), Stockholm since 1756 (Moberg and Bergström, 1997) or Lund since 1780 (Bärring et al., 1999). In the

present study, we select 1860 as initial year for climate indicator, which corresponds to establishment of the first meteorological90

observation network by the Swedish Academy of Science (Svenska Vetenskapsakademin) in 1858–1860. For the present study,

we retrieved precipitation observations for all available stations over the 1860–2020 period, focusing on annually-resolved

climate indicators: annual (ANN) and seasonal (winter DJF: December–February, sprint MAM: March–May, summer JJA:

July–August, autumn SON: September–November) averages are calculated from monthly values, retrieved from the MORA

database, as arithmetic average, provided that no month was missing. The number of stations for precipitation measurements95

are indicated in Table (1), while the evolution of active stations is shown in Fig. (1). In Table (1), the fist column indicates

the number of stations in the MORA precipitation dataset. The rows Initial and Present-day show the number active stations

respectively at the start and the end of observation series. Additional rows GridClimstart and GridClimend indicate the number of

active stations during the 1961–2018 calibration period. The row Maximum indicates the year for which the number of active

stations was maximal, along with the corresponding number of active stations.100
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Dataset Period Yprec
max # Sta. Perc.

Complete Total 2115 100%

Initial 1860 26 1.2%

Maximum 1962 984 46.5%

Present-day 2020 660 31.2%

Calibration Total 1098 100%

Initial 1860 21 1.9%

GridClimstart 1961 632 57.6%

Maximum 1975 808 73.6%

GridClimend 2018 521 47.4%

Reference Total 87 100%

Initial 1860 13 14.9%

Maximum 1996 75 86.2%

Present-day 2020 55 63.22%

Table 1. Number of stations found in the MORA database. The upper third represents the Complete MORA dataset, the middle third the

Calibration sub-set, i.e. stations with at least 15 years coverage during 1961–2018, and the bottom third the Reference selected stations for

the original SMHI methodology. For each subset, "Total" indicates the number of stations active at least once during the 1860–2020 period;

"Initial" shows the number of stations active in 1860; "Maximum" the maximum of simultaneously active stations; "Present-day" the

number of stations currently active. The complete time-evolution of active stations can be found in figures Fig. (1).

2.1.2 GRIDCLIM gridded dataset

The GRIDCLIM project (Andersson et al., 2021), conducted at SMHI, combines the regional European reanalysis UERRA

(Schimanke and Service, 2019; Schimanke et al., 2019) with station observations to produce a uniform, bias-corrected gridded

climate dataset. Additional details on GRIDCLIM and underlying methodology are described in the companion article (Sturm,

2024a).105

The GRIDCLIM dataset (Andersson et al., 2021) covers the period 1961–2018, in accordance with the availability of the

UERRA reanalysis (Schimanke and Service, 2019; Schimanke et al., 2019). This is henceforth defined as the calibration period

(1961–2018). As for the MORA dataset described above, precipitation from the GRIDCLIMdataset is averaged to annually-

resolved annual (ANN) and seasonal (DJF, MAM, JJA, DJF) time-series.

In the following sections, GRIDCLIM dataset both as a gridded dataset covering Sweden, as well as emulations of the110

reference and larger MORA station networks. GridClim-all represents all 69842 grid-cells of the GRIDCLIM dataset covering

the Swedish territory (in its native EPSG:9001 Lambert Conic Conformal projection with 63◦ standard parallel, 2.5km x 2.5km

resolution), is used to compute the EOF and SVD output. GridClim-all, i.e. CI computed as arithmetic mean of precipitation
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over Sweden, is compared to SMHI-ref and other CI estimates. GridClim-sub is a subset of GridClim-all, whose grid-cells

correspond to MORA calibration station network. GridClim-sub is used for the gap-filling of MORA calibration dataset (1098115

for precipitation) prior to the EOF analysis. GridClim-ref is a subset of GridClim-all, with time-series taken from grid-cells

corresponding to the MORA reference network SMHI-ref (87 for precipitation).

2.2 Computing a national climate indicator

The theoretical assumptions and demonstration underlying the EOF method for the reconstruction of a spatially aggregated

climate indicator (CI) are described in detail in a companion article (Sturm, 2024a). We summarise hereafter the most important120

conclusions.

2.2.1 Emulating the operational SMHI method

SMHI provides climate indicators, including for precipitation, as part of its services for the community (Engström, 2022, 2023).

The original method to compute the climate indicator (CI) is the simplest way to synthesise multiple stations records as a

single time-series: it uses an arithmetic average, as presented in Eq. (1), where xista
(t) represents an individual (incomplete)125

observation time-series and nsta(t) is a function counting active stations over time. The method is described in further detail

in the online documentation (Engström, 2022, 2023). The reference observation network across the country consists of 87 for

precipitation, cf. Table (1). The location of reference stations is indicated as black crosses in Fig. (2). In the results section, this

dataset is referred to as SMHIRef.

CIori(t) =

nsta∑
ista=1

xista
(t)

nsta(t)

⇔ CIori(j) =

n∑
i=1

X(i, j)

n∑
i=1

(X(i, j) 6= NaN)

(1)130

In the present study, we emulate the original (arithmetic) method by extracting time-series from GRIDCLIM grid-cells in

which the 87 reference stations are located: this estimator for the calibration period 1961–2018 is referred to as GridClim-ref in

the result sections. Similarly, GridClim-sub consists of 1098 time-series (cf. Table (1)) extracted ad grid-points corresponding

to the MORA calibration network. The estimator for mean precipitation over the entire Swedish territory (for the 1961–2018

period) is based on the arithmetic mean of all 69,852 grid-cells, referred to as GridClim-all.135
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2.2.2 EOF decomposition of 2-dimensional [geographical, time] dataset

Prior to performing the EOF analysis over the calibration period 1961–2018, the observation dataset XMORA is gap-filled using

a linear regression of available observations versus the collocated, complete XGridClim time-series:

∀i ∈ [[1,nstations]],∀j ∈ [[1,nyears]],



XMORA(i, j) 6= NaN⇒ A(i, j) = 1

XMORA(i, j) = NaN⇒ A(i, j) = 0

Linear regression MORA vs GRIDCLIM:

∀i ∈ [[1,nstations]],∀j ∈ (A(i, :) = 1),

αi ·XGridClim(i, :) +βi + ε=XMORA(i, :)

Substitution of MORA missing values:

∀i ∈ [[1,nstations]],∀j ∈ (A(i, :) = 0),

XMORA(i, :) =αi ·XGridClim(i, :) +βi

Centering MORA around 1961–2018 mean:

Xc(i, :) =X(i, :)−X1961−2018(i, :)

(2)

Hence, the calibration sub-set of MORA stations is now complete over the 1961–2018 calibration period, with a zero mean140

over the 1961–2018 calibration period. Centering the dataset prior to applying the EOF analysis provides the advantage of

representing the spatial and temporal variability of the studied dataset (i.e. respective spatial patterns and time loadings) as

departures from zero.

The Empirical Orthogonal Functions (EOF) method, equivalent to Principal Component Analysis (PCA), aims at decom-

posing the spatio-temporal variability in the dataset Xc as a series of spatial patterns (hereafter referred to as spatial EOF145

patterns) EOF, associated to its time expansion coefficients A (Björnsson and Venegas, 1997; Benestad et al., 2023; Navarra

and Simoncini, 2010; Thomson and Emery, 2014; Wilks, 2011; Zhang and Moore, 2015).

