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Abstract. To assess the accuracy of lidars in measuring mean wind speed and turbulence at large distances above the ground

as an alternative to tall and expensive meteorological towers, we evaluated three dual-lidar measurements in virtual mast (VM)

mode over the complex terrain of the Perdigão-2017 campaign. The VMs were obtained by overlapping two coordinated Range

Height Indicator scans, prioritising continuous vertical measurements at multiple heights at the expense of high temporal and

spatial synchronisation. Forty-six days of results from three VMs (VM1 on the SW ridge, VM2 in the valley, and VM3 on5

the NE ridge) were compared against sonic readings (at 80m and 100m a.g.l.) in terms of 10min means and variances, to

assess accuracy and the influence of atmospheric stability, vertical velocity, and sampling rate on VM measurements. For mean

flow quantities–wind speed (Vh), and u and v velocity components–, the r2 values were close to 1 at all VMs, with the lowest

equal to 0.948; whereas in the case of turbulence measurements (u′u′ and v′v′), the lowest was 0.809. Concerning differences

between ridge and valley measurements, the average RMSE for the wind variances was 0.295m2 s−2 at the VMs on the10

ridges. In the valley, under a more complex and turbulent flow, smaller between-beam angle, and lower lidars’ synchronisation,

VM2 presented the highest variance RMSE, 0.600m2 s−2 for u′u′. The impact of atmospheric stability on VM measurements

also varied by location, especially for the turbulence variables. VM1 and VM3 exhibited better statistical metrics of the mean

and turbulent wind under stable conditions, whereas, at VM2, the better results with a stable atmosphere were restricted to the

wind variances. We suspect that with a stable and less turbulent atmosphere, the scan synchronisation in the dual-lidar systems15

had a lower impact on the measurement accuracy. The impact of the zero vertical velocity assumption on dual-lidar retrievals

at 80 and 100m a.g.l. in Perdigão was minimal, confirming the validity of the VM results at these heights. Lastly, the VMs’

low sampling rate contributed to 33% of the overall RMSE for mean quantities and 78% for variances at 100m a.g.l., under

the assumption of a linear influence of the sampling rate on the dual-lidar error. Overall, the VM results showed the ability

of this measurement methodology to capture mean and turbulent wind characteristics under different flow conditions and over20

mountainous terrain. Upon appraisal of the VM accuracy based on sonic anemometer measurements at 80 and 100m a.g.l.,

we obtained vertical profiles of the wind up to 430m a.g.l. To ensure dual-lidar measurement reliability, we recommend a 90◦

angle between beams and a sampling rate of at least 0.05Hz for mean and 0.2Hz for turbulent flow variables.
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1 Introduction

To evaluate the wind at higher heights (> 100m), measurements from equipment other than anemometric towers are usually25

employed, as the costs associated with the installation and maintenance of masts scale with height. An alternative to the use of

towers at great heights is the wind lidar.

Lidars measure the wind radial velocity up to kilometres of distance, and when employing a single lidar, a homogeneous

flow assumption is needed to retrieve the wind vector components. However, under complex wind flow, this may not be

a valid assumption, and measurements may present high systematic errors and inaccurate turbulence parameter estimations30

(Bingöl et al., 2009a, b; Sathe et al., 2011; Pauscher et al., 2016). For turbulence measurements, relevant to wind turbine load

calculations, lidar retrievals are susceptible to cross-contamination and volume-averaging errors (Davies et al., 2005).

To reduce wind measurement uncertainty when using a single lidar in complex terrain, some authors have employed wind

models to correct for flow distortion in profiling lidar measurements (Pitter et al., 2012; Klaas et al., 2015; Kim and Meissner,

2017). This approach, however, highly depends on the model’s configurations and parameterisations (Klaas et al., 2015).35

A more reliable solution to a single lidar is using two or more lidars configured to measure the same control volume

simultaneously. In the case of three lidars, the three wind vector components can be retrieved from the radial velocities and

azimuth and elevation angles (Mann et al., 2008; Sjöholm et al., 2009; Choukulkar et al., 2017). When two lidars are employed,

one wind component, such as the vertical velocity, is assumed to be zero, and the other two are estimated. However, a multi-

lidar approach implies high equipment costs and difficulties in coordinating and synchronising the lidar beams (Vasiljević et al.,40

2016). The scan strategy when employing multi-lidars can vary according to the study’s objective. Triple-lidar setups were used

by Wildmann et al. (2018) to investigate wind turbine wake and by Newman et al. (2016) to assess turbulence measurements.

Coplanar Range Height Indicator (RHI) scans were employed to evaluate rotor structures in a valley by Hill et al. (2010), while

Calhoun et al. (2006) overlapped RHI scans to retrieve horizontal wind speed profiles in an urban site.

The association of at least two non-collocated lidars measuring multiple heights in a vertical line is called a virtual mast45

(VM) or virtual tower. Lidars can be configured with stop-and-stare (Damian et al., 2014; Pauscher et al., 2016; Newman et al.,

2016; Debnath et al., 2017b; Wittkamp et al., 2021; Liu et al., 2024) or RHI scans (Calhoun et al., 2006; Ng and Hon, 2022;

Newsom et al., 2005; Debnath et al., 2017a). Usually, the stop-and-stare has a higher spatial and temporal synchronisation but

needs more time to measure at different heights as the equipment accelerates and decelerates from one measurement height

to the next. Conversely, continuous vertical measurements of overlapping RHIs cover several heights more quickly, although50

usually with less accuracy, due to the scans not being entirely temporally and spatially synchronised, which is mainly a problem

in an unstable atmosphere (Wittkamp et al., 2021; Choukulkar et al., 2017).

Rothermel et al. (1985) was the first to assess the feasibility of the dual-lidar methodology. Recent studies include ex-

periments in complex terrain (Hill et al., 2010; Cherukuru et al., 2015; Santos et al., 2020; Duscha et al., 2023) and urban

environments (Collier et al., 2005; Newsom et al., 2005; Calhoun et al., 2006; Wittkamp et al., 2021). The effect of atmo-55

spheric stability on virtual-mast measurements was evaluated by Newman et al. (2016) and Choukulkar et al. (2017) over flat

terrains. Under stable atmospheric conditions, Newman et al. (2016) found that 10min turbulent fluctuations from a triple-
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lidar VM setup aligned closely with Doppler Beam Swinging (DBS) (Strauch et al., 1984) estimations, and diverged in an

unstable atmosphere. However, the study did not include sonic measurements at the same height as the virtual mast, later ad-

dressed by Choukulkar et al. (2017), who evaluated triple-lidar VM mean measurements against mean sonic observations (at60

50–300 m a.g.l., in 50m increments). The VM results under stable conditions showed smaller errors than in an unstable atmo-

sphere, which was attributed to the higher wind variability in unstable conditions, potentially leading to greater measurement

uncertainty.

Despite previous efforts to evaluate multi-lidar measurements, no study has assessed the mean horizontal wind components

obtained from two lidar-coordinated RHI scans in a VM mode, with reference sonic anemometer readings, nor investigated65

second-order wind statistics from dual-lidar RHI retrievals or the influence of atmospheric stability and sampling rate on these

data. Therefore, this study explores coordinated dual-lidar RHI measurements, in a VM mode, of the mean and turbulent

flow under different wind conditions over Perdigão’s complex terrain. The virtual-mast results are evaluated against sonic

anemometer data at one or more matching heights in terms of coefficient of determination (r2) and statistical errors (RMSE

and Bias).70

The VM measurements come from the Perdigão-2017 campaign (Fernando et al., 2019), a field experiment that was part of

the New European Wind Atlas (NEWA) (Mann et al., 2017). During the campaign, profiler (8) and scanning (18) lidars were

deployed (Fernando et al., 2019). The latter operated with different scanning schemes, including RHIs along the ridges, across

the ridges (in three transects), and coordinated setups forming dual-lidar measurements. This work focuses on four virtual

masts from the experiment, positioned in a transect almost perpendicular to Perdigão’s double-ridge and formed by seven75

WindScanners (WS), not previously analysed. Thus, we needed to assess the measurements’ quality compared to reference

data, develop a processing and filtering methodology, and explore the capabilities and limitations of these VMs in Perdigão.

