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Abstract.

In this study, we analyze how precipitation, antecedent conditions, and their spatial patterns and interactions lead to extreme

floods in a large catchment. The analysis is based on 10,000 years of continuous simulations from a hydro-meteorological

model chain for a large catchment, the Aare river basin, Switzerland. To account for different flood-generating processes, we

based our work on simulations with hourly time resolution. The hydro-meteorological model chain consisted of a stochastic5

weather generator (GWEX), a bucket-type hydrological model (HBV), and a routing system (RS Minerve), providing the

hydrological basis for flood protection management in the Aare river basin.

From the long continuous simulations of runoff, snow, soil moisture and dynamic storage, we were able to assess which com-

binations of antecedent conditions and triggering precipitation lead to extreme floods in the sub-basins of the Aare catchment.

We found that only about 18 to 44% (depending on the sub-catchment) of annual maximum precipitation (AMP) and simulated10

annual maximum flood (AMF) events occurred simultaneously, highlighting the importance of antecedent conditions for the

generation of large floods. For most sub-catchments in the 200-500 km2 range, after return periods greater than 500 years we

found only AMF caused by a triggering AMP, which is notably higher than the return periods typically used in design.

Spatial organization within a larger area is complicated. After routing the simulated runoff, we analyzed the important

patterns and drivers of extreme flooding at the outlet of the Aare river basin using a random forest. The different return period15

classes had distinct key predictors and showed specific spatial patterns of antecedent conditions in the sub-catchments leading

to different degrees of extreme flooding. While precipitation and soil moisture conditions from almost all sub-catchments

were important for more frequent floods, for rarer events only the conditions in specific sub-catchments were important. Snow

conditions were important only from specific sub-catchments and for more frequent events.

1 Introduction20

Floods in general and extreme floods in particular are a threat to infrastructure and human life. With the awareness that it is

not feasible to protect everything and everybody from damage caused by floods, the goal today is to minimize damage. This

is achieved by a combination of structural and technical management as well as regional development planning (e.g., hazard
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maps). In this context, the return period of floods, i.e., the expected time interval between flood events exceedingthat exceed

a specific magnitude (Makkonen, 2006), is a crucial metric. The standard approach tofor flood frequency analysis is to use25

observations of floods and fit a theoretical extreme value distribution to estimate return periods for specific flood peaks and

ultimately derive design floods for safety assessments. However, there is generally a lack of observations for extreme events

such as floods, which leads to uncertain estimations of the associated return periods. The uncertainty inherent in the return

periods is directly linked to the measurement accuracy and quantity of observed extreme events. For instance, established rating

curves may no longer be appropriatemight not be appropriate anymore for very large floods (Westerberg et al., 2011, 2020),30

leadingwhich leads to particularly large uncertainties in the estimation of return periods for larger floods, i.e., rarer events.

Recently, there has been a growingan emerging body of literature on so-called heavy tails describing the effects of the lack of

observations (Merz et al., 2022; Mathevet and Garçon, 2010; Klemeš, 2000a, b, and references therein). The issue isbecomes

even more exacerbated because of the increasing non-stationarity of observations, which are caused by climate change but also

by the impacts of human infrastructure such as water reservoirs on the streamflow and the extremes (e.g. Hingray et al., 2010).35

There are some alternative approaches to overcome the lack of flood observations using historical data from archives or

paleo floods (Schulte et al., 2019; Castellarin et al., 2012; Merz and Blöschl, 2008), however for ungauged catchments we

face a real challenge in that we have no observations at all. For very rare flood events, approaches linkingthat link extreme

precipitation to floods are often used (e.g, Naghettini et al., 1996) instead ofrather than performing flood frequency analysis

based on discharge observations. Not only limited data contribute to the uncertainty of the estimated return periods, but also40

the choice of a suitable theoretical extreme value distribution as well as the optimization method to find appropriate parameters

describing the theoretical extreme value distribution (Klemeš, 2000a, b).

To overcome the lack of data in flood frequency analysis, hydro-meteorological modelling chain approaches have been

proposed and applied in a scientific context as an alternative to design flood approaches (Lamb et al., 2016; Falter et al.,

2015; Hundecha and Merz, 2012; Cameron et al., 1999; Viviroli et al., 2022). In these hydro-meteorological modelling chain45

approaches, meteorological scenariossimulations from a weather generator force a hydrological model which performs contin-

uous simulation (CS) (Beven, 1987) of discharge over long to very long periods, including floods. These approaches provide a

considerably larger pool of realistic weather configurations that can potentially leadcombinations potentially leading to floods

compared to the pool of observed events. Thus, this approachThis approach thus (1) allows estimating rarer flood events and

(2) provides a more robust basisbase for floods of medium to high return periods than is possible with observations aloneonly.50

There are several additional advantages when combining CS with weather generators: it allows the exploration of a very large

panel of different hydro-meteorological configurations, with different combinations of weather and catchment hydrological

states (e.g. soil moisture conditions, snow pack importance and maturity, filling states of reservoirs), i.e. it also provides flood

antecedent conditions without the need for explicit assumptions about them (Calver and Lamb, 1995; Pathiraja et al., 2012;

Viviroli et al., 2022). It is applicable in ungauged catchments (using parameters derived from regionalization) and allows to55

better link flood estimation with physical processes. Also, flood antecedent conditions are provided FurthermoreFurther, this

approach treats the processes in a spatially consistent manner and captures the space–time interactions of the relevant processes

(Falter et al., 2015). It offersprovides the possibility to extract not only flood peaks but any other feature of the hydrograph, such
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as for instance flood volume, and thus allowsallows thus for a bi- or multivariate flood frequency analysis for safety assessment

(e.g., Blazkova and Beven, 2004; Brunner et al., 2016). Moreover, this type of modelling chain can be easily extended using60

discharge simulations as input to flood plains (see e.g. Lamb et al., 2016) or in a further step to a damage model (see e.g.,

Falter et al., 2015). Finally, this approach also allows testing future scenarios under changed conditions for instance regarding

climate or land use change (see e.g., Köplin et al., 2013, 2014) or regarding different regulation in the catchment.

The sources of uncertainty shift when using such a hydro-meteorological modelling chain is used for flood frequency anal-

ysis. While this approach reduces the uncertainties inherent in conventional flood frequency analysis, it adds various model65

uncertainties. The weather generator is a statistical model that includes numerous parameters estimated with uncertainty, and

which provides a simplified representation of weather dynamics in both space and timeboth temporally and spatially (Lafaysse

et al., 2014). The weather generator is used in a specific temporal resolution and parameterization and makes use of a given

underlying meteorological station density for a specific catchment. These components introduce uncertainty in the representa-

tivity of the rainfall distribution types generated that can lead to floods in a specific region. Also the hydrological model and70

the routing system are subject to uncertainty. Here, the main sources of uncertainty stem from model structure and parameter

uncertainty. These uncertainties could be estimated by using an ensemble of simulations withusing different parameter sets and

thus helpthis way helping in the decision-making process for flood safety management (Todini, 2004; Blazkova and Beven,

2004; Wood and Lettenmaier, 2008). Some studies have attempted to use multi-model approaches that attempt to represent the

structural uncertainty of hydrological simulations and particularly for extremes this approach was followed by Thébault et al.75

(2024). When following this methodology, however, there is also the need to make specific decisions, e.g. on how many models

and which models to choose, see Gupta and Govindaraju (2023). This explains why ensemble approaches are more commonly

used so far, i.e. a single model is run multiple times with different input data, parametrizations, or initial conditions.