Covariance matrix: R = XT
c ·Xc

Eigenvalue problem: EOF ·R = EOF ·Λ

⇔R = EOF ·Λ ·EOF−1

Time expansion coefficient: A = Xc ·EOF (3)

As a result, the original matrix Xc can be identically reconstructed based on its decomposition in spatial patterns (EOF)

and associated time expansion coefficients (A). Assuming that the original dataset Xc has n stations/grid-points, and m time150

steps (as columns), the number of unique modes in the present study is set to p= min(n,m), i.e. in practice the number of
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time steps.

Xc = A ·EOFT

⇔Xc =
p∑

i=1

−→
ai ·
−−−→
eofT i (4)

The EOF decomposition was applied over the 1961–2018 calibration period for the GRIDCLIM dataset, restricted to the

Swedish territory in Fig. (2). Analogue results of the EOF decomposition on the MORA calibration dataset for the 1961–2018155

period is shown in Fig. (3).

2.2.3 Estimating the climate indicator and related uncertainties

The formulation in Eq. (4) can be extended beyond the 1961-2018 calibration period, despite missing values found in the

longer 1860–2020 record. Hereafter, X? represents a matrix X with missing values, and Â the estimator of its time expansion

coefficients. In other words, Â is an approximation of the time expansion coefficient matrix A for the entire study period160

1860–2020 and full rank of Λ (i.e. p, in our case the number of years in the calibration period, cf. Eq. (3)). Additional details

on the methodology to compute the national climate indicator are described in the companion article (Sturm, 2024a).

Eq. (5) expresses the new method for estimating the gap-filled observation dataset, based on the EOF decomposition of the

MORA calibration subset XMORA,Cal
c .

Time expansion coefficients:

A'X?
c ·EOF

⇔ Â =
p∑

i=1

X?
c

i · eof i

⇒∀i ∈ [[1,p]]

âi(t) =
∑

xi
c(t) 6=NaN

xi
c(t) · eof i(t)

Dataset reconstruction:

X̂c

EOF
=Â ·EOF−1

(5)165

Since most of the variance is comprised in the leading modes (given that, by construction, eigenvalues in Λ are listed in

decreasing order), we chose to restrict the reconstruction of Â to the 10 leading modes (cf. Table Table (2)). Furthermore,

leading modes (eofMORA(#1− 3) as shown in Fig. (2)) display spatial patterns consistent with climate phenomenon, while

modes with lower eigenvalues mostly display numerical “noise” (i.e. patterns without obvious physical significance). Hence

restricting to the 10 leading modes (i.e. p= 10 in Eq. (5)) reduces the risk of spurious, physically inconsistent artefacts in170

Â
MORA

.
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Analogously to Eq. (1) defining CIori, the EOF-based climate indicator CIEOF can be expressed as:

∀j ∈ [[1,2020− 1860 + 1]], CIEOF (j) =

n∑
i=1

X̂c

EOF
(i, j)

n∑
i=1

(Xc(i, j) 6= NaN)
(6)

Compared to the original method in Eq. (1), the new methods has the advantage that available observations contribute to

the estimated indicator according to their “weight” in the 10 leading modes. Hence the EOF-based method (Eq. (6)) can be175

considered as a weighted, rather than arithmetic average of station data (Eq. (1)). Thus, it has the potential of being less sensitive

to changes in station coverage, as shown in Fig. (1).

In order to test the robustness of the climate indicator estimator, we perform an ensemble computation to assess the effect of

sub-sampling and added random noise.

∀k ∈ [[1,nens]], CIk
ens(j) =

∑
i∈(k-th random subset)

(
X̂c(i, j) + εk(i, j)

)

∑
i∈(k-th random subset)

(Xc(i, j) 6= NaN)
(7)180

Assuming that the daily observation errors are normally distributed around 0 (with a –conservative– estimate of measurement

uncertainty of εprec =±10mm.day−1 for precipitation), their corresponding error for monthly means are reduced by a factor
√

30 ·√nmonth, i.e. the average amount of daily measurements in a monthly mean. nmonth represents the number of monthly

records in the annually-resolved average: for annual means, nmonth = 12, for seasonal means, nmonth = 3. Hence the random

noise function ε is normally distributed, with a standard deviation of σprecipitation
ANN = 10√

30·√nmonth
= 0.53 mm.month−1 for annual185

mean precipitation and σprecipitation
seas = 1.05 mm.month−1 for seasonal means.

The second aspect to be assessed is the impact of sample size on the CI climate indicator estimate. A random subset of

stations within the calibration network, including three times as many stations as in the reference network were used to compute

the CI, with a new realisation of the random noise function ε. In other words, Table (1) indicates that the reference network

contains nRef = 87 for precipitation; the CI for each ensemble member is thus computed from n= 3×nRef randomly chosen190

stations within the calibration network.

The procedure above is repeated 100 times; the 25% and 75% percentiles are computed and presented as thin lines on Fig.

(8) for the centered CI, and Fig. (6) for the departure from the original SMHI-ref (∆CI). The same procedure was applied

to evaluate the 25% and 75% percentiles for GridClim-ref, albeit using 100 realisations with half (i.e. n= nRef

2 ) of available

stations in the reference network.195

3 Results

Following figures represent the leading EOF modes of annual precipitation from GRIDCLIM (Fig. (2)); annual precipitation

from MORA (Fig. (3). seasonal precipitation from GRIDCLIM Fig. (4).

Similarly, the SVD decomposition was performed for precipitation for the GRIDCLIM and MORA datasets. The EOF and

SVD patterns are virtually identical. Hence the corresponding figures are shown in the supplementary material.200
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Dataset Method λ(#1) λ(#2) λ(#3) Sum

P GRIDCLIM EOF 45.1% 17.9% 8.7% 71.8%

P MORA EOF 43.2% 12.4% 7.9% 63.5%

Table 2. Portion of explained variance λ for the leading three modes with the EOF analysis of GRIDCLIM and MORA over the 1961–2018

calibration period. The sum of the variance explained by the first 3 modes is indicated in the last column.

Table (2) indicates how much of the total variance is expressed in the leading three modes (as obtained from matrix Λ in Eq.

(3)).

3.1 EOF patterns for precipitation

By construction, plain (i.e. unrotated) spatial EOF patterns (without prior detrending) are expected to display a uni-modal

distribution in the first mode, a bi-modal distribution in the second, and a tri-modal in the third. This behaviour is clearly205

apparent in Fig. (2).

Fig. (3) represent the EOF patterns for the MORA dataset. The polygons represent the Delaunay triangulation of the MORA

stations in the calibration subset; it is worth noticing that, despite the area of the polygons vary (with a tendency to increase in

northern Sweden), each time-series has the same weight in the EOF method.

The uni-modal pattern for the first mode highlights regions with high precipitation: Sweden’s West coast (around Göteborg)210

and the North-Eastern Baltic coast (around Umeå). The bi-modal distribution of the second mode highlights the contrast

between Scandic mountain range at the boarder with Norway and the rest of low-lands. The leading EOF modes for GRIDCLIM

precipitation are shown in Fig. (2), and the corresponding results for MORA precipitation in Fig. (3).

3.1.1 Annual EOF patterns for precipitation

The spatially less homogeneous character of precipitation causes the leading modes to retain less of the total variance than215

for temperature. Table (2) shows that GRIDCLIM (Fig. (2)) retains a comparable portion of the total variance (λEOF
GridClim(#1) =

45.1%,
∑3

i=1λ
EOF
GridClim(i) = 71.8%) as MORA’s (Fig. (3)) leading modes (λEOF

MORA(#1) = 43.2%,
∑3

i=1λ
EOF
MORA(i) = 63.5%).

