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Abstract 21 

Chemical losses of ambient reactive volatile organic compounds (VOCs) is a long-term issue yet to 22 

be resolved in VOC source apportionments. These losses substantially reduce the concentrations of 23 

highly reactive species in the apportioned factor profiles and result in the underestimation of source 24 

contributions. This review assesses the common methods and existing issues in ways to reduce losses 25 

and loss impacts in source analyses and suggest research directions for improved VOC source 26 

apportionments. Positive Matrix Factorization (PMF) is now the main VOC source analysis method 27 

compared to other mathematical models. The issue in using any apportionment tool is the processing 28 

of the data to be analyzed to reduce the impacts of reactive losses. Estimating the initial 29 

concentrations of ambient VOCs based on photochemical age has become the primary approach to 30 

reduce reactive loss effects in PMF except for selecting low reactivity species or nighttime data into 31 

the analysis. Currently, the initial concentration method only considers daytime reactions with 32 

hydroxyl (•OH) radicals. However, the •OH rate constants vary with temperature and that has not 33 

been considered. Losses from reactions with O3 and NO3 radicals especially for alkene species 34 

remain to be included. Thus, the accuracy of the photochemical-age estimation is uncertain. Beyond 35 

developing accurate quantitative approaches for reactive losses, source analyses methods for the 36 

consumed VOCs and the accurate quantification of different source contributions to O3 and 37 

secondary organic aerosols are important additional directions for future research.  38 

 39 

 40 

 41 
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1 Introduction  43 

     Ambient VOCs are key precursors of ozone (O3) and secondary organic aerosols (SOAs) 44 

formation (Li et al., 2016; Li et al., 2018a; Wu and Xie, 2018). Accurate apportionment of their 45 

sources can be important in developing effective prevention and control measures for atmospheric O3 46 

and secondary organic particulate matter pollution (Carrillo-Torres et al., 2017; Meng et al., 1997; 47 

Wang et al., 2022a). Current research on source analyses of atmospheric VOCs has been primarily 48 

conducted utilizing the species ratio method (Che et al., 2019; Zhang et al., 2021), the photochemical 49 

age-based parameterization method (Huang et al., 2020; Zhu et al., 2021), and receptor models (e.g., 50 

positive matrix factorization (PMF) (Gu et al., 2020; Liu et al., 2016), chemical mass balance (CMB) 51 

(Song et al., 2019), and principal component analysis/multiple linear regression (PCA/MLR) (Jia et 52 

al., 2016; Sanchez et al., 2008), etc.) based on the measured concentration data. Receptor models, 53 

especially PMF, are the most widely used source apportionment methods (Song et al., 2008; Vega et 54 

al., 2022; Yang et al., 2022b). However, compared to particulate matter, ambient VOC species can 55 

undergo rapid, complex chemical reactions with •OH radicals, NO3 radicals, O3, etc. (Atkinson and 56 

Arey, 2003), resulting in substantial chemical losses during their transport from their sources to the 57 

receptor site (Yang et al., 2022b; Yuan et al., 2012a). Therefore, the source apportioned results based 58 

on the measured VOC data have difficulty to fully reflect the actual impacts of emission sources on 59 

air quality (Wu et al., 2023b; Yang et al., 2022a). 60 

To reduce the impact of reactive losses, many studies have selected low-reactivity VOC species 61 

to conduct source analyses when using PMF source analyses (Guan et al., 2020; Yang et al., 2022a). 62 

However, this method cannot fully solve the issues related to reactive losses and provide complete 63 

source apportionments since some highly active marker species such as isoprene (Tan et al., 2020) 64 

cannot be excluded from the PMF input species without a substantial loss of information (Liu et al., 65 

2023a). Therefore, recent studies estimated the initial concentrations of ambient VOCs (i.e., the VOC 66 

concentrations in the fresh emissions before they can undergo chemical reactions) utilizing the 67 

photochemical age-based parameterization method and then performed source analyses with PMF 68 

(He et al., 2019; Zou et al., 2023). However, there could still be high uncertainties in the estimated 69 

photochemical age of VOC species (Parrish et al., 2007; Yuan et al., 2012b).  70 

There were studies that only used nighttime data for source analyses to reduce the loss impacts 71 
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(Kim et al., 2005), but the representativeness of the apportioned results was likely limited since there 72 

could be daytime only sources that would not be observed at night (Buzcu and Fraser, 2006). Some 73 

studies applied decay factors to correct the impact of reactive losses in using CMB for VOC source 74 

analyses (Friedlander, 1981; Lin and Milford, 1994; Na and Pyo Kim, 2007). However, there were 75 

relatively few studies and the effectiveness of this method still needs to be assessed. In 2023, Liu et 76 

al. (2023a) systematically investigated the impact of VOCs photochemical losses on the PMF source 77 

apportioned results, and found that photochemical losses reduced the concentrations of highly 78 

reactive species in factor profiles resulting in the contributions of biogenic emissions and polymer 79 

production-related industrial sources being substantially underestimated. However, there has been 80 

little related research to assess the limitations of VOC apportionments. 81 

With the substantial increase of O3 concentrations in many locations worldwide in recent years 82 

(Li et al., 2020a; Zhang et al., 2018; Zhao et al., 2021), accurate source apportionment approaches of 83 

the key precursor VOCs have been acquired increasing attention (Gu et al., 2022). Thus, a related 84 

issue is the determination of the VOCs consumed in the formation of the observed O3 and SOAs (Gu 85 

et al., 2023). Although some studies have investigated the underestimated contributions of emission 86 

sources by comparing the apportioned results based on the initial and measured data (He et al., 2019; 87 

Wu et al., 2023a), there are few publications that conducted source analyses for the consumed VOCs 88 

and apportioned the contributions of different sources to the formation of O3 and SOA. In 2023 and 89 

2024, Gu et al. (2023) and Cui et al. (2024) attempted to develop a method for apportioning the 90 

primary and oxidative sources of the consumed VOCs, and Wang et al. (2022b) conducted a similar 91 

study. Currently, although some studies have been conducted on these issues of VOC reactive losses 92 

and achieved some important results (Gu et al., 2023; Watson et al., 2001; Wu et al., 2023b), there 93 

remain unresolved issues. To better promote progress on the development of better VOCs source 94 

apportioned methods, the present work systematically investigated the main methods and 95 

shortcomings of those methods that are currently applied to resolve these issues by reviewing 96 

relevant papers, with the aim of identifying directions for the future developments and improvement 97 

of VOCs source apportionment methods. 98 

 99 
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2 Materials and methods 100 

Relevant papers were collected by exhaustively searching Science Direct (Elsevier), the Web of 101 

