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S1 Further details about the example in Section 2

S1.1 Estimates

Fig. 1 in Section 2 shows fits of a GP (Generalized Pareto) tail (Section 4, eq. (3)). Fig. S1 shows the estimates based on a

different type of tail distribution, the Generalized Weibull (GW) tail (Section 4, eq. (5)). Using the GW tail, the confidence5

intervals are clearly less wide than if a GP tail is used (compare Fig. 1). However, the uncertainties are still of a similar order

of magnitude, so the conclusions derived from Fig. 1 hold true irrespective of the choice of the tail type.

For the tail estimation and confidence intervals, the same methods were used as described in Supplement S7. In this ex-

ample, the estimated return values were considered to be log-normally distributed rather than normally distributed, as this

produces more plausible intervals in the case of very high uncertainty (for positive return values, both are asymptotically valid10

approximations).

S1.2 Differences between estimates from subrecords

The large difference between the estimates of return values for the two time periods in Figs. 1 and S1 could indicate a slow

change in the storm climate, but (a) the data only provide a weak indication ("not significant") for this, as under the assumption

of identical distributions, the standard deviation of this difference is already twice as large as the standard deviation of the15

estimate from the complete dataset, (b) similar differences are found when splitting the data of odd and even years, (c) it is

not evident from the checks in Supplement S3, (d) such differences are not observed in the tide gauge data from tide gauges

in the north of the Netherlands (not shown here), and (e) the difference is mainly associated with the estimates of the shape

parameter, whereas the SEAS5 data indicate that climate fluctuations result in fluctuations in scale only; see Appendix D of de

Valk and van den Brink (2023b). Moreover, even if the storm climates in both epochs differed, this by itself would not alter the20

conclusion that the uncertainty is large: we cannot (yet) distinguish between a trend in the distribution function (which could

reduce the uncertainty) and a random fluctuation on a timescale of decades (which could increase the uncertainty).
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Figure S1. As Fig. 1, but estimates are based on the Generalized Weibull (GW) tail (see Section 4 and eq. (S7)).

S2 Tail dependence of stress from different ensemble members

To check for dependence between the extremes from two time-series, a sensitive metric is the coefficient of tail dependence

η from (Ledford and Tawn, 1996, 1997, 1998); see Subsection 7.4. We consider estimates of ρ := 2η− 1, which can be inter-25

preted similarly as an ordinary Pearson correlation coefficient for two Gaussian random variables (although it is estimated in

a very different way!). In particular, 0 means that conditional on one of the two variables exceeding a high threshold, they are

effectively independent.

To check the dependence between extremes of stress from different ensemble members of the SEAS5 forecast data for ranges

in excess of one month used in de present study, we estimated ρ from all pairs of simultaneous values from different ensemble30

members. Estimates are made from different fractions p of the "most extreme" pairs. Because the estimates may be biased by

seasonality in the data, we made estimates from all data, but also for the long storm season ONDJFM and a shorter season

DJF; see Fig. S2.

For both the long and the short storm season, the tail correlation coefficient tends to practically 0 for small sample fractions,

showing that the dependence between extremes of stress from different members is negligible. This supports the treatment of35

data from different SEAS5 ensemble members as independent in the statistical analysis.

S3 Detrending of HW measurements

Fig. S3 shows the annual mean HW and its trend line relative to the trend value in 2019 (estimated using a loess filter with span

equal to 84/n with n the record length) for the six tidal stations. Additionally, the estimated trend line for the annual mean sea
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Figure S2. Estimates of tail correlation coefficient ρ := 2η− 1 from all pairs of ensemble members of SEAS5 forecasts of stress for ranges

exceeding 1 month from grid point b (see Fig. 2) for months DJF (drawn), ONDJFM (dotted) and all year (dashed), derived from different

sample fractions.

level (relative to its value in 2019) is plotted. The trends are increasing and, except for Den Helder, larger than the sea level40

rise. The plots for most stations show an accelerated rise in annual mean HW between roughly 1940 and 1980 which is not

seen in the sea level rise. These deviations are largely attributed to hydraulic engineering interventions (Dillingh, 2013) but

natural processes may also play a role. The records of HW were de-trended assuming that a change in the average HW has the

same effect on the extreme HW values.