Floods can be generated by different processes, and a specific amount of rainfall trigger a flood in some cases. In other

cases, the same amount maymight barely increase the discharge. The outcome depends on the intensity, duration, and spatial80

distribution and the localization of the precipitation event as well as on the antecedent conditions within the catchment.

The antecedent conditions of the catchment are shaped by its history of drying and wetting over time. These dynamics

depend on catchment properties that allow for a large or only a small storage capacity, and on spatio-temporal interactions in

the catchment (activated or not, see Tarasova et al. (2019) and references therein) such as how the stream network is connected

during a precipitation event and other aspects of functional connectivity (Blume and van Meerveld, 2015) within a catchment.85

Knowledge ofabout the relationship between antecedent hydrological catchment hydrological conditions and meteorological

conditions during the event can help better estimate and manage floods (Nied et al., 2017; Brunner et al., 2021). Many studies

showed the importance of the antecedent moisture conditions for flood generation in catchments of various scales, revealing a

notable influence for the streamflow response of a catchment to a preceding extreme rainfall event (e.g. Michele and Salvadori,

2002; Berthet et al., 2009; Brocca et al., 2008; Bennett et al., 2018; Merz and Blöschl, 2009; Nied et al., 2013). At the large90

catchment scale, Nied et al.(2013) studied the role of soil moisture conditions prior to flood events and found it to be a major

driver for flood generation on the large catchment scale (Elbe catchment, Germany). ByWhen linking these relationships
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between antecedent conditions, triggering precipitation and catchment response to flood frequency, more accurate estimations

can be made, such as those for inundated areas (Sikorska et al., 2015; Brunner et al., 2017).

Many flood-generatingflood generation processes can be captured by daily streamflow observationsobservations of daily95

streamflow, and the link between antecedent conditions and generated flood has previously been studiedwas studied previously

at large catchment scale (Nied et al., 2013; Falter et al., 2015). However, some flood-generating processes , including those

leading to the most devastating floods, occur on a very short temporal scale and require hourly or even finer data resolution

to capture the potentially critical space-time dynamics within a catchment. The final flood at a specific site depends on the

antecedent conditions, the triggering precipitation but also on the spatial interplay of processes occurring at different scales.100

Lakes and flood plains maymight buffer the flood peaks, while coincident floodscoinciding from tributaries of different sub-

catchments maycould increase the overall flood peak due to superposition which usually occurs at a sub-daily time scale.

Objectives

In this study we assess the role of antecedent conditions for floods of different return periods including extreme floods.

The floods and associated antecedent conditions are extracted from very long (10’000 years) simulations from a hydro-105

meteorological modelling chain consisting of a stochastic weather generator optimized for the large catchment scale, a hy-

drological model and a routing system in hourly resolution. We specifically assess 1) the link between precipitation, antecedent

conditions and return periods for the sub-catchments of the Aare river catchment and 2) their temporal and spatial interaction,

accounting also for retention and confluences leading to extreme floods at the large catchment outlet.

1. the link between precipitation, antecedent conditions and return periods for the sub-catchments of the Aare river catch-110

ment and

2. their temporal and spatial interaction, accounting also for retention and confluences leading to extreme floods at the large

catchment outlet.

Given the hourly time resolution and the exceptionally long precipitation time series, we anticipate to see a much greater

diversity of precipitation sequences prior to floods as well as a wider variety of hydrological initial conditions in the catchment.115

This is expected to lead to a more robust identification of process-based relationships. Furthermore, by explicitly including

hydrological routing and analyzing its effect, we can link the return periods of events to the spatial contribution of sub-

catchments and the processes occurring within them.

2 Methods and data

2.1 Catchments120

We studied the large-scale Aare river basinin Switzerland ,. which is one of the largest hydrological catchments in Switzerland,

covering 17,700 km2. It includes parts of the Alps, the Swiss Plateau and the Jura, and extends from the confluence with the
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Rhine at about 310 m asl to 4274 m asl in the Bernese Alps (average elevation 1050 m asl). Land use consists of pasture

(36%), forest (30%), subalpine grassland (14%), bare rock (8%) and glaciers (∼2%). Streamflow is heavily managed through

the regulation of the large pre-alpine lakes of Biel, Brienz, Lucerne, Murten, Neuchâtel, Thun and Zurich, and through several125

hydroelectric dams (Viviroli et al., 2022). The basin was divided into 127 sub-catchments, of which we selected 20 (Table 1,

Figure 1) for a more detailed analysis of antecedent conditions, triggering precipitation and flood return periods. These selected

sub-catchments are larger than 200 km2 and vary in elevation range, slope, aspect, and hence also in hydrological regime . For

their geographic setting in Switzerland see the map of the Aare river basin and its sub-catchments (Table 1, Figure 1).
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Figure 1. Location of the selected sub-catchments in the Aare river basin, Switzerland. The number labels are indices that can be found in

Table 1. The black points are the routing system nodes that are considered in this study, and the redblue point is the outlet of the Aare river

basin. The source of the underlying relief map is the Swiss Federal Office of Topography.

2.2 Hydro-meteorological modelling chain130

We used the CS approach paired with a stochastic weather generator producing very long time series (here 10,000 years),

which expands the pool of possible flood events and encompasses more extreme events than observations alone. This way, we

could analyze many possible but unobserved meteorological conditions causing a wide range of antecedent conditions. This

enabled us to study the effect of antecedent conditions on the generation of extreme floods.

To account for many flood-generating configurations relevant in our study catchments, we based our work on simulations at135

hourly resolution (see ACRTs in Table1 and Charles Obled and Hingray (2009)). This also allows for a more comprehensive

pool of flood events than using daily data. Moreover, the hourly time step enables a realistic simulation and examination of the

interplay of flood peaks coming from different parts of the large river catchment. Note thatNevertheless, some runoff generation

processes leading to floods that happen ona finer temporal resolution are not included and some smaller scale flood processes
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are not covered with the structure of the hydrological model. These small-scale processes may occur in parts of most of the140

catchments, but their relevance diminishes as catchment area increases. For the large Aare basin, the largest events are unlikely

to be governed by these processes.

Each sub-catchment may then be treated as spatial sub-unit of the whole system. The sub-catchments were selected using an

appropriate discretisation level regarding the study goals, i.e., to identify large floods for the entire Aare river basin. An even

finer discretisation might not lead to more insights regarding this goal, because regionally confined floods were hardly ever145

observed to contribute to notable floods in the Aare river basin.

