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Dear Referee #3,

Thank you for carefully reading the manuscript and pointing out several issues where the description needs to be improved for

understanding. The requested clarifications and references to ambiguities contribute to the improvement of the manuscript.

In order to separate the reviewer’s comments and the author’s response, we printed the comments in black and the response in
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location (e.g., line number) referring to the manuscript in preprint.
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Johanna Roschke
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Changes done to the manuscript:

We restructured the manuscript as suggested, moving the technical details of the Virga-Sniffer to a dedicated technical note in

Roschke et al. (2024). This focuses the discussion on the introduced method and enhances clarity.

– Expanded the introduction with:

– Importance of observing shallow cumulus convection and their macro- and microphysical properties.

– Importance of sub-cloud evaporation in the trades.

– Additional information about Cloudnet.

– Information in Sect. 2:

– Added information about the Radar sensitivity and CFAD in Fig. 2

– Included MWR and LWP processing in Sect. 2.3.

– Improved Fig. 3 for better readability.

– Moved Virga-Sniffer technical details (e.g., thresholds) to Sect. 2.4 of the technical note.

– Added information about the haze echo detection method in Sect. 3.1:

– Added joint histograms for the radar reflectivity factor, mean Doppler velocity, and attenuated backscatter coeffi-

cient which show haze echo modes and explain the choice of parameters that determine the haze echo probability.

– Added a table on how the choice of parameter influences combined haze echo probability.

– Added Fig. 6 that illustrates the heuristic probability distributions for the radar reflectivity factor, mean Doppler

velocity and attenuated backscatter coefficient.

– Cloud type classification in Sec. 3.2:

– Clarified the reason of introducing cloud classification in Sect. 3.2.

– Explained operational bounding box definition in Sect. 3.2.

– Restructured results in Sect. 4.3:

– 4.3: Comparison to classifiers

– 4.3.1: Comparison with the -50dBZ threshold method

– 4.3.2: Comparison with Virga-Sniffer

– Added a case study (Fig. 11) that shows the comparison between different haze echo classifiers for a day where

Drizzle or rain and haze echoes are detected simultaneously
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– Added a case study (Fig. 12) exemplary for a day of low haze echo occurrence where further differences in the

proportion of detected haze echoes between the classifiers become evident

– Added a long-term comparison of detected haze echo pixels for the classifiers (Fig.13)

– Updated Sect. 4.4 (limitations) with conclusions on shallow and deep cumulus radar reflectivity.

– Included Fig. 14 to illustrate a statistical comparison of radar reflectivities within shallow and deeper cumulus

clouds for the case study presented in Fig. 11 and for the long-term period.

– Virga-Sniffer long-term statistics can now be found in the appendix

– Appendix:

– Virga-Sniffer configuration details can be found in the technical note.

Within the technical note for the Virga-Sniffer (Roschke et al., 2024), all datasets used in this study can be found. The

technical note now contains the following information:

– description of configuration-specific thresholds that differ compared to the Virga-Sniffer configuration in Kalesse-Los

et al. (2023).

– a section describing the CBH processing by the Virga-Sniffer, including a statistical comparison of CBH from the

ceilometer internal cloud base detection algorithm and Cloudnet.

– an overview of different clutter-masks and velocity-masks and an explanation of how they influence virga and haze echo

detection by the Virga-Sniffer.

– long-term statistical results by the Virga-Sniffer summarized in tables for different configurations

– analysis of object-based cloud classification statistics for the RV Meteor using the Virga-Sniffer configuration of Kalesse-

Los et al. (2023)
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Response to RC#2 of Anonymous Referee #3:

TODO: Answer the comments, stick to the format: -review comment, -author answer, latexdiff of section in question

General comment

The paper develops a new method to detect haze echoes in Cloudnet and it is a potentially powerful tool to be deployed in all

Cloudnet stations over the ocean to reduce biases and errors in virga and precipitation detection. Quantifying correctly virga

and precipitation over the ocean is a relevant scientific question and fits, in my opinion, within the scope of AMT. Moreover, I

can envision useful applications in model evaluation. The algorithm is based on previous research methods and the presented

approach is quite solid, verified on a long dataset from the Barbados Cloud Observatory. I generally like the approach, the

language is fluent, formulas are well written, but I would recommend publishing after major revisions, which I suggest because

I found that the methods could be more clearly outlined to better guide the reader in the technicalities of the approach. I

think that some choices of parameters need a more solid justification and maybe some results need to be stated in a stronger

outstanding way.

TODO:answer text Based on the suggestions of two reviewers, we have substantially revised the manuscript.

Major comments

1. The paper aims to introduce a new method, but besides that, it provides a lot of detailed analysis of the virga sniffer

method, which is the subject of a former publication by Kalesse-Los et al.. Especially in the appendix, many sections

are given to provide insights on the virga sniffer, which is not the core of this publication. In this respect I see two

possibilities: either include the new method as part of the virga sniffer method (a sort of part 2 of the former paper) or

remove most of the virga sniffer-related analysis. I am saying this because it is confusing to follow the argumentation

among the different methods used, and in the end, it is not clear what is the best configuration to use.

* We agree and moved all Virga-Sniffer results that do not contain haze echo statistics to the technical note publication of

this study. In Roschke et al. (2024) we describe the Virga-Sniffer configurations for the BCO.

2. I think that you need to explain and justify the values you choose for the radar reflectivity, mean Doppler velocity, and

ceilometer backscatter haze distributions that you use to calculate your probabilities, I could not find it. Moreover, I don’t

understand why, in the example case study of Figure 5, the method identifies haze echoes only below shallow cumulus

clouds. In my understanding, the identification should be independent from the cloud presence, so I would love to see

more case studies, and see details of the case shown as well. See the comment on the plot for some suggested analysis.

I understand that in part of the paper, you then decide to focus on the detection of haze frequency for the different cloud

types, but in general, why restrict to profiles where there is a cloud base only? and if this is not what you are doing,

please go through the doubts and the descriptions because it is not understandable what you are doing.
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* We agree that the current version of the manuscript misses the explanation for the choice of parameter values that defines

the haze echo probability. We added a statistic and a sensitivity study to the methodology in Sect.3.

3. The paper is full of very detailed discussions where the reader can easily get lost. My suggestion is to go over the

comments and think if all the details are really needed and possibly reduce some of them for the sake of readability and

understanding. I know that the authors who created the algorithms think that details are necessary, but for a reader who

is not familiar with the algorithm, they are totally overwhelming.

* Thank you for the suggestion, we substantially restructured the manuscript. See comment 1

4. I would also suggest reconsidering the title after having tackled the major comment number 1.

* After restructuring the mauscript we decide to keep the title.