The considerable differences between the trends of annual mean HW and of annual mean sea level observed in Fig. S345

indicate that extrapolated trends of annual mean sea level may not be suitable for normalizing reconstructed peak values of

HW or skew surge of historical flood events as in (Van Gelder, 1996; Baart, 2015). Using these reconstructions in the estimation

of return levels to increase the accuracy (see Section 2) may bias the estimates.

To check the de-trending of the measured HW, several checks have been performed on the time evolution of the more

extreme HWs after the correction: the annual 99% quantiles and the annual maxima; see Fig. S4. Clear residual trends cannot50

be discerned in these; apparent deviations are limited to short periods at the beginning or end of a record, where the trend

estimation may be less accurate.

In the 99% quantiles, a very small fluctuation can be observed with a minimum around 1960 and maximum around 1920 and

1990, which resembles the pattern of the winter North Atlantic Oscillation (NAO). However, this is of little practical relevance.
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Figure S3. Time-series of annual mean HW (dots) with trend line (full) relative to the trend line value in 2019, and trend line of annual mean

sea level relative to its value in 2019 (dashed).

S4 Saturation of the drag coefficient55

Measurements in the laboratory and at sea (e.g. Curcic (2020); Richter et al (2021) and their references) indicate that the

drag coefficient over sea saturates to a value of about 0.003 for wind speeds in the range of 25-35 m/s. Various empirical and

physics-based models have been proposed, but the issue is far from settled. In fact, the ECMWS IFS model, which employs

a dynamic wind-wave coupling to compute stress and near-surface wind speed, exhibits saturation even though this is not

explicitly incorporated in the model (Pineau-Guillou et al, 2018). This is also seen in the SEAS5 data (generated using the IFS60

model); see Fig. S5 for an example (this drag relation from SEAS5 should not be trusted quantitatively, because empirical return

values of wind speed from SEAS5 along the Dutch coast are considerably lower than those from wind measurements at nearby

stations (not shown)). Both measurements (Fig. 3 of Curcic (2020)) and these simulated data suggest that drag saturation, if

real, should be rather smooth, hence would not lead to an anomaly in the tail distribution of stress and/or near-surface wind

speed. Furthermore, if drag saturation would not affect the geostrophic wind, then it would affect near-surface wind speed more65

than it affects stress, as can be assessed using the simple expression of Blackadar and Tennekes (1968) of wind and stress in a

neutrally stable boundary layer as functions of the geostrophic wind; see also Zweers et al (2012). Finally, two-way interaction

between stress and cyclone strength (Section 5.3) may further reduce the influence of drag saturation on the tail of stress.
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Figure S4. Annual means and 99% quantiles of trend-corrected HW (left), and year as function of the rank of the annual maximum of HW

(highest = 1) (right) for Hoek van Holland (top) and Delfzijl (bottom).
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Figure S5. Empirical drag coefficient Cd from SEAS5 data for grid point b in Fig. 2 (thick). The thin lines are determined from Charnock

relations with various constants (see legend)

.

5



S5 Tail estimates for stress
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Figure S6. Return value estimates for stress derived from the corrected SEAS5 stress data with sampling error (95% confidence intervals;

dark grey) and assessment of total uncertainty (idem, light grey). Grid point labels in headers refer to the triangles in Fig. 2.
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Figure S7. Return value estimates for stress restricted to 22.5◦ wind direction sectors derived from the corrected SEAS5 stress data with

95% confidence intervals (representing total error) for the locations labelled b and f in Fig. 2.
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S6 Estimates of the extremal indices of stress/wind speed and HW70

Frequencies (of exceedance) are derived from estimates of the probability, to be interpreted as fraction of time (for HW: fraction

of tidal cycles). The probability of exceeding a value z is denoted as 1−F (z) with F the (cumulative) distribution function.