2.2.1 Weather generator

This study exploits 10,000-year simulations of mean areal precipitation (MAP) and temperature (MAT) for each sub-catchment

of the Aare river basin described in Viviroli et al. (2022). These long synthetic time series were generated by the stochastic

weather generator GWEX (Evin et al., 2018, 2019), which reproduces the statistical behaviour of weather events at different150

temporal and spatial resolutions, focusing on extremes. GWEX is a multi-site, two-part stochastic weather generator, relying

on the structure proposed by Wilks and Wilby (1999) for precipitation.

Observations of precipitation from 300 stations and observations of temperature from 77 stations were used to fit the weather

generator. Precipitation and temperature records are available on a daily time step for the 1930–1980 time period and on a

hourly time step for the 1981–2015 period (85 years). GWEX was fitted at the daily time step with available daily time series.155

GWEX was then used to generate multi-site times series of daily scenarios, further disaggregated to hourly resolution with

a non-parametric disaggregation approach.First a data base of hourly "pseudo-observed" precipitation and temperature was

built. For the stations and time period which only had data recorded on a daily basis, the hourly values for precipitation and

temperature were obtained by disaggregation. For each day of the generation, the daily values are for this disaggregated using

the spatial/temporal structure of precipitation observed for a similar day with hourly data available (Method of Fragments, see160

details in Viviroli et al., 2022). GWEX simulations at the different stations were finally used to calculate time series of MAP

and MAT for each sub-catchment of the the Aare River.

Note that the original precipitation data were not specifically tested for stationarity. However, we used homogeneous pre-

cipitation time series. Due to the large inter-annual variability, identifying long-term trends in our precipitation data is very

challenging. Isotta et al. (2019) found that seasonal precipitation trends in Switzerland are mostly statistically not significant,165

with weak signals of systematic change.

The weather generator was optimized for the entire Rhine river basin, rather than specifically for the Aare river basin or its

individual sub-catchments. It very well reproduced the cumulative distribution functions of at-site precipitation for different

temporal aggregation levels, and of all persistence properties of precipitation including the cumulative distribution functions of

wet and dry spell lengths (see Evin et al., 2018)(not shown). There are no known spatial inconsistencies concerning the gener-170

ation of extreme events, despite in-depth evaluations as shown in Viviroli et al. (2022). Due to the hourly resolutionbasis of the

disaggregated precipitation and temperature observations from meteorological stations and due to the sparse spatial coverage

of the station network, very high-intensity but strongly localized events that occur at sub-hourly resolution are not reliably sim-
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ulated. However, the advantage of a regionally applied weather generator is the possibility to analyze the hydrological effects

emerging at the regional scale, for exampleinstance, for a large hydrological catchment such as the Aare river basin.175

2.2.2 Hydrological model

We modelled all sub-catchments within the Aare river basin using the bucket-type hydrological model HBV (Bergström et al.,

1995; Seibert and Vis, 2012)and simulated discharge, soil moisture storage, upper and lower groundwater storage as well as

snow accumulation and melt. The model was calibrated to observed discharge using a performance metric based on the Kling-

Gupta efficiency (Gupta et al., 2009), with more weight given toon the bias in the upper quantiles (50-80%) than in the classic180

metric, i.e. 0.25 weight to correlation between simulated and observed discharge, 0.25 weight to variability, 0.25 to bias of the

full discharge range and 0.25 weight to the upper quantiles of discharge. This was done to focus more on flood events and at

the same time not to give too much weight to the uncertain peaks.

For the simulations, we forced the hydrological model with MAT and MAP from the weather generator. The generated daily

temperature lapse rate was used to allocate the temperature conditions to the different elevations bands of each catchment. A185

constant adjustment factor of 5%/100m was applied to account for the precipitation lapse rate.To consider the precipitation

lapse rate, a constant adjustment factor of 5%/100m was applied.

The HBV model comprises different model routines to simulates snow accumulation and meltingmelt with a degree-day

approach, evapotranspiration and soil moisture storage, the drainage from the groundwater storage (response routine) and

routing to finally simulate streamflow at the outlet of the catchment. In the snow routine, the forcing precipitation is adjusted190

for gauge under-catch and other errors in the gauging if it is classified as snowfall. The extent of this correction can vary

considerably depending on the hypsography of a catchment. In this study the response routine was chosen in the configuration

of a non-linear drainage equation (Lindström et al., 1997), assuming an exponential increase in groundwater response with

increasing water stored in the groundwater bucket. The modelhad ultimately had 16 parameters, of which 13 were used in

the calibration and 3 were fixed to values that were used in previous studies (Viviroli et al., 2022). For glaciated catchments,195

the model has five additional parameters, three of whichof which three are set to default values. An overview of the model

parameters and limits for calibration can be found in Table 2.

For each catchment, we derived 100 plausible parameter sets usingwith a genetic algorithm calibration procedure (Seibert,

2001), by calibrating on different nine-year-sub-periods of the available discharge records, with each sub-period resulting in

25 parameter sets. For this study, only one representative parameter set was selected from these. It is representative in the sense200

that it represents the median floods from the ensemble (100 parameter sets) of exceedance curves (relationships between annual

maximum flood and return periods) using a percentile approach and choosing the median as proposed by Sikorska-Senoner

et al. (2020). To considerFor considering the parameter uncertainty, we could use the wholeall the ensemble or some members

representing the range of possible parameter sets, but in this study we focused on the median representative parameter set and

the antecedent conditions created with itusing this.205
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Table 2. Parameters of the hydrological bucket type model HBV.

Routine Parameter Lower limit Upper limit Fixed Description

Glacier KGmin 0.0001 0.2 minimum outflow coefficient

Glacier CFGlacier 1 2 correction factor glacier

Glacier KSI 5E-05 snow to ice conversion factor [1/h]

Glacier RangeKG 0 max. minus min. outflow coefficient [1/h]

Glacier CFSlope 1 correction factor slope [-]

Snow TT -2.5 2.5 threshold temperature [◦ C]

Snow CFMAX 0.001 5 degree day factor [mm/h ◦ C]

Snow SFCF 0.4 1.6 snow correction factor[-]

Snow CFR 0.05 refreezing coefficient

Snow CWH 0.1 snow water holding capacity

Soil FC 50 100 maximum storage in soil box [mm]

Soil LP 0.3 1 threshold reduction ETP [-]

Soil BETA 1 5 shape coefficient [-]

Soil PERC 0 1 max. flow from upper to lower gw box [-]

Response Alpha 0 1 shape coefficient [-]

Response K1 0.0001 0.1 recession coefficient (upper gw bucket) [1/h]

Response K2 0.00001 0.05 recession coefficient (lower gw bucket) [1/h]

Routing MAXBAS 1 100 factor triangular weighting [h]

Precipitation redistribution PCALT 5 lapse rate precipitation [%/100m]

2.2.3 Routing system

The simulated discharge from the HBV model was then combined and routed using the RS Minerve hydrological routing

system (García Hernández et al., 2020). This system is fast to run and is well suited for application in topographically and

hydraulically complex regions (regulated lakes, hydropower) such as Switzerland (Horton et al., 2022). The main impacts

of bank overflow and floodplain retention were considered for a wide range of peak flows by adding parallel channels at210

relevant sites, both in series and in parallel. These channels account for estimated channel flow capacity and inundated areas.