It is worth noticing that the leading 10 modes, on which the reconstruction is based, respectively explain
∑10

i=1λ
EOF
GridClim(i) =

88.4% and
∑10

i=1λ
EOF
MORA(i) = 80.4%: hence, even for precipitation, the portion of variance is deemed sufficient to reconstruct

X̂c for the purpose of calculating the climate indicator CI.220

The first mode for annual precipitation eofGridClim(#1) is characterised by two areas of increased precipitation (when the

time-expansion coefficients are positive): Sweden’s West coast (around Göteborg) and the North-Eastern Baltic coast (around

Umeå), extending to the mountain region around Kebnekaise. By contrast, South-Eastern Sweden (around Kalmar) and Central-

Eastern region (around Uppsala) tend to experience less precipitation increase than the country’s average.
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Figure 2. Leading three EOF patterns for GRIDCLIM, all grid-points covering Sweden, (eofGridClim(#1− 3)), with their associated time

expansion vectors (aGridClim
EOF (#1− 3)) for precipitation. The unit of the a(#1− 3) · eofT (#1− 3) product is mm/month.

It is interesting to notice that a small area in uttermost North-Western Sweden (from Abisko to Kvikkjokk) displays EOF225

values around 0. It indicates that the precipitation variability in this region, on the wind-side of the Sarek and Stora Sjöfallet

massifs, is decoupled from the dominant mode over mainland Sweden. The precipitation variability in this region, and the

Fennoscandian mountain range in general, is very pronounced in the following modes eofGridClim
ANN (#2) (for the entire mountain

range) and eofGridClim
ANN (#3) (for the Sarek region in particular).

Fig. (3) shows the three leading EOF for precipitation in MORA (using the station network used for the calibration dataset230

EOF-rec). The overall features observed in GRIDCLIM’s leading EOF modes are well reproduced, with comparable respec-

tive portion of explained variance (
∑
λ(#1− 3) = 63.5%, cf. Table (2)). In particular, the first EOF pattern eofMORA(#1)

illustrates a more intense precipitation increase over South-Western Sweden (Göteborg region) and North-East (Umeå). How-

ever, the second EOF pattern eofMORA(#2), λ= 13.11% fails to capture the precipitation variability over the Fennoscandian

mountain range bordering Norway, as stands out in eofGridClim(#2). The particular behaviour of the Sarek region (and high-235

altitude areas in general) only appear in eofMORA(#3), λ= 8.24%; in other words, the peculiarity of precipitation variability

of mountain region is partially captured with EOF on the MORA dataset, but with less distinctive character than using the full

GRIDCLIM dataset.
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Figure 3. Leading three EOF patterns for MORA (Calibration network) precipitation over Sweden (eofMORA(#1−3)), with their associated

time expansion vectors (aMORA
EOF (#1− 3)) for precipitation.

This result is not surprising: as the location of stations in the reference observation network (marked as black crosses in Fig.

(2)) indicate, high altitude regions are under-sampled compared to less remote, higher population density regions.240

3.1.2 Seasonal EOF patterns for precipitation

As discussed in the previous section, the dominant precipitation EOF modes calculated from the GRIDCLIM dataset (eofGridClim(#1−
3)) are similar to those computed from the calibration network in MORA (eofMORA(#1−3)), with the exception of high alti-

tude regions in the Fennoscandian mountain range bordering Norway. The same holds for seasonal results; hence we will focus

the discussion on the GRIDCLIM precipitation patterns (eofGridClim(#1− 3)).245

The seasonal EOF decomposition of precipitation in the GRIDCLIM dataset is shown in Fig. (4), with DJF (winter, upper

left panel), JJA (summer, upper right panel), MAM (spring, lower left panel) and SON (autumn, lower right panel).

The seasonal variability of precipitation displays large variations compared to the annnual EOF patterns (Fig. (2)). The

winter (DJF) variability exacerbates regions with higher precipitation increase (Sweden’s West coast around Göteborg and

North-Eastern coast around Umeå): if the time expansion coefficient is positive, these regions receive up to 3-times as much250

precipitation as most of mainland Sweden: the colour-bar indicates that the EOF value (red) exceeds 30 mm.month−1 , com-

pared to the median of 5 mm.month−1 , given that λGridClim
DJF (#1) = 50%.
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Figure 4. Leading three EOF seasonal patterns for GRIDCLIM precipitation over Sweden (eof(#1− 3), upper row), with their associated

time expansion vectors (a(#1− 3), lower row) for temperature. The unit for the product a(#1− 3) · eofT (#1− 3) is in mm.month−1 .

Black crosses indicate the location of MORA stations in the reference network.

On the contrary, the leading EOF for summer eofJJA(#1) and spring eofMAM(#1) show a much less pronounced ge-

ographical pattern: the South-East coast (around Kalmar, including the islands of Öland and Gotland) and Eastern midlands

(around Uppsala) appear as slightly drier than the average.255

Precipitation variability for autumn eofSON(#1) distinctively illustrates the decoupling of precipitation regimes over the

Fennoscandian mountain range bordering Norway (primarily captured in eofJJA(#2)), while increased precipitation is con-

centrated on the East coast (from Gävle to Umeå) and, to some extent, the South-West coast. This pattern is similar to

3.2 Reconstructing a national climate indicator

Several methods are evaluated to estimate the climate indicator (CI) over the 1961–2018 calibration period and the whole study260

period 1860–2020, as listed in Table (3). For each climate indicator (precipitation), the characteristics of the reference (used

for the SMHI reference method) and the calibration (used in the present EOF method) observation networks are listed in Table

(1), and illustrated in Fig. (1).

As a preliminary comment, the EOF (SVD) based CI estimates are generally very close to the SMHI reference indicator

SMHI-ref. In order to investigate the differences between CI estimates computed in the present study with SMHI-ref, we265

introduce ∆CI[Xc], the departure from SMHI-ref, defined in Eq. (8).
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Figure 5. Leading three EOF seasonal patterns for MORA precipitation over Sweden (eof(#1− 3), upper row), with their associated time

expansion vectors (a(#1− 3), lower row) for temperature. The unit for the product a(#1− 3) · eofT (#1− 3) is in ◦C. Black crosses

indicate the location of MORA stations in the reference network.

The definition of all CI methods, including their corresponding legend for figures in this section, are summarised in the

upper Table (3). The upper part of the table lists indicators that apply to the 1961–2018 calibration period, while CI described

in the lower part apply to the entire study period 1860–2020.



CIRef

ori = CIori[X?(Reference network)]

∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref

(8)270

The calibration period 1961–2018 presents the advantage of having a complete GRIDCLIM dataset, as well as comparing

gap-filled Xc and original X?
c MORA datasets. The present section evaluates the performance climate indicator (CI) estimates

with EOF (respectively SVD) methods. We also assess the representativity of the reference, calibration MORA station networks

for Sweden’s climate, compared to a CI computed over all grid-points in GRIDCLIM covering Sweden.