The performance of WindScanners in dual and triple measurement setups, staring at a single point, was evaluated by Pauscher

et al. (2016), who compared the results with a sonic anemometer (at 188m a.g.l.) and DBS readings. The study focused on

first- and second-order statistics of horizontal wind components measured by three dual-lidar and one triple-lidar configuration.80

However, the analysis was limited to a single point, correlating the WS measurements without error quantification.

Previous virtual-mast-based studies in Perdigão combined scanning lidars at different positions than those examined here and

with a different focus. Bell et al. (2020) evaluated RHI dual- and triple-lidar measurements in 4 locations along the Perdigão

valley in a VM mode (from 50–600 m a.g.l.), focusing on the analysis of the valley flow. However, since the lidars were not

coordinated, the VM analysis was based on 15min mean values, and a time window of 60 s between lidar scans was imposed,85

which restricted the result analysis to only mean quantities. Triple-lidar VM measurements at different distances within the

Perdigão’s wind turbine wake were investigated by Wildmann et al. (2019), who proposed a new approach to retrieve the

turbulence dissipation rate from RHI lidar retrievals.

Beyond the difficulties in multi-lidar measurements, an additional one lies in measuring the complex wind flow above the

mountainous terrain of Perdigão. With wind turbines increasingly being placed in complex terrains due to the depletion of90

flatland and more site constraints, a greater understanding and mapping of the wind in such areas are required. Furthermore,
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Figure 1. Perdigão terrain (Farr et al., 2007) and measuring device

locations (ETRS89/PT-TM06).

Table 1. Coordinates and elevation of each measurement source.

Source Name Eastings Northings Elevation

[m] [m] a.s.l. [m]

tower tse04/T20 33394.2 4258.9 473.0

tower tse09/T25 34153.0 4844.8 305.3

tower tse13/T29 34536.0 5111.6 452.9

WS 102 (WS2) 33426.2 4324.1 480.3

WS 103 (WS3) 34526.4 5103.5 452.3

WS 104 (WS4) 34578.9 5147.7 454.9

WS 105 (WS5) 32926.5 4874.3 485.9

WS 106 (WS6) 33888.7 3798.0 486.3

WS 107 (WS7) 33990.6 5695.3 437.1

WS 108 (WS8) 34804.6 4807.9 452.8

with the growth in height and rotor of modern wind turbines, it is crucial to assess the wind potential and characteristics at

greater heights.

2 The campaign and equipment

2.1 Field campaign95

Located in Portugal’s mainland, the Perdigão site is characterised by two parallel ridges (SW and NE) with an elevation of

about 250m above the nearby terrain, separated by 1.4 km, and extending over 4 km, Fig. 1. The SW ridge averages 231.2m

with a slope of around 33.3◦; the NE ridge is about 217.6m with an inclination of 28.5◦; and the valley floor is 41.9m. The

terrain coverage is non-homogeneous, with a mixture of low vegetation and eucalyptus and pine tree patches (Palma et al.,

2020).100

In the Perdigão-2017 campaign, multiple measuring devices worked simultaneously to obtain a high-resolution dataset from

1st of May until 15th of June 2017. This is called the intensive observational period, IOP, and is the study period of this work.

Among the installed equipment, the sensors employed here are those installed in the three 100m masts and seven WindScanners

operated by the Technical University of Denmark (DTU), Fig. 1.

The wind flow in Perdigão was initially assumed to be two-dimensional, with the predominant wind direction perpendicular105

to its double ridge (Fernando et al., 2019). However, the measurements revealed Perdigão’s intricate wind flow. Despite the

uniform perpendicular flow on the synoptic scale, on smaller scales, the wind exhibits two main directions (Fig. 2). In the
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valley, the wind direction aligns with the valley (tse09/T25 wind rose), while on the ridges (tse04/T20 and tse13/T29 wind

roses), it is perpendicular to the valley.
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Figure 2. Wind roses of the 10min averaged wind speed and direction from tse04/T20 (SW ridge), tse09/T25 (valley), and tse13/T29 (NE

ridge) measurements at 100m a.g.l. during the intensive observational period.

2.2 Towers110

The three 100m towers were located along transect 2 (Menke et al., 2019b), almost perpendicular to the ridges: tse04/T20 on

the SW ridge, tse09/T25 in the valley, and tse13/T29 on the NE ridge (Fig. 1 and Table 1). The tower equipment provided wind

speed and temperature measurements that were used in this study to evaluate the VM wind speed retrievals and classify the

atmospheric stability.

Gill 3D WindMaster Pro sonic anemometers were operated at a frequency of 20Hz, with sensor heights shown in Table 3115

and Fig. 3. NCAR SHT75 temperature/humidity sensors were installed at seven levels: 2m, 10m, 20m, 40m, 60m, 80m,

and 100m a.g.l. The post-processed (quality controlled, tilt-corrected, and in a geographic coordinate system) data from these

instruments were downloaded from UCAR/NCAR - Earth Observing Laboratory (2019a). The sonic anemometer data was tilt-

corrected using laser survey measurements (Menke and Mann, 2017) to determine the azimuth, pitch, roll, and height of each

anemometer, ensuring that the post-processed wind components were represented in geographical coordinates (UCAR/NCAR120

- Earth Observing Laboratory, 2019b).

2.3 WindScanners

Eight WindScanners (WS1–8), four on each ridge and operated by DTU (Vasiljević et al., 2016; Menke et al., 2019a), were

employed in the Perdigão-2017 campaign. In terms of settings, the range gate separation (15m), full-width half maximum

of the spatial weighting function (30m), spatial coverage (from 100m to 3000m away from the equipment), elevation step125

(0.75◦), accumulation time (500ms), and pulse length (200 ns) were identical for all WindScanners. WS1–4, WS6, and WS8
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had an elevation range of 36◦, while WS5 and WS7 covered an angular range of 18◦. The WindScanners 1–4 performed RHI

measurements along transect 2, and WindScanners 5–8 operated in a sequence of three scan types, each with a 10min duration:

along the ridge, virtual mast, and transect scans. By crossing WS2–4 RHI measurements with WS5–8 virtual mast scan (also

RHI), four virtual masts (VM1–4) were reconstructed with the campaign measurements (Fig. 1 and Table 2).130

To guarantee the quality of the WS measurements, before the dual-lidar processing, the WS data were initially filtered out

according to the equipment’s radial velocity limits ([−30,30] ms−1) and the carrier-to-noise ratio (CNR), where a threshold

equal to −22 dB (determined from CNR versus radial velocity plots of the multiple WindScanners) was imposed. The WS

spectrum data was not stored in the Perdigão campaign; only the processed signal results were. Other filters were employed

while processing the VM measurements (Sec. 3.1).135

3 Virtual mast retrieval

During the Perdigão-2017 experiment, four virtual masts (VM1–4) were configured (Menke et al., 2019a) according to the

intersection point between two non-collocated WindScanners (WSa and WSb), Table 2. Two virtual masts (VM1 and VM3)

were located on the top of the SW and NE ridges, another in the valley (VM2), and the last one downhill of the NE ridge

(VM4), Fig. 1. VM1–3 were located at distances of 32.4m, 9.4m, and 3.3m, respectively, from tse04/T20, tse09/T25, and140

tse13/T29 100m towers to compare VM results with reference equipment at overlapping heights and to map the vertical profile

of the wind from 10m to around 430m a.g.l.

Table 2. Virtual mast coordinates, lidar combinations, and range of elevation angles (ϕ).

Virtual Lidars Easting Northing Elevation ϕa ϕb

mast WSa WSb [m] [m] a.s.l [m] [°] [°]

VM1 103 (WS3) 105 (WS5) 33372.7 4286.2 475.0 4.1–13.1 5.0–21.6

VM2 102 (WS2) 106 (WS6) 34151.0 4837.6 304.5 −4.6–15.6 −4.2–13.1

VM3 102 (WS2) 107 (WS7) 34536.4 5110.6 452.9 2.9–12.6 8.0–23.0

VM4 104 (WS4) 108 (WS8) 34771.3 5284.0 344.7 −12.1–14.9 −5.6–7.9

3.1 Dual-lidar processing and filtering

The processing and filtering of the dual-lidar measurements in Perdigão required the following steps:

Step 1. The radial velocities of WSa (vra) and WSb (vrb) were interpolated along the beam direction at the VM coordinates145

(Table 2).