Science, Scopus, Springer, Wiley, and China National Knowledge Infrastructure (CNKI), etc. with 102 

the keywords: volatile organic compounds (VOCs), oxygenated VOCs (OVOCs), initial 103 

concentrations/mixing ratios, chemical/photochemical losses, source apportionment/analysis, 104 

positive matrix factorization (PMF), chemical mass balance (CMB), receptor model, and 105 

photochemical age-based parameterization method. The information extracted from each publication 106 

included methods for reducing the impacts of photochemical losses, the impacts of VOC 107 

photochemical losses on source analyses, the source apportioned methods and the results for the 108 

consumed VOCs in the atmosphere. This study identified 170 papers, of which 69 papers were 109 

published since 2020, accounting for ~41% of the total publications; a total of 36 papers were 110 

published from 2015 to 2019, accounting for ~21%. There were 109 research papers reporting results 111 

in China, accounting for ~64% of the total papers. There were 40 papers located in the United States, 112 

accounting for ~24%. The numbers of papers located in India, South Korea, Canada, and Japan were 113 

only 4, 3, 3, and 3, respectively, and there were a few papers from other countries. Additionally, there 114 

were 19 research papers conducted in Beijing, 9 papers in Guangzhou, and 8 papers in Tianjin, 115 

accounting for ~11%, ~5%, and ~5% of the total papers, respectively. There were fewer reports from 116 

other cities. 117 

 118 

3 Results and discussion 119 

3.1 Methods of reducing the impacts of reactive losses  120 

Ambient VOCs can be substantially oxidized by O3, hydroxyl (•OH), and nitrate (NO3) radicals 121 

(Atkinson and Arey, 2003; Bey et al., 2001; Finlayson-Pitts and Pitts, 1997), especially oxidation by 122 

•OH radicals primarily during the daytime (Wang et al., 2013). Therefore, reducing the impacts of 123 

VOC reactive losses on source apportionment has long been an important but not easy issue to 124 

resolve in VOC source apportionments (Liu et al., 2023a). Ambient VOCs primarily include alkanes, 125 

alkenes, aromatic hydrocarbons, alkynes, OVOCs, and halogenated hydrocarbons, etc. Studies 126 

suggested that the concentration of Photochemical Assessment Monitoring Stations (PAMS) VOCs 127 

(i.e., alkanes, alkenes, aromatic hydrocarbons, and alkynes) accounted for ~63% of the total VOCs 128 
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(TVOCs) concentration (i.e., average value of proportions from different literature), while OVOCs 129 

and halogenated hydrocarbons contributed ~22% and ~14% to the TVOCs, respectively (as shown in 130 

Table S1). The reported number of measured species ranged from 13 to 124, including 0-32 alkanes, 131 

2-16 alkenes, 1 alkyne (only acetylene), 3-19 aromatic hydrocarbons, 4-28 OVOCs, and 28-38 132 

halogenated hydrocarbons. There were substantial differences in the identified emission sources for 133 

the different types of VOCs (Mo et al., 2016). For example, PAMS VOCs mainly originate from 134 

primary anthropogenic sources (Chen et al., 2010), while OVOCs can also be formed by oxidation of 135 

PAMS VOCs in addition to primary source emissions (Chen et al., 2014; Seinfeld and Pandis, 1986). 136 

The contributions of secondary formation to some OVOC species (e.g., acetaldehyde and 137 

propionaldehyde) can exceed 50% (de Gouw et al., 2005). In addition to local emissions, the ambient 138 

concentrations of halogenated hydrocarbons can also be affected by the long-distance transport 139 

(Mintz and McWhinney, 2008). Therefore, utilizing only the same source analyses approach for 140 

multiple VOC species from different sources might produce results with high uncertainties in the 141 

apportionments. 142 

Source analyses methods for ambient VOCs considering reactive losses mainly included PMF, 143 

CMB, and photochemical age-based parameterization method (Table S2). PMF was the most 144 

commonly method used for source analyses (Yang et al., 2022b). Approximately 53% of the 145 

reviewed publications focused on source analyses of PAMS species using PMF, while OVOCs 146 

primarily used photochemical age-based parameterization method for source apportionment but with 147 

only relatively few studies (Tables S2-S3). Additionally, the studies on data from simultaneous 148 

measurement of both PAMS and OVOC species utilized two methods to conduct source analyses: 149 

one method was to simultaneously input PAMS and some OVOC species into the receptor model 150 

(e.g., PMF) for source analyses and only separated primary and secondary source contributions of 151 

ambient VOCs (Han et al., 2023; Li et al., 2023; Liu et al., 2023b; Tan et al., 2021) (Table S3). 152 

Another approach was to use the PMF and photochemical age-based parameterization to obtain the 153 

source apportioned results for ambient PAMS and OVOCs, respectively, and then combined the two 154 

apportioned results to obtain finally source resolution results for the ambient VOCs (Zhu et al., 2021). 155 

However, the utilization of this method has been limited. 156 

 157 
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3.1.1 Methods for reducing reactive loss in PMF source analyses 158 

3.1.1.1 Selecting low activity species or incorporating night only data into PMF 159 

The methods of reducing effects of reactive losses for source apportionments utilizing different 160 

models are shown in Fig. 1. At present, selecting the VOC species with lower reactivity to be input in 161 

PMF for apportionment is the most commonly used approach (Chen et al., 2019; Tan et al., 2020; 162 

Yang et al., 2022b). Many highly active alkene and aromatic hydrocarbon species were not included 163 

in the PMF calculations (Gu et al., 2023; Liu et al., 2023a). For example, Liu et al. (2023a) excluded 164 

highly active species such as 1-hexene, trans-2-butene, trans-2-pentene, cis-2-pentene, and cis-2-165 

butene. In addition, current approach of incorporating daytime and nighttime VOC data into PMF for 166 

source analyses (e.g., Gu et al., 2020; Li et al., 2020b; Jain et al., 2022) assumes that the daytime and 167 

nighttime factor profiles are consistent. However, the daytime factor profiles can be substantially 168 

influenced by photochemistry (Liu et al., 2025). Therefore, the source contributions obtained by this 169 

method had relatively higher uncertainty. To reduce the impacts of reactive losses on the PMF 170 

apportioned factor profiles and the corresponding contributions, some studies utilized only nighttime 171 

data when reactive losses would be lower for source analyses to obtain more accurate nighttime 172 

contributions of emission sources (Buzcu-Guven and Fraser, 2008; Buzcu and Fraser, 2006; Kim et 173 

al., 2005; Xie and Berkowitz, 2006).  174 

However, the volatile emission sources commonly contribute substantially to VOCs during the 175 

daytime (Gu et al., 2023). For example, Buzcu and Fraser (2006) used nighttime and all-day data to 176 

conduct VOC source apportionment in Houston, respectively. They found that the night only data did 177 

not identify biogenic or evaporative gasoline sources due to minimal emissions at night. Thus, the 178 

contributions of the nighttime emission sources substantially increased compared to the all-day 179 

results because of the missing source types. Meanwhile, the all-day VOC source analysis conducted 180 

by Zhao et al. (2004) in Houston during the same period also showed substantial differences from the 181 

results reported by Buzcu and Fraser (2006) utilizing night-only data. An additional consideration is 182 

that VOCs can react with NO3 radicals and O3 (especially for highly reactive alkenes) at night 183 

causing reactive losses (de Gouw et al., 2017). Thus, this approach does not eliminate the effects of 184 

all possible loss mechanisms. Although Wang et al. (2024a) also considered reactions with O3 at 185 

night when estimating VOC chemical reactive losses, the number of related studies remains limited. 186 
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 187 

 188 

Figure 1. Methods for reducing the impacts of reactive losses for different source analyses models. 189 