Levee breaks were not considered. Stage-area-volume relationships were extracted from digital terrain information (Swisstopo,

2005) for the nine larger lakes in the Aare river basin. Six of these lakes are regulated, and the regulation rules are usually

expressed as stage-discharge relationships with seasonal, monthly or even daily variations. These rules have been digitized and

implemented in RS Minerve, with simplifications made where necessary. Where available and feasible, the rules were adapted215

for flood events (i.e., deviating from normal operation). The output nodes were placedhave been placed at sites corresponding

that correspond to selected gauging sites of the Swiss Federal Office for the Environment. For the 10,000 years simulation we

assumed no changes in the current regulation and general stationarity of the system.
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Figure 2. Sketch of the extracted antecedent conditions and the triggering precipitation for one exemplary flood event at hourly time resolu-

tion. The reference time is the peak of the annual mean flood (AMF), the dashed lines indicate the flood event as found by the recursive filter

(Eckhardt, 2005). The grey area in the precipitation panel shows the average catchment response time (ACRT) for this example catchment.

The triggering precipitation is the sum over a catchment-specific time window considering the ACRT before the beginning of the flood event.

The blue line in the hydrograph (upper panel) indicates the contribution of snowmelt to the discharge. Relative soil moisture (lower panel) is

extracted at different points in time (24, 48, and 72 hours before the AMF) as well as at the beginning of the flood event.

2.3 Event selection

For each of the selected sub-catchments the annual maximum flood (maximum hourly discharge), AMF, and the annual max-220

imum precipitation sum over a fixed time window, AMP, were extracted from the full simulation period of 10,000 years. A

fixed window for the precipitation sums is common in meteorological studies for extreme value statistics. However, we ad-

justed the fixed window size from the commonly used meteorological windows to a catchment-specific hydrologically more

meaningful window, namely the average response time of the catchment. The average catchment response time (ACRT) was

estimated by calculating the maximum cross-correlation between precipitation and discharge making a seasonal distinction,225

because of possible delays due to snow accumulation and melt in winter and spring (see Keller et al., 2018; Tarasova et al.,

2019). ThisThat means that some catchments may have a fixed window of 12 hours to find the AMP, others 24 hours etc.

For our set of sub-catchments, the ACRT varies from 6 to 49 hours, with a median of 11 hours. The different ACRTs may

be explained to some extent by the percentage of karstkarst percentage, the river network density and the dominant runoff

processes within eachthe catchment. The flood event belonging to the AMF peak is estimated using the recursive Eckhardt230

filter (Eckhardt, 2005) defining the start and end of the flood event where baseflow and discharge converge. Therefore, beside
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the flood peak, also flood volume was estimated. The filter works well for most flood events in our catchment selection, but it

tends to underestimate the flood volume forduring double-peak events.

Flood-triggering precipitation was defined as the precipitation that fell between ACRT before the start of the flood event and

the flood peak. Hence, anyall precipitation that fell before that start point in time (ACRT before the start of the AMF event)235

was assumed to alter the antecedent conditions but to not directly trigger the flood event. The ACRTs for each catchment are

listed in Table 3. Snow has a dual functiontwofold functioning as both a temporary storage of precipitation and a delayed

precipitation input in the form of snowmelt. Like rain, snow influences the antecedent conditions, and the melt water canmight

contribute to triggering or intensifying a flood event. We excluded annual maximum precipitation events where precipitation

was likely snow and not rain, considering the substantial time gap between snow accumulation and snow melt. Rain-on-snow240

events are thusnot covered bywith this approach and would also not be adequately simulated by the hydrological model used.

Starting from the AMF peak, we extracted a setnumber of characteristics including simulated soil moisture, dynamic catch-

ment storage (consisting ofcomprising soil water and groundwater storage (see Staudinger et al., 2019)), snow pack at time

points before the AMF and snow melt contributing to the flood as simulated by the model, as well as the associated triggering

precipitation. These characteristics collectively describe the conditions during and preceding the flood. The same characteris-245

tics were also extracted before the AMP but here instead of the preceding precipitation, the discharge response to each AMP

was extracted. All considered characteristics regarding flood events, antecedent conditions and triggering precipitation as well

as antecedent conditions and reaction to the AMPs are listed in Table 3.

The soil moisture conditions of the catchment were calculatedcomputed as relative soil moisture filling. For this the simulated

soil moisture [mm] at any time was compared to the absolute maximum soil moisture that was simulated during the full250

simulation period [mm] in each sub-catchment. Snow conditions in the catchment were included in terms of snow pack before

a flood event and in terms of relative snow melt water contribution to discharge during the flood event. The latter was calculated

computed as the fraction of simulated snow melt in simulated discharge during the flood event.

2.4 Return period estimation

Return periods were calculated for all annual maximum flood events and all annual maximum precipitation events. We cal-255

culated the empirical return periods of each AMF and AMP based on Weibull plotting positions. The return periods were

categorized into return period classes of "10 years" (between 0 and 10 years), "100 years" (between 10 and 100 years), "300

years" (between 100 and 300 years), "500 years" (between 300 and 500 years), "1000 years" (between 500 and 1000 years),

and "1000+ years" (more than 1000 years). These classes are based on the different stages of flood safety assessment and form

by definition an unbalanced stratification of the full sample of annual events.260

2.5 Occurrence of annual maxima of precipitation and flood at the sub-catchment scale

When the AMF was not caused by the AMP, we expect the greatest influence of wet catchment antecedent conditions. In these

"non-matching" cases, annual maximum precipitation does not trigger the annual maximum flood and hence during and before

the AMP there might be antecedent conditions that allow for the rain to be stored in the catchments and do not lead to an
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Table 3. Characteristics extracted for the annual maximum flood (AMF) and the annual maximum precipitation (AMP) event to describe the

antecedent conditions, triggering precipitation event and streamflow response. ACRT = average catchment response time.

Type AMF AMP

Reference flood peak max. sum of P over ACRT window

Precipitation (P) sum of P over ACRT plus flood start to peak

Discharge (Q) flood peak max. Q within ACRT after AMP

flood volume

flood duration

fast component volume

snow melt water volume

Snow conditions snow melt in Q snow melt in Q

snow pack ACRT before snow pack ACRT before

Storage state soil moisture at ACRT before soil moisture (ACRT)

Seasonality month of occurrence month of occurrence

immediate large streamflow response. For the AMFs that were not triggered by the largest precipitation events, there are two265

possible cases: 1) the catchment was considerably wetter compared to the conditions during the AMP – pointing at the decisive

role of antecedent catchment conditions or 2) the precipitation amount triggering the AMF was very similar to the AMP, but

did not quite reach the AMP amount. In other words, in these non-matching cases a rainfall event that is slightly or markedly

lower than the AMP event leads to much higher runoff production efficiency and thus ultimately to the annual maximum flood.