Specific comments

1. line 30: what is the minimum sensitivity of the radar at BCO? Can you refer to a CFAD Ze vs Height plot for the BCO

site from some papers or add one? That would be nice.

* We confirm that the minimum radar reflectivity of the CORAL cloud radar for a 10 s time resolution is -70dBZ at

a height of 500m, as described in the Section 2. We corrected, that for a 2 s measurement configuration, the radars

sensitivity has decreased to -62dBZ at an altitude of 500m and -41 dBZ at an altitude of 5 km. In response to your

comment, we have added a joint histogram of the radar reflectivity factor with height to Section 2 and added a note in

the instrument section.
Sect. 2.1 line 115-121.:

::::::::
Compared

:::
to

:::
the

:::
10 for the radar reflectivity measurements (Görsdorf et al., 2015). In the employed

measurement configuration s
:::::::::
resolution,

:::
the

::
2 s

:::::::::::
measurement

:::::::::::
configuration

:::
of

:
the radar has a sensitivity

of -70
::
led

::
to

::
a

::::::::
sensitivity

::::::::
decrease

::
to

:::
-62 dBZ at an altitude of 500m and -48

:::
-41 dBZ at an altitude of 5 km.

:::
The

::::
joint

:::::::::
histogram

:::
of

::::
radar

::::::::::
reflectivity

:::
per

:::::
range

::::
can

::
be

::::
seen

::::::::
Fig. ??).

::::
The

::::::::
histogram

::
is
::::::::::
normalized

:::
by

::
the

:::::
total

::::::
number

:::
of

:::::
counts

::::
per

::::
radar

:::::
range

:::::
gate,

::::
such

::::
that

:::
the

::::::::
histogram

::::::
values

::::::::
represent

:::
the

::::::::
frequency

:::
of

:::::::::
occurrence.

:::::
There

::::::
seems

::
to

::
be

::
a
:::::
cutoff

::
at

::::::
around

::::
300m

::
for

:::::::::::
reflectivities

:::::
below

::::
-60 dBZ

:::::
which

::
is

::::::
related

::
to

::::
radar

:::::::
antenna

::::
near

::::
field

:::::::
effects.

:::
The

::::::::::
calibration

::
of

:::
the

:::::
radar

:::::
shows

:::
an

::::::::::
uncertainty

::
of

:::
1.3 dB

:::
for

:::
the

:::::
radar

:::::::::
reflectivity

::::::::::::
measurements

::::::::::::::::::
(Görsdorf et al., 2015).

:

2. line 57 (highlighted sentence): I would formulate as follows: The size at which cloud droplets transition to precipitation

varies in the literature
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* Thank you for your suggestion. We have revised the highlighted sentence in line 57
Sect. 1 line 59.:

The size range in which the transition between cloud droplets and precipitation particles happens
:
at

::::::
which

::::
cloud

:::::::
droplets

::::::::
transition

::
to
:::::::::::
precipitation

:
varies in the literature.

3. line 54: Is this drizzle definition a definition you created or something from literature? please specify.

* We have clarified in the manuscript that the definition is based on established literature sources.
Sect. 1 line 60.:

:::::::::::::::::
Glienke et al. (2017)

::::::
defines

::::::
drizzle as drops that are large enough to have fall velocities that exceed the typ-

ical fluctuations of vertical velocity in the cloud. For a reasonable range of stratocumulus vertical velocities

of 0.1 to 1ms−1, the corresponding diameters are approximately 50 to 250 µm (Glienke et al., 2017).

4. line 76: Maybe here you can add also that Cloudnet is used on multiple sites in the world, especially the target classifi-

cation allows to compare statistical cloud properties in a homogeneous way from different sites, just to give value to the

Cloudnet tool.

* We agree and have now included additional context about Cloudnet. However, in section 2.5 we already state that with

Cloudnet uniform data sets are created and can be used to evaluate cloud profiles between various measurement stations.
Sect. 1 line 81-87.:

Synergistic retrievals such as Cloudnet, provide the potential to identify different hydrometeors by applying

state-of-the-art data processing chains for a complex combination of data from ground-based remote sensing

instruments (Illingworth et al., 2007). Cloudnet
:
,
:::::
which

:::::
began

:::
in

::::
2002

::
as

::
a
::::::::
European

:::::::
research

::::::
project

:::::
with

::::
three

:::::::
stations,

:::
has

:::::
since

::::::::
developed

::::
into

:
a
:::::::::::
continuously

::::::::
operating

:::::::
network

::
of
:::
25

:::::::
stations

:::::::::
throughout

:::::::
Europe.

::::::::
Currently,

::::::::
Cloudnet

::
is

::::::
funded

::
by

:::
the

::::::::
European

:::::::::::
Commission

:::::
under

:::
the

:::::::
Seventh

:::::::::
Framework

::::::::
Program

::
as

::::
part

::
of

:::::::
ACTRIS

::::::::
(Aerosol,

:::::::
Clouds

:::
and

:::::
Trace

::::::
Gases

::::::::
Research

::::::::::::
Infrastructure)

::::::::::::::
(Laj et al., 2024).

::::::::
Cloudnet

:
offers

a range of products, including the target classification scheme, designed to identify the physical phase of

hydrometeors.

5. line 112: Is it possible to add a Cfad of Ze for the whole statistic of the data you use, instead of only mentioning the

variation of the sensitivity with height? see also comment 1.

* See comment 1.

6. line 131: which retrieval? maybe cite what is used at BCO to retrieve LWP and IWV.

* We acknowledge that the manuscript could clarify how these datasets influence the classification process and add infor-

mation accordingly. Additionally, we appreciate your point regarding the HATPRO instrument. As a note, it is important
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to mention that in the metadata of the LWP files, the instrument source is listed as "RPG-HATPRO-G2" rather than

BCOHAT. Moreover, the retrieval of the LWP for the MWR is provided by the RPG Radiometer Physics GmbH and was

retrieved by a neural network. .
Sect. 2.4 line 135.:

The scanning Radiometer Physics HATPRO radiometer (SUNHAT) has two receivers. It

0.1
:::::::::
Microwave

::::::::::
radiometer

:::
The

::::::::
Humidity

::::
and

::::::::::
temperature

::::::::
profiling

:::::::::
radiometer

::::::::::
(BCOHAT)

:
measures seven brightness temperatures

around the water vapor absorption band between 22 – 31GHz and in the oxygen absorption complex be-

tween 51 – 58GHz. Measurements around the water vapor absorption line are used to derive a column-

integrated liquid water path (LWP)
:::::
which

::
is

:::::::
retrieved

:::
by

:
a
::::::
neural

:::::::
network

:::::::
provided

:::
by

::
the

:::::
RPG

::::::::::
Radiometer

::::::
physics

::::::
GmbH.