PMF represents positive matrix factorization, CMB represents chemical mass balance, and PAPM 190 

represents photochemical age-based parameterization method. 191 

 192 

3.1.1.2 Incorporating VOC initial concentration estimated by photochemical age-based 193 

parameterization method into PMF  194 

The photochemical age-based parameterization method is an approach to estimate the initial 195 

concentrations of ambient VOCs (Shao et al., 2011; Wang et al., 2013; Yuan et al., 2012b). This 196 

method assumes that the chemical loss of ambient VOCs mainly originates only from reactions of 197 

the VOCs with •OH radicals (Parrish et al., 1992; Sun et al., 2016; Wang et al., 2013). The 198 

photochemical ages (Δt) of VOC species are estimated, and then combined with the rate constants 199 
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for reaction for •OH radicals with the VOC species (k•OH) to calculate their initial concentrations and 200 

quantified the VOC photochemical losses (Shao et al., 2011; Wang et al., 2013; Zhan et al., 2021). 201 

The equation for the initial concentration calculation is shown in Eq. (1), where k•OH and Δt are the 202 

key parameters in this approach. 203 

[𝑉𝑂𝐶]𝑡 = [𝑉𝑂𝐶]0 × exp(−𝑘•OH × [• OH]∆𝑡)                    (1) 204 

where [VOC]0 and [VOC]t are the initial and measured concentrations of VOC at time t, [•OH] 205 

represents the concentration of •OH radical. However, many studies estimated [•OH] Δt because of 206 

the lack of •OH radical concentration data and defined the product as the •OH exposure (Shao et al., 207 

2011; Wei et al., 2022; Yuan et al., 2012b).  208 

The k•OH of VOC species are substantially affected by atmospheric temperature (Atkinson and 209 

Arey, 2003), which could be commonly measured in laboratory (or chamber) experiments or through 210 

the use of detailed chemical computer models (Atkinson and Arey, 2003). According to the reviewed 211 

papers regarding the estimation of photochemical age, it was found that approximately 48% of the 212 

publications used the Atkinson and Arey's 2003 summary of k•OH values at 298º K (Atkinson and 213 

Arey, 2003), and approximately 8% used Carter's 2010 summary of k•OH values at 300º K (Carter, 214 

2010). The detailed k•OH values for different VOC species summarized in these two publications are 215 

provided in Table S4. However, other relevant studies cited k•OH values from other papers by 216 

Atkinson and/or Carter (Atkinson, 1991, 2007; Atkinson et al., 2006; Talukdar et al., 1994). The rate 217 

constant for a bimolecular reaction between a hydroxyl radical and a VOC molecule has a roughly 218 

exponential dependence on temperature in the Arrhenius equation (Liu et al., 2023a). Therefore, 219 

these published papers only used k•OH values at specific temperatures, which made it difficult to 220 

characterize the actual reaction rates at the actual temperatures in the atmosphere. To address this 221 

issue, Wang et al. (2022b) and Wang et al. (2023) utilized the Arrhenius expression to locally 222 

optimize the k•OH values of VOC species based on the actual temperature conditions to further 223 

improve the accuracy of estimating the VOC initial data. In addition, some studies used the k•OH of 224 

m,p-xylene instead of values of more reactive species to reduce high-outliers when estimating the 225 

initial concentration (Wang et al., 2013). However, the validity of this method was difficult to assess. 226 

There are two main methods (as shown in Table S5) for estimating Δt, namely, the species ratio 227 

method (Roberts et al., 1984; Shao et al., 2011; Wan et al., 2022) and the sequential reaction model 228 
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(Gong et al., 2018; Shao et al., 2011; Xie et al., 2008). The specific details are as follows: 229 

(1) Estimation of Δt based on the species ratio method 230 

𝛥𝑡 =
1

(𝑘𝐴−𝑘𝐵)×[𝑂𝐻]
× [𝑙𝑛 (

[𝐴]0

[𝐵]0
) − 𝑙𝑛 (

[𝐴]𝑡

[𝐵]𝑡
)]                    (2) 231 

where kA and kB are the reaction rate constants with •OH radicals for species A and B of highly 232 

homologous species with substantial differences in reaction activity, respectively, 
[𝐴]0

[𝐵]0
 is the initial 233 

concentration ratio of A to B in fresh emissions, 
[𝐴]𝑡

[𝐵]𝑡
 is the measured concentration ratio of A to B at 234 

time t. The determination of initial concentration ratio of A to B was extremely critical for estimating 235 

the Δt. The Δt is used to then calculate the initial concentrations of the VOCs of interest using Eq. (1). 236 

The initial concentrations can then be the input variables to PMF (Liu et al., 2023a). 237 

This ratio method was first proposed by Roberts et al. (1984). The method has been 238 

commonly applied to PAMS species emitted by anthropogenic sources. There have been differences 239 

in the species used to calculate the initial ratio in different papers (Table S6). Generally aromatic 240 

hydrocarbons (e.g., benzene, toluene, ethylbenzene, or m,p-xylene) were used as the selected species. 241 

The substantial differences in activity and high homology are generally the main basis for selecting 242 

species-ratio types (Lin et al., 2011; Shao et al., 2009; Zou et al., 2021; Zou et al., 2023). Most 243 

publications used the initial ratios of ethylbenzene/m,p-xylene (E/X) or m,p-xylene/ethylbenzene 244 

(X/E) to calculate Δt (Table S6). These two species ratios (E/X and X/E) accounted for ~34% of the 245 

total reviewed publications of estimating initial ratios, respectively. Approximately 7% of the papers 246 

used toluene/benzene (T/B), while m,p-xylene/benzene (X/B), ethylbenzene/o-xylene (E/O), or O/E 247 

had limited use, accounting for ~2% and ~11% of the total reviewed publications of initial ratio 248 

estimation.  249 

The methods for obtaining the initial species ratio in the reviewed papers mainly referred to 250 

prior similar studies (Wang et al., 2016), source emission inventory values (Wang et al., 2013), and 251 

estimations based on the observed concentration data at the receptor sites at times when low 252 

reactivity was expected (Borlaza-Lacoste et al., 2024; Fang et al., 2021; Han et al., 2019; Wu et al., 253 

2023b). There were several papers using the first two methods to obtain the initial species ratios 254 

(Table S6). The initial species ratios obtained by these methods had difficulty to accurately 255 

characterize the comprehensive impacts of multiple sources in the study area. Most studies were 256 
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based on the observed data of low photochemical reaction periods (~ 19:00 to 08:00 LT) to calculate 257 

the initial species ratios (Table S6). This method assumes that VOC species emitted by different 258 

sources during the certain periods of night would not undergo oxidative reaction, and the 259 

concentration ratios of two homologous VOC species remained unchanged during the transport 260 

process from source emissions to the receptor measured sites (Liu et al., 2023a; Sun et al., 2016; 261 

Yuan et al., 2012b). Since there could be residual reactions with nitrate radical and multiple sources 262 

of the indicator species, there remains uncertainty in the results. For example, McKeen and Liu 263 

(1993) and McKeen et al. (1996) found that the species ratios can be substantially influenced by the 264 

oxidative chemistry and atmospheric mixing. Comparing one species versus another, both the model 265 

results and the observations were consistent with an average rate of dilution roughly equivalent to n-266 

butane oxidation (McKeen et al., 1996). This result has negative implications for the use of 267 

hydrocarbon ratios as chemical reaction clocks (McKeen et al., 1996). Parrish et al. (2007) also 268 

suggested that there were uncertainties in the determination of Δt by the initial species ratios because 269 

of influence of fresh emissions along the transport path that perturb the results. However, this 270 

approach can still provide a useful measure of chemical processing in the atmosphere (Parrish et al., 271 