Step 2. The VM heights (Table 3 and Fig. 3) were calculated as the average of the closest WSa and WSb measurement heights.

Step 3. Likewise, the VM measurement timestamps were determined by averaging the WSa and WSb nearest timestamps.
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Step 4. The Cartesian velocity components in the x- (u) and y-directions (v) were obtained from the radial velocities (vr) and

the azimuth (θ) and elevation (ϕ) angles of WSa and WSb, assuming that the vertical wind component is zero (w = 0),150

by:u
v

=

sin(θa)cos(ϕa) cos(θa)cos(ϕa)

sin(θb)cos(ϕb) cos(θb)cos(ϕb)

−1vra
vrb

 . (1)

Subsequently, the horizontal wind speed (Vh) was calculated.

– Averages and variances of wind velocity components and wind speed were calculated within 10min intervals.

Step 5. The VM measurements were filtered in two Steps:155

– The first filter aimed to eliminate hard target interference in VM measurements, Sec. 3.1.1.

– The second filter identified the VM minimum quantity of measurements (MQM) within 10min intervals, Sec. 3.1.2.

After these processing steps, we ended up with dual-lidar measurements that spanned the atmosphere from 80 to 305m

a.g.l. in VM1, 100 to 430m in VM2, 100 to 330m in VM3, and 60 to 170m in VM4; i.e., more than four times the height

of conventional tall meteorological towers (100m a.g.l.). We focused our analysis on the measurements from VM1 at 80 and160

100m, VM2 at 100m, and VM3 at 100m, as these were the only measurements obtained at the same height as the sonic

anemometer readings, enabling the evaluation of the VM data’s reliability.

Upon validating their accuracy, we can use the entire VM dataset in further studies. However, at higher heights, the assump-

tion of zero vertical velocity (Step 4) can reduce the accuracy of the horizontal wind components obtained from dual-lidar

measurements, since the increase in beam elevation angles causes the lidar beams to be more aligned with the vertical compo-165

nent of the wind.

3.1.1 Hard target filter

Some WS measurements had interference from hard targets, such as terrain, vegetation, and masts, and were, therefore, filtered

out. As a result, VM2 and VM3 presented only one measuring height that overlapped with the sonic heights, at around 100m

a.g.l., while VM1 had two measuring heights that matched the tse04/T20 sonics, at ∼80m and ∼100m a.g.l.170

3.1.2 Minimum quantity of measurement filter

Although the WSs were configured to perform approximately 22 VM scans in each 10min measurement period, device re-

strictions and filtering led to periods with fewer valid scans, as shown in Fig. 4 for VMs’ measurements at 100m a.g.l. To

evaluate the impact of the number of valid scans per 10min period on VM measurement accuracy, we computed error indica-

tors for VM1–3 datasets under various filtering thresholds (Table 4). Starting with unfiltered data (0% filter), we defined the175

minimum number of scans (threshold) required for a 10min measurement to be considered valid, progressively increasing the
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Table 3. Measurement heights (matching heights between

the nearby tower and the VM are in bold).

Name Height a.g.l. [m]

tse04/T20 10.3, 19.9, 27.8, 37.0, 57.2, 77.3, and 97.3

VM1 77.9, 97.0, 116.2, 135.4, 154.8, 174.3,

193.9, 208.6, 228.5, 248.7, 269.0, 289.7,

and 305.0

tse09/T25 10.4, 20.5, 30.1, 40.6, 60.2, 80.3, and 97.5

VM2 103.9, 116.8, 129.7, 148.3, 161.2, 174.0,

186.8, 199.7, 218.3, 231.2, 244.1, 257.0,

269.9, 288.8, 301.8, 314.8, 327.9, 341.1,

360.4, 373.7, 387.1, 400.5, 414.1, and

427.7

tse13/T29 10.0, 20.0, 30.1, 40.0, 60.2, 80.0, and 97.0

VM3 96.0, 115.7, 130.0, 149.9, 169.8, 184.4,

204.6, 219.3, 239.9, 260.7, 275.8, 297.0,

312.3, and 327.8

VM4 60.3, 66.7, 73.0, 79.3, 85.5, 91.8, 98.0,

104.2, 112.0, 118.2, 124.4, 130.6, 136.9,

143.2, 149.5, 155.8, 162.2, 167.0, and

173.4
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Figure 3. Tower and VM heights of wind speed measurements (match-

ing heights in coloured markers: dark blue for tse04/T20 and VM1,

medium blue for tse09/T25 and VM2, and light blue for tse13/T29).

filter criteria (as represented by the percentage values in Table 4) up to a 90% filter. For example, with the 20% filter, a 10min

measurement was considered valid and included in the analysis if it contained at least 20% of the total scan quantity, i.e., four

valid scans for a maximum of 22.

The turbulence measurements (u′u′ and v′v′) were more sensitive to the MQM filter than the mean values (u and v), as180

evidenced mainly by the RMSE (Table 4). Consequently, this metric was chosen as the criterion for identifying the optimal

MQM filter value, which retrieves a VM dataset with low errors while avoiding a significant data loss, caused by a too-

constrained filter.

The balance between low RMSE and low data loss occurs when ∆RMSE/∆N ≈ 1. Here, ∆RMSE is the percentage

difference in RMSE between any MQM filter above 0 % and the raw data (0% filter), and ∆N is the percentage difference in185

the number of samples between the two datasets. By averaging ∆RMSE/∆N across all VMs, we determined that the optimal

MQM filter is 50% for the mean and 80% for the turbulence VM measurements. Applying a filter higher than 50% (80%)
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Figure 4. Histogram of the number of valid scans in 10min periods for all virtual masts at ∼100m a.g.l., before the MQM filter. N represents

the total number of valid 10min measurements at ∼100m a.g.l. during the IOP, before the MQM filter.

can reduce the dataset size to a point where the remaining data becomes less representative of the mean (turbulent) wind flow.

Therefore, subsequent mean and turbulence results will be presented using 50% and 80% MQM filters.

Since VM4 is the only virtual mast with no reference measurement nearby, the filtering procedure determined through the190

VM1–3 analysis was replicated at VM4.

3.2 Dual-lidar measurement constraints and error sources

As two simultaneous WSs are required to produce a VM measurement, the VM is constrained by the availability of both

WindScanners. WS2–4 (WSa in Table 2) continuously performed RHI scans, while WS5–8 (WSb in Table 2) only did the in-

tercepting RHI scan twice per hour. Thus, the VM measurements occurred twice per hour within 10 minutes. During the 10min195

period, each WS performed a maximum of 22 or 23 scans (Fig. 4); i.e., a maximum sampling rate of 0.038Hz (23/600 Hz),

approximately 500 times lower than the sonic anemometer frequency (equal to 20Hz).

Another constraint was the dependence of VM data availability on concurrent measurements from both WindScanners,

which, at specific periods, depicted limited data due to equipment downtime or filtering (low CNR, hard targets, and MQM

filter). The data availability for each VM at 100m a.g.l. during the IOP is detailed in Table 5. For mean wind components, the200

average data availability for all heights was 46.2% for VM1, 76.3% for VM2, 54.1% for VM3, and 56.9% for VM4. For u′u′

and v′v′, on the other hand, availability was 37.5%, 69.8%, 47.8%, and 49.2% for VM1–4.

9



Table 4. Errors between VMs and towers according to the minimum quantity of measurements (MQM) in 10min periods for u, v, u′u′, and

v′v′.