Following estimations of CI are available over the calibration period:275

– CISMHI-ref: current CI definition used by SMHI, calculated as the arithmetic mean of observations for selected MORA

observations (i.e. a sub-set of the MORA calibration network). CISMHI-ref is not calculated in the present study; only the

climate indicator is available, without access to the underlying station data (including station coupling, partial homogeni-

sation and correction). Therefore, the centered climate indicator, in this particular case, is obtained as: CIcentered
SMHI-ref =

CIabs
SMHI-ref− CIabs

SMHI-ref

∣∣∣
1961−2018

280
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Label Mathematical expression and Description Nb.

sta-

tions

Date

range

Co-

lour

GridClim-

ref

CIori[XGridClim
c (Referencenetwork)], arithmetic average for all GRIDCLIM

grid-points ∈ reference network

87 1961-

2018

black

GridClim-

sub

CIori[XGridClim
c (Calibrationnetwork)], arithmetic average for all GRIDCLIM

grid-points ∈ calibration network

1098 1961-

2018

yel-

low

GridClim-

all

CIori[XGridClim
c (GridpointsoverSweden)], arithmetic average for all GRIDCLIM

grid-points ∈ Sweden

69,842 1961-

2018

green

EOF-

cal

CIEOF [XMORA
c (CalibrationNetwork)], EOF-based method applied to the

gap-filled SMHI-MORA data for the calibration network

1098 1961-

2018

cyan

SMHI-

ref

CIori[X?(Referencenetwork)]−CIori|1961−2018, original SMHI indicator,

centered to its 1961–2018 mean, for MORA data in the reference network

87 1860-

2020

grey

EOF-

rec

CIEOF [X?MORA
c (CalibrationNetwork)], EOF-based method applied to the

SMHI-MORA data for the calibration network

1098 1860-

2020

red

Table 3. Description of the labels for Figures with corresponding label and colour. The number of stations for the reference and calibration

networks are indicated. The mathematical formalism follows the definitions in the text, where XMORA
c refer to the centered SMHI-MORA

dataset, and XGridClim
c refer to the gridded GRIDCLIM dataset.

– CIGridClim-ref: arithmetic average of time-series from the GRIDCLIM dataset for grid-points where reference stations are

located. CIGridClim-ref is primarily meant to assess effect of time-space averaging order. Unlike CISMHI-ref, the spatial

average is performed on centered station records CIcentered
GridClim-ref =

∑nsta

ista=1 XGridClim(indRef-Network, :)

nsta

– CI{Sub,All}-GridClim: arithmetic average of time-series from the GRIDCLIM dataset for grid-points where calibration sta-

tions are located (for CISub-GridClim), or all grid-points covering Sweden, as shown in e.g. Fig. (2) (for CIAll-GridClim).285

– CIEOF-cal: average over the EOF-reconstructed X̂EOF
MORA, according to Eq. (6).

The definition of CI over the 1961–2018 calibration period, including their corresponding legends for figures Fig. (8) and

following, are summarised in the upper Table (3).

3.2.1 Comparing SMHI-ref and GridClim-ref over 1961 – 2018

Before comparing GridClim-sub and GridClim-all with GridClim-ref, let us evaluate GridClim-ref versus SMHI-ref, opera-290

tionally used by SMHI. Other national weather and climate agencies use gridded dataset to compute a national climate indi-

cator, e.g. for the contiguous US Vose et al. (2014). The method to compute the GridClim-ref CI is similar, but not identical
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to the SMHI-ref CI. To be consistent with EOF estimates, the GridClim-ref is based on the longest single time-series in the

MORA dataset, rather than the coupled ’pseudo-station’ used in SMHI-ref (in which nearby stations are ’stiched together’ to

obtain longer continuous time-series, as explained in Joelsson et al. (2023). Furthermore, the centered climate indicator for295

GridClim-ref (and all other CI computed in the current study) is computed as the mean of centered station time-series; on

the other hand, SMHI-ref is computed as the arithmetic mean of absolute station observations, from which the mean over the

1961–2018 calibration period was subtracted (according to Eq. (8)), since individual station data used for SMHI-ref calculation

were no longer available.

The fact that SMHI-ref is computed with absolute values from observation stations makes it more sensitive to inhomo-300

geneities: if, despite the coupling procedure, a given station is interrupted, the computed CI will be affected, especially if the

multi-annual mean temperature of this station departs significantly from the ensemble mean.

Over the 1961–2018 calibration period, the GridClim-ref CI (in black) can hardly be distinguished from SMHI-ref CI (in

grey) in Fig. (8): the estimated inter-annual variability (upper panel in Fig. (8)) is virtually identical for GridClim-ref and SMHI-

ref. After applying a 10-year Gaußian running filter (lower panels in Fig. (8)), we find a fair agreement between GridClim-ref305

and SMHI-ref for precipitation. Fig. (6) enable to look in more details at systematic differences between GridClim-ref and

SMHI-ref representing ∆CI , the departure from SMHI-ref ( according to Eq. (8)). CI estimates by SMHI-ref and GridClim-ref

agree within at least ∆CIprec ∈ ±1 mm.month−1 for precipitation over the 1961–2018 calibration period. This sets a first

constraint on the CI accuracy, thus a metrics for the performance of EOF-based CI estimates.

3.2.2 How does spatial sampling affect the 1961 – 2018 climate indicator ?310

Similar to SMHI-ref, we calculated 3 CI as arithmetic means: GridClim-ref (discussed in the previous section, with GRIDCLIM

values at the same locations as the SMHI-ref network), GridClim-sub, with GRIDCLIM values at locations corresponding to

the MORA calibration network, and finally GridClim-all, using all GridClim grid-points covering the Swedish territory (with

the same resolution as Fig. (2)).

GridClim-sub, with 1098 stations for precipitation, shown as the yellow curve labeled GridClim-sub in Fig. (8), is hardly315

distinguishable from GridClim-ref (i.e. 87 stations for precipitation, as black lines) when considering absolute CI values. We

can thus conclude that (i) the GRIDCLIM dataset is – when averaged over many stations – in good agreement with observed

MORA observations, and (ii) estimates for the climate indicator are robust, when reducing the GridClim-sub sampling ensemble

from 1098 to 87 carefully chosen members in SMHI-ref, i.e. reducing the sample size by a factor 13. Hence the new method,

based on the larger sample size in GridClim-sub, is likely to be consistent with the SMHI-ref CI published by SMHI.320

However, we see a significant change for the arithmetic CI in GridClim-all, compared to GridClim-ref (black line) and

GridClim-sub (yellow line): the CI is computed from all grid-cells covering Sweden (GridClim-all, in green line), stands out

with a larger amplitude in inter-annual variability. In other words, annual CI values with local minima (maxima) i GridClim-sub

appear generally lower (higher) in GridClim-all.

GridClim-all, using all 69842 GRIDCLIM grid-points covering the Swedish territory (c.f. pixel resolution in Fig. (2)) captures325

more of the inter-annual climate variability than the 87 stations in the SMHI-ref network for precipitation. This is consistent
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with the EOF patterns shown on Fig. (3): the 3 dominant modes in Figure Fig. (2) show large variations in remote areas (e.g.

Jämtland in central-western Sweden, Norrbotten close to the Finnish border). Such patterns are qualitatively well captured by

the calibration network (Fig. (3), upper row): the leading EOF patterns (eofMORA(#1−3) are similar to (eofGridClim(#1−
3), with a strong correlation of their respective time expansion coefficients (lower plots in Fig. (2) and Fig. (3)).330

However the difference in amplitude between the GridClim-all and GridClim-ref can be related to the under-sampled remote

areas with large variations. Hence an important conclusion: the definition of a ’national’ observation-based climate indicator

is dependent on the station network on which it relies. In other words, a national network of stations covering most of the

territory is not per se a guaranty that all regions are equally represented in the ’national’ climate indicator, and may differ from

a gridded, land-covering approach. Vose et al. (2014) applied a methodology similar to GridClim-all: a spatially interpolated335

dataset for temperature and precipitation observations for the contiguous US, with elevation-dependent dependence, proved to

make a significant difference the previous CI version.