2007).  272 

There were differences in the estimation details of the initial species ratio in different reports 273 

(Liu et al., 2023a; Shao et al., 2011; Yuan et al., 2012b). For example, Yuan et al. (2012b) utilized the 274 

m,p-xylene and benzene data measured between 0:00 and 5:00 LT to conduct a linear fit. The 275 

regression line was then extrapolated to the highest benzene concentration during this period so that 276 

the initial ratio could be estimated from the m,p-xylene to benzene concentration ratios at this point. 277 

Wu et al. (2023b) and Yang et al. (2022a) used time periods (00:00-04:00 LT and 20:00-05:00 LT, 278 

respectively) with the lowest and the highest E/X and T/B ratios at night to calculate the average 279 

values of corresponding E/X ratios less that various percentiles or the corresponding T/B values 280 

above various percentiles, and then determined the initial ratio by the minimum average ratio (i.e., 281 

E/X) or the maximum average ratio (i.e., T/B) of the two species with the highest homology (i.e., 282 

highest correlation) below different percentiles. Wu et al. (2023a) reported that the maximum value 283 

of X/E at 01:00-06:00 LT was considered as the initial species ratio. In addition, Liu et al. (2023a) 284 

and Borlaza-Lacoste et al. (2024) utilized the slope of the linear fit of the scatterplots of 285 
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corresponding ethylbenzene and m,p-xylene below the 10th percentile of E/X ratios during 00:00-286 

05:00 LT to determine the initial ratio. Overall, the E/X in the reviewed papers ranged between 0.22 287 

and 0.75, T/B was between 3.14 and 4.48, X/E was between 0.39 and 4.42, E/O was between 1.30 288 

and 1.32, O/E was between 1.19 and 3.14, and X/B was 2.2 (as shown in Table S6).  289 

Zhang et al. (2020) attempted to confirm the feasibility and rationality of estimating Δt based on 290 

T/B utilizing the regressions of benzene and toluene versus CO and Δt. Zou et al. (2023) 291 

demonstrated the rationality of selecting the ratio of E and X to estimate the Δt through high 292 

correlation of these two species having substantial activity differences. However, there were few 293 

studies to systematically assess how to choose the most suitable species ratios and the calculated 294 

method.  295 

Multiple types of initial species ratios were used for estimating Δt of VOCs (Table S6), and the 296 

results estimated by the different ratios could vary substantially. Shao et al. (2011) suggested that the 297 

differences between the initial concentrations calculated using the ratios of three pairs of compound 298 

ratios (i.e., T/B, X/E, and i-butene/propene (iB/P)) were generally within 50%, and the X/E and iB/P 299 

results were in good agreement. Zou et al. (2021) examined the sensitivity of estimating initial 300 

concentration based on E/X and E/O initial ratios. They found that the relative variation range of the 301 

initial concentrations of PAMS species was between 0.41% and 68.06% for an initial E/O of 1.3 302 

when compared with an initial E/X of 0.5.  303 

Additionally, in the ratio method, the same Δt was calculated for different VOCs for each 304 

sample, and the paired species for estimating the ratio were aromatic hydrocarbons (Table S6), which 305 

are mainly emitted from anthropogenic emission sources such as solvent use and petrochemical 306 

enterprises (Mo et al., 2015; Na et al., 2004; Yuan et al., 2010; Zhang et al., 2016). Therefore, the Δt 307 

obtained based on these ratios may only reflect the chemical aging of VOC species emitted from 308 

these specific sources. It is difficult to accurately characterize the Δt for these species from other 309 

sources. In the future, different types of species ratios (not just aromatic hydrocarbons) need to be 310 

selected based on VOC species from different sources. The Δt derived from different types of VOC 311 

species should be calculated to improve traditional ratio methods.  312 

An additional issue is that this method only considers the reactions between VOCs and •OH 313 

radicals during the day, while chemical reactions with NO3 radicals at night and/or O3 were 314 
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commonly excluded. Liu et al. (2023a) attempted to estimate the reactive losses between 19:00 and 315 

23:00 LT, but they considered the gradual loss of •OH radicals after sunset and did not consider the 316 

losses caused by NO3 radical reactions that may be present at night since they are not photolyzed as 317 

occurs in the daylight. Additionally, alkenes can directly react with O3 in the atmosphere causing 318 

losses. de Gouw et al. (2017) suggested that nighttime removal of highly reactive alkenes by O3 and 319 

NO3 radicals was also substantial. However, there are currently no reports on estimation methods for 320 

these reactive losses. In future studies, the ratio of two alkene species with substantial differences in 321 

reaction rates with O3 could be used as the base ratio as in Eq. (2), and combined with measured O3 322 

reaction rate constants (Atkinson and Arey, 2003) to estimate the chemical reaction time (Δt) of 323 

alkene species with O3. Then, chemical losses of alkene species in the reaction with O3 could be 324 

estimated using Eqs. (1) and (9) and the combined effects of O3 and •OH could be estimated. de 325 

Gouw et al. (2017) proposed the calculated method of O3 exposure (i.e., [O3]Δt) at nighttime, which 326 

can be calculated from the measured ratio of benzene over cis-2-butene.  327 

 328 

(2) Estimation of Δt based on the sequential reaction model 329 

It has been found that using the ratio method to calculate the Δt of isoprene could result in 330 

overestimation (Wu et al., 2023a; Yang et al., 2022b). An alternative is the sequential reaction 331 

method. It is based on measurements of the reaction products of these reactions. 332 

Isoprene +• OH → 0.23MACR + 0.32MVK k1=1.0×10-10 cm3/(molecule·s)               (3) 333 

MACR +• OH → products k2=3.3×10-11 cm3/(molecule·s)                             (4) 334 

MVK +• OH → products k3=1.9×10-11 cm3/(molecule·s)                              (5) 335 

[MACR]t

[Isoprene]t
=

0.23k1

k2−k1
(1 − 𝑒(𝑘1−𝑘2)[•𝑂𝐻]∆𝑡)                                             (6) 336 

[MVK]t

[Isoprene]t
=

0.32k1

k3−k1
(1 − 𝑒(𝑘1−𝑘3)[•𝑂𝐻]∆𝑡)                                             (7) 337 

where MVK is methyl vinyl ketone, MACR is methacrolein; k1, k2, and k3 are the rate constants 338 

reacting with •OH of isoprene, MACR, and MVK, respectively; [MVK]t, [MACR]t, and [isoprene]t 339 

are the measured ambient concentrations at time t.   340 

This sequential reaction method was first proposed by Bertman et al. (1995) and was commonly 341 

used to estimate the Δt of isoprene emitted primarily from biogenic emissions (Gong et al., 2018; 342 

Roberts et al., 2006; Wu et al., 2023a). Assuming the •OH-driven isoprene oxidation mechanism 343 
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(Eqs. (3)-(5)) from the laboratory chamber studies of Carter and Atkinson (1996), Stroud et al. (2001) 344 

quantified the Δt of isoprene by the reaction relationship between isoprene and its oxidation products 345 

(Eqs. (6)-(7)) (de Gouw et al., 2005; Wu et al., 2023a; Xie et al., 2008). The synchronous 346 

measurement of MVK and MACR is critical to obtain Δt utilizing this method. Numerous studies 347 

failed in estimating the isoprene Δt due to the lack of MVK and MACR (Gu et al., 2023; Liu et al., 348 