7. line 143: I tend to disagree. A Cloudnet station, in my experience, should include the 3

instruments needed for cloud profiling, i.e. cloud radar, aerosol lidar, and microwave radiometer,

https://www.actris.eu/ facilities/national-facilities/observational-platforms . Moreover, in this document,

also a disdrometer is included, for a site to be a CCRES (Actris center for cloud remote sensing)

https://www.actris.eu/sites/default/files/CCRES/CCRES%20Requirements%2010112022.docx.pdf

* We have adjusted the text to clarify the requirements for a Cloudnet station accordingly.
Sect. 2.5 line 150.:

The basic instrumentation of a Cloudnet station includes a cloud radarand a ceilometer ,
::
a
:::::::::
ceilometer

:::
and

::
a

:::::
MWR. Additional instruments are a MWR, a MRR and a rain gauge .

:::::
MRR,

:
a
::::
rain

:::::
gauge

::
or

::
a

::::::::::
distrometer.

::::::::::
Information

::
on

:::
the

::::
rain

:::
rate

::::
from

:::
the

:::::
MRR

::
is

::::
used

::
to

::::
flag

::::
time

::::
steps

::::::
where

:::
rain

::
is

:::::::
reaching

:::
the

:::::::
ground.

:
The

MWR is needed to provide liquid water path , although W-band radars with a passive channel as described

in Küchler et al. (2017) can be used at this stage for LWP determination making the MWR an optional

instrument
:::::
(LWP)

::::::
which

::
is

::::
used

::
to

::::::
correct

:::
for

::::::
liquid

:::::::::
attenuation

:::
in

:::
the

:::::
cloud

:::::
radar

::::::::::::
measurements

::::::
within

::
the

::::::::::
CloudnetPy

:::::::::
processing. The observations from the instruments are combined with thermodynamic data

from a model or radiosonde to accurately characterize clouds up to 15 km with high temporal and vertical

resolution (Illingworth et al., 2007). In this study, Cloudnet data is processed with CloudnetPy (Tukiainen

et al., 2020, version 1.43.1).

8. line 145: I would not define the MWR as an optional instrument, since it also provides IWV and LWP with lower

uncertainty compared to the single channel retrieval which has to deal with the unknown impact of water vapor on the

LWP estimation. Moreover, it has scanning options that allow monitoring of temperature and humidity fields around the

site, which can become more and more relevant for model evaluation in the future.
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* Thank you for highlighting the importance of the microwave radiometer (MWR) for Cloudnet. We have revised the text

accordingly (also see comment above)

9. line 165: What is the pixel size of Cloudnet? maybe it would be good to mention the range resolution and the time

resolution which is also the one of your output.

* We agree that mentioning the range and time resolution earlier in the manuscript will provide more clarity for readers.
Sect. 2.3 line 178-189.:

:::::
Within

:::::::::::
CloudnetPy

::::
data

::::
from

::::::::
different

::::::::::
instruments

:::
are

::::::::::
interpolated

::::
onto

::
a

:::::::
common

::::
grid

::::
with

::
a
::::::::
temporal

::::::::
resolution

::
of

:::
30

:
s
::::
and

:::::
height

:::::::::
resolution

::
of

::::
30m

::::::::::::::::::::
(Illingworth et al., 2007)

:
. In the Cloudnet target classifica-

tion
:::::::::::::::::::::::
(Hogan and O’Connor, 2004), grid points [...] (Hogan and O’Connor, 2004). The interested reader is

referred to the original paper by Hogan and O’Connor (2004) for additional information about the Cloudnet

target classification procedure.

10. line 175; I would put the reference at the beginning of the paragraph " In the Cloudnet target classification (Hogan and

O’Connor, 2004).

* We have moved the reference to the beginning of the paragraph on line 175, following the suggested placement (see

comment above).

11. line 188: why not use the same algorithm from (Tuononen et al., 2019) you mentioned before? is it a problem of resolu-

tion? How do they compare with the other ones?

* The Virga-Sniffer does not calculate CBH from the attenuated backscatter coefficient but instead uses CBH as an input.

The CBH is further processed by the Virga-Sniffer to fill gaps and classify virga for all profiles within the cloud. This

CBH processing involves several configuration parameters that must be chosen in a balanced manner. Consequently, the

CBH processing in the Virga-Sniffer is fundamentally different from the algorithm of Tuononen et al. (2019). To enhance

the input for the Virga-Sniffer, we merged CBH data from the ceilometer with Cloudnet data. This merging increases

the number of CBHs provided as input to the Virga-Sniffer. We observed that incorporating additional CBH data from

the ceilometer leads to an increase in the number of cold cloud profiles in the final Virga-Sniffer output. Capturing the

maximum number of CBHs is essential for the virga statistics (per time step), as these show the proportion of warm

clouds or trade wind cumuli relative to the total number of detected clouds. We acknowledge that this distinction was

not clearly explained in the original text, and we have revised the manuscript accordingly.
Sect. 2.6 line 200-203.:

can be found in Table ?? (configuration 1) in Appendix ??.
::
is

::::::::
described

::
in

::::::::::::::::::
Roschke et al. (2024).

:

12. line 190: what do you mean by "by more than the set of thresholds?" Can’t you just say more generally " In multi-layer

cloud situations CBH is assigned with a more complex processing (see Paper, appendix)? also, do we need to know in

this paper the details of the multilayer cloud-based detection of virga sniffers? I would just cite the Virga sniffer paper.
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* We agree and moved the explanation of the BCO Virga-Sniffer configuration to the technical note in Roschke et al.

(2024). There we state more clearly how to adjust the Virga-Sniffer for multilayer cloud situations.

13. line 201: why not a surface disdrometer? or rain gauge? isn’t it available at BCO? At what height is the lowest valid

MRR range gate used?

* The MRR is continuously operating at the BCO and the disdrometer was not measuring in 2022. Consequently, we only

included the rain rate of the MRR as an input for the Cloudnet processing. The lowest MRR range gate is 125m.

14. line 203: Is this corrected for air motion? might be tricky to use the mean Doppler velocity as a proxy for hydrometeor

fall speed.