The similarity between GridClim-ref, with 87 stations for precipitation, and GridClim-sub with 1098 stations, supports the

sub-sampling method used for the CI robustness (Equation Eq. (7)). Given that a 10-time sub-sampling of carefully selected

stations (i.e. the reference network for GridClim-ref compared to the calibration network for GridClim-sub) yield comparable340

results, we consider that selecting an ensemble of GridClim-sub subsets, each consisting of a randomly chosen subset with

3-time as many stations as GridClim-ref, is reasonable to evaluate the CI robustness.
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Figure 6. ∆CI , i.e. departures from centered original SMHI indicator, for precipitation ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref . Labels are

identical to Figure Fig. (6) .
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For precipitation, the difference between GridClim-ref, GridClim-sub and SMHI-ref are harldly noticeable, while GridClim-

all stands out with a generally larger inter-annual variability: local maxima/minima are more pronouned in GridClim-all. Given

the spatially unhomogeneous character of rainfall and larger range of precipitation values (compared to temperature), it is345

not surprising that GridClim-ref, GridClim-sub and GridClim-all display differences, which are likely related to geographic

sampling issues. However, such discrepancies are mostly punctual (for individual years), an do not display a systematic bias

in their 10-year averaged values (lower panel). In conclusion, various methods to compute the precipitation CI indeed display

slight differences, which though are small (both on inter-annual and decadal scale) with respect to the overall CI signal.

3.2.3 Comparing EOF estimated climate indicators to the SMHI reference indicator for 1860–2020: precipitation350

As for temperature, the EOF-based CI reconstruction for precipitation is generally in good agreement with SMHI-ref. Fig.

(8) illustrates that the precipitation CI forthe reference SMHI-ref is in good agreement with EOF-cal (over the 1961–2018

calibration period) and EOF-rec from 1900 onward, both for inter-annual and decadal variability: the EOF-based methods

prove to be consistent with the original CI for precipitation SMHI-ref. Similar to temperature, the 25%–75% percentile range

associated to EOF-cal is fairly stationary from 1940 onward. Prior to 1940, the robustness for EOF-rec gradually increases,355

with a sharp increase prior to 1880.

Subtle differences between SMHI-ref and EOF-rec can be identified when investigating ∆CI , i.e. the departure from SMHI-

ref (Fig. (6)). Over the period 1880–1960, the ∆CI for EOF-rec is within the same range as EOF-cal over the 1961–2018

period (namely ±2 mm.month−1 ). Between 1939–1946, EOF-rec displays a continuous 8-year period during which the CI

is consistently higher (by ∆CI = 1 mm.month−1 ) than SMHI-ref. This period occurs shortly after the massive launch of360

precipitation observations in 1931, where the total number of active stations registered in the MORA database increased from

307 to 600 (Fig. (1)).

During the early part of the record (1860–1901 in Fig. (6)), ∆CI for EOF-rec displays large departures from SMHI-ref. Year

1901 appears to be a dry year in Sweden; according to SMHI-ref, it stands out as the driest on record (−20 mm.month−1 ), while

EOF-rec evaluates it to be −16 mm.month−1 , in line with other extreme dry years (1933, 1947, 1976 or 2018). Interestingly,365

year 1901 coincides with a noticeable drop of active stations (Fig. (1)), which could explain inhomogeneities in SMHI-ref.

Prior to 1877, the number of observation stations for precipitation is very low: less than 30 in total, 24 of which are

included in EOF-rec and 14 in SMHI-ref (Table Table (1)). Accordingly, the EOF-rec ∆CI displays much larger values

(±6 mm.month−1 ) than in the later part of the record. Nevertheless, the 10-year Gaußian filter (Figure Fig. (6), lower panel)

shows a consistent increasing trend over the 1860-1880 period. This feature is not surprising: precipitation observations in370

SMHI-ref were corrected to account for underestimated measurements by ancient rain-gauges (Alexandersson, 1986). The

impact of the correction factor is discussed in the next section, especially for winter (DJF) precipitation.

In summary, available instrumental evidence may not be sufficient to determine a robust precipitation CI for the 1860–1900

period with the present methodology. 1900–1920 is characterised by dry conditions over Sweden (on average−7 mm.month−1

drier than the 1961–2018 mean), followed by fairly stationary conditions until 1965 (−4 mm.month−1 on average). The375

decade 1968–1977 records several consecutive dry years (e.g. −12 mm.month−1 in 1976). Precipitation over Sweden has
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Figure 7. ∆CI , i.e. departures from centered original SMHI indicator, for precipitation ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref . Labels are

identical to Figure Fig. (6) .

experienced a sustained increase over the 1977–2020 period, reaching up to 4 mm.month−1 on average for the 2005-2015

decade. Years 2000, 1998 and 2012, with up to 15 mm.month−1 wetter than the 1961–2018 mean, stand out as CI maxima

over the instrumental period.

3.2.4 Seasonal EOF reconstructions of the climate indicator: precipitation380

When analysing seasonal EOF-rec, one needs to keep in mind that the EOF patterns
−−−−→
eof seas, defined in Eq. (4), are computed

independently over the 1961–2020 period for each seasonal average Xseas
c . Hence the difference for the annual ∆CIANN

EOF

cannot be obtained as an average of seasonal ∆CIseas
EOF . In other words:

∀ iSeas= DJF, MAM, JJA, SON,∆CIANN
EOF 6=

∑
∆CIiSeas

EOF

4
(9)

Unlike for temperature, the reconstructed CI for precipitation (EOF-rec) does display a significant departure from SMHI-ref385

prior to 1900: EOF-rec is consistently lower than SMHI-ref for annual and seasonal precipitation.

This result is expected: the SMHI-ref record has undergone a correction for early precipitation values (Alexandersson, 1986).

The rain gauge designed used by SMHI prior to 1900 is known to underestimate precipitation amounts: the correction factor

yields thus higher values then the observed ones.

The data used with the EOF method were extracted from the MORA database that contains actual measurements (i.e. uncor-390

rected). Therefore, EOF-rec cannot be expected to reproduce the corrected precipitations amounts in SMHI-ref.
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The present study illustrated the magnitude of the correction: the 10-year smoothed average for the annual ∆CI is around

−3 mm.month−1 , with similar or lesser results for MAM, JJA and SON. The discrepancy is significantly larger for winter pre-

cipitation (DJF): it amounts to 8 mm.month−1 . This result is consistent with the fact that the underestimation of precipitation

is largest when precipitation comes as snow, which is common in Swedish winters.395

Individual year and seasonal ∆CI records display large, spurious variations prior to 1900. Analogously to the ∆CI for

temperature, the sparse station coverage prior 1900 causes the EOF method to deviate strongly from SMHI-ref. The inter-

annual variability of EOF-rec prior to 1900 is however not deemed to be statistically significant, as illustrated by the large span

in 25%–75% percentiles (±2 mm.month−1 ).

The 10-year smoothed ∆CIDJF for (EOF-rec, Fig. (7)) displays a sharp break after 1934, from a persistent ∆CIDJF =400

−2 mm.month−1 bias to an unbiased estimator afterwards (i.e. ∆CI 0 mm.month−1 ). The 1934 break is synchronous with a

doubling of active precipitation stations, from less than 300 to more than 500 stations (Fig. (1)), while the number of active

stations for SMHI-ref remains fairly constant. A likely explanation resides in the representativity of the EOF-rec precipitation

network: prior to 1940, the limited observation network, when projected on EOF patterns computed over the 1961–2018

reference period, the DJF CI leads to a underestimation. Such a bias is particularly pronounced for winter (DJF), since the405

leading mode (eofMORA, GridClim
DJF (#1), shown in Fig. (4) and Fig. (5), are characterised by a regional maximum centered over

Sweden’s West coast (around Göteborg).