We considered cases as "non-matching" when the AMP did not overlap with the window of the flood event plus the preceding270

average response time before the flood event. Since we want to focus on hydrologically effective precipitation, we excluded

AMPs where the precipitation presumably was presumed to be snow and accumulated.

2.6 Critical flood conditions for the large scale catchment

From a regional management point of view, the floods that matter are those that occurwhat matters are floods occurring at the

outlet of the river basin or at a point of interest within the basinit. Critical conditions at these points are formed by antecedent275

conditions in specific regions (spatial patterns of wetness for contributing sub-catchments), by the phase, amount, and location

of precipitation, and by the combined effect of individual space-time dynamics.

By only examining many catchments individually and how precipitation and antecedent conditions shape the streamflow

response at their outlets, the link to the regional importance of floods at the sub-catchment scale would be missing. For instance,
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if the extreme flood of one catchment is always occurring out of sync with the other sub-catchments, then there might be no280

great impact expected in the large catchment context. However, if two or more catchments usually exhibit strong response to

precipitation inputs and their flood peaks combine and reinforce one another, then these cases become criticalcrucial in the

regional flood risk context.

In this study, critical floods at the large catchment scale were defined by the return periods of the floods at the outlet of

the Aare river basin. In order toTo model the return period classes of these critical floods, we set up a classification type285

random forest. The spatial pattern of the antecedent conditions of the sub-catchments, the triggering precipitation within these

sub-catchments, and the conditions at the critical points of the routing were used as features for this random forest.

The precipitation conditions of precipitation and antecedent conditions for each sub-catchment were extracted for the indi-

vidual sub-catchments trying to capture the seasonality of streamflow to travel from the outlet of each sub-catchment to the

basin outlet. The conditions of the routing system that were considered as features in the random forest were the discharge290

values at critical locations preceding the floods at the outlet of the Aare river basin. Again,Also here we accounted for travel

times from the outlet to each potentially relevant routing system location. The distributions of the features for the precipita-

tion, antecedent soil moisture conditions and conditions at potentially relevant routing system locations can be found in the

supplementary material.

The random forest was grown using a stratified sampling to improve the detection of the rarer return period classes given the295

very biased distribution of the number of flood events per return period class. The stratified sampling was set to 26, the size of

flood events of the rarest class (500+). For the random forest, 5000 trees were grown and we applied 26 variables at each split,

which is more than the default square root of the number of features, but as recommended in Genuer et al. (2008) better for

high dimensional classification type data sets. The optimal number of trees was determined by incrementally testing different

numbers of trees and evaluating the overall out-of-bag estimate of the error rate for misclassifying the return period class of300

flood events. We examined the variable importance of the different predictors for each flood return period class using the mean

decrease in the Gini index (MDI), which measures node impurity, i.e. how well the random forest trees split the data.

3 Results

3.1 Matching and non-matching AMP and AMF - sub-catchment scale

We found that only about 18 to 44% (depending on the sub-catchment) of the annual maximum precipitation (AMP) events and305

annual maximum flood (AMF) events occurred simultaneously in the simulations, highlighting the importance of antecedent

conditions for the generation of large floods. When looking more closely into the non-matching events, we found that numerous

AMPs occurred after the AMF of that year. ThisThat means that these AMPs neither directly triggered the flood event nor

contributed to wetting up the catchment prior tobefore the flood event (Figure 3). For the rain and snow dominated catchments,

60% and more of the events of the AMP occurred after the AMF, while for the glacier influenced catchments about 40% of the310

AMPs occurred after the AMF. While this could be an artifact of forcing a link between AMP and AMF using blocks of years,

we found that the cases with suspicious time difference in this regard were less than 2%
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Figure 3. Timing of AMP to AMF events, i.e. occurrence of annual maximum precipitation (AMP) before, with or after the annual maximum

flood (AMF).

In addition to the general decrease of the number of events for increasing return periods, the matching and non-matching

annual maxima of precipitation and discharge are not evenly distributed per return period class (Figure 4). With higher return

periods there were more matching events. This indicates that increasingly extreme flood events are primarily explained by315

large precipitation amounts of precipitation and less by existing antecedent conditions. Nevertheless, even for very large return

periods, the antecedent conditions still seemed non-negligible and for single sub-catchments even large fractions of AMF were

not explained by AMP (>25% up to 75% class 1000+). The points indicating high percentage of non-matching events in the

large return periods come from the Wigger river catchment (Figure 4).

Figure 5 shows the distribution of soil moisture conditions for matching and non-matching events separately and grouped for320

the different return period classes. Applying this separation reveals that the soils are wetter during the non-matching events than

in the matching events (Figure 5). This implies that even smaller precipitation events can lead to large floods if the antecedent

conditions are wetter. When comparing different return period classes, it appearsseems that soil moisture filling increases for
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Figure 4. Percentage of non-matching events per return period class, excluding years with presumed snow AMPs. The higher the return

period class is, the lower is the percentage of non-matching events. The dots show the percentage of non-matching events for the individual

selected sub-catchments.

the more extreme events (higher return periods) in the non-matching event years. In some catchments, only matching events

were found in the higher return period classes, meaning that the highest precipitation triggered the highest flood. In most of the325

catchments studiedstudied catchments, for a return period class of 500 years or higher, only matching events were noted. This

indicates the diminishing influence of antecedent soil moisture antecedent conditions on the occurrence of rarer flood events.

The Wigger river catchment stands outis distinctive among the selected catchments due to the presence of non-matching events

across all return period classes. In additionFurthermore, only one matching event occurred for each return period class of 500

years or higher. This catchment hasexhibits a specific seasonality with numerous floods driven by snow melt that result in330

AMF, rather than summer rainfall events.

For the glaciated catchments, the ranges of antecedent soil moisture conditions were very similar between matching and

non-matching events, indicating generally more persistentpersisting wet soil moisture conditions in these catchments. This can

be also be seen in the reference daily soil moisture distribution of all years. The difference in soil moisture conditions between

matching and non-matching events decreasesis becoming smaller as we move from rain-dominated to snow-influenced and335

glaciated catchments. In rain-dominated catchments, antecedent soil moisture conditions vary widely for both matching and

non-matching events. However, there is a tendency towards wetter soil moisture conditions for the non-matching events. The

ranges of soil moisture conditions tend to be narrower in the snow influenced catchments compared to the rain dominated

catchments. Here, the difference between matching and non-matching events in terms of soil moisture conditions diminishes
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Table 4. Confusion matrix of the classification type random forest with stratified sampling. The elements of the matrix indicate how many

events found inof one return period class where also modelled (prediction) into the referencethis return period class by the random forest.

reference

10 100 300 500+ class error

pr
ed

ic
tio

n

10 6278 1325 50 7 0.18

100 108 511 114 17 0.32

300 0 18 24 9 0.53

500+ 0 4 6 16 0.38

and all events occur under wetter conditions compared to the rain dominated regime type catchments. The glaciated catchments340

show the narrowest range and are characterized by consistently wetter antecedent soil moisture conditions for both matching

and non-matching events as they do also for the daily reference throughout the year. Generally and for all regime types, we see

a more pronounced difference between the matching and non-matching as we movemoving towards higher return periods. It is

important to keep in mind that as the return period increases, the depicted density functions are constructed from a decreasing

number of events. For the more frequent events, a larger pool of events is available, with a wider spread for both matching and345

non-matching events. Conversely, for the rarer flood events, there arewe can compare only few to very few events to compare.