* It is indeed tricky to use the mean Doppler velocity as a proxy for hydrometeor fall speed. Consequently, in Virga-Sniffer

configuration for the BCO only drizzle in downdrafts is considered as in the study of Kalesse-Los et al. (2023). Drizzle

drops with terminal fall velocity comparable to the expected updrafts, remain unclassified in this study. Correcting the

mean Doppler velocity with the vertical velocity measured by a Doppler lidar would improve the efficiency of the

algorithm’s ability of separating virga from haze echoes. This can be incorporated in future studies as well as into the

Cloudnet target classification scheme for haze echo detection. Moreover, Doppler lidar measurements will be harmonized

for ACTRIS Cloudnet stations in the future. In case the BCO becomes a Cloudnet station, Doppler lidar data could be

integrated into the Cloudnet target classification to improve haze echo detection. We added a comment on this topic to

the technical note in Roschke et al. (2024)

15. formula 1: from my understanding, this is the equation of the line that defines the clutter mask. if it is so, please state it

clearly. I would find it easier to follow if you introduce the different masks that appear in the plot (vm mask and clutter

mask) and then define how you identify the virga and the haze echoes given such masks. Virga mask appears at the

beginning and then not anymore. it is a bit confusing to follow also because it is not clear the goal, which I think is to

distinguish haze from virga. or? I hope these questions can help improve the clarity.

* We restructured the text regarding the virga-mask and clutter-mask and moved these technical descriptions to the tech-

nical note in Roschke et al. (2024). In addition, we stated more clearly how the Virga-Sniffer identifies haze echoes.
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Sect. 2.6 line 211-217.:

that are mostly
::::
with

:::::
radar

:::::::::
reflectivity

::::::
factor

::::::
below

::::
-50 dBZ

:::
that

:::
are

::::
not

::::::::
classified

:::
as

:::::
virga

:::
by

::::
the

:::::::::::
Virga-Sniffer.

:::::::::::
Unclassified

:::::
radar

::::::
signals

::::
can

::::::::
represent

::::::
cloud,

:::::::::::
precipitation,

::::
and

::::
haze

:::::
echo

:::::
pixels

::::::
when

::
no

::::::::::
information

:::::
about

::::
the

::::
CBH

:::
is

::::::::
available.

:::::
Pixels

::::
not

::::::::
classified

:::
by

:::
the

:::::::::::
Virga-Sniffer

:::::
while

:::::::::::
information

::::
about

:::::
CBH

::
is

::::::::
available

:::
and

::::
rain

::
is

:::
not

:::::::
detected

::
at

:::
the

::::::
surface

:::
are

::::::
filtered

:::
by

:::
the

::::::
clutter-

::::
and

::::::::::::
velocity-mask

:::::::::::::::::::::
(Kalesse-Los et al., 2023).

:::
As

:
a
:::::::

novelty,
:::

in
:::
this

::::::
study,

:::
the

::::::::::
clutter-mask

::::
was

::::::::
modified

:::
so,

:::
that

:::
all

:
unclassi-

fied radar signals with radar reflectivity factor
::::::::::
reflectivities

:
below -50 ,dBZ in

::
are

::::::::
identified

::
as
:::::
haze

::::::
echoes

::
by

:
the Virga-Snifferoutput.

:
.
:::
The

::::::::::::
configurations

:::
of

::::
both

:::
the

::::::::::
clutter-mask

::::
and

:::::::
velocity

:::::
mask

:::
are

::::::
detailed

:::
in

:::::::::::::::::
Roschke et al. (2024)

:
.

16. line 205: how do you determine m and c values? this is explained in the virga sniffer paper (eq 1 in par 3.4 of that paper)

even if I did not find in that paragraph how you came up with the values of m and c. However, why repeat it entirely

again here? Can’t you make here a shorter and simpler summary, citing the paper published for details? I find this virga

sniffer description very long and distracting from the topic of the paper, which is the other algorithm for sea salt /drizzle

discrimination.

* We moved the repective section to the zenodo publication in Roschke et al. (2024). Also see comment above.

17. line 205: at which height? considering all heights? not clear

* The clutter-mask and velocity-mask are pixel based. Consequently, there is no height dependence and the mask are not

scaled by range. Also see comment of Rev.1.

18. line 207: Is filtering out sea salt something you also do in Virga sniffer? or is this something you do for determining the

prob thresholds you use in the alg of this paper? if it is the second, I would put it in the section of this new algorithm,

with a subsection called "threshold determination". My main problem is that throughout the whole discussion, It is never

very clear what parts are in the virga sniffer and what belongs only to the new algorithm.

* Haze echoes can be identified using the Virga-Sniffer (see comment above). Due to the new structure of the manuscript,

we hope that the discussion is now clearer. We introduce the new section: "Comparison to classifiers" where we compare

the haze echo detection of the new method to the Virga-Sniffer haze echo detection and the -50dBZ-threshold approach

that is commonly used in many BCO studies.

19. line 209: are clutter c and clutter m the parameters c and m in eq 1? If yes, use the same formalism. If not, explain and

explain also if they are linked. Still, unclear how you determine the actual values of the parameters.

* TODO:We adjusted the text in the technical note of Roschke et al. (2024) accordingly.

20. line 223: but why do so if the cloud base in Cloudnet (Tuononen et al,. 2019) performs better? at least this is what is

evident from your selected case study.
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* TODO:The differences in the CBH in the case study are related to the Virga-Sniffer CBH processing. We added an

explanation to the technical note in Roschke et al. (2024)

21. line 232: reference to the insect detection method missing

* See answer to review 1
Sect. 3 line 230-234.:

This section gives an overview of the method that was developed to discriminate between sea salt aerosols

and "Drizzle or rain" in Cloudnet. The method is similar to the approach for insect detection in Cloudnet,

which ensures
:
.
::::::
Insects

:::
are

::::::::
classified

:::
by

:::::::::
combining

:::
the

::::::::
heuristic

::::::::::
probabilities

:::::::
derived

::::
from

:::::::
various

:::::
radar

:::::::::
parameters

:::
and

:::::::::
additional

::::::::
variables

::::
such

:::
as

:::::::::::
temperature.

:::
As

::::::::::
highlighted

::
in

:::
the

::::::::::
CloudnetPy

:::::
code,

::::::
insect

:::::::
detection

::
is

:::::
novel

:::
and

::::
still

:::::
needs

::
to

::
be

::::::::
validated.

::::
The

:::::::::
advantage

::
of

::::
using

::
a
::::::
similar

::::::::
approach

::
is, that it can be

:::::
easily implemented within the Cloudnet target classification scheme and that it is configurable for marine

Cloudnet sites and their particular instrumentation.

22. figure 4: I don’t understand the discrepancy in the cloud base from Cloudnet and the virga sniffer at 6:30, in precipitation

conditions. To me it looks like the cloud base detected from Cloudnet is more reliable, based on Tuononen et al, 2019)

so why not use it? I understand that it is on 30 s resolution and probably the Virga sniffer is a higher resolution, but this

can be interpolated. The LCL base causes a big bias in the virga depth values you obtain. Or am I misunderstanding?

* The LCL is not used to replace the Cloudnet CBH in the Virga-Sniffer processing. The reason for the bias in the virga

depth values arise due to additional Virga-Sniffer processing steps. We added an explanaition to the technical note in

Roschke et al. (2024).