The leading EOF pattern for the annual average and other seasons (MAM, JJA, SON) (Fig. (4)) display a more balanced

eof(#1). Therefore, the change in the number (and location) of active stations used in EOF-rec does not introduce a persis-

tent bias, as for DJF. The impact of network change is perceivable by smaller variations of ∆CI around major shifts in the410

observation network (1934, 1946).

4 Discussion

4.1 Benefits of the EOF-based climate indicators

Similar to the computation of the temperature CI (Sturm, 2024a), the EOF-based CI estimate EOF-rec for precipitation is in

overall agreement with the reference method SMHI-ref (i.e. arithmetic mean of a carefully selected subset of MORA observa-415

tions). This confirms that the 87 stations in the reference network are globally representative of the full (1098) MORA dataset –

which is per se a novel result, since it had not be proven earlier. Our study also illustrates that the EOF-based precipitation CI

EOF-rec differs significantly from the reference method SMHI-ref prior to 1900; the discrepancy is particularly pronounced

for winter (DJF) precipitation. This difference is primarily due to a correction factor, meant to compensate the underestimation

of precipitation (especially snow) measurements in older rain gauges. The correction is not applied to the EOF-rec CI, since it420

uses actual measurements stored in the MORA database. SMHI is currently leading a study to quantify the precipitation losses

in 19th-century gauges used in Sweden (Joelsson, in preparation).

The present study introduces the EOF method as an alternative CI estimate: EOF-rec can be considered as weighted average

of MORA precipitation observations. The weighting coefficients are determined using independent (i.e. orthogonal) modes
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of variability in the observations during the calibration period. The weighing coefficients are derived from EOF (empirical425

orthogonal functions) patterns, noted eof .

We choose a calibration period extending from 1961–2018, which corresponds to the period covered by the gridded climate

dataset GRIDCLIM. From a theoretical point of view, using a weighted CI method makes its estimates less sensitive to changes

in observation availability over time, i.e. how the spatial density of stations in the observation network evolves over time. Such

an automated method also allows to use the full observation database (1098 stations), instead of solely hand-selected stations430

in the reference network (87 stations).

Based on the EOF method, we also suggests a metrics to evaluate the range of likely CI values. By adding random noise and

sub-sampling in an ensemble computation, we can display the 25% and 75% percentiles in addition to the median value for the

complete dataset. Prior to 1900, beyond the impact of the correction factor, the large [25%, 75%] span in ∆CIEOF−rec (up

to ±3 mm.month−1 ) suggests that validity of a new correction factor (Joelsson, in preparation) might be difficult to assess for435

inter-annual variability; the evaluation of the 10-year running mean appears to be more robust. However, SMHI-ref and EOF-

rec rely on similar MORA observations: it is therefore not trivial to assess the validity of a correction factor. One suggestion is

to evaluate trends, inter-annual and decadal variability in river discharge measured in Sweden since at least early 20th century

(Wörman et al., 2010) as observations independent of precipitation.

Furthermore, the EOF analysis enables to visualise the dominant modes of variability in the MORA observation dataset,440

and compare it to the gridded dataset GRIDCLIM. The EOF patterns illustrate that the seasonal variability for precipitation is

significantly different from annual means.

4.2 Implication for decadal climate variability over Sweden

Fig. (6) and Fig. (7)) illustrates a steady increase in annual precipitation over Sweden since 1940. Precipitation increase is

particularly pronounced during winter (DJF) and spring (MAM), while autumn (SON) displays no distinctive trend over the445

1961–2018 calibration period. Unlike other seasons, summer (JJA) precipitation exhibits a −10 mm.month−1 dip between

1960–1970, followed by a steady increase (+20 mm.month−1 ) until 2010. SMHI-ref and EOF-rec yield similar results, with

the exception of winter (DJF) during 1900–1930 where EOF-rec is lower by−2 mm.month−1 . The latter results in an increase

of winter precipitation of +20 mm.month−1 for EOF-rec versus +15 mm.month−1 for SMHI-ref. It is however unclear how

much of these differences are related to data correction applied in SMHI-ref.450

4.3 Comparison to climate indicators in other countries

Vose et al. (2014) presents the climate division dataset for the conterminous US for temperature and precipitation since 1895.

Station data is interpolated using thin-plate smoothing spline method, accounting for invariant predictors such as elevation. A

national indicator can be derived from area-weighted average of “division units” constituting the grid.

The method for deriving a area-weighted climate indicator for the contiguous is analog to the GridClim-all CI presented in455

this study, i.e. the mean of all grid-points in the GRIDCLIM dataset covering Sweden.
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Figure 8. Estimates of the annual climate indicator CI for precipitation with various methods. The CI is represented as thick lines, whereas

the 25% and 75% percentiles of the robustness ensemble CIens are shown as thin lines of the same colour. The labels for various CI are

indicated in Table Table (3) .

The difference between the new and old versions for the monthly precipitation CI by Vose et al. (2014) indicates that

version 2 is wetter than version 1 by 5mm water equivalent. Prior to 1931, the difference increases to 15mm water equivalent,

reflecting a change of the computational method used in version 1.

Konstali and Sorteberg (2022) analyses a network of 55 homogeneity-tested observation stations since 1900, compare to a460

denser network of 199 stations since 1960. Climate indicators are first calculated for 8 “precipitation regions”, before being

aggregated to a national indicator. The distinction in regions allows to correct precipitation according to the pseudo-adiabatic

ascent model, which is a particular requirement for the steep relief across Norway. The methodology applied in Norway is

thus more advanced than SMHI’s, enabling to assess changes of the climate indicators across different regions. Among other

methods, the SVD approach (as described in the next section) can provide consistent regional climate indicators over time,465

despite changes in the observation network.

Meteo-Swiss Begert et al. (2005) provides a set of 12 homogenised monthly precipitation series since 1864. Climate indica-

tors are available as time-series for each reference observation station, or as interpolated maps over the Swiss territory (since

1871). The Swiss meteorological service adopts a hybrid approach (maps and individual observation time-series), which differs

from SMHI’s aggregated national climate indicator.470

Kaspar et al. (2017) presents a review of climate observation in Germany since 1881. Available observations are interpolated

on a 1 km x 1 km grid, which allows for altitude-dependent correction of the considered climate variable.
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Figure 9. Reconstructed seasonal absolute CI for precipitation and the centered original SMHI indicator ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref .

Labels are identical to Figure Fig. (8) .