2023a; Wang et al., 2023). Although some studies have used the average of Δt obtained from both 349 

MVK and MACR as the final Δt (Xie et al., 2008), there has been little assessment of which method 350 

was more suitable. 351 

Additionally, there were studies using the isotopic hydrocarbon clock method (Kornilova et al., 352 

2016; Rudolph and Czuba, 2000; Saito et al., 2009) to estimate the species Δt, that was calculated by 353 

the decay of isotopes in the emissions to the ambient receptor site (Table S5). However, the studies 354 

only calculated the Δt without estimating the species initial concentrations. Our study found that 355 

approximately 74% of the publications that calculated the Δt used the species ratio method, 356 

approximately 11% used both the ratio method and the sequential reaction model, while a few used 357 

other methods (Table S5). 358 

 359 

3.1.2 Reducing the losses impacts in OVOC source analyses based on photochemical age 360 

Ambient OVOCs are an important fraction of VOCs, which primarily included aldehydes, 361 

ketones, ethers, and alcohols (Mellouki et al., 2015) since OVOC photolysis is one of the main 362 

sources of •OH radicals (Li et al., 2018b). The OVOCs can be directly emitted from biogenic and 363 

anthropogenic sources (Huang et al., 2019; Huang et al., 2020; Tanimoto et al., 2014) and can also be 364 

formed by oxidation of precursors (e.g., PAMS species) with •OH radicals, O3, and NO3 radicals 365 

(Legreid et al., 2008; Sahu et al., 2016; Tanimoto et al., 2014). OVOCs were commonly apportioned 366 

by the photochemical age-based parameterization method as shown in Eq. (8).  367 

[𝑂𝑉𝑂𝐶] = 𝐸𝑅𝑂𝑉𝑂𝐶 × [𝑡𝑟𝑎𝑐𝑒𝑟] × exp(−(𝑘𝑂𝑉𝑂𝐶 − 𝑘𝑡𝑟𝑎𝑐𝑒𝑟)[• 𝑂𝐻]𝛥𝑡) + 𝐸𝑅𝑝𝑒𝑟𝑐𝑢𝑟𝑠𝑜𝑟 ×368 

[𝑡𝑟𝑎𝑐𝑒𝑟] ×
𝑘𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟

𝑘𝑂𝑉𝑂𝐶−𝑘𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟
×

exp(−𝑘𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟[•𝑂𝐻]𝛥𝑡)−exp(−𝑘𝑂𝑉𝑂𝐶[•𝑂𝐻]𝛥𝑡)

exp(−𝑘𝑡𝑟𝑎𝑐𝑒𝑟[•𝑂𝐻]𝛥𝑡)
+ ERbiogenic ×369 

(isoprenesource) + [background]                                          (8) 370 

where [OVOC], [tracer], and [background] are the concentrations of measured ambient OVOCs, the 371 

tracer (e.g., benzene, acetylene: C2H2, or carbon monoxide: CO, Table S7) from primary 372 
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anthropogenic sources, and background OVOC concentration, respectively; kOVOC, ktracer, and kprecursor 373 

are the •OH rate constants of the OVOCs, tracer, and precursor, respectively, and kOVOC and ktracer are 374 

commonly obtained from the related publications (Atkinson and Arey, 2003); EROVOC and ERprecursor 375 

are the emission ratios of OVOCs and precursors relative to the tracer, respectively, ERbiogenic is the 376 

emission ratio of OVOCs to the isoprene concentration emitted from biogenic sources (i.e., 377 

isoprenesource), and EROVOC, ERprecursor, ERbiogenic, kprecusor, and [background] can be determined from a 378 

linear least-squares fit that minimizes the difference between the measured [OVOC] and those 379 

calculated from Eq. (8), ER values in the reviewed papers are listed in Table S8; [•OH]Δt represents 380 

the exposure of •OH radicals, which can be estimated by Eq. (2); and isoprenesource can be estimated 381 

by Eqs. (6)-(7) and (1) based on the measured concentrations of ambient isoprene and its 382 

photochemical products (i.e., MVK and MACR). The chemical removal of isoprene in the 383 

atmosphere is so rapid that it is impossible to differentiate between primary and secondary OVOC 384 

sources based on the measured data. Therefore, isoprenesource represents both primary and secondary 385 

biogenic sources (de Gouw et al., 2005). 386 

However, this method remains highly uncertain because of the source complexities of OVOCs 387 

(Mo et al., 2016; Schlundt et al., 2017). This method assumes that (1) anthropogenic emissions of 388 

OVOCs and their precursors are proportional to the selected primary tracer, (2) the removal process 389 

of OVOCs is dominated by reactions with •OH radicals, (3) biogenic sources of OVOCs are 390 

proportional to the emission of isoprene, and (4) the photochemical age for a sampled air mass can 391 

be determined (de Gouw et al., 2005). 392 

This method estimates the source contributions of primary and secondary anthropogenic sources, 393 

biogenic emissions, and background to different OVOC species, and then further obtained the 394 

contributions of the four types of sources to the ambient OVOCs (de Gouw et al., 2005; Yuan et al., 395 

2012b; Zhu et al., 2021). This approach was difficult to finely apportion the contributions of primary 396 

anthropogenic sources and to obtain the contributions of primary and secondary biogenic emissions. 397 

Therefore, to obtain refined source apportioned results for OVOCs, many studies incorporated both 398 

OVOC and PAMS species into the receptor model for source analyses (Guan et al., 2020; Yang et al., 399 

2019; Zhou et al., 2022).  400 

This method defines the measured concentrations of OVOCs as the sum of the concentrations 401 
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after photochemical losses (i.e., losses caused by the formation of O3 and SOAs via photochemical 402 

reactions) of OVOCs directly emitted by anthropogenic sources (i.e., the first term in Eq. (8)), the 403 

concentrations after photochemical losses of OVOCs formed by the conversion of precursors emitted 404 

from anthropogenic sources (i.e., the second term in Eq. (8)), the concentration from biogenic 405 

emissions (without considering losses because of small contributions of biogenic emissions) (i.e., the 406 

third term in Eq. (8)), and the background concentration (i.e., the fourth term in Eq. (8)). Therefore, 407 

although this approach considered the influences of photochemical losses in the calculation process, 408 

the final results only reflected the contributions of four types of sources to the measured OVOCs and 409 

could not characterize the impacts of photochemical losses. In addition, to compensate for the 410 

photolytic losses in OVOCs in Eq. (8), which was not considered by de Gouw et al. (2005), Wang et 411 

al. (2017) introduced a modification coefficient (m) before the kOVOC to modify it, assuming that the 412 

photolysis rate is proportional to the •OH reaction rate (de Gouw et al., 2018; Wang et al., 2017). 413 

Meanwhile, Huang et al. (2020) and Zhu et al. (2021) also conducted relevant studies using this 414 

coefficient. The m value depends on the relative rate of photolysis versus the •OH reaction for an 415 

OVOC species (Huang et al., 2020). However, related studies remain limited at present.  416 