23. line 245. and around: In my understanding, the probabilities should depend on the parameters of the distributions of

your observables for haze. Now, can we see what your distributions for Ze, Vd, and Beta look like for haze and also for

the other hydrometeors, if possible? can you somehow justify your choices of the parameters mu and sigma? otherwise,

we just have to believe. It would be also nice to see the same distributions for the Cloudnet classes, to understand how

much different they are.

* We have added two figures to the manuscript in section 3 that show the haze echo modes in the observations for Ze, Vd,

and β as well their heuristic probability distributions and a table that illustrates the choice of the probability threshold.

Please note that the individual Cloudnet target classifications (Cloud droplets only, Drizzle or rain, ...) are based on a

profile-based approach, and not on the probability approach presented here. For further details, we refer to the original

paper by Hogan and O’Connor (2004).

24. line 248: how did you decide such values?
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* The parameters controlling the behavior of the probability distributions are derived from statistical analysis. We have

included 2D histograms in FIg.5 illustrating the radar and ceilometer measurements to exemplify our choice of parame-

ters. Also see comment above.
Sect. 3.1 line 235-255.:

Haze echos are classified by estimating the heuristic probability
:::
The

:::::::
frequent

::::::::::
occurrence

::
of

:::::
haze

::::::
echoes

:
at
:::

the
:::::

BCO
::::::::
becomes

::::::
evident

::
in

:::
the

:::
2D

:::::::::
histogram

::
in

:::::
Fig. 1

::
a)

:::
for

:::
the

:::::
radar

:::::::::
reflectivity

:::::
factor

::::
and

:::
the

:::::
mean

:::::::
Doppler

:::::::
velocity

:::
for

:::
the

:::::
period

::::::::
between

:
1
::::
July

:::::
2021

:::
and

::
1
::::
July

:::::
2022.

::::
Two

:::::::
distinct

:::::
modes

:::::
with

::::
high

::::
data

::::
point

:::::::
density

:::
are

::::::
visible.

::::
The

::::
first

:::::
mode

::
is
::::::::

centered
::::::
around

::
a
:::::
radar

:::::::::
reflectivity

:::::
factor

:::
of

::::
-60 dBZ

:::
and

::
a

::::
mean

::::::::
Doppler

:::::::
velocity

::
of

::::
0.2ms−1,

::::::
which

:::
we

:::::::
attribute

::
to
::::

the
:::::::
frequent

:::::::::
occurrence

:::
of

::::
haze

::::::
echoes

:::::
over

::
the

::::::
BCO.

:::
The

::::::
second

::::::
mode,

:::::::::
represents

:::
the

:::::
cloud

:::
and

:::::::::::
precipitation

:::::
mode

::::
with

:
a
:::::

high
::::
data

::::
point

:::::::
density

::
at

::::
radar

:::::::::::
reflectivities

::::
from

::::
-40 dBZ

::
to

:::
20dBZ.

::::
The

::::
haze

:::::
echo

:::::
mode

::
is

::::
also

::::::
evident

::
in
:::

the
::::

2D
::::::::
histogram

:::
of

::
the

:::::::::
attenuated

::::::::::
backscatter

:::::::::
coefficient

::::
and

:::::
mean

::::::::
Doppler

:::::::
velocity

::
is

::::::
shown

::
in

::::::
Fig.,1

:::
b).

:::
The

::::
first

::::::
mode

:
is
::::::::

centered
::
at

:::::::::::::
approximately

:::
0.2ms−1

:::
and

:::::
spans

::
a
:::::
broad

::::::
range

::
of

:::::::::
attenuated

::::::::::
backscatter

:::::::::::
coefficients,

::::
from

:::::
about

::::::::::
0.3× 10−6 m−1 sr−1

:
to
::::::::::
1.3× 10−6 m−1 sr−1

:
.
::
In

:::::::
contrast,

:::
the

::::::
second

:::::
mode

:::::
peaks

::
at

::::
-0.5ms−1

:::
and

::
is

:::::::::
associated

::::
with

:::::::::
attenuated

::::::::::
backscatter

::::::::::
coefficients

:::::
below

::::::::::
0.5× 10−6 m−1 sr−1

:
.
::::
The

:::
first

::::::
mode

::
is

::::::::
attributed

::
to

::::
haze

::::::
echoes,

:::::
while

:::
the

::::::
second

:::::
likely

::::::::::
corresponds

::
to

:::::
pixels

:::::::::::
characterized

::
by

:::::
lower

::::::
aerosol

::::::
loads,

:::::::::
potentially

::::::
caused

::
by

::::
wet

::::::::
deposition

::::
due

::
to

:::::::::::
precipitation.

:::
The

::::
two

:::::
modes

:::
are

::::::::
distinctly

:::::::::
separated

::
in

:::
the

:::
2D

::::::::
histogram

::
of

:::::
radar

::::::::::
reflectivity

:::::
factor

::::
and

::::::::
attenuated

::::::::::
backscatter

:::::::::
coefficient

::::::
(Fig.,1

::::
c)).

::::
The

:::
first

::::::
mode

::
is

::::::::
associated

::::
with

:::::
radar

::::::::::
reflectivities

::::::
below

:::
-50 dBZ

:::
and

::::::::
attenuated

::::::::::
backscatter

::::::::::
coefficients

::::::
ranging

::::::::
between

:::::::::
0.3× 10−6 m−1 sr−1

:::
and

::::::::::
1.3× 10−6 m−1 sr−1.

::::
The

::::::
second

::::::
mode,

::::
with

:::::
radar

:::::::::::
reflectivities

:::::::
between

::::
-50

:::
and

::::
-20 dBZ

:
,
::::::::::
corresponds

::
to

:::::::::
attenuated

::::::::::
backscatter

::::::::::
coefficients

:::::
below

::::::::::
0.5× 10−6 m−1 sr−1.

:::::
Once

::::::
again,

::
the

::::
first

:::::
mode

::
is
:::::::::

attributed
::
to

::::
haze

:::::::
echoes,

:::::::
whereas

:::
the

:::::::
second

:::::
mode

::
is

:::::
linked

:::
to

:::::
clouds

:::
or

:::::::::::
precipitating

:::::::
particles.

::::::::
Following

:::::
these

:::::::::::
observations,

:::
we

::::::
isolate

:::
the

:::::
haze

::::
echo

:::::
mode

:::
by

:::::::
deriving

:
a
:::::::::

combined
::::
haze

:::::
echo

:::::::::
probability

::::
from

::::::::
heuristic

:::::::::
probability

::::::::
functions from individual parameters (namely radar reflectivity, radar

mean Doppler velocity and ceilometer attenuated backscatter coefficient)and combining these probabilities.

For each observation
::::
pixel, a probability array is estimated.