We analyzed the contribution of snow melt to both matching and non-matching annual maxima of precipitation and discharge

by calculating the volume of simulated snow melt relativein relation to the flood volume (Figure 6). As for the soil moisture

antecedent conditions, there was more snow melt contribution in non-matching events than in matching events. In the rain

dominated catchments we found a rather large difference for the snow melt contribution to the streamflow when comparing350

matching and non-matching events. For the snow melt dominated catchments this difference is smaller, reflecting that these

catchments frequently experience snow melt influenced floods. Also the Wigger catchment, which has a rain dominated regime,

aligns with the description provided in the soil moisture antecedent conditions part above. It shows important snow melt

contributions in the AMF up to the highest return period class. The catchments with glacier melt influenced regimes display

similar distributions of snow melt contributions to floods for both matching and non-matching events.355

3.2 Drivers and spatial patterns leading to floods at the large basin outlet

The confusion matrix of the random forest (Table 4) displays how accurately the random forest attributed the floods of a

specific return period class to that same based on the provided features. For instance, in the confusion matrix (Table 4), the

return period class of ten years was matched 6278 times. However, it was misclassifiederroneously put in the return period

class of 100 years 1325 times, and in the return period class of 300 years 50 times. The random forest model appeared to have360

difficulty classifying the 300-year return period class, with a classification error of 52% (see Table 4), compared to the other

return period classes.

16



The maps in Figure 7 illustrate the variable importance of the antecedent conditions regarding snow and soil moisture,

triggering precipitation and routing node conditions split up for the different return period classes. The higherWhen the mean

decrease in the Gini impurity (MDI) is higher, the higheralso the variable importance is higher. From these maps, it appears365

that for lower return periods (100 years), soil moisture is the most important feature and for all analyzed sub-catchments.

Snow pack conditions are assigned small importance in general but slightly higher for the glacier and snow influenced alpine

catchments. However, triggering precipitation is only important for some sub-catchments and not important for all the glacier

influenced catchments from the sub-catchment selection. The triggering precipitation of the sub-catchments Simme, Emme,

and Suhre gets a slightly higher importance than the other considered sub-catchments. The MDI indicates some, but small,370

importance for the discharge conditions at all locations of the routing system.For the discharge conditions at all the routing

system locations some but small importance is indicated by the MDI.

Moving to higher return periods the pattern of the attribution of the individual sub-catchments is changing and precipitation

becomes generally becoming more important in explaining the attribution to the very high return period class and here also for

the catchments with a glacier influenced regime. The attribution level assigned by the MDI to the triggering precipitation for375

the 300-year return period class is very homogeneous. While the pattern of the soil moisture antecedent conditions variable

importance of soil moisture antecedent conditions remains about the same as in the lower return period class, the importance

of triggering precipitation increasesgains importance compared to the soil moisture conditions when looking at the 300-year

return period. Snow pack instead loses importance in classifying the return period class. For the 300-year return period class

the locations in the routing system cascading downstream of the Sarine sub-catchment gain variable importance, while there380

was barely any assigned to these routing system locations for the return period class 100 years.

In the return period class 500+ years, the variable importance is mainly attributed to the triggering precipitation of all sub-

catchments and particularly to Reuss and Muota. Also in the Broye sub-catchment, triggering precipitation becomes more

prominent in assigned variable importance for these events, while it was negligible for the lower return period classes. Soil

moisture does not help much in determining this return period class, with some importance being assigned to the Kander385

sub-catchment and some but even less to the Sense, Wigger, Suhre and Duennern sub-catchments. The Muota sub-catchment

did have very little variable importance in the lower return period classes, but becomes more important in the classification of

events for the 1000+ return period class.

While thesnow melt contribution of snow melt to the flood at the small sub-catchment scale showed a distinct difference

between the matching and the non-matching events, underscoring their importance for some events of this return period class, it390

did barely contributemade little contribution to the flood return period classification at the river basin outlet, particularly for the

rarer flood events. This can be explained by the different seasonality of floods occurring at the sub-catchment scale compared

to the floods at the outlet, which are mainly summer floods. For both snow and the flow conditions at locations in the routing

system there were no noteworthy variable importance assigned. Interestingly, when looking only at the change inof variable

importance for the conditions at the routing system locations, some changes in attribution can be seenchanges for the different395

return period classes can be noticed. The attribution of variable importance for the lower return period class (100 years) is at
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the locations closest to the Aare river basin outlet, for the higher return period class (300 years) it moves to the locations in the

cascade downstream of the Sarine catchment, and for the highest return period class to the outlet of Lake Thun.

4 Discussion

The result that the AMP and AMF are to a large degree not occurring together are also found in other climateclimatic zones for400

instance in the contiguous United States Do et al. (2020) found a low correlation between changes in precipitation extremes

and floods and attributed that to the small fraction of co-occurrence of these events.

As found by Nied et al. (2017) for the Elbe catchment onat a large catchment scale, antecedent soil moisture conditions are

important for both frequent and rare flood events observed in our study on the sub-catchments. In contrast to the finding of

Nied et al. (2017), we discovered that these conditions are important up to surprisingly high return periods. The soil moisture405

conditions of the sub-catchments were also identified as important variables to describe the return period classes at the river

basin outlet, particularly for the medium range frequent floods (100 and 300 years return period class). Only for the rarest flood

events the role of the soil moisture condition could no longer be distinguishednot be distinguished anymore when comparing

the matching and non-matching events. The decreasing effect of antecedent conditions was also found in comparisons of trends

in floods and extreme precipitation events (Woldemeskel and Sharma, 2016; Tramblay et al., 2019; Bennett et al., 2018). Wasko410

and Nathan (2019) found the threshold at whichof when the importance of antecedent soil moisture conditions was negligible

compared to the triggering precipitation for Australian catchments using a flood streamflow elasticity approach, already forat

events of around a 10 year return period.

There was a difference infor the different regime types of the sub-catchments regarding the influence of soil moisture

antecedent conditions. Notably, the rain dominated and slightly snow influenced catchments exhibited the most important415

difference in antecedent conditions between matching and non-matching events. This points at the importance of soil moisture

antecedent conditions, particularly for catchments with these specific regimes. For the snow antecedent condition and its

influence on the flood events, although they were to a certain degree important for the floods at the outlets of the sub-catchments,

they did not emerge as important triggering factors at the large catchment scale. Also, the routing was not found to be important

for modelling the return period classes of the floods at the outlet. This does not mean that they are unimportant for single events,420

but rather suggests that they are not as critical in classifyingto classify the events into return period classes.