MQM VM1 80 m VM1 100 m VM2 100 m VM3 100 m

filter r2 RMSE Bias r2 RMSE Bias r2 RMSE Bias r2 RMSE Bias

u

0 % 0.993 0.496 0.366 0.992 0.536 0.377 0.982 0.559 0.488 0.993 0.654 0.582

20 % 0.997 0.419 0.365 0.997 0.434 0.380 0.985 0.543 0.484 0.995 0.631 0.573

40 % 0.998 0.404 0.360 0.998 0.424 0.381 0.987 0.541 0.487 0.995 0.629 0.575

60 % 0.998 0.395 0.354 0.998 0.416 0.377 0.987 0.540 0.489 0.996 0.623 0.575

80 % 0.998 0.387 0.352 0.998 0.411 0.377 0.987 0.539 0.490 0.996 0.618 0.572

v

0 % 0.986 0.524 −0.292 0.981 0.598 −0.292 0.983 0.330 −0.159 0.995 0.369 −0.241

20 % 0.993 0.421 −0.291 0.994 0.421 −0.307 0.986 0.309 −0.154 0.997 0.333 −0.240

40 % 0.995 0.385 −0.293 0.995 0.405 −0.311 0.986 0.305 −0.154 0.997 0.320 −0.238

60 % 0.996 0.370 −0.280 0.995 0.402 −0.313 0.987 0.299 −0.154 0.998 0.312 −0.238

80 % 0.996 0.355 −0.273 0.996 0.389 −0.307 0.987 0.298 −0.155 0.998 0.306 −0.237

u′u′

0 % 0.645 0.422 −0.136 0.756 0.319 −0.104 0.797 0.675 0.132 0.839 0.443 −0.165

20 % 0.790 0.311 −0.127 0.797 0.288 −0.089 0.818 0.632 0.135 0.859 0.429 −0.163

40 % 0.845 0.259 −0.110 0.832 0.254 −0.083 0.831 0.610 0.138 0.872 0.412 −0.156

60 % 0.861 0.247 −0.106 0.849 0.241 −0.081 0.837 0.596 0.134 0.894 0.368 −0.147

80 % 0.885 0.217 −0.094 0.878 0.213 −0.084 0.833 0.600 0.131 0.895 0.357 −0.143

v′v′

0 % 0.656 0.520 −0.161 0.686 0.477 −0.132 0.884 0.406 −0.022 0.842 0.441 −0.101

20 % 0.743 0.443 −0.136 0.744 0.424 −0.117 0.893 0.388 −0.021 0.870 0.401 −0.090

40 % 0.793 0.370 −0.114 0.799 0.369 −0.105 0.908 0.357 −0.020 0.879 0.387 −0.087

60 % 0.801 0.361 −0.113 0.812 0.363 −0.105 0.911 0.354 −0.017 0.894 0.356 −0.086

80 % 0.809 0.325 −0.107 0.818 0.330 −0.103 0.913 0.350 −0.023 0.905 0.329 −0.081

The RMSE and Bias units are [ms−1] for u and v variables, while for u′u′ and v′v′ are [m2 s−2]. r2 is unitless.

The interception angle (∆χ) between lidars’ beams (Table 6), with directions r̂a and r̂b, influences the accuracy of VM

results. This is because the dual-lidar error of a retrieved wind field component (σDD(uj)) is (Stawiarski et al., 2013):

σDD(uj) =

[
sin2(αj +∆χ/2)+ sin2(αj −∆χ/2)

sin2∆χ

]1/2
σvr , (2)205

10



Table 5. Data availability of the VM measurements at 100m a.g.l. during the IOP.

Virtual Mean speed Turbulence

VM1 48.6 % (1073 periods of 10 min) 39.7 % (876 periods of 10 min)

VM2 80.8 % (1784 periods of 10 min) 73.9 % (1632 periods of 10 min)

VM3 56.0 % (1236 periods of 10 min) 50.4 % (1112 periods of 10 min)

VM4 52.4 % (1158 periods of 10 min) 43.9 % (969 periods of 10 min)

where
[
sin2(αj+∆χ/2)+sin2(αj−∆χ/2)

sin2∆χ

]1/2
is the error prefactor, αj is the angle between the direction of the wind field compo-

nent (êj) and the mean lidar direction (̂rm = (r̂a+ r̂b)/2), and σvr is the radial velocity error, assuming that is identical in both

lidars (σvr = σa
vr = σb

vr ). While the radial velocity error depends on several factors, such as the specific lidar, atmospheric

backscatter, distance from the instrument, focus position, and instrument temperature, we assume it to be identical in both

lidars because the angle between the beams is a more significant contributor to the dual-lidar error.210

Table 6. Average angle between lidars’ beams (∆χ) and prefactors of the dual-lidar propagation error for the horizontal velocity components

(u and v).

Virtual ∆χ Prefactors

mast [◦] u v

VM1 89.5 1.0 1.0

VM2 40.2 1.8 1.3

VM3 80.3 0.9 1.1

VM4 58.4 1.4 1.0

The prefactor is directly influenced by the between-beam angle and the direction of the wind component, namely u and v,

and indirectly by the VM height (Fig. 5), as ∆χ varies with the beams’ elevation angles. Ideally, the angle between the beams

would be close to 90◦, which results in prefactors equal to 1, regardless of the wind component direction. At Perdigão’s four

virtual masts, only VM1 and VM3 had ∆χ close to the optimal angle (∼89.5◦ and ∼80.3◦), while the angles at VM2 and VM4

were 40.2◦ and 58.4◦, on average (Table 6). This means that the prefactors and the propagation of the radial velocity error at215

VM2 and VM4 are greater than at VM1 and VM3.

When retrieving the u velocity, the dual-lidar propagation error is about 1.0, 1.8, 0.9, and 1.4 times the error of the radial

velocity for VM1–4, respectively (Table 6). For the v velocity, the prefactors are around 1.0, 1.3, 1.1, and 1.0 for VM1–4.

On the other hand, the dual-lidar error of the horizontal wind speed is a combination of the σDD(u), σDD(v), and wind speed

components:220

σDD(Vh) =

[(
u√

u2 + v2
σDD(u)

)2

+

(
v√

u2 + v2
σDD(v)

)2
]1/2

, (3)
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assuming that the errors in u and v are not correlated.

With regard to height variation (Fig. 5), the prefactors varied little and generally showed higher values with increasing height,

except for the v-wind component measured by VM1.
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Figure 5. Dual-lidar error prefactor ([(sin2(αj +∆χ/2)+ sin2(αj −∆χ/2))/sin2(∆χ)]1
/2) of a retrieved wind field component as a

function of the beam height for VM1–4.

Another source of error when combining radial velocities from different lidars can arise when there is a mismatch in their225

range gate heights (Stawiarski et al., 2013). Such mismatch can cause the lidars to measure different wind structures, mainly

under high vertical wind shear conditions. For the Perdigão-2017 campaign, the height difference of the central of the control

volume, after the radial interpolation, varied for each height and virtual mast. At VM1–4, the displacements went up to 4.4m,

6.8m, 8.7m, and 1.6m, respectively. However, given that the spatial resolution of the WindScanners was approximately 30m,

this mismatch is not expected to impact the virtual mast results substantially.230

In addition, the lidars’ scans were not fully synchronised in time (Fig. 6). This means that measurements from WSa and WSb

occurred at slightly different times, which can lead to time-average errors in the dual-lidar measurements (Stawiarski et al.,

2013) due to the stationary atmospheric assumption (Choukulkar et al., 2017). At VM1, the predominant time differences

between WSa and WSb ranged from 0 to 2 s, accounting for 53.7% of all VM1 measurements. At VM2, WSb consistently

recorded measurements later than WSa, leading to time lags of 8–10 s in 69.8% of VM2’s measurements. For VM3, 51.1%235

of the measurements depicted a time difference between 3 s and 5 s. Meanwhile, at VM4, the time difference for 62.8% of the

measurements fell in the [1 s, 3 s) interval. While these desynchronisations may impact the retrieval of turbulent variables,

their influence is expected to be insignificant for mean quantities.
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Figure 6. Time difference histogram of the mean flow measurements at all heights between the lidars constituting the virtual masts. N

represents the total number of valid 10min measurements at all heights during the IOP.

Lastly, the horizontal position of each VM differed from the corresponding tower locations. This can affect the VM results

when nearby tower measurements are used as a reference due to the underlying assumption of a spatially homogeneous atmo-240

sphere. This is most pronounced for VM1, located 32.4m apart from tse04/T20. Meanwhile, VM2 was 9.4m from tse09/T25,

and VM3, 3.3m from tse13/T29.

4 Results and discussion

This section compares virtual mast and sonic measurements and how atmospheric stability, vertical velocity, and sampling rate

influence the VM wind velocity and turbulence retrievals. The analyses are based on 10min averages of the horizontal wind245

speed (Vh) and its components (u and v), as well as their variances (u′u′ and v′v′). The virtual mast and sonic comparisons

also cover radial velocity means (vr) and variances (vr ′vr ′). All results are in local time, equal to UTC + 1 h in the summer

period, and in the ETRS89/PT-TM06 coordinate system.