12



60 40 20 0 20
Radar Reflectivity Factor (dBZ)

8

6

4

2

0

2

M
ea

n 
Do

pp
le

r V
el

oc
ity

 (m
 s

1 )

a)

condition 1

8 6 4 2 0 2
Mean Doppler Velocity (m s 1)

0.0

0.5

1.0

1.5

2.0

2.5
At

te
nu

at
ed

 B
ac

ks
ca

tte
r

Co
ef

fic
ie

nt
 (s

r
1 m

1 )
1e 5

b)

60 40 20 0 20
Radar Reflectivity Factor (dBZ)

0.0

0.5

1.0

1.5

2.0

2.5

At
te

nu
at

ed
 B

ac
ks

ca
tte

r
Co

ef
fic

ie
nt

 (s
r

1 m
1 )

1e 5
c)

0.00 0.25 0.50 0.75 1.00
Number of Datapoints1e4

0.00 0.25 0.50 0.75 1.00
Number of Datapoints1e4

0 1 2 3
Number of Datapoints1e4

Figure 1.
::::
BCO

::
35GHz

::::
cloud

::::
radar

:::
and

:::::::::
ceilometer

::
(1

::::
July

::::
2021

::
–

:
1
::::
July

:::::
2022):

:::::::::
Histograms

::
of
:::

the
:::::

mean
:::::::
Doppler

::::::
velocity

:::
and

:::::
radar

::::::::
reflectivity

::::
factor

::
in

:::
(a),

:::
the

:::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

:::
and

::::
mean

::::::
Doppler

:::::::
velocity

:
in
:::
(b)

:::
and

::
the

::::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

:::
and

::::
radar

::::::::
reflectivity

:::::
factor

:
in
:::
(c).

:::::
Radar

::::::::
reflectivity

:::
bin

::::
width

::
is
::
1dBZ

:
,
::
the

:::::::
Doppler

::::::
velocity

:::
bin

::::
width

:::
0.1ms−1

:::
and

::
the

::::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

::
bin

:::::
width

::
is

::::::::
2.3×10−6 m−1 sr−1.

::::
Note

:::
that

:::
due

::
to
:::

the
:::::::::
attenuation

::
of

:::
the

::::::::
ceilometer

:::::
signal

:::::
within

:::::
liquid

:::::
layers,

:::
the

::::::
number

::
of

:::
data

:::::
points

::
is

::::
lower

::
in

:::
(b)

:::
and

:::
(c).

::::::::
Histogram

::::
area

::
for

::
a

:::::::
minimum

::::::
number

::
of

:::
500

::::
data

:::::
points

:::
that

:::::
fulfill

:::
haze

::::
echo

::::::::
condition

:
1
::::::
(Tab. 1)

:::
are

:::::
marked

:::
by

::
the

:::
red

::::
line.
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25. lines 250 and 257: same question as before, how did you decide such values? maybe you can plot some distributions for

all variables to show where are the values coming from? I am not sure I understand otherwise.

* We have extended our description and included a Figure that showcases the distributions for all variables. Also see

answer to comment 23.
Sect. 3.1 line 275-291.:

By performing element-wise multiplication of the haze echo probability arrays for radar reflectivity fac-

tor, mean Doppler velocity and ceilometer attenuated backscatter coefficient, the combined probability

::::::::
(Pcombined)

:
can be estimated. When the combined haze echo probabilities exceed

:::::::
Pcombined:::::::

exceeds
:
60%

for grid points below the CBH or at altitudes below 2 km (average top of the height of the marine aerosol

layer over Barbados) when no CBH is detected
:
in
:::::::::

cloud-free
:::::::::

situations, the haze echo category is imple-

mented and replaces targets previously classified as "Drizzle or rain" in the Cloudnet target classifica-

tion.
:::
The

::::::::
heuristic

:::::::::
probability

:::::::::::
distributions

:::
for

:::::
radar

::::
and

:::::::::
ceilometer

::::::::
variables

:::
are

::::::::
visualized

:::
in

:::::
Fig.2

:::
for

::
the

:::::::::::
combination

::
of
:::::::::::

probabilities
::
in
::::

line
::
1

:::::::::
(condition

::
1)

::
of

:::::
Table

:::
1.

::
In

::::::::
scenarios

::::::
where

:::
the

:::::::::
probability

:::
of

::
the

:::::::::
attenuated

::::::::::
backscatter

::::::::::
coefficient

::::
(Pβ)

:::::::
reaches

:::
70%,

:::
the

::::::::::
probability

:::
of

:::
the

:::::
mean

:::::::
Doppler

::::::::
velocity

::::
(Pv)

::::
must

:::
be

:::::
close

::
to

::::
100%

:::::
when

:::
the

:::::::::
probability

:::
of

:::
the

:::::
radar

:::::::::
reflectivity

::::::
factor

::::
(Ze)::

is
:::
86%,

:::
to

:::::
reach

:
a
::::::::
combined

::::::::::
probability

::::::::
threshold

::
of

:::::::::
(Pcombined)

::::::
greater

::::
than

:::
60%

:::
for

::::
haze

::::
echo

::::::::::::
identification.

:::
Pβ:::::::

reaches

::
70%

:::
for

:
β
::::::
values

:::::::
between

::::::::::
0.3× 10−6 m−1 sr−1

:::
and

::::::::::
1.3× 10−6 m−1 sr−1

:
.
::::::::
Minimum

::::
and

::::::::
maximum

::::::
values

::
for

::::
each

:::::::::
variable’s

:::::::::
probability

:::
are

::::::::::
summarized

::
in

::::::
Tab. 1.

:::
For

:::
the

:::::::
example

:::::::
scenario

:::
of

::::::::
PZe =86%

:
,
:::
the

:::::
mean

:::::::
Doppler

:::::::
velocity

::::
must

::
be

:::::::
greater

::::
than

:::::
-0.36ms−1

:::
for

::::::::
maximum

:::::
radar

:::::::::
reflectivity

::::::
factors

::
of

::::
-50 dBZ.

::::
For

:::::::
stronger

::::::::::
downdrafts,

::::
with

::::::::
velocities

::::::
down

::
to

:::::
-0.78ms−1,

::::
the

::::
radar

::::::::::
reflectivity

:::::
factor

:::::
needs

:::
to

::
be

::::::
lower

:::
than

:::::::
-60.46 dBZ

::
for

:::::
haze

::::::
echoes

::
to

:::
be

::::::::
classified.

::::::
Note,

:::
that

::
if
::::
any

:::::::::
individual

:::::::::
probability

::
is

::
at
:::
60%,

::::
the

::::::::
remaining

:::::::::::
probabilities

::::
must

:::::
reach

::::
100%

::
for

::::
haze

:::::
echo

:::::::::::
classification.