The frequency µ(z) of exceeding a high value z is determined as

µ(z) = (1−F (z))α/∆, (S1)

with ∆ the time step (for example, 12.42/24/365.25 years for HW) and α the extremal index (EI) (Leadbetter et al, 1983): this75

is a factor that accounts for the clustering of extremes in time (see Section 7.1).
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Figure S8. Left: estimates of the extremal index for HW in DJF from SEAS5/DCSMv5 data (black) and measurements (blue dots) from 6

stations; blue lines represent smoothed estimates from measurements. Right: estimates of the extremal index divided by time step for SEAS5

stress (black) and measured wind speed (blue) from nearby weather stations in DJF.

We estimate the EI using the method from Ferro and Segers (2003) from data for DJF only, to minimize bias due to season-

ality. An estimate is determined from all values above a chosen threshold, indicated by the sample fraction exceeding it. Fig.

S8 (left) shows the estimates for HW for the six tidal stations (see Section 3). We focus on the estimates for the lower sample

fractions (high HW). For SEAS5/DCSMv5 data and measurements, the EI α for HW appears to be close to 1. For measured80

wind speed and SEAS5 stress, Fig. S8 (right) shows estimates of α/∆, the extreme value index α divided by the time step

∆ (6 hours for SEAS5 stress and 1 hour for measurements). For SEAS5 stress, these tend to 0.15-0.20 per hour, hence they

are limited by the time step. However, for wind speed measurements, the estimates reach higher values and the increase with

decreasing sample fraction does not seem to stop. Based on these results and other considerations, a value of 0.5/hour is chosen

for α/∆, corresponding to an average duration of 2 hours for a cluster of high values (see Section 7). The same values of α/∆85

are used in the estimation directional frequencies of exceedance (see below).
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S7 Methods for the estimation of return values of HW and stress in Section 7

S7.1 Omnidirectional tails

To approximate the tail of the distribution function F , the Generalized Weibull (GW) tail is used; see Section 4. Let y = log1/p

with p a chosen "threshold" probability. With q(y) the value exceeded with probability e−y as in eq. (1) and f(y) = yq′(y), the90

GW tail approximation can be written as

1−F (z)≈ e−y(1+β( z−q(y)f(y) ))
1/β

for all z ≥ q(y) (S2)

with β some a real number (see (4)).

With this tail approximation, frequencies of exceedance are computed by (S1), using an estimate of the extremal index

(Supplement S6).95

The precise nature of the tail approximation (S2) is explained in de Valk (2016a). The free parameters q(y) (the location

parameter or threshold), f(y) (the scale), and β (the shape) are estimated from the top 100p% of values using an adaptation of

the method from de Valk and Cai (2018); see Supplement S7.4.2 for further details. The shape parameter β and the location

q(y) are estimated independently of other parameters from the data. However, the estimation of the scale parameter f(y)

requires the estimate of β. The code is available at https://github.com/ceesfdevalk/EVTools; the tail estimates are calculated100

with the R function FitGW_iHilli.R.

For the estimation of the omnidirectional tails of HW and stress, p= 0.012 is used, based on research in de Valk and van den

Brink (2023a). For stress, all parameters are estimated from SEAS5 data (and subsequently corrected for model-related bias;

see Section 7.1). For HW (see Section 7.2), the shape β is estimated from SEAS5/DCSMv5 data. Subsequently, the scale f(y)

and location q(y) are estimated from measurement data. Tab. S1 provides an overview of the data sources and settings.105

S7.2 Direction-dependent tails and exceedance frequencies

First, we transform the values of HW or stressZ with distribution F to the values of a variable Y with a given distributionG, for

which the exponential distribution is chosen: Y :=− log(1−F (Z)) with distribution function G(x) := P (Y ≤ x) = 1− e−x.