4.1 Virtual mast and sonic comparisons

Virtual mast and tower measurements were compared at their closest heights, with no vertical interpolation: VM1 at 77.9m250

and 97m with tse04/T20 at 77.3m and 97.3m; VM2 at 103.9m with tse09/T25 at 97.5m; and VM3 at 96.0m with tse13/T29

at 97.0m. For simplification, the comparison heights were rounded to 80m and 100m.
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As a first analysis, vra and vrb from the WindScanners of VM1–3 were compared against sonic measurements projected in

the laser beam direction, to assess the measurements of each WS equipment without introducing uncertainties related to the

dual-lidar methodology (Sec. 3).255

Care must be taken when comparing VM results in the valley (VM2) with those on the ridges (VM1 and VM3), since the

flows are intrinsically different at the comparison heights (80 and 100m a.g.l.). In the valley, the main wind direction is along

the valley, whereas on the ridges is cross-valley; the wind speeds are lower (Fig. 2); and the turbulence intensity is 2.7 times

higher than on the ridges.

4.1.1 Mean flow measurements260

In the comparison between VM and sonic vr (Table 7), the fit of the linear regressions for all WindScanners was almost

perfect, with r2 values close to 1. The lowest r2 was equal to 0.989 (WS6 at VM2 100m). In the linear regression equation

(y =mx+ b), despite the coefficients (m) being approximately one, the constants (b), determined by where the line intercepts

the y-axis, assumed positive (WS5, WS2, and WS7) and negative (WS3 and WS6) values according to the WS, meaning an

overall overestimation and underestimation of vr. In addition, b higher than 0.4ms−1 were observed in WS5 (0.414ms−1 at265

80m and 0.445ms−1 at 100m a.g.l.) and WS7 (0.492ms−1 at 100m a.g.l.). These WindScanners also showed higher RMSE

and Bias errors in their radial velocities at 100m, 0.509ms−1 and 0.436ms−1 in WS5 and 0.586ms−1 and 0.523ms−1 in

WS7.

When WS5 and WS7 form VM1 and VM3, their beams align with the direction of the ridges (Fig. 1) and, at the top of the

hills, the main wind directions are perpendicular to the ridge’s orientation (Fig. 2). Thus, due to a lidar’s inherent limitation270

to directly measure the wind component perpendicular to its beam orientation, WS5 and WS7 setups contribute to their wind

speed measurement errors.

For the horizontal wind speed (Vh) and u and v wind components obtained from the dual-lidars, besides the beam orientation

of each WS regarding the position of the wind, the intersection angle between the two beams is also important (Table 6). At

VM1 and VM3, ∆χ was close to 90◦, the optimal angle to retrieve u and v; whereas, at VM2, the angle was about 40◦, yielding275

higher dual-lidar propagation error in the u and v components, with mean prefactors equal to 1.8 and 1.3 (Table 6 and Fig. 5).

The coefficients of determination were close to 1 for the mean wind variables at all virtual masts (Table 7 and Fig. 7), with

the lowest values equal to 0.987 for u and v and 0.948 for Vh at VM2. The lower r2 values at VM2 are attributed to the smaller

angle between WS2 and WS6 beams and to the turbulent flow in the valley, which may require a greater VM sampling rate

than 0.038Hz. The highest errors, however, occurred at VM3 for u (0.626ms−1 RMSE and 0.575ms−1 Bias) and at VM1280

for v (0.401ms−1 RMSE and −0.310ms−1 Bias); while for the horizontal wind speed, VM3 obtained the highest RMSE,

equal to 0.463ms−1, and VM2 the highest Bias, 0.188ms−1. Additionally, all VM results overestimated the anemometer

readings of the mean east-west wind component and Vh (positive Bias), and underestimated the north-south wind component

(negative Bias).

The average magnitude of the VM error (RMSE) did not follow the trend observed in the dual-lidar propagation errors.285

Contrary to the prefactor values (Table 6), VM2’s u variable did not show the highest RMSE value among the VMs, and the
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Table 7. Statistical parameters from VM and tower comparisons for mean and variance variables.

Height Metric Mean speed Turbulence

a.g.l. [m] vra vrb u v Vh vr
′
avr

′
a vr

′
bvr

′
b u′u′ v′v′

VM1 (SW ridge): WS3 WS5 WS3 WS5

80 m 1.016 0.992 0.992 1.018 1.007 0.861 0.847 0.914 0.799

b −0.140 0.414 0.364 −0.283 0.080 −0.026 −0.013 −0.049 0.015

r2 0.999 0.990 0.998 0.995 0.981 0.821 0.875 0.885 0.809

RMSE 0.230 0.486 0.398 0.375 0.342 0.233 0.288 0.217 0.325

Bias −0.151 0.409 0.356 −0.285 0.112 −0.096 −0.109 −0.094 −0.107

100 m 1.022 0.985 1.002 1.010 1.007 0.861 0.817 0.894 0.773

b −0.150 0.445 0.377 −0.306 0.071 −0.024 0.015 −0.029 0.034

r2 0.999 0.991 0.998 0.995 0.982 0.828 0.867 0.878 0.818

RMSE 0.253 0.509 0.419 0.401 0.356 0.238 0.278 0.213 0.330

Bias −0.153 0.436 0.378 −0.310 0.105 −0.093 −0.097 −0.084 −0.103

VM2 (valley): WS2 WS6 WS2 WS6

100 m 1.055 1.044 1.023 1.036 1.047 0.849 0.888 1.269 1.031

b 0.285 −0.039 0.480 −0.153 0.078 −0.061 −0.048 −0.130 −0.053

r2 0.993 0.989 0.987 0.987 0.948 0.936 0.935 0.833 0.913

RMSE 0.345 0.227 0.541 0.300 0.443 0.372 0.341 0.600 0.350

Bias 0.303 −0.036 0.489 −0.155 0.188 −0.205 −0.158 0.131 −0.023

VM3 (NE ridge): WS2 WS7 WS2 WS7

100 m 0.993 1.037 0.995 1.023 1.027 0.853 0.952 0.815 0.977

b 0.315 0.492 0.577 −0.221 0.026 −0.022 −0.058 −0.010 −0.063

r2 0.999 0.992 0.995 0.997 0.965 0.956 0.888 0.895 0.905

RMSE 0.346 0.586 0.626 0.317 0.463 0.261 0.343 0.357 0.329

Bias 0.315 0.523 0.575 −0.236 0.152 −0.128 −0.095 −0.143 −0.081

The units of b, RMSE, and Bias are [ms−1] for mean variables and [m2 s−2] for variances. m and r2 are unitless. m is the coefficient, and b is

the constant of the linear regression equation (y = mx+ b).

x-wind component in VM3 did not exhibit the lowest, indicating that factors beyond the error coefficient influenced the VMs’

RMSE.

The Vh errors of the VMs generally fell within the range of those for the u and v components. The r2, on the other hand,

showed lower values (0.969 on average) than for u and v (0.994 on average).290
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Figure 7. Mean flow measurements of virtual masts against sonic anemometer data: (a) VM1 and tse04/T20 Vh at 100m a.g.l. and (b) VM2

and tse09/T25 Vh at 100m a.g.l.

Compared to Pauscher et al. (2016), the horizontal wind speed results of Perdigão’s VMs showed lower r2 values against

reference sonic anemometer measurements, ∼3% lower on average. The difference between both results is due to the scanning

mode and the underlying assumptions in each scan. Pauscher et al. (2016) employed a staring configuration, recording data at

0.5Hz, whereas, in our analysis, the virtual mast measurements were formed by combining two RHI scans with a maximum

sampling rate of 0.038Hz. In the latter, the lidar beams were constantly moving and not perfectly synchronised in time and295

space, resulting in a lower measurement frequency and forcing a greater flow homogeneity assumption compared to the staring

approach.

4.1.2 Turbulence measurements

For the radial velocity variances (vr ′avr
′
a and vr

′
bvr

′
b), the r2 values were consistently lower than for the mean radial velocities

(vra and vrb), going from 0.994 in the means to 0.888 in the variances, on average (Table 7). The lowest coefficient of300

determination for vr ′vr ′ between lidar and sonic measurements was 0.821 at WS3 in VM1 80m, whereas the highest was

0.956 at WS2 in VM3 100m.