::
In
:::::

such
:::::
cases,

:::
the

:::::::::
minimum

:::::
mean

:::::::
Doppler

::::::
velocity

::
is
:::::
-0.95ms−1

:
,
:::
and

:::
the

:::::::::
maximum

::::
radar

:::::::::
reflectivity

::::::
factor

:
is
::::::
-46.46 dBZ

:::
(see

::::::
Tab. 1).
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Figure 2.
::::::
Heuristic

:::::::::
probability

:::::::::
distribution

::
for

:::
the

::::
radar

:::::::::
reflectivity

::::
factor

:::::
(PZe)::

in
:::

a),
::::
mean

:::::::
Doppler

::::::
velocity

::::
(Pv)

::
in

:::
b),

:::
and

::::::::
attenuated

::::::::
backscatter

::::::::
coefficient

::::
(Pβ)

::
in

::
c)

::::::
together

::::
with

::
the

:::::::
selected

:::::
values

::
of

::
the

:::::::::
parameters

::
µ,

::
σ,

:::
and

:
β
:::
for

::::
each

:::::::::
distribution.

:::
The

::::::::
respective

:::::
values

::
can

:::
be

:::
also

:::::
found

:
in
:::::

Tab.1.

Table 1.
:::::::
Minimum

:::::::::
probabilities

:::
for

:::
the

::::
radar

::::::::
reflectivity

:::::
factor

:::::
(PZe),:::::

mean
::::::
Doppler

:::::::
velocity

::::
(Pv),

:::
and

::::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

::::
(Pβ),

::::
along

::::
with

::::
their

:::::::
respective

::::::::
minimum

:::
and

::::::::
maximum

:::::
values

::::::
required

::
to

::::::
achieve

:
a
::::::::
combined

::::::::
probability

::::::::
(Pcombined)

::
of

::
60%.

:

::::::::::
Probabilities

::::::
Variable

::::::
Values

:::::::::
Convention

:::
PZe ::

Pv ::
Pβ ::::::

Pcombined ::::
Ze,max :::

vmin :::
βmin ::::

βmax

::::
Units

:
% % % % dBZ ms−1 sr−1m−1 sr−1m−1

::::
Max.

::
Ze:::

for
::::::::
Pβ = 70%

:

::::::
(Figure 1

::::::::
condition

::
1,

::::::
Figure 2) ::::

> 86
::
100

: ::::
> 70

::
60

::::::::
<−50.38

:::::::
>−0.36

::::::::::
> 0.4× 10−6

:::::::::::
< 1.06× 10−6

:

:::
Min.

::
v
::
for

:::::::::
Pβ = 70% ::

100
: ::::

> 86
::::
> 70

::
60

::::::::
<−60.46

:::::::
>−0.78

::::::::::
> 0.4× 10−6

:::::::::::
< 1.06× 10−6

:

:::::::
Min./Max

::
β ::

100
: ::

100
: ::

60
::
60

::::::::
<−60.46

:::::::
>−0.36

::::::::::
> 0.3× 10−6

::::::::::
< 1.1× 10−6

::::
Max.

::
Ze ::

60
::
100

: ::
100

: ::
60

::::::::
<−46.28

:::::::
>−0.36

:::::::::::
> 0.56× 10−6

: :::::::::::
< 0.84× 10−6

:

:::
Min.

::
v ::

100
: ::

60
::
100

: ::
60

::::::::
<−60.46

:::::::
>−0.95

:::::::::::
> 0.56× 10−6

: :::::::::::
< 0.84× 10−6

:
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26. line 260: how do you define haze distributions for Ze, Vm, and Beta? I assume you define haze using the masks, but then

it would be nice to see the distributions of all the variables, not just the case study.

* see comments 23 and 24.

27. line 264: From my understanding, the classification is pixel based. I think it would be something to highlight. Also, this

probability does not depend on the cloud base, so potentially you can classify as haze pixels that do not have a cloud

base above. So why is the plot of Figure 5 haze is found only below the cloud base? is this common in other case studies

too?

* The classification is indeed pixel-based, and we will highlight this aspect in the text. While the probability does not

depend on the cloud base, we restrict the application of the haze echo identification method to pixels that are classified

as drizzle or rain. This approach helps to ensure that cloud pixels are not mistakenly identified as haze echoes. However,

it is important to note that haze echoes can occur when no CBH is deteced, as illustrated in our case study at 07:00

UTC. Without the haze echo identification, these pixels would have been classified by Cloudnet solely as Drizzle or rain,

even in the absence of clouds above. We further included an analysis that reveals the occurrence of haze echoes in the

measurements at the BCO
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28. figure 5: it would be nice to have a zoomed plot of the area from 7:00 to 8:00. My concern is this: if there is sea salt

spray and the environment has humidity for sea salt condensation nuclei to grow, why do you see it only below the

small shallow clouds? in theory you should see it on all timestamps in the sub cloud layer, independently of the cloud

presence above, at least assuming that the humidity is homogeneous. Do you have a humidity profiler to display humidity

profile time series and understand if, for some reason below the cloud base, there’s a higher amount of humidity or some

temperature variations making water vapor condensation easier? maybe displaying also IWV time series from the MWR

can help, or some T, RH time series from the surface station in the worst case? Maybe you have an explanation to

understand why you have such gaps? might be that my thinking makes no sense for some reasons.

* In general sea salt aerosols are present and visible in the radar measurements also when no CBH is detected. This can

be seen in Fig.3 for the 23 January 2023 BCO case study below. The relative humidity (RH) is not that homogeneous

as the model or a single radiosonde suggest. In the case of updrafts, RH increases and often a cloud is formed. Whereas

in downdraft regions, RH is lower and there is no cloud. Consequently, grown sea salt particles are more prone to be

found below a cloud in an updraft region. Nevertheless, they can be present independently of the cloud, e.g., if we are

in an updraft region but the cloud was not formed yet. In other words, the cloud and the grown sea salt are caused

by the same updraft. Measurements of RH over the BCO are available from the ECMWF model but for the higher

temporal resolution which is needed here, it has to be calculated using the water vapor mixing ratio from the CORAL

Raman lidar. The calculation of RH using the water vapor mixing ratio are performed using temperature and pressure

data from either a model or a radiosounding. The nearest radiosounding is from the airport in Barbados (78954 TBPB