Additionally, some studies have attempted to estimate the initial concentrations of OVOCs 417 

using traditional photochemical age-based parameterization method (i.e., Eqs. (1)-(2)) to correct their 418 

reactive losses, and then incorporate initial data into PMF for source analyses (Cui et al., 2024; Li et 419 

al., 2023; Ren et al., 2024; Zhang et al., 2024b). However, due to the complexity of the OVOC 420 

sources and the substantial differences in emission sources from PAMS species (de Gouw et al., 2018; 421 

Huang et al., 2020; Zhu et al., 2021), this method for correcting OVOC losses had high uncertainty. 422 

The rational estimation approaches remain to be studied. 423 

 424 

3.1.3 Methods for reducing loss effects in CMB source apportionments 425 

The chemical mass balance method uses known profiles measured at the source. Thus, any 426 

reactions in transit will result in a change in that source’s profile and difficulty in fitting the data at 427 

the receptor site. Thus, corrections to the receptor site data are needed to make them comparable to 428 

the measured source profiles. As early as the 1980s and 1990s, studies had been conducted to reduce 429 

the impacts of different VOC species reactions on CMB estimation results, including minimization 430 
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of reaction effects by limiting source profiles to VOCs with similar reaction rates (Harley et al., 1992; 431 

Lewis et al., 1993; Nelson and Quigley, 1983; Wadden et al., 1986) and VOC samples obtained 432 

during winter (Aronian et al., 1989) or early in the morning (Scheff and Klevs, 1987). In 1983, 433 

Nelson and Quigley (1983) estimated the reactions extent by the changes in the ratios of xylene to 434 

ethylbenzene at the receptor and the release site and then obtained decay factors of other VOC 435 

species. However, it was found that the concentrations adjusted by decay factors at the receptor site 436 

had little impact on their estimated source contributions (Nelson and Quigley, 1983). Since the 437 

emissions varied with time, especially during periods of intense photochemical reactions (Lin and 438 

Milford, 1994), some studies tried to use decay factors to adjust the fractions of VOC species in the 439 

source profiles at different times, making them more compatible with the data measured at the 440 

receptor site (Lin and Milford, 1994; Na and Pyo Kim, 2007). However, this approach has not been 441 

used other than in these two instances.   442 

There are two methods to obtain the decay factors: one method was to considering an urban 443 

airshed as a continuous stirred tank reactor and relating the decay factor for a given species to its 444 

first-order reaction rate constant (Friedlander, 1981). The other method was to conduct estimation 445 

based on the reaction rate constants of specific VOC species and “aging coefficients” (Junninen et al., 446 

2005; Lin and Milford, 1994). The details and limitations of the two methods are provided in Text S1. 447 

However, this method of adjusting source profiles cannot truly address the issue of reactive losses 448 

affecting the CMB apportioned results. Since the receptor measured data and adjusted source profiles 449 

input to CMB were both data after reactive losses. With the progress of VOC source analyses studies 450 

in recent years, this method has not been widely applied and further developed in CMB source 451 

analyses. This change might be because CMB itself required input from VOC source profiles, but 452 

there were relatively few locally measured VOC source profiles due to high costs and difficult to 453 

obtain access to the source facilities (Yang et al., 2022b).  454 

Alternatively, with the monitoring of highly time resolved VOCs data in recent years, it became 455 

infeasible to use CMB to conduct source analyses, because CMB requires analysis of one sample 456 

(one hour) at a time resulting in needing thousands of separate analyses (Yang et al., 2022b). 457 

Additionally, the weights in the analyses are generally based only on the measurement uncertainties 458 

of the measurement samples from specific sources at a few specific times. Thus, CMB does not 459 
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account for variability in the source profiles that is included in the uncertainty values used to weight 460 

the data in PMF (Yang et al., 2022b). To reduce the impact of reactive losses, the initial concentration 461 

data estimated by photochemical age-based parameterization method has been used as input into 462 

CMB for source analyses (Shao et al., 2011). Additionally, the methods for reducing the impacts of 463 

reactive losses in PMF and CMB primarily focused on the PAMS species, and few considerations for 464 

OVOCs. 465 

 466 

3.2 Effects of reactive losses on source analyses 467 

According to the review of relevant publications, it was found that most of the current studies 468 

analyzed the impacts of VOC photochemical losses on the source analyses by comparing the PMF 469 

apportioned results based on measured and initial concentrations estimated by a photochemical age-470 

based parameterization method (Gao et al., 2018; Gu et al., 2023; Kong et al., 2023; Li et al., 2023; 471 

Liu et al., 2023c; Zou et al., 2023) or comparing the apportioned results based on the daytime and 472 

nighttime VOCs data (Liu et al., 2025). Reactive losses substantially reduced the concentrations 473 

(ppbv/ppbv) of highly reactive VOC species in PMF resolved factor profiles based on the measured 474 

data. For example, Liu et al. (2023a) investigated the impacts of photochemical losses of ambient 475 

VOCs on the PMF resolved profiles by comparing the initial and measured data results. They found 476 

that the concentrations of VOC species with relatively low reactivities (e.g., ethane, propane, n-477 

butane, and i-butane) were higher in the factor profiles apportioned from the measured data, while 478 

those of VOC species with relatively high reactivities (e.g., m,p-xylene, isoprene, and propene) were 479 

lower in the measured data resolved profiles. Gu et al. (2023) also reported the similar results. 480 

Meanwhile, Liu et al. (2025) also reported that reactive losses clearly reduced the concentrations of 481 

dominant VOC species with high reactivities in the profiles of solvent use, petrochemical industry 482 

emissions, and combustion sources by comparing the daytime and nighttime resolved profiles.  483 

Additionally, VOC reactive losses can result in the substantial underestimation of the PMF 484 

apportioned contributions of sources that emitted highly reactive species, and emission sources with 485 

substantially underestimated contributions varied in different cities. For example, Wang et al. (2013) 486 

found that the contributions of biogenic and industrial emissions in Shanghai were underestimated by 487 

30% and 10%, respectively, due to photochemical reactive losses. He et al. (2024) found that the 488 
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underestimations of industrial source contributions in Guangzhou were markedly higher than those 489 

of other sources. Liu et al. (2023a) suggested that biogenic emissions and polymer production-related 490 

industrial sources in Tianjin were underestimated by 73% and 50%, respectively. In addition, Wu et 491 

al. (2023a), Zhang et al. (2024a), and Gu et al. (2023) also suggested that the underestimations of 492 

contributions of biogenic emissions in Beijing, Langfang, and Qingdao were substantially higher 493 

than those of any other sources. However, Wang et al. (2024a) found that the contributions of solvent 494 

usage and biomass burning in Zhengzhou were underestimated by 31.5% and 15.4%, higher than 495 

other sources. Cui et al. (2024) suggested that the contributions of petrochemical industries, diesel 496 

vehicle emissions, biogenic emissions, and oxidation formation in Shijiazhuang were underestimated 497 

by 72.0%, 71.0%, 64.5%, and 44.0%, respectively. However, due to the uncertainty of initial 498 

concentration estimation, the reliability of these results needs further validation and evaluation. Thus, 499 

further research is required. 500 

 501 

3.3 Estimation methods of VOC reactive losses 502 

There were two main methods for estimating the reactive losses of VOCs in the atmosphere. 503 

The first method was based on the differences between the initial and measured VOC concentrations 504 

(Table S9) (as shown in Eq. (9)) (Wang et al., 2023; Wu et al., 2023b). The initial concentration was 505 

generally estimated using the photochemical age-based parameterization method mentioned in 506 