In the United Kingdom (Office, 2024), climate indicators are available for England, Wales, Scotland and Northern Ireland, as

well as the entire UK since 1881, based on the HadUK-grid. In France (Meteo-France, 2024), monthly indicators are available

for each department since 1852, as well as long homogenised time-series for selected observation stations.475

This brief overview reveals that most national weather agencies adopt a hybrid approach to produce climate indicators. Long,

homogenised time-series provide a long-term base-line for climate change in time, which is complemented by gridded datasets

to represent its spatial variability. The present study shows the relevance of the EOF method to better capture the spatial of

climate variability, as a first step towards delivering region-specific climate indicators. The homogenisation of climatological

observations is an ongoing task at SMHI (Joelsson et al., 2022, 2023).480

Räisänen and Alexandersson (2003) conclude that the 1991–2000 decade was warm and wet in Sweden, which has a 93%

probability to be related to anthropogenic climate change. These results are consistent with Fig. (8), which also show that the

warm and wet trend has continued over the 2000–2020 period. It is therefore relevant to investigate if the leading EOF modes

eofMORA are affected by increasing greenhouse gas levels. This example further underlines how pertinent a national climate

indicator for precipitation can be, in order to quantify and illustrate the effect of anthropogenic climate change in Sweden.485
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4.4 Persistence of leading EOF modes

Kjellström et al. (2022) presents large-scale atmospheric clustering, and how they affect Scandinavian precipitation between

two climate normals (1961–1990 and 1991–2020). The frequency of circulation types display significant changes between

1961–1990 and 1991-2020; the change in occurrence frequency differs also for individual months. Kjellström et al. (2022)

reports strong inter-annual correlations between the North Atlantic Oscillation (NAO) index and temperature CI, in particular490

for winter (DJF) with anR2 = 60%; the CI for summer (JJA) temperature however is much smallerR2 = 5%. For precipitation,

the winter (DJF) CI has the strongest correlation (R2 = 20%). It is worth noticing that the correlation coefficients between the

NAO-index and the national precipitation CI , for each season, are very close between the 1961–1990 and 1991-2020 period.

As for temperature (Sturm, 2024a), results by Kjellström et al. (2022) raise the question to which extent the leading EOF

modes eof(#1−10) vary over various time-slices. In particular, the EOF-based reconstruction EOF-rec relies on the assump-495

tion that EOF patterns derived during the 1961–2018 period correctly reproduce the internal modes of variance for precipitation

over the 1880–1960 period. Further research is thus needed to evaluate if the leading EOF modes eof(#1−10) for precipitation

vary significantly over 30-year periods. In that case, the EOF method could be adapted by identifying a predictor representing

circulation types (e.g. based on mean sea-level pressure reconstructions since 1850 (Allan and Ansell, 2006; Ansell et al., 2006;

Gallego et al., 2005)). A particular set of EOF patterns eof(#1− 10) can be assigned to dominant clusters of the predictor,500

which could be used for CI reconstruction EOF-rec for earlier periods.

The North Atlantic Oscillation (NAO) is commonly accepted as the dominant circulation type affecting climate variability

in Sweden, in particular during winter. The fact that correlation R2 between the NAO-index and precipitation time-series

is similar between 1961–1990 and 1991-2020 in Kjellström et al. (2022) indicate that, despite a change in the occurrence

of circulation type, the relation between NAO and precipitation CI is persistent. In other words, while the circulation types505

change, the internal variability (i.e. the leading EOF patterns) remains mostly unchanged.

The long-term evolution of precipitation regimes over Scandinavia (Chen et al., 2021) shows an increasing trend of the

1880-2020 period, whose magnitude is unprecedented since 1550. Observation data presented in this study can be used to

assess the correlation of circulation indices with precipitation time-series over Sweden, for annual and seasonal averages,

over 30-year time-slices between 1860 and 2020. Several reconstructions of NAO since 1850 are available (Cropper et al.,510

2014, 2015; Comas-Bru and Hernández, 2018; Hanna et al., 2022; Jacobeit et al., 2001b; Slonosky et al., 2000; Zveryaev,

2006), or the last millennium (Gouirand et al., 2007; Jones et al., 2001). Comas-Bru and Hernández (2018) also provides

estimates of the East Atlantic (EA) and Scandinavian (SCA) circulation patterns since 1851 to present. We however would

advise that observations in the MORA database be processed at a monthly resolution (instead of annually resolved ANN, DJF,

MAM, JJA, SON averages) for such an analysis. The present EOF method can be adapted, possibly improved, by computing515

leading EOF modes eof from monthly results instead of annual/seasonal averages, which might better capture the short-term

variability of NAO.

Jacobeit et al. (2001a, 2003) present zonal circulation indices (NAO: North Atlantic Oscillation, CEZ: Central European

Zonal Index) for Europe over the 1780–1995 period. The NAO index shows a period until the 1850s with accumulating negative
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anomalies in winter whereas, in summer, positive are prevailing during 1820–1910. This is in contrast with recent evolution520

with positive anomalies prevailing during winter (1920–1970) and negative ones during summer (1970–1995). Numerous

studies have assessed the impact of synoptic circulation on (mostly NAO) on precipitation patterns across Scandinavia since

1850 (Hänsel, 2020; Ansell et al., 2006; Gallego et al., 2005; Hanna et al., 2022; Alvarez-Castro et al., 2018; Fleig et al., 2015;

Jones and Mann, 2004; Philipp et al., 2007; Slonosky et al., 2000; Kyselý, 2007, 2008). While it is beyond the scope of the

present study to assess the dependence of observed precipitation to synoptic circulation patterns, it would be interesting to525

investigate whether the leading EOF modes eofMORA differ significantly for e.g. positive/negative phase composites of the

NAO.

Such an analysis would however require to analyse the precipitation observations at monthly resolution, instead of annually

resolved (ANN, DJF, MAM, JJA, SON) as in the present study: Massei et al. (2007), based on a wavelet analysis of the daily

NAO index, demonstrate that a large portion of the power-spectrum of NAO variability is found at sub-annual frequencies.530

5 Conclusions

The present study introduces a new method to aggregate observation time-series into a single climate indicator, which is

evaluated for precipitation over Sweden. A prerequisite for the new method is to emulate the climate indicator operationally

used by the Swedish Meteorology and Hydrology Institute (SMHI), based on an arithmetic mean of all station time-series.

5.1 Added value of station coupling and homogenisation535

The present study focuses on the individual station measurements in the MORA database maintained by SMHI. On one hand,

it has the advantage of considering all available observations; on the other hand, it comprises only few station with long time-

series. Climatologists (including the authors of the SMHI-ref indicator) have used the ’coupling’ technique to stitch together

similar station records into a long, single ’pseudo-station’; however, such a process has long been a time-intensive, person-

operated effort; it has thus been restricted to a limited number of carefully chosen stations (e.g. the SMHI reference network).540

A recent development by Joelsson et al. (2022) enables an automatic, objective coupling routine. The present methodology can

be improved by using the coupling routine prior to applying the EOF method.

The quality control applied to all observations stored in the MORA database aims at insuring that the instrumental value

is correctly digitised; however it does not account for biases related to changes in station location, instruments, surroundings

etc. An a posteriori correction can be performed using homogenisation, such as BaRT/Homer or Climatol (used at SMHI).545

Homogenisation is particularly recommend when working with coupled records, since the ’stitching’ is likely to introduce

variations that are not related to climate, hence considered inhomogeneities.

Further developments of the present method will investigate the impact of coupling and homogenisation on instrumental ob-

servations on the estimation of the climate indicators. An automated method for station coupling (Joelsson et al. (2022, 2023))

enables an optimal compromise between the maximum number of different time-series and the longest times-series. The cou-550

pling procedure will increase the number of time-series retained in the calibration dataset EOFcal that extend to the early
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parts of the record. in other words, the light grey line in Fig. (1) is likely to be closer to the total number of active stations

(represented as staples). Furthermore, the number of missing values during the 1961–2018 calibration period is likely to be re-

duced, hence the gap-filling procedure (prior to the EOF analysis) is less likely to introduce numerical artefacts in the indicator

reconstruction.555

However, possible inhomogeneities (introduced by the coupling and/or other events, e.g. station relocation) will remain in

the calibration dataset EOFcal. These can be removed with the homogenisation procedure (e.g. using Climatol (Guijarro, 2024)

and/or Bart/HOMER toolboxes (Joelsson et al., 2023)). This additional step will illustrate to which extent the national climate

indicator is sensitive to (presumably randomly distributed) inhomogeneities.

