
Editor’ comments 

The reviewer raised an important remaining concern after the first round of revisions: 

"that the results (Figure 2-3) are biased towards Chinese cities", even though at least 

one study (referenced by the reviewer) outside of China exists that does consider 

reactive loss in determining emission ratios. Since this manuscript is a review article, 

I expect the authors to include all the relevant literature that exists on the topic 

globally. Therefore, the manuscript needs further revision. With the potential necessity 

to update figures, I rate the revision as "major". 

Response: Thanks for your comments. 

(1) This study primarily reviewed VOCs source apportionments considering 

reactive losses: including the methods of reducing reactive loss effects (Section 3.1), 

impacts of reactive losses (Section 3.2), estimation methods of reactive losses 

(Sections 3.3 and 3.4), and sources of VOC reactive losses (Section 3.5). There are a 

total of 170 relevant research papers (including one new paper) (on the line 109), of 

which 61 papers were identified as conducted in countries outside of China. These 61 

papers mainly focus on methods of reducing the impacts of photochemical reactive 

losses in VOCs source apportionment research, especially the estimation methods of 

ambient VOC initial concentrations (i.e., the concentrations in the fresh emissions 

before any VOC species can undergo chemical reaction) and related parameters based 

on initial species emission ratios. Although these studies considered the impacts of 

reactive losses, they have almost not quantified reactive losses of ambient VOCs. As 

mentioned by reviewer in de Gouw's study (https://doi.org/10.1002/2017JD027976), 

although the impacts of reactive losses were considered when analyzing the sources of 

ambient OVOCs, they did not quantify the chemical reactive losses of ambient OVOC 

species. You can click on the link to check. Therefore, after reviewing all the relevant 

literature one by one, we presented the results of VOC reactive losses listed in the 

papers or the results that can calculate chemical losses (i.e., initial concentration 

minus observed concentration) in Figs. 2 and 3 in the main text. Unfortunately, the 

results on the reactive losses of VOC species were mainly focused on research in 

Chinese cities (in addition to a newly published study in New York City, and a study 

in Mumbai; Borlaza-Lacoste et al., 2024, Kalbande et al., 2022), which was indeed 

the actual situation.  

(2) According to the comments of the reviewer, we conducted a careful review 

and literature collection again using databases such as Science Direct (Elsevier), the 

Web of Science, Scopus, Springer, Wiley, and China National Knowledge 

Infrastructure (CNKI). We found that only two papers outside of China mentioned and 

analyzed the reactive losses of VOCs. One of the studies was conducted in Mumbai, 

India, but their research only included 9 VOC species and had substantial differences 

compared to VOC species involved in other cities in the world, making it difficult to 

compare (Kalbande et al., 2022). Therefore, we did not include the data from Mumbai 

in Figs. 2 and 3. In another paper in New York City (Borlaza-Lacoste et al., 2024), the 

reactive losses of ambient VOC species were estimated by the differences between the 

observed and initial concentrations. The related data of VOC reactive losses have also 

been added in Figs. 2 and 3 in the main text. Meanwhile, we have also added relevant 



descriptive analyses in the text (on the lines 538-545). The more details are as follows. 

Additionally, we have added the chemical loss rate of VOCs in New York City in text 

for comparison with other cities (on the line 566). However, other studies outside of 

China have not quantified the reactive losses of the ambient VOC species. We have 

provided a detailed introduction and explanation of each relevant literature in our 

response to the reviewer below. You can click on the literature link to verify. 

 

“To date, there were only 2 publications reporting quantitative research of VOC 

reactive losses conducted outside of China (i.e., Borlaza-Lacoste et al., 2024; 

Kalbande et al., 2022). The data of VOC reactive losses in the study conducted in 

New York City in USA (Borlaza-Lacoste et al., 2024) have been included in Figs. 2-3. 

However, due to the fact that only 9 VOC species were measured in the research 

conducted in Mumbai in India (Kalbande et al., 2022), the reactive loss data in their 

studies was difficult to compare and analyze with data from other cities, therefore, 

their estimated results were not shown in Figs. 2 and 3.” 