Section 3.1.1.2 (as shown in Eq. (1)) (Liu et al., 2023a; Wu et al., 2023b). Due to the uncertainty in 507 

the initial concentration estimation, there were also uncertainties in the estimated photochemical 508 

losses. 509 

[𝑉𝑂𝐶]𝐶,𝑡 = [𝑉𝑂𝐶]𝑡 × (exp(𝑘𝑉𝑂𝐶[• 𝑂𝐻]𝛥𝑡) − 1)                                    (9) 510 

where [VOC]C,t represents the photochemical loss of VOC at time t, Kvoc represents the reaction rate 511 

constants with •OH radicals of VOC, and [•OH]Δt represents the exposure of •OH radicals. 512 

The second method applies to other VOC species without isoprene in which the losses could be 513 

estimated utilizing isoprene conversion (Wiedinmyer et al., 2001). In this study, it was defined as the 514 

isoprene loss reference method (Table S9). Its principle is to first use the photochemical-age 515 

parameter method based on the sequential reaction model as shown in Eqs. (1) and (6)-(7), to 516 

estimate the photochemical loss of isoprene (i.e., Δ isoprene), and then the photochemical losses of 517 
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other VOC species can be estimated by proportion relationship (
𝑘𝑉𝑂𝐶

𝑘𝑖𝑠𝑜𝑝𝑒𝑟𝑒𝑛𝑒
×

[𝑉𝑂𝐶]𝑡

[𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑒]𝑡
) between Δ 518 

isoprene and other species losses (Wiedinmyer et al., 2001; Xie et al., 2008) (as shown in Eq. (10)). 519 

This method assumes that the relative source strengths of VOCs are constant in an immediate area 520 

surrounding the site, that atmospheric transport and dispersion are non-limiting factors compared 521 

with chemistry (Xie et al., 2008), and the photochemical losses of other VOC species can be 522 

calculated by Eq. (10). 523 

[𝑉𝑂𝐶]𝐶,𝑡 = 𝛥𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑒 ×
𝑘𝑉𝑂𝐶

𝑘𝑖𝑠𝑜𝑝𝑒𝑟𝑒𝑛𝑒
×

[𝑉𝑂𝐶]𝑡

[𝑖𝑠𝑜𝑝𝑟𝑒𝑛𝑒]𝑡
                 (10) 524 

where kisoprene represents the reaction rate constants with •OH radicals of isoprene, and [isoprene]t 525 

represents the measured concentration of isoprene at time t. 526 

Because isoprene mainly originates from natural sources (Fu et al., 2008; Kuhn et al., 2004; Lu 527 

et al., 2019), while many other VOC species are primarily emitted from anthropogenic sources (Li et 528 

al., 2021; Seinfeld and Pandis, 1986; Wei et al., 2011). Therefore, the assumption of this method 529 

itself has an obvious issue, which resulted in high uncertainties in the estimations. This defect 530 

substantially limits its application, only 2 publications have utilized this method to quantify chemical 531 

losses of VOCs in this study (Wiedinmyer et al., 2001; Xie et al., 2008), and most studies still used 532 

the first method (Table S9). 533 

 534 

3.4 Spatiotemporal variation of VOC reactive losses 535 

The VOC reactive losses in different cities are provided in Figs. 2-3 and S1 and Tables S10-S11. 536 

According to the papers reviewed in this study, we found that studies on estimation of ambient VOC 537 

photochemical losses were primarily conducted in Chinese cities. To date, there were only 2 538 

publications reporting quantitative research of VOC reactive losses conducted outside of China (i.e., 539 

Borlaza-Lacoste et al., 2024; Kalbande et al., 2022). The data of VOC reactive losses in the study 540 

conducted in New York City in USA (Borlaza-Lacoste et al., 2024) have been included in Figs. 2-3. 541 

However, due to the fact that only 9 VOC species were measured in the research conducted in 542 

Mumbai in India (Kalbande et al., 2022), the reactive loss data in their studies was difficult to 543 

compare and analyze with data from other cities, therefore, their estimated results were not shown in 544 

Figs. 2 and 3. Due to relatively limited number of studies, the representativeness of the analyses of 545 

the spatiotemporal distributions of photochemical losses of VOCs might also be limited. Meanwhile, 546 
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due to the relative lack of the quantitative studies on the ambient VOC reactive losses in the cities 547 

outside of China, the comparative analyses of the differences in reactive losses of VOCs in different 548 

cities and the impacts of losses on air secondary pollution from a global perspective in this study 549 

could be insufficient. In addition, this study converted the unit of ppbC in some papers (Chen et al., 550 

2023) to ppbv for better comparative analyses. 551 
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 552 

 553 

Figure 2. The measured, initial, and reactive loss concentrations of ambient VOCs in Beijing (Gao et al., 2018; Ma et al., 2022; Zhan et al., 554 

2021), Tianjin (Liu et al., 2023a; Wang et al., 2023), Shanghai (Ren et al., 2024; Wang et al., 2013), Chengdu (Kong et al., 2023), Guangzhou 555 

(He et al., 2024; Wang et al., 2023), Qingdao (Gu et al., 2023), Shijiazhuang (Cui et al., 2024), Jinan (Liu et al., 2023c), Zhengzhou (Wang et al., 556 

2024a), Wuhan (Xu et al., 2023), Handan (Wei et al., 2022), Zibo (Wang et al., 2024b), Taipei (Chen et al., 2023), and New York City (Borlaza-557 

Lacoste et al., 2024). The data in Beijing, Tianjin, Shanghai, and Guangzhou was the average from all published papers data. The base map is 558 

from Natural Earth. 559 
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     The photochemical reactive loss of ambient VOCs in Qingdao was the highest (45.1 ppbv), 560 

followed by Shijiazhuang (33.2 ppbv), Wuhan (23.7 ppbv), Shanghai (10.9 ppbv), Tianjin (10.4 561 

ppbv), Zhengzhou (10.2 ppbv), New York City (9.84 ppbv), and Handan (8.90 ppbv) (Fig. 2). VOC 562 

reactive losses were relatively lower in Zibo (6.8 ppbv), Beijing (6.00 ppbv), Guangzhou (4.65 ppbv), 563 

Chengdu (4.48 ppbv), Jinan (4.00 ppbv), and Taipei (3.69 ppbv). The chemical loss rates (i.e., the 564 

proportion of chemical loss in the initial concentration, %) in Qingdao (69.1%) and Shijiazhuang 565 

(58.9%) were the highest, followed by New York City (50.2%), Wuhan (49.8%), and Tianjin (33.8%). 566 

In contrast, chemical loss rates in Zhengzhou (29.9%), Shanghai (25.1%), Jinan (25.0%), Handan 567 

(21.1%), Beijing (16.1%), Zibo (15.9%), Chengdu (15.8%), Guangzhou (15.1%), and Taipei (13.4%) 568 

were relatively lower. However, due to differences in observation periods and measured VOC species, 569 

the comparability of chemical reactive losses and loss rates between different cities is limited and 570 

differences uncertain.  571 

Compared to other VOC groups, alkenes had the highest reactive loss (Figs. 3 and S1), 572 

accounting for 36.7%-93.3% of the total losses, followed by aromatic hydrocarbons (3.8%-24.3%), 573 

and alkanes (2.3%-13.6%) (Fig. 3 and Table S11). There were substantial differences in VOC species 574 

with high losses in different cities (Fig. 3). The losses of ethene, propene, and isoprene in most cities 575 

were relatively higher than those of other species (Fig. 3), likely closely related to their high 576 

reactivities (Table S4). The isoprene losses in Beijing, Chengdu, Jinan, Taipei, and New York City 577 

were all the highest compared to other species (Fig. 3). However, the reactive losses of trans-2-578 

butene and cis-2-butene in Qingdao and Zhengzhou were substantially higher than other VOC 579 

species. The reactive loss of 1-hexene in Tianjin was remarkedly higher compared to other species. 580 