From the sample Z1, ...,Zn of HW or stress Z, we can easily construct approximations of values of Y which have a deter-

ministic distribution approximating the exponential distribution:110

Yi =− log
(

1
n+1

∑n
k=1H(Zk −Zi)

)
, (S3)

withH the step function:H(z) = 0 if z < 0 andH(z) = 1 if z ≥ 0. Because the empirical distribution of Y is deterministic, the

dependence on wind direction is expected to be estimated more precisely from the simultaneous data of Y and wind direction

θ than from the simultaneous data of Z and θ.

We work with 16 sectors A1, ...,A16 each 22.5◦ wide with central directions 22.5◦,45◦, ...360◦. The directionality is rep-115

resented by Gj(x) := P (Y ≤ x | θ ∈Aj) for j = 1, ...,16. For Gj , we use again the GW approximation. Because the omnidi-

rectional distribution of Y is exponential (and thus has a GW tail with β = 1 and f(y) = y), the following conditions apply:
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βi ≤ 1, and if βi = 1, then also fi(y)≤ y. These conditions are imposed on the parameter estimates. To satisfy the requirement

that the omnidirectional distribution of Y is exponential, we must normalise 1−Gj(x). As a result, the directional frequency

of exceedance µj(z) of z coincident with a wind direction in Aj is computed as120

µj(z) =
(1−Gj(x))P (θ ∈Aj)∑16
i=1(1−Gi(x))P (θ ∈Ai)

µ(z) where x=− log(1−F (z)). (S4)

The estimates of the scale and shape of Gj are determined from the values of Y associated with directions in the 45◦ sector Āj

centred at the same direction as the 22.5◦ sector Aj . This results in smoother estimates as a function of direction and higher

precision (there are more data points per sector). The location of of Gj is estimated only from values with wind directions in

Aj .125

For stress and HW, these estimates are derived from SEAS5/DCSMv5 data with p= 0.012, just like the omnidirectional tail

distributions. For stress, all return values are scaled afterwards by a constant (see Section 7). For HW, the analysis of directional-

ity is partly based on measurement data: in this case, the scale and location of ofGj are estimated from measurement data, with

the shape fixed at the estimate from the SEAS5/DCSMv5 data. Since the time series of simultaneous measurements of HW and

wind direction are relatively short, a higher value 4.8% of p is used. The resulting estimates of direction-dependent exceedance130

frequencies of HW, which are still a little rough, are used to correct the previous estimates from only SEAS5/DCSMv5 data

for bias. This is done by smoothing the logarithms of the ratios of the two estimates, and then applying these smoothed ratios

to correct the estimates from only SEAS5/DCSMv5 data. Tab. S1 provides an overview of the data and settings used.

variable statistic parameter symbol data source bin width for esti-

mation

p=

e−y

stress omni location q(y) SEAS5 – 0.012

stress omni scale f(y) SEAS5 – 0.012

stress omni shape β SEAS5 – 0.012

stress directionality location qj(y) SEAS5 22.5◦ 0.012

stress directionality scale fj(y) SEAS5 45◦ (overlap) 0.012

stress directionality shape βj SEAS5 45◦ (overlap) 0.012

HW omni location q(y) measurements – 0.012

HW omni scale f(y) measurements – 0.012

HW omni shape β SEAS5/DCSMv5 – 0.012

HW directionality location qj(y) SEAS5/DCSMv5 22.5◦ 0.012

HW directionality scale fj(y) SEAS5/DCSMv5 45◦ (overlap) 0.012

HW directionality shape βj SEAS5/DCSMv5 45◦ (overlap) 0.012

HW dir. correction location qj(y) measurements 22.5◦ 0.048

HW dir. correction scale fj(y) measurements 45◦ (overlap) 0.048
Table S1. Selected data and settings for the estimation of omnidirectional ("omni") tail distributions, directionality, and bias correction of

directionality (dir. correction).