 

(3) In addition, we have rechecked the manuscript and made comprehensive 

revisions and improvements to the vocabulary, grammar errors, and other formatting 

issues. 
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Reviewer # 

The revised manuscript has addressed most of my comments. However, a concern 

remains that the results (Figure 2-3) are biased towards Chinese cities. 

In the methods section, the authors have shown that 40% of studies were conducted 

outside of China. However, they argued that related studies on estimating 

photochemical reactive loss were all in Chinese cities. 

Response: Thanks for your comments. 

It needs to be noted that China has made a very substantial investment in 

measurements systems with much more data available that anywhere else. In addition, 

the rising ozone concentrations have made identifying VOC source a greater priority 

in China, thus leading to more publications. To specifically address your comment: 

(1) First, we have thoroughly reviewed the literature related to this study and 

added one new study in New York City, USA (Borlaza-Lacoste et al., 2024). Currently, 

https://doi.org/10.1016/j.envint.2024.108993


a total of 170 papers have been identified in this study. We guaranteed that this study 

has covered all the articles currently published, and you can check and verify them in 

the database. 

Through literature review, there are 61 papers conducted outside of China in this 

study, mainly involving studies on the VOC source apportionments during daytime 

and nighttime, photochemical-age estimation of the ambient VOC species, OVOCs 

source analyses, and methods for reducing chemical reactive losses using CMB model, 

etc. We found that only two papers outside of China mentioned and analyzed the 

reactive losses of ambient VOCs. One of the studies was conducted in Mumbai, India, 

but their research only included 9 VOC species (as shown in Table 1, Kalbande et al., 

2022) and had substantial differences compared to VOC species involved in other 

cities in the world, making it difficult to compare. Therefore, to avoid misleading 

readers, we did not include the data from Mumbai in Figs. 2 and 3. In another paper in 

New York City (Borlaza-Lacoste et al., 2024), the reactive losses of VOC species 

were estimated by differences between the observed and initial concentrations. The 

related data of VOC reactive losses have also been added in Figs. 2 and 3 in the main 

text. Meanwhile, we have also added the relevant descriptive analyses in the main text 

(on the lines 538-545). The more details are as follows. 

 

“To date, there were only 2 publications reporting quantitative research of VOC 

reactive losses conducted outside of China (i.e., Borlaza-Lacoste et al., 2024; 

Kalbande et al., 2022). The data of VOC reactive losses in the study conducted in 

New York City in USA (Borlaza-Lacoste et al., 2024) have been included in Figs. 2-3. 

However, due to the fact that only 9 VOC species were measured in the research 

conducted in Mumbai in India (Kalbande et al., 2022), the reactive loss data in their 

studies was difficult to compare and analyze with data from other cities, therefore, 

their estimated results were not shown in Figs. 2 and 3.” 

 

Table 1 is cited from Kalbande, R., Yadav, R., Maji, S., Rathore, D. S., and Beig, G.: 

Characteristics of VOCs and their contribution to O3 and SOA formation across seasons over 

a metropolitan region in India, Atmos. Pollut. Res., 13, 101515, 

https://doi.org/10.1016/j.apr.2022.101515, 2022. 

 



(2) There is really nothing we can do to expand reporting studies that come from 

outside of China. All but the two we have added, the other reports did not quantify the 

chemical reactive losses of VOC species. We carefully classified and checked all the 

literature outside of China, and described the relevant contents of each paper in 

relation to this study. If you have any further suggestions or know of literature we 

have missed, please let us know. You can check for yourself the limitations of the 

other literature by clicking the relevant article link for verification. The specific 

details are as follows: 

1) Buzcu-Guven and Fraser (2008), Buzcu and Fraser (2006), Kim et al. (2005), 

and Xie et al. (2006) conducted source apportionments using nighttime VOCs data in 

Harris County and Houston, USA, respectively. Zhao et al. (2004) and Buzcu and 

Fraser (2006) conducted source analyses of VOCs in Houston using both full day and 

nighttime data during the same period, and the results showed substantial differences 

between the two studies. Jain et al. (2022) conducted source analyses in Delhi, India, 

which showed that the factor profiles during the daytime and nighttime was consistent. 