Meanwhile, the trans-2-butene loss in Tianjin was also relatively higher (Fig. 3). 581 

In addition, the VOC reactive losses in spring and summer were substantially higher than those 582 

in autumn and winter. Atmospheric oxidation and meteorological factors can have impacts on the 583 

VOC losses. The trend of the reactive losses of VOCs was often consistent with the changes in the 584 

concentrations of Ox (O3+NO2) in the atmosphere (Wang et al., 2013). In addition, studies also found 585 

that both solar radiation and temperature can have a substantial impact on the chemical reactions of 586 

VOCs (Yadav et al., 2016). However, compared to the solar radiation, temperature directly affects 587 

the reaction rates of VOC species (Atkinson and Arey, 2003). Liu et al. (2023a) suggested that the 588 
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reactive losses of ambient VOCs were highly correlated with temperature; when the temperature was 589 

above 25 ℃, the losses of VOCs increased most substantially. 590 
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Figure 3. The photochemical losses and percentages of the main VOCs in Beijing (a: cited from 592 
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publication (Gao et al., 2018) and b: cited from publication (Zhan et al., 2021)), Qingdao (Gu et al., 593 

2023), Taipei (Chen et al., 2023), Tianjin (Liu et al., 2023a), Chengdu (Kong et al., 2023), 594 

Shijiazhuang (Cui et al., 2024), Jinan (Liu et al., 2023c), Zhengzhou (Wang et al., 2024a), and New 595 

York City (Borlaza-Lacoste et al., 2024). 596 

 597 

3.5 Source analyses of VOC reactive losses in the atmosphere 598 

At present, source apportionments utilizing the measured and initial VOC concentrations do not 599 

consider the complementary issues of O3 and SOA formation (Cui et al., 2024; Gu et al., 2023; Wang 600 

et al., 2022b). The chemical losses of VOCs by reaction (i.e., reactive VOCs forming SOA and O3) 601 

were real contributors to these pollutants (Ma et al., 2022; Wang et al., 2013). Thus, it is important to 602 

apportion the reactive losses of VOCs to provide the input needed to identify the responsible source 603 

types and thereby allow effective control of O3 and secondary aerosol pollution. In 2023, Gu et al. 604 

(2023) developed a source analyses method for consumed VOCs (i.e., the reactive losses of VOCs) 605 

in the atmosphere and conducted an applied study. This method was that the measured and initial 606 

data were first used to conduct source analyses by PMF, and then the difference in the contributions 607 

of the same factors from the paired analyses were considered to be the source contribution of 608 

consumed VOCs in the atmosphere. The ozone formation potential (OFP) and SOA formation 609 

potential (SOAFP) of the consumed VOCs from the different sources were estimated. To reduce the 610 

impacts of atmospheric dispersion on the apportioned results, dispersion-normalized PMF (DN-PMF) 611 

was applied for source analyses in this method, and its principle is provided by Dai et al. (2020) and 612 

Gu et al. (2022). The method flowchart is shown in Fig. 4. Similar studies were reported by Wang et 613 

al. (2022b) and Wang et al. (2023). In 2024, based on the studies of Gu et al. (2023), Cui et al. (2024) 614 

developed a primary and oxidative source analyses method of consumed VOCs in the atmosphere. 615 

However, the current methods for apportioning the primary or oxidative sources of consumed VOCs 616 

in the atmosphere are still imperfect. The shortcomings included: the uncertainty in estimating the 617 

initial concentrations of VOCs (as shown in Section 3.1.1.2); the issue of factor identification, even 618 

if identified as the same type of factor, there were substantial differences in their factor profiles (Liu 619 

et al., 2023a). The current studies primarily focused on the PAMS species, and reported 620 

apportionments of OVOC losses are still limited. There were numerous technical issues, for example, 621 

there is still a lack of rational methods for estimating the OVOC initial concentrations. 622 

The source analyses of the consumed VOCs conducted by Gu et al. (2023) in Qingdao found 623 
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that biogenic emissions (56.3%), vehicle emissions (17.2%), and gasoline evaporation (9.37%) were 624 

the main sources of the consumed VOCs. However, the apportioned results from Wang et al. (2023) 625 

in Tianjin and Guangzhou suggested that biogenic emissions (43% and 35%, respectively), solvent 626 

usage (14% and 18%, respectively), and industrial sources (14% and 22%, respectively) were the 627 

major contributors of the consumed VOCs. Therefore, biogenic emissions might be an important 628 

source of reactive losses of VOCs. However, Cui et al. (2024) suggested that the petrochemical 629 

industries (36.9% and 51.7%) and oxidation formation (20.6% and 35.6%) were the largest 630 

contributions to the consumed VOCs and OVOCs in Shijiazhuang during the study period. The 631 

natural gas (5.0% and 7.6%) and the mixed source of liquefied petroleum gas and solvent use (3.1% 632 

and 4.2%) had the relatively low contributions (Cui et al., 2024). However, due to the limited 633 

research currently available, the representativeness of the results is still insufficient at present. 634 

 635 

 636 

Figure 4. The method flowchart of source analyses for consumed VOCs in the atmosphere. 637 

 638 
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4 Conclusions 639 

This study systematically reviewed the major methods of reducing the impacts of reactive loss 640 

and the existing critical issues in the current VOC source analyses research. The purpose was to 641 

clarify the future research directions needed to improve the accuracy of VOC source apportionments, 642 

and provided a potential supporting role in completely solving the issue of VOC chemical conversion. 643 

PMF is currently the most useful tool in treating highly time-resolved data compared to other 644 

receptor models. Estimating the initial concentrations of ambient VOCs based on photochemical age 645 

is the primary approach to reduce reactive loss effects in PMF. However, due to the shortcomings 646 

existing in the photochemical-age estimation method, such as only considering the photochemical 647 

reactions with •OH radicals during the day and not considering the reactions with O3 (especially for 648 

alkene species) and NO3 radicals, difficulty in dynamically adjusting the required •OH-radical 649 

reaction rate constants with temperature changes, high uncertainty in the estimation of 650 

photochemical age, and difficulty in quantifying the initial concentrations of OVOCs, etc., resulting 651 

in substantial uncertainty in the PMF apportioned results based on the initial concentration data. 652 

Furthermore, both the measured and initial VOCs data do not match the ambient O3 or SOAs 653 

measured synchronously, the VOCs consumed by reactions are real contributors to these pollutants. 654 

Source analyses of the consumed VOCs can effectively guide the prevention and control of O3 and 655 

SOAs pollution in the atmosphere. Therefore, in addition to the research into more accurate 656 

quantitative approaches for ambient VOC reactive losses, the source analyses of consumed VOCs 657 

and the accurate quantification of their separate contributions to O3 and SOAs should also be 658 

important directions for future research. 659 
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