The radial velocity variance errors averaged 0.294m2 s−2 for RMSE and −0.123m2 s−2 for Bias on the ridges. In the

valley, under a more turbulent flow and with a low measurement rate, the average errors for vr ′vr ′ were higher than those on

the ridges, with an RMSE of 0.357m2 s−2 and Bias of −0.182m2 s−2. However, independent of the measurement location,305

all WindScanners underestimated the turbulence measurements (negative Bias).
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Figure 8. Turbulence measurements of virtual masts against sonic anemometer data: (a) VM1 and tse04/T20 v′v′ at 80m a.g.l. and (b) VM2

and tse09/T25 v′v′ at 100m a.g.l.

For u′u′ and v′v′, the VMs’ low sampling rate led to a weaker linear correlation against sonic measurements than for u and

v. The r2 results, which were higher than 0.987 (VM2 u and v) for the mean wind speed components, assumed values as low

as 0.809 (VM1 v′v′ at 80m a.g.l.) in the variances (Table 7 and Fig. 8). This means the VM turbulence measurements did not

portray the wind variability, represented by r2, as the sonic anemometer readings and the VM averages.310

In the linear regression equation between VM and sonic turbulence measurements, b was close to zero in all VMs, with the

highest value of −0.130m2 s−2 for u′u′ at VM2; while the slope coefficient (m) ranged from 0.799 at 80 m VM1 (v′v′) to

1.269 at 100 m VM2 (u′u′). The steeper slope for VM2’s turbulence measurements (both above 1) indicated greater sensitivity

to changes in turbulence compared to the other VMs, where m was less than 1. However, this did not translate into better

accuracy, as VM2 had the highest RMSE for turbulence measurements.315

Regarding errors, on the ridges, the average RMSE for the turbulent wind components (0.295m2 s−2) was lower than in

the valley (0.475m2 s−2), as also observed in the radial velocity results. The RMSE at VM2 for turbulence measurements

was the highest, 0.600m2 s−2 for u′u′; while the highest Bias was at VM3 (−0.143m2 s−2 for u′u′), closely followed by

VM2 (0.131m2 s−2 for u′u′), in absolute values. The high errors in VM2 turbulence measurements are attributed to the

approximately 9-second mismatch between the lidars. Other contributing factors are the small interception angle between the320

lidars’ beams and the measurement sampling rate, which may be insufficient for the valley complex flow, as also observed in

the VM2 mean flow results. Consistently with the distinct valley flow, u′u′ measured by VM2 uniquely overestimated the sonic

measurements (positive Bias), despite the negative Bias in the radial velocity variances of WS2 and WS6.
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Overall, the VM turbulence measurements showed a high mean r2 value (0.867) and low mean errors (0.340m2 s−2 RMSE

and −0.063m2 s−2 Bias), despite the average r2 being lower than that of the mean wind components (0.994), the imperfect325

synchronisation of the scans, and the low sampling rate. The relatively high accuracy of the VM results in capturing the

turbulent flow, even with measurement constraints, indicates that in Perdigão, synoptic and mesoscale systems dominate the

atmospheric circulation at the site, and small-scale phenomena played a minor role in the wind patterns.

In Pauscher et al. (2016), the r2 values of u′u′ (v′v′) were equal to 0.954 (0.966), 0.887 (0.903), and 0.782 (0.861), for

the three different dual-lidar combinations. On average, their r2 values were ∼1% (∼6%) higher than the ones depicted here.330

This difference is again related to the nature of the scans (staring versus RHI combination), which affects the time-spatial

synchronisation and the measurement frequency.

4.2 Influences on the dual-lidar results

Besides the inherent differences between point-based sonic readings and volumetric-based VM measurements, additional fac-

tors can cause the VM results to diverge further from the reference readings. Our analysis focused on three potential factors:335

atmospheric stability, vertical velocity, and sampling rate.

4.2.1 Atmospheric stability

To assess the atmospheric stability influence on mean and turbulence measurements in a multi-lidar setup, we categorised

VM1–3 measurements according to the atmospheric stability of the nearby 100 m towers, estimated by the bulk Richardson

number (RiB), similar to Menke et al. (2019b), being assigned as stable (RiB > 0) or unstable (RiB ≤ 0). While previous340

studies focused on the stability influence on VMs in flat terrains (Newman et al., 2016; Choukulkar et al., 2017), the virtual

masts in Perdigão were located in mountainous terrain, where the complex wind flow can disrupt a direct correlation between

stability and dual-lidar measurements.

The bulk Richardson number (RiB) was calculated with the 10min average horizontal mean wind speed components mea-

sured at 100m a.g.l. (u100 and v100) and assuming relatively dry air conditions, i.e., using the 10min average potential tem-345

perature at 2m (Θ2) and 100m (Θ100) height rather than the virtual potential temperature (Stull, 1988):

RiB =
g(Θ100 −Θ2)∆z

Θ100 [(u100)2 +(v100)2]
. (4)

The gravitational acceleration is g = 9.81ms−2, ∆z = (100− 2) m, and the wind speed at 2m a.g.l. was assumed equal to

zero. The 10min average potential temperature was approximated by Θ ≈ T +(g/Cp)z, where g/Cp = 0.0098Km−1 and

T is the 10min average air temperature (Stull, 1988) measured by the temperature sensors.350

We assumed relatively dry air conditions (Θv ≈ Θ) due to the lack of pressure measurements on Perdigão’s 100m towers

and the limited availability of barometric data from nearby towers, which reduced the number of periods for which we could

calculate RiB and classify atmospheric stability. This assumption proved valid because the differences between the 10min

average Θv and the 10min average Θ at the three 100m towers did not exceed 3.8K at 100m a.g.l. during the entire IOP.

18



The distribution of the RiB values at the three 100m towers (Fig. 9) further highlights the different conditions between355

ridge and valley wind flow. For tse04/T20 and tse13/T29, the histograms peak around zero RiB with nearly symmetrical

distributions, showing similar quantities of unstable and stable conditions. The valley tower, on the other hand, has a broader

distribution with a significant spread towards positive RiB values, indicating greater variability in stability compared to the

ridge towers and a prevalence of stable atmospheric conditions.
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Figure 9. Histogram of the bulk Richardson number from 10min average measurements at tse04/T20 (SW ridge), tse09/T25 (valley), and

tse13/T29 (NE ridge) at 100m a.g.l. during the VM measurement periods of the mean flow. The RiB values are constrained to the -10 to 10

interval, with a bin width of 0.2.

From the data collected by the 100m towers, the following number of 10min periods were classified as unstable (stable) at360

VM1–3: 526 (497), 780 (988), and 617 (572) for the mean wind components at 100m a.g.l. For the variances, the respective

quantities were 447 (383) at VM1, 719 (898) at VM2, and 552 (514) at VM3.

The influence of atmospheric stability on the dual-lidar results was affected by the distinct wind flows between the ridges

and the valley in Perdigão (Table 8), as well as by the different spatial (WSs’ interception angle) and temporal (WSs’ desyn-

chronisation) configurations among the VMs. On the ridges, VM1 and VM3 showed slightly better r2 values and slightly lower365

errors under stable than unstable atmospheric conditions, especially for turbulent flow variables. The average r2, RMSE, and

Bias for the mean wind components (u and v) were 0.997, 0.414ms−1, and 0.082ms−1 in stable conditions; while under

unstable conditions, these were equal to 0.996, 0.434ms−1 and 0.075ms−1. For turbulence variables (u′u′ and v′v′), the

statistical metrics assumed mean values of 0.853, 0.235m2 s−2, and −0.055m2 s−2 for stable, and 0.836, 0.339m2 s−2, and

−0.140m2 s−2 for unstable conditions.370

Conversely, at the valley VM, higher r2 values and lower errors with a stable atmosphere were restricted to u′u′ and v′v′.

The variances r2, RMSE, and Bias under stable conditions were 0.891, 0.358m2 s−2, and 0.029m2 s−2, on average. In com-

parison, the average u′u′ and v′v′ metrics during unstable conditions were equal to 0.827, 0.587m2 s−2, and 0.085m2 s−2.
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Table 8. Statistical parameters from VM and tower comparisons according to the atmospheric stability.