Having very long CS available allowed looking at many more flood events than it would be possible with observations

alone. For instance, it would not have been possible to analyze the space-time patterns that are important to describe floods

on a large catchment scale with observations alone. Nied et al. (2017) used a reshuffling of meteorological and soil moisture

conditions to gainget more insight into the importance of hydro-meteorological processes on floods. In our approach, using425

the stochastic weather generator at the beginning of the hydro-meteorological modelling chain, the CS was extended even

furthereven more stretched, allowing to analyze the space-time patterns at the large catchment scale for the rare flood events

as well and providing a more robust basis for the more frequent floods. Based on the CS approach, which includes a stochastic

weather generator, extreme floods with return periods of more than 300 years had still relevant variable importance assigned
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to soil moisture conditions for almost all sub-catchments. Nevertheless, when trying to model the return period classes of the430

500-year return period, the data set may have been still too small, and the floods included in the 500-year return period may

might have been too diverse to be properly classified with the features provided to the random forest.

4.1 Limitations of the study design

With our study designset up we could not analyzenot make an analysis if the precipitation event was patchy or not (spatial

analysis of the rain event), as for instance Tarasova et al. (2020, 2019) did within the hydrological catchments. However, we435

could analyze the spatial interplay of the sub-catchments of the Aare river basin with regard to large floods at its outlet. We used

a lumped hydrological model for each sub-catchment with mean areal input. ThisThat means that we could not find patterns

within the sub-catchments that are particularly critical for the large system. These patterns might have been informative for

some flood events in specific sub-catchments, since the relationship between performance of the streamflow simulation and

spatial resolution of precipitation is both scale-dependent and catchment dependent as shown for instance by Lobligeois et al.440

(2014) for France. However, from the regional perspective, we could analyze how the interplay of sub-catchment antecedent

conditions and precipitation input as well as buffering and timing upstream the outlet of the Aare river basin influenced the

floods at the outlet.

The robustness of the results depends, in part, on the type of precipitation events that is used to force the hydrological model.

This assigns a crucial role to the weather generator at the beginning of the modelling chain. However, for this study the main445

goal was to find conditions that lead to extreme flood events and the role of antecedent conditions therein. The way in which

the weather generator was set up and optimized might not represent the full range of possible events at each sub-catchment in

the region. Nevertheless, we do not expect major changes in the antecedent conditions prior to a large precipitation event, as

since these are generally building up over a longer time period of time. Note that the variability of extreme floods is inherently

a multivariate variability, which as such is never well captured by multi-decadal observations. Moreover, decadal climate450

variability (as discussed e.g. by Vance et al., 2022) cannot be accurately represented by stochastic weather generators such as

the one used in this study.

4.1.1 Event definition

The flood event was defined based on Qpeak and the precipitation event was defined based on the sum of precipitation over the

catchment-specific window (average response time), which does not include any information about other precipitation event455

properties that are potentially of interest, such as precipitation intensity or storm advancement. However, theseThese catchment

specific windows for the definition of the precipitation events , however, is are important when considering varying time scales

of flood generating processes in different catchments. For Switzerland, for instance, Froidevaux et al. (2015) found a rather

short discharge memory for catchments in pre-Alpine, Alpine and South Alpine regions, and that considering more than three

to four days of antecedent precipitation was not relevant for flood generation. However, antecedent conditions of four or more460

days before the flood were found to be relevant in the Jura Mountains, in the western and eastern Swiss Plateau, and at the

outlet of large lakes.
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When considering return periods, a more process based event definition is not possible because the events must originate from

the same population. It is not reasonable to assume that longer and shorter precipitation sums belong to the same population.

This leaves us with the approach of choosing fixed time windows as basis. While this is not problematic for flood peaks, which465

represent a single discharge value per year, it becomes an issue for precipitation events. For instance, when precipitation events

are defined over a fixed window, which is the standard approach in meteorology, we might not capture the entire precipitation

event including its start and end. This can result in the loss of information about storm intensity, storm advancement, and other

important factors. In addition, by looking at precipitation amounts only, we may be missing the full information on effective

precipitation.Moreover, we might miss the full information on effective precipitation if we look at the precipitation amounts470

only.

The event definition in this study relies solely on information about precipitation and discharge, and this can be done both

with simulated time series (as in our hydro-meteorological modelling chain approach) and observed time series. Even if we

have additional simulated variables in our approach, we could pretend not toto not have them and see how far we get in

predicting floods using only precipitation. Precipitation events and their return periods are often used to estimate the flood475

return periods (Naghettini et al., 1996). Having the additional simulated variables to analyze the antecedent conditions to the

flood events reveals cases where this approach is not sufficient, i.e. the cases were the annual largest precipitation event did not

lead to the largest annual flood event. We found that such cases are rather common within our catchments. This challenges the

assumptions made in design approaches transferring AMP to AMF on a statistical rather than at an event based basis. Hence,

these results point at the important role of antecedent conditions even for relatively large return periods.480

The definition of when a flood and a precipitation event match could influence the role assigned to antecedent conditions.

Many AMPs occurred after the AMF and had no effect on triggering or preparing antecedent conditions. However, for AMPs

before the AMFs, the definition could play a role. After conducting a sensitivity analysis by systematically altering the defi-

nition of ACRT before the flood from 0.5 to 1.5 to 2 times, we found that our findings remained unchanged (supplementary

material).485

4.1.2 Characterization of the antecedent conditions

At times, precipitation accumulates as snow, and the subsequent snow melt later in the season contributes to the liquid wa-

ter input into a catchment. To accurately select the largest water input event and compare it to the largest flood response

event, it becomes necessary to consider snow accumulation and melt processes. However, the buildup of the snow pack varies

spatially within each sub-catchment, influenced by factors such as elevation, aspect, vegetation distribution, and wind re-490

distribution. This is only very roughly covered in our hydrological model by distributing precipitation into elevation zones.

This spatial heterogeneity, for instance, results in varying routing times for snow melt and will probably vary strongly between

sub-catchments. Moreover, the snow melting process in the hydrological model is based on a degree day approach, neglecting

for instance advective rain-on-snow events, which can be substantially contributecontributing to the generation of floods.

A future approach to studying the antecedent conditions that leadleading to floods could be to look directly at snow melt and495

rain rather than precipitation to understand the processes and antecedent conditions that lead to floods, seasonal differences
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in soil moisture etc., and so on. By additionally looking at the annual maximum total water input to the system, i.e., the sum

of liquid precipitation and snow melt, we might be able examine the soil moisture and other catchment storage antecedent

conditions more closely. However, snow melt can be different depending on the processes involved (Sikorska-Senoner and

Seibert, 2020), and in a simple snow routine, advectiverain events that fall on a snow pack and bring energy to melt it faster500

would not have been included (rain-on-snow). In this study we focused on the return periods from an almost classical AMP

approach versus the return periods of AMFs and found that not all AMPs necessarily lead to AMFs. One of the motivations

for using this almost classical approach of a fixed window for the AMP extraction was that the AMPs usually come without

further information about other possible inputs to the catchment but are derived directly from the meteorological station data.