Finally, the homogenisation toolboxes Climatol and Bart/HOMER include a gap-filling feature (based on similarities with560

neighbouring stations), which potentially can deliver complete time-series over the entire experiment period 1860–2020. It is

however questionable to which extend the gap-filling algorithm delivers physically significant results over such long periods,

when the station availability drops to low numbers (e.g. in the early part of the record). The present method, in particular the

ensemble computation with randomly distributed noise, would be a suitable tool to evaluate the robustness of the indicator

estimation depending on the pre-processing steps (station coupling and homogenisation (Joelsson et al., 2022)), the choice of565

the calibration period and the climate variable (temperature, precipitation and potentially other observational datasets).

5.2 Further development of the SVD approach

As illustrated earlier, the EOF and SVD methods are largely equivalent in the present objective: defining a CI primarily based

on the MORA station network. However, the SVD method has the potential to be developed further. Eq. (A3) only makes use of

SVDMORA (defined in Eq. (A1)) to estimate X̂c

SV D
, the MORA dataset over 1860–2020. The SVD method allows to use the570

other term in Eq. (A1): the spatial pattern SVDGridClim and associated time expansion coefficients AGridClim. By construction

(Björnsson and Venegas, 1997), the SVD time expansion coefficients AMORA and AGridClim are related to each other, with

eigenvalue matrix ΛSV D defined in Eq. (A1).

ΛSV D =AMORA ·
(
AGridClim)T

AGridClim =
((

AMORA
)−1

·ΛSV D

)T

where the notation
(
AMORA

)−1

refers to a pseudo-inverse, since AMORA is not a square matrix. Based on this result, the575

SVD method makes it possible to estimate a reconstructed gridded dataset Ĝc

GridClim
:

Ĝc

SV D
=Â

GridClim ·
(
SVDGridClim)−1

⇔ Ĝc

SV D
=
((

Â
MORA

)−1

·ΛSV D

)T

·
(
SVDGridClim)−1

⇔ Ĝc

SV D
=
((

X?
c ·SVDMORA

)−1

·ΛSV D

)T

·
(
SVDGridClim)−1

(10)
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New climate indicators based on GSV D
c can potentially be used to emulate the GridClim-all over the entire 1860–2020

period, provided that the projection of MORA X? on its SVD patterns is sufficient to capture the (dominant) climate variability

over the entire Swedish territory. If that is the case, it would be possible to define regional climate indicators based on GSV D
c ,580

even in regions where no direct measurements are available. This assumption might be hard to fulfil in early parts of the records,

where only few stations are available (cf. Fig. (1)), and would require additional research to assess the significance of the

method. The present method could extended by using regional climate simulations over the 1860–2020 period in substitution

for the single GRIDCLIM dataset used in this study; the principle of applying SVD to combine (even sparse) observations with

a gridded dataset remains valid. This is a promising way to characterise Sweden’s pre-industrial climate, to the best precision585

the available observation evidence allows.

This example illustrates that relatively simple linear algebra methods, such as EOF and SVD, have the potential to deliver

valuable results for the analysis of climate observations. The analysis can be further refined using more advanced method, such

as Principal Oscillation Patterns (POP), as presented in Storch et al. (1995).

Code and data availability. The code and processed data used in this study are freely available on Zenodo (Sturm, 2024b).590

The computations for the present study are performed using the open-source software OCTAVE, which is mostly compatible with MATLAB.

The code is run with OCTAVE version 7.3.0 on a Linux computer. It further requires following OCTAVE packages:

– io, version 2.6.4

– netcdf, version 1.0.16

– stat, version 1.4.3595

– mapping, version 1.4.1

The OCTAVE code is available freely available at. Since the final processed data used in this study is available (cf. below), the user may

be able to run the code without the full list of required OCTAVE packages.

The data, processed as required for this study, is freely available for download. The archive format is OCTAVE’s binary format, which

can be loaded into an OCTAVE session using the load command. The processed data files, including the result of the EOF computation, is600

organised in separate files for each annual and seasonal means (annual – ANN, and seasonal: winter – DJF, spring – MAM, summer – JJA,

autumn – SON).

Appendix A: Supplementary material
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A2 SVD decomposition of the coupled MORA and GRIDCLIM datasets

In section 2.2.2, the EOF decomposition was described for a single independent dataset (MORA or GRIDCLIM). The EOF605

method can be further developed using the Singular Value Decomposition (SVD) method described hereafter. In the present

study, the leading EOF patterns eof(#1−3) were, in all but one case, virtually identical to their SVD counterparts svd(#1−3)

for both the MORA calibration network and the complete GRIDCLIM dataset.

The “Singular Value Decomposition” (SVD) is a further development of the EOF method (Eq. (3)), where the leading

modes no longer express the dominant variability in a single dataset, but the shared variability modes that two datasets have in610

common. The SVD requires that both datasets have the same number of time-steps (i.e. the same number of columns), but may

have different spatial dimensions (i.e. number of rows).

Being able to jointly assess the common variability, over the same period, of two datasets with different spatial extent is

a particular benefit of the SVD method. In the present case, the (climate) variability of a given MORA station is no longer

solely compared to its corresponding grid-cell in the GRIDCLIM dataset (e.g. as was done in the gap-filling procedure); the615

SVD enables to assess how the 1098 MORA time-series for observed precipitation relate linearly to the 69842 individual time-

series from GRIDCLIM grid-cells covering the Swedish territory. Since regional-scale climate variability is (presumably) well

captured in the GRIDCLIM re-analysis product, the SVD method thus enables to isolate corresponding trends in the MORA

dataset – regardless of how well the one-to-one correspondence between the observed and simulated signal matches for any

single location.620

Covariance matrix: R = XMORA
c ·

(
XGridClim

c

)T

Singular Value Decomposition: R = SVDMORA ·ΛSV D ·
(
SVDGridClim)T

Time Expansion Coefficients:




AMORA = XMORA
c ·SVDMORA

AGridClim = XGridClim
c ·SVDGridClim

(A1)

Analogously to Eq. (3), the portion of the explained (common) variance can be retrieved from eigenvalues in diagonal matrix

ΛSV D. Similar to Eq. (4), the original XMORA
c and XGridClim

c matrices can be identically reconstructed from the results of the

SVD:




XMORA
c = AMORA ·

(
SVDMORA

)T

XGridClim
c = AGridClim ·

(
SVDGridClim)T (A2)625

The first three leading modes of the SVD for the MORA calibration subset are presented in Fig. (A2): the top row shows

the spatial SVD patterns
(
svdMORA

)[1:3]

, the bottom row the corresponding time expansion coefficients
(−−−−−→
aMORA

)[1:3]

. The

portion of the variance explained by each mode is obtained from eigenvalues in matrix ΛSVD, and displayed in the legend.
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Analogously to Eq. (5), the original dataset with missing values X?
c can estimated using SVD patterns as X̂c

SV D
.

X̂c

SV D
= Â

MORA ·
(
SVDMORA

)−1

(A3)630

The climate indicator CI can thus be computed according to Eq. (6). Since eofMORA and svdMORA are virtually identical,

the reconstructed EOF-rec and SVD-rec cannot be distinguished from each other. Hence SVD-rec is not shown on Fig. (6) and

related figures.
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