Height Metric Stability Variables

a.g.l. [m] u v Vh u′u′ v′v′

VM1 80 r2 unstable 0.998 0.993 0.977 0.879 0.775

stable 0.998 0.997 0.985 0.784 0.801

RMSE unstable 0.405 0.395 0.368 0.259 0.368

stable 0.390 0.358 0.313 0.147 0.253

Bias unstable 0.357 −0.292 0.101 −0.132 −0.139

stable 0.354 −0.287 0.120 −0.047 −0.063

100 r2 unstable 0.998 0.994 0.976 0.863 0.771

stable 0.998 0.996 0.987 0.826 0.845

RMSE unstable 0.437 0.410 0.392 0.257 0.352

stable 0.398 0.398 0.319 0.141 0.302

Bias unstable 0.389 −0.317 0.106 −0.121 −0.133

stable 0.364 −0.310 0.099 −0.035 −0.063

VM2 100 r2 unstable 0.990 0.987 0.954 0.771 0.882

stable 0.983 0.987 0.940 0.854 0.928

RMSE unstable 0.516 0.269 0.430 0.729 0.444

stable 0.561 0.323 0.454 0.471 0.245

Bias unstable 0.455 −0.097 0.141 0.204 −0.034

stable 0.517 −0.202 0.225 0.072 −0.013

VM3 100 r2 unstable 0.995 0.996 0.959 0.863 0.869

stable 0.995 0.998 0.971 0.940 0.924

RMSE unstable 0.611 0.344 0.506 0.416 0.381

stable 0.649 0.291 0.416 0.294 0.272

Bias unstable 0.555 −0.245 0.147 −0.208 −0.109

stable 0.603 −0.231 0.148 −0.075 −0.048

The RMSE and Bias units are [ms−1] for u, v, Vh variables, while for u′u′ and v′v′ are [m2 s−2]. r2 is unitless.

Another distinct result at VM2 was that regardless of the atmospheric conditions, the u′u′ turbulence measurement overesti-

mated the tse09/T25 sonic anemometer readings at 100m a.g.l.375

The overall better results from the VMs under stable than unstable atmospheric conditions indicate that when the air is more

stable and less turbulent, the temporal and spatial synchronisation between the scans of a multi-lidar system becomes less

critical, without compromising the accuracy of the measurements. Additionally, while the statistical metrics for the 10min

mean values changed slightly according to stability, the metrics for the 10min variances were more affected by atmospheric
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conditions. In terms of wind direction, there was no clear relationship between the VM wind direction error (i.e., the difference380

between the VM’s 10min average horizontal wind direction and the tower’s 10min average horizontal wind direction) and

atmospheric stability (not shown here).

4.2.2 Vertical velocity

Another possible influence on VM retrievals was the assumption of a zero vertical wind velocity (w) made to obtain the

horizontal wind components from the WindScanners’ radial velocities (Step 4 in Sec. 3.1). The coefficient of determination of385

the linear regression between the 10min average w values measured by sonic anemometers and the 10min horizontal wind

speed errors of the VMs (i.e., the difference between the VM’s 10min average horizontal wind speed and the anemometer’s

10min average horizontal wind speed) around 100m a.g.l. in Perdigão was lower than 0.060 at all measurement locations. For

turbulence measurements, the highest r2 between the 10min average w values and the 10min VM measurement errors was

0.110 at VM1.390

These low r2 values mean that the assumption of zero vertical wind velocity had a minimal impact on the VM measurements

at 80 and 100m a.g.l. in Perdigão, confirming the validity of the VM results at these heights. This minimal impact is attributed

to the small elevation angles of the lidars’ beams (Table 2) and the low vertical velocity at the site, which did not exceed

3.6ms−1 at 100 m a.g.l. during the IOP.

At heights above 100m, however, the elevation angles of the beams will be higher, causing the lidar beams to be more aligned395

with the vertical component of the wind. Thus, in a strong convective atmosphere at higher heights, the vertical velocity can

influence the virtual-mast results more significantly. In Perdigão, the maximum elevation angles of the VMs were: 21.6◦ at

VM1, 15.6◦ at VM2, and 23.0◦ at VM3.

4.2.3 Sampling rate

We turned to the sonic data to assess how the VM sampling rate affected the results. Results at progressively lower sampling400

rates were compared against the 20Hz measurements in terms of r2, RMSE (Fig. 10), and Bias. The data were down-sampled

by selecting every n-th sample for frequencies between 1Hz and 20Hz (e.g., for 2Hz, every 10th sample), and by selecting

the n-th time step for frequencies below 1Hz (e.g., for 0.5 Hz, every 2nd time step). Following down-sampling, variances and

averages were calculated over 10min intervals. Then, to assess the influence of the sampling rate in the VM retrievals, the

statistical metrics of the sonic data were linearly interpolated at the VMs’ acquisition rates, between 0.018–0.038Hz for the405

means and 0.030–0.038Hz for the variances (shaded area in Fig. 10).

Similar to the previous results, the mean wind flow (u, v, and Vh) and the metrics r2 and Bias showed less sensitivity to

measurement frequency than the variances (u′u′ and v′v′) and RMSE at the three 100m towers. Additionally, the sampling

rate had a similar influence on the wind components of the same moment, evidenced by the comparable results for u and v

and for u′u′ and v′v′ at Table 9. Consequently, Figure 10 displays only the RMSE for mean and turbulent x-axis wind speed410

component at 100m a.g.l.
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Figure 10. RMSE of sonic measurements by the sampling rate, for the mean (u) and turbulent (u′u′) x-axis wind speed component, on the

three 100m towers at 100m a.g.l. The RMSE units are [ms−1] for u, and [m2 s−2] for u′u′.

Table 9. Averaged statistical metrics due to sampling rates in the virtual-mast measurement range for the mean (0.018–0.038Hz) and

turbulent (0.030–0.038Hz) flow, based on sonic readings at 100m a.g.l.

Metric Mean flow Turbulent flow

u v Vh u′u′ v′v′

r2 0.995–0.998 0.996–0.999 0.992–0.997 0.911–0.931 0.930–0.945

RMSE 0.104–0.180 0.104–0.179 0.102–0.178 0.262 – 0.300 0.267–0.306

Bias 0.001–0.002 ∼0–−0.001 0.003–0.008 −0.012–−0.017 −0.011–−0.015

The units of RMSE and Bias are [ms−1] for mean variables, while for variances are [m2 s−2]. r2 is unitless.

At 100m a.g.l., the estimated average RMSE of the VMs, due solely to their sampling rate, ranged between 0.102 and

0.180ms−1 for the mean flow quantities and 0.262 and 0.306m2 s−2 for the turbulence variables (Table 9). Considering the

overall RMSE values for all virtual masts at 100m a.g.l. (0.434ms−1 for the average of u and v and 0.363m2 s−2 for the

average of u′u′ and v′v′), around 33% of the VMs’ RMSE for the mean wind components and 78% for the variances can415

be attributed to their measurement frequency, assuming a linear influence of this factor. For the mean horizontal wind velocity,

33% of the VMs’ average RMSE at 100m a.g.l. can be attributed to their measurement frequency. Additionally, to accurately

measure the wind flow in the valley, a higher sampling rate is required than above the hills, especially to retrieve the wind

variances. Within the VM sampling rate range, the average RMSE error for turbulence measurements at 100m a.g.l. is about

61% and 19% higher in the valley than on the SW and NE ridge.420
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Therefore, when aiming for dual-lidar readings with errors due to the sampling rate lower than those presented here, one

should evaluate the elevation range covered in the RHI mode, the lidar’s acquisition time, and the type of scan. Additionally,

the influence of the sampling rate on measurements should be considered when planning new experimental campaigns, partic-

ularly in the selection of equipment and measurement frequency of targeted wind variables. For a mininum RMSE increase

(below 0.1ms−1 and 0.1m2 s−2) compared to the 20Hz frequency, the VM sampling rate should be at least 0.05Hz for mean425

quantities and 0.2Hz for turbulence measurements.