4.1.3 Flood frequency analysis and flood generating processes505

Hydrologically, one can ask the question can be asked whether all these maximum annual flood events can be treated as if they

originatedwould originate from the same population since often they are created by different flood generating processes (see e.g.

Merz and Blöschl, 2008). Also from a management point of view, floods originating from different generating processes might

be expected to occur more in one season than in another. In addition, they might and behave differently on flood inundation

areas (Sikorska et al., 2015; Brunner et al., 2017). In the statistical analysis, floods types that dominate upper tails of the510

distribution may not be adequately represented, often treated as a single sample along with more frequent floods Tarasova et al.

(2020). A flood type wise model was proposed by Fischer (2018); Fischer et al. (2019); Fischer and Schumann (2021), where

floods from a peak-over-threshold approach were first separated into flood types and then combined into a mixture model to

calculate the return period from the joint function.

With the annual maximum flood approach, only one flood per year is analyzed regarding the antecedent conditions. If515

we would have chosen a peak over threshold (POT) approach instead, we could have sampled more relevant events per year.

However, this approach has the downside that events could be dependent. In statistical flood frequency analysis, the assumption

of event independence is however crucial, allowing these events to be treated as random variables. Moreover, employing a

POT approach often involves subjective choices, such as determining the appropriate threshold (Fischer, 2018; Fischer and

Schumann, 2021) and selecting which events to pool.520

When we compare AMF and AMP and assess their relationshiplinkage, we may come tomight arrive at conclusions that

stem from a lack of clear differentiation regarding the size of the event. For instance, the precipitation sum preceding the

AMF maycan be nearly as large as the AMP, or it maycan be much smaller. The conclusion regarding antecedent conditions

couldmight be different depending on which time window we used. Similarly, the streamflow response to an AMP might

be large but not quite as large as the streamflow response that contributed to the actual AMF. Since we selected the AMP525

using a fixed window and adjusted the precipitation triggering the AMF based on the onset of the flood, peak and the fixed

window preceding the flood onset, this comparison could not be done in a straightforward manner. The relative difference of

the precipitation preceding the AMF with regard to AMP ranged, on average, from 22% to 85% across all catchments.
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4.2 Broader impact

As outlined in the introduction, the approach of using a weather generator inwithin a regional (large catchment) context, in530

combination with a hydrological model and routing, has several advantages. It implicitly "reshuffles" the initial conditions and

combines them with plausible weather events for thatthis region. This approach results in a larger and more diverse pool of

flood events compared to only using only observations or making assumptions about the antecedent conditions. The approach

could also be applied to different large catchments within a comparable climate, dominated by similar regime types. However,

oneOne important prerequisite for generating long weather time series using a weather generator is, however, the availability535

of a sufficientan adequate number of weather stations with sufficiently long records for robust estimation ofto robustly estimate

plausible weather.

AsLike in other studies comparingthat compare flood and precipitation events, such as GRADEX (e.g. Guillot and Duband,

1969; Naghettini et al., 1996), or future (Brunner et al., 2021) and past (Wilhelm et al., 2022) frequency distributions of the

two variables, there are some thresholds or tipping points that emerge. These thresholds are associated with the influence of540

the antecedent conditions and appear to remain important even for remarkably high flood return periods in our study. This

underlines their importance and emphasizes, emphasizing that they should not be neglected. Comparative studies applying

different flood estimation methods, both event-based using statistical approaches based on streamflow data alone and continu-

ous simulation, concluded that at sub-daily time resolution such a threshold does not occur in the event-based approaches and

that these tend to underestimate floods and particularly their volume and duration for small catchments (Grimaldi et al., 2012;545

Rogger et al., 2012; Winter et al., 2019). Lang et al. (2014) , in their comparative study – which also included historical and

paleo data, various event-based statistical approaches as well as continuous simulation – additionally emphasize that event-

based approaches often lack robustness, in particular when the available database spans only a few decades. Okoli et al. (2019)

developed a framework to compare different statistical and hydrological modelling methods for estimating design floods up

to 1,000 year return periods and also concluded that large differences in flood estimates can arise depending on the method550

chosen. However, due to the large uncertainties inherent in each method, they recommend that these methods should be used in

a complementary manner in practice. Consequently, the transfer from precipitation frequency distributions to flood frequency

distributions should be checked for appropriateness in each specific case.

5 Conclusions

In this study, we assessed the role of antecedent conditions for floods of different return periods using simulations from a555

hydro-meteorological modelling chain, which includes a stochastic weather generator, a hydrological model, and a routing

system as basis. We focused on the relationshiplink between precipitation, antecedent conditions and return periods for the

sub-catchments of the Aare river basin. The availability of very long CS allowedenabled the analysis of a largergreater number

of flood events than would have been possible with observations alone. For example, it would not have been impossible to

analyze the space-time patterns that are crucial for describing floods on a large catchment scale using only observations alone.560
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In this way, we could investigate the temporal and spatial interactions betweenamong conditions in these sub-catchments that

lead to floods at the outlet of the Aare river basin.

In the case of sub-catchments, antecedent conditions play an important role for floods with large return periods up to 500

years. This role decreasesdiminishes and becomes negligible only for very high return periods onlyof more than 500 years. The

regime type of the sub-catchments played a criticalcrucial role: In the rain-dominated catchments, the soil moisture antecedent565

conditions led to the most substantial difference between matching and non-matching events of AMP and AMF. For the snow-

influenced and the glacier-influenced catchments, this difference diminished.

At the large catchment scale, soil moisture antecedent conditions are criticalcrucial for correctly classifying the lower return

periods, but become less importantdiminish in importance as we consider higher return periods of 500 and more years. Neither

snow antecedent conditions nor confluence and flow time were found to be important for classification at the outlet of the river570

basin when using a random forest classification type model.

Hence, it is important to check the appropriateness of transferring from precipitation frequency distributions to flood fre-

quency distributions, as the antecedent catchment conditions are usually not negligible.
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Figure 5. Comparison between antecedent soil moisture conditions for matching and non-matching annual maxima of precipitation and

discharge and the reference of daily soil moisture conditions throughout the year (grey). In cases with two or fewer events per class, no

density distribution is plotted. Instead, the soil moisture values are shown as single points. The colour frame around the panel indicates the

discharge regime of the catchment.
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Figure 6. Comparison between contributing snow melt at matching and non-matching annual maxima of precipitation and discharge. In

cases with two or fewer events per class, no density distribution is plotted. Instead, the contributing snow melt values are shown as single

points. The colour frame around the panel indicates the discharge regime of the catchment.
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Figure 7. Maps of the Aare river basin and its sub-catchments showing the variable importance of triggering precipitation, soil moisture and

snow conditions in the sub-catchments as well as the flow conditions at important nodes in the routing system for the return period classes

100, 300 and 500+ years. The mean decrease in the Gini impurity (MDI) is used to measure the variable importance, the darker the colour

the more importance was assigned to the respective variable.

31