.
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S7.3 Error estimation using the block bootstrap

In the block bootstrap (Künsch, 1989) the analysed time series are divided into blocks longer than the typical de-correlation135

time, and new synthetic time series of the same length as the original series are constructed by randomly drawing blocks with

replacement and placing them one after the other. The entire data analysis is performed on a number of such synthetic time

series, and the uncertainty in the estimates can be determined directly from the ensemble of outcomes. For the measurement

data, blocks of 1 year were used to preserve the seasonality in the data. For the SEAS5/DCSMv5 model output, blocks consist-

ing of the last 6 months of a 7-month long member of the forecast ensemble were used. Independence of simultaneous values140

(of which at least one is high) from different members was verified for stress; see Supplement S2. In principle, the selection of

blocks of 6 month introduces a spurious inflation of the spread due to the seasonality (e.g., there may be too many or too few

winter months in the resampled dataset), but this effect was shown to be negligible, due to the large size of the dataset. The

number of bootstrap replicates was fixed at 100; this is sufficient for the estimation of variances.

S7.4 Tail estimators145

S7.4.1 Generalized Pareto tail estimation

Generalized Pareto (GP) tails and tail shape γ (see Section 4) were estimated in two different ways: (a) from estimates of the

(equivalent) GEV distribution from annual maxima (for the estimates in Section 3) and (b) from full time-series (for the tail

estimates for HW at Hoek van Holland in Section 2).

In both cases, the maximum likelihood method was used to estimate the GEV (for (a), Dombry (2015)) and the GP tail (for150

(b), de Haan and Ferreira (2006)). For (b), the estimated tail was combined with an estimate of the extremal index (Supplement

S6) to derive return values. This approach results in somewhat higher estimates of the shape γ than method (a), due to the

effect of increasing dependence between successive values when these values are lower. As a result, estimates of return values

for long return periods based on method (b) are somewhat higher than estimates based on method (a). Method (b) is also used

for the GW tail fits (e.g. Section 5, 7 and Supplement S6).155

S7.4.2 Generalized Weibull tail estimation

For fitting Generalized Weibull (GW) tails, we employ an adaptation of the estimator from de Valk and Cai (2018). The latter

is introduced there as an estimator for the log-GW tail de Valk (2016a); to estimate the GW tail from a data sample, one simply

skips the step of taking logarithms of the data values.

In de Valk and Cai (2018), the large-sample behaviour of this estimator was analysed in a configuration using different160

thresholds for shape and scale estimation. In practice, however, it proves to be more effective to use the same thresholds (see

also Albert et al (2015)). In that case, the same analysis shows that errors in return value estimates are dominated by the error

in the shape estimate.
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Furthermore, in the notation of de Valk and Cai (2018), the estimator θ̂kn,n of the shape parameter θ in their Eq. (19) is

modified by replacing γ̂Hi,n with the asymptotically equivalent expression165 ϑi+1,n
1
i

i∑
j=1

hθ̂kn,n
(ϑj,n/ϑi+1,n)

−1 γ̂Hi,n. (S5)

This modification is motivated by replacing the first approximation of g(ϑi+1,n) in Eq. (17) of de Valk and Cai (2018) with

the second, more accurate, approximation. It leads to an implicit equation for the shape parameter, the solution of which is

easily approximated by searching over a discrete set of values.

In practice, the outcomes of this estimator resemble those of the maximum likelihood (ML) method, but the computation170

takes much less time. An alternative estimator is (Albert et al, 2015).

S8 Error in skew surge predictions on the Waddenzee

The following graphs are reproduced with permission from Zijl and Laan (2021); see also Zijl et al (2022).

Figure S9. Error in predictions of skew surge at Harlingen (5) (top) and Delfzijl (6) (bottom) by the DCSM-FM 100m tide-surge model

forced by HIRLAM output for the period 2013-2017.
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