The study by de Gouw et al. (2017) showed that VOCs can react with NO3 radicals 

and O3 at night, causing chemical losses, but did not do source apportionment with 

corrected data. The above papers were all related to the study of nighttime VOC 

source apportionments, corresponding to Section 3.1.1.1 in this study. 
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2) Roberts et al. (1984) and Parrish et al. (1992) introduced the method of 

calculating the photochemical-age using two species ratio method. Parrish et al. (2007) 

found that the photochemical age-based parameterization method has limitations in 

estimating the initial concentrations, but it is still an effective method. Bertman et al. 

(1995), Stroud et al. (2001), de Gouw et al. (2005), and Roberts et al. (2006) 

estimated the photochemical ages of ambient VOCs using a sequential reaction model. 

Kornilova et al. (2016), Rudolph and Czuba (2000), and Saito et al. (2009) used the 

isotopic hydrocarbon clock method to estimate the photochemical ages of VOCs. de 

Gouw et al. (2018) proposed a calculation method for nighttime O3 exposure. Na et al. 
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solvent sources and petrochemical sources. The above papers were all related to the 

estimation method of photochemical ages of VOCs, corresponding to Section 3.1.1.2 

in this study. 
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First, I disagree with this statement. For instance, in Section 3.2 of de Gouw et al., 

2018, the reactive losses of OVOC were considered when determining the OVOC 

emission ratios. 

Response: Thanks for your comments. According to your comments, you are 

referring to the contents of Section 3.1.2 in the text. We have rechecked the studying 

contents of de Gouw et al. (2018). Prof. de Gouw introduced the species emission 

ratios of ambient OVOCs and the source apportionment method of OVOCs based on 

photochemical-age parameters. For formulas and principles of source apportionment 

method for OVOCs, this study has provided a detailed descriptions in Section 3.1.2 in 

the main text (on the lines 360-423). Although the source analyses method of OVOCs 

did consider the impacts of chemical losses, it has not been quantified (on the lines 

407-410). If you still have a question, we have provided the link to this article below. 

Thanks! 

 

Reference: 

de Gouw, J. A., Gilman, J. B., Kim, S. W., Alvarez, S. L., Dusanter, S., Graus, M., 

Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B. L., Lerner, B. M., 

McDonald, B. C., Rappenglück, B., Roberts, J. M., Stevens, P. S., Stutz, J., 

Thalman, R., Veres, P. R., Volkamer, R., Warneke, C., Washenfelder, R. A., and 

Young, C. J.: Chemistry of volatile organic compounds in the Los Angeles Basin: 

Formation of oxygenated compounds and determination of emission ratios, J. 

Geophys. Res. Atmos., 123, 2298-2319, https://doi.org/10.1002/2017JD027976, 

https://doi.org/10.1029/93GL02527
https://doi.org/10.1029/95JD02733
https://doi.org/doi:10.1126/science.277.5322.116
https://doi.org/10.1002/kin.550261003
https://doi.org/10.1016/s1352-2310(00)00461-1


2018. 

 

 

Second, if this statement is accurate, the authors should discuss the potential bias in 

the results of these studies conducted outside China due to the absence of quantifying 

the reactive losses. 

Response: Thanks for your advices. 

We have added related analyses in the text on the relative lack of quantitative 

analysis of VOCs reactive losses outside of China (on the lines 546-550). Due to the 

lack of quantitative studies on ambient VOC reactive losses in the cities outside of 

China, the comparative analyses of the differences in reactive losses of VOCs in 

different cities and the impacts of losses on air secondary pollution from a global 

perspective in this study could be insufficient. 

However, due to the fact that the study objectives in literature outside of China 

(all but the two we have added) were not to quantify chemical reactive losses of 

ambient VOC species. Therefore, although there was a lack of estimation of reactive 

losses, it did not necessarily mean that their research was biased. As described earlier, 

there were indeed shortcomings in analyzing the correlations between VOC reactive 

losses and secondary pollution formation from a global perspective. We have also 

added relevant descriptive analysis in the main text (on the lines 546-550). 

 

 

 