5 Conclusions

Dual-lidar measurements of Range Height Indicator (RHI) scans in a virtual mast (VM) mode were compared against sonic

anemometer readings at three 100m towers over the Perdigão complex terrain, to evaluate the VM measurement uncertainty

and validate its use over large distances above the ground. The study focused on 10min means and variances of radial velocity430

(vr), wind speed (Vh), and wind velocity (u and v), retrieved by dual-lidar and sonic anemometers at 80m and 100m a.g.l. A

methodology for processing the virtual mast dataset was also devised.

In the analysis of the mean flow, a high correlation was found between VM and sonic measurements, with r2 values close

to 1 at all VMs. Notably, the lowest r2 were observed at VM2 (0.987 for u and v, and 0.948 for Vh), attributed to the small

angle (∼40.2◦) between the lidars’ beams (leading to high dual-lidar error propagation) and to the more turbulent flow in the435

valley. Regarding the errors, the average RMSE and Bias for u and v was 0.422ms−1 and 0.102ms−1 for all VMs, with the

highest values occurring at VM3, 0.626ms−1 and 0.575ms−1, for the u component. The error magnitudes were consistent

for all mean flow variables (u, v, and Vh) within each virtual mast. However, the average r2 for Vh (0.969) was lower than for

the wind components (0.994).

The low measuring frequency (0.038Hz maximum) and the VM location mainly impacted the turbulence measurements440

(u′u′ and v′v′). The average r2 that was equal to 0.994 for the mean wind components, was 0.867 for the variances. In the

linear regression equation, the constants (b) took on values close to zero for all VMs, while the slope coefficients (m) varied

from 0.799 for v′v′ VM1 to 1.269 for u′u′ VM2. The greater sensitivity of VM2 to turbulence changes, however, did not

translate into better accuracy. The RMSE for u′u′ and v′v′ across all VMs averaged 0.340m2 s−2, with the highest value

observed in the valley (VM2), reaching 0.600m2 s−2 for u′u′, due to the worse lidars’ synchronisation (about 9 s), the smaller445

between-beam angle, and the complex valley flow. Overall, the VM correlations against reference turbulence measurements

were still high and the average errors were low (0.340m2 s−2 RMSE and −0.063m2 s−2 Bias), indicating that small-scale

phenomena play a smaller role at 80m and 100m a.g.l. in Perdigão.

The influence of atmospheric stability also depended on the VM location. The virtual masts on the ridges (VM1 and VM3)

showed higher correlations and lower errors under stable than unstable conditions. Namely for the variances, where the aver-450

age r2, RMSE, and Bias for VM1 and VM3 under stable (unstable) conditions were equal to 0.853 (0.836), 0.235m2 s−2

(0.339m2 s−2), and −0.055m2 s−2 (−0.140m2 s−2). In the valley (VM2), the better statistical metrics with stable condi-

tions were restricted to the variance measurements of the wind; showing average r2, RMSE, and Bias of 0.891 (0.827),
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0.358m2 s−2 (0.587m2 s−2), and 0.029m2 s−2 (0.085m2 s−2) with stable (unstable) atmosphere. Although atmospheric sta-

bility differently affected the accuracy of VM measurements on the ridges and in the valley, the results indicate that in a stable,455

less turbulent atmosphere, synchronisation between the scans of a multi-lidar system becomes less critical for maintaining

measurement accuracy than in unstable conditions. Regarding the VM wind direction, no correlation between its errors and

atmospheric stability could be drawn.

The impact of the zero vertical velocity assumption on dual-lidar retrievals at 80 and 100m a.g.l. in Perdigão was minimal,

confirming the validity of the VM results at these heights. The r2 results were lower than 0.060 for the 10min average w460

values from sonic anemometer readings and the 10min horizontal wind speed errors from the VM measurements, and lower

than 0.110 for the 10min average w values and the 10min variance errors from the VMs.

Lastly, the influence of the VM sampling rate accounted for 33% of the overall RMSE for the mean quantities and 78%

for the variances at 100m a.g.l. when assuming a linear influence of this factor on the dual-lidar error. The impact of sampling

rate on measurements, including those from dual-lidars, is crucial when selecting and configuring equipment to ensure accurate465

recording of target variables.

Overall, Perdigão’s VMs obtained accurate mean flow measurements, and their turbulence estimations, despite displaying

lower correlations against reference data, also showed low errors, demonstrating the VMs’ ability to capture mean and turbulent

wind characteristics under different flow conditions, at great heights, and in complex terrain. From the VM measurements and

sonic readings, the construction of vertical profiles of the wind enables the analysis of Perdigão’s complex flow at heights up470

to 430m a.g.l.

For greater data accuracy and reliability in future dual-lidar campaigns, the lidars must be positioned to form an approxi-

mately 90◦ angle between their beams to minimise error propagation and operated at a sampling frequency of at least 0.05Hz

for mean quantities and 0.2Hz for turbulence. These frequencies yield a minimal RMSE increase (below 0.1ms−1 and

0.1m2 s−2) compared to the 20Hz frequency.475
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Y.: The Perdigão: peering into microscale details of mountain winds, Bulletin of the American Meteorological Society, 100, 799–819,

https://doi.org/10.1175/BAMS-D-17-0227.1, 2019.

Hill, M., Calhoun, R., Fernando, H. J. S., Wieser, A., Dörnbrack, A., Weissmann, M., Mayr, G., and Newsom, R.: Coplanar Doppler lidar

retrieval of rotors from T-REX, Journal of the Atmospheric Sciences, 67, 713–729, https://doi.org/10.1175/2009JAS3016.1, 2010.

Kim, H.-G. and Meissner, C.: Correction of LiDAR measurement error in complex terrain by CFD: Case study of the Yangyang pumped530

storage plant, Wind Engineering, 41, 226–234, https://doi.org/10.1177/0309524X17709725, 2017.

Klaas, T., Pauscher, L., and Callies, D.: LiDAR-mast deviations in complex terrain and their simulation using CFD, Meteorologische

Zeitschrift, 24, 591–603, https://doi.org/10.1127/metz/2015/0637, 2015.

Liu, X., Zhang, H., Wang, Q., Wang, X., Zhang, X., Li, R., Qin, S., Yin, J., and Wu, S.: Inter-comparison study of wind measure-

ment between the three-lidar-based virtual tower and four lidars using VAD techniques, Geo-spatial Information Science, pp. 1–17,535

https://doi.org/10.1080/10095020.2024.2307930, 2024.

Mann, J., Cariou, J.-P., Courtney, M. S., Parmentier, R., Mikkelsen, T., Wagner, R., Lindelöw, P., Sjöholm, M., and Enevoldsen, K.: Com-

parison of 3D turbulence measurements using three staring wind lidars and a sonic anemometer, IOP Conference Series: Earth and

Environmental Science, 1, 012 012, https://doi.org/10.1088/1755-1315/1/1/012012, 2008.

Mann, J., Angelou, N., Arnqvist, J., Callies, D., Cantero, E., Arroyo, R. C., Courtney, M., Cuxart, J., Dellwik, E., Gottschall, J., Ivanell, S.,540

Kühn, P., Lea, G., Matos, J. C., Palma, J. M. L. M., Pauscher, L., Peña, A., Rodrigo, J. S., Söderberg, S., Vasiljevic, N., and Rodrigues,

C. V.: Complex terrain experiments in the New European Wind Atlas, Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 375, 20160 101, https://doi.org/10.1098/rsta.2016.0101, 2017.

Menke, R. and Mann, J.: Perdigao 2017: Laser survey of measurement masts, Tech. rep., DTU Wind Energy, https://perdigao.fe.up.pt/

documents/file/238, 2017.545

Menke, R., Mann, J., and Vasiljevic, N.: Perdigão-2017: multi-lidar flow mapping over the complex terrain site, Technical University of

Denmark, https://doi.org/10.11583/DTU.7228544.V1, 2018.

Menke, R., Vasiljevic, N., and Mann, J.: Perdigão 2017: DTU’s scanning lidar measurements, Tech. rep., DTU Wind En-

ergy, Denmark, https://windsptds.fe.up.pt/thredds/fileServer/upperAir/Lidar/DTU%20Scanning%20Lidar%20Data/netcdf/DTU_Lidar_

Measurement_Report_v1.0.pdf, 2019a.550
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