Grantley Adams Observations), approximately 13 km south of Deeples Point. However, the radiosounding only provides

observations at 0 and 12 UTC, which makes interpolation onto the Cloudnet resolution not accurate due to the limited

number of observations (00 UTC, 12 UTC, and 00 UTC of the next day) per day. The vertical profiles of the CORAL

lidar observations on 23 January 2023 between 00:45 and 01:45 UTC are shown in Fig.4. The observations reveal a two-

layer structure with the marine boundary layer (MBL) extending up to 1 km with RH up to approximately 100% and the

marine aerosol layer (MAL) between 1 and 2 km with lower RH compared to the MBL. Consequently, sea salt aerosols

that exist in the MAL, are smaller, as they can not take up as much water as in the MBL. This might explain, why they

are not visible in the radar measurements above approximately 0.8 km. The hygroscopic growth can be observed in Fig.5

for the same case study up to 2.2 km. This proves, that sea salt aerosols are present in the atmospheric column above

0.8 km. As RH increase the particle linear depolarization ratio (PLDR) decreases, as sea salt particles take up water

and become more spherical in shape as has been intensivly studied by Haarig et al. (2017) at Barbados. At the same

time, the backscatter derived Ångström exponent decreases which indicates that particles increase in size. This is further

supported by values of the radar reflectivity factor that increase as the Ångström exponent decreases. We did not include

the Raman lidar and the RH measurements in the manuscript for several reasons: radiosoundings from the airport might

not be representative of the variations in the MBL, given the limited number of measurements available. Moreover, the

RH from the ECMWF model exhibits large differences compared to the radiosounding at times close to the observations
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(Fig.6). Furthermore, consistent and reliable profiles of the water vapor mixing ratio from Raman lidar data are rare and

mostly available during nighttime, and radiosounding data might not always be available.
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Figure 3. Case Study 2: BCO on 23 January 2023, 01:15-01:45 UTC. Cloudnet target classification in (a), radar reflectivity factor in (b) and

Doppler velocity in (c). The LCL is marked as a dotted line.
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Figure 4. Marine aerosol layer over the BCO on 23 January 2023, 01:15-01:45 UTC. Relative humidity (derived from CORAL lidar water

vapor mixing ratio together with pressure and temperature data from the ECMWF model) in a), particle linear depolarization ratio (PLDR)

in b), and particle backscatter coefficient at two different wavelengths (355 and 532nm) in c)-d). The lidar data were interpolated onto the

Cloudnet grid (30 s temporal and 30m vertical resolution). The dotted line marks the LCL.
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Figure 5. Lidar variables recorded over the BCO on 23 January 2023 at 01:15-01:45 UTC. Correlation of the particle linear depolarization

ratio (at 355nm) (a), particle backscatter coefficient (at 355 and 532nm (b-c) and backscatter Ångström exponent (d) with RH (derived

from lidar (CORAL) water vapor mixing ratio and temperature and pressure data from the ECMWF model). The data was averaged over

5min and has a vertical resolution of 30m. For pixels with valid radar reflectivities, the lidar variables are color-coded.
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Figure 6. One-hour mean profiles of relative humidity (RH) in (a) and water vapor mixing ratio in (b) at the BCO between 00:00-01:00UTC

on 23 January, 2023. The RH was estimated using temperature and pressure data from the ECMWF model and the radiosounding (RS) data

from the nearby airport (78954 TBPB Grantley Adams Observations), combined with the water vapor mixing ratio data from the CORAL

Raman lidar. The profiles of RH for the ECMWF model and the radiosounding are depicted by darker lines in comparison to the combined

measurements.
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29. line 291: I see that in the final plot, you used the cloud base from Cloudnet to detect virga around 6:30 and not the one

from the virga sniffer tool (Fig 4b) So I did not fully get at the end which is the cloud base you use in virga sniffer from

the description of the virga identification. Maybe you can improve the description?

* To answer this question, we have added the section "Cloud base height detection" in the technical note in Roschke et al.

(2024) of the Virga-Sniffer configuration for the BCO. Also see other answers on Virga-Sniffer CBH related comments.

30. Section 3.2: I think that at the beginning of this paragraph, you need to explain that you want to study haze occurrence

under a cloud base and investigate its frequencies for different types of clouds. This is why, I think, you introduce the

cloud type classification out of the blue at the moment, which is not needed otherwise given that your haze identification

is pixel-based depending on the probability assigned to a tuple of Ze, vd, and β.

* The reason for the introduction of different cloud classes is that we want to compare the final statistics of clouds and

precipitation to existing studies. We added an introductory statement to the corresponding section. We admit that in

the section "Limitations," we discuss the occurrence of haze echoes below different cloud types, and this might lead to

confusion regarding the reason for introducing the cloud classification. To clarify our point in the "Limitations" section:

The question "Drizzle or haze echoes?" can only be asked when there is a cloud present above (without considering the

signals caused by tilted precipitation fall streaks). Consequently, we analyze how often haze echoes occur below shallow

and deeper cumulus clouds to identify how often a misclassification of haze echoes for true drizzle signals by our method

might occur.
Sect. 3.2 line 322-325.:

:::::::
Existing

:::::::
statistics

:::
on

:::::
clouds

::::
and

::::::::::
precipitation

::::
over

::::::::
Barbados

:::::
focus

:::
on

:::::
warm

:::::
clouds

::::
and

::::
trade

:::::
wind

::::::
cumuli ,

e.g., (Kalesse-Los et al., 2023; Nuijens et al., 2014; Acquistapace et al., 2019; Schulz et al., 2021).
::
In

:::::
order

::
to

:::::::
compare

:::
our

::::::::
statistics

::::
with

:::::::
existing

::::::::
literature

:::
and

::
to

:::::::::
investigate

:::::::::::
precipitation

::::::::
properties

:::
of

:::::
warm

::::::
clouds

:::
and

::::
haze

::::
echo

::::::::::
occurrence,

::
an

:::::::::::
object-based

:::::
cloud

::::::::
classifier

:::
was

:::::::::
developed.

:

31. line 310: Maybe you can have a subsection "object-based cloud classification". Somewhere before you also need to

introduce the profile-based classification method, which is? Is it the Virga sniffer? it is unclear to me what it is that

you later call the profile-based method. Please clarify it here, before using them in the results, and explain why you

introduced them before, as suggested in the previous comment. My impression is that a good position would be at the

beginning of this section 3.2. For both methods, please introduce the acronyms you use later here.

* We agree that introducing both the object-based and profile-based classification methods earlier in Section 3.2 will

improve clarity.
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Sect. 3.2 line 325-334.:

:::::::::::
Object-based

::::::
method

:::
in

:::
this

::::::
context

::::::
stands

::
for

:::
an

::::::::
approach

::
to

::::::
identify

::::::::::
continuous radar signals in time and

space are detected as a cloud object in object-based detection methods
:::::::::
(connected

::::::
pixels). Once a cloud ob-

ject has been detected, information about the CBH can be analyzed within this object. In the case that

:::::::
contrast,

:::::::::::
profile-based

:::::
cloud

::::::::::::
identification

:::::
relies

:::
on

:::
the

:::::::
number

::
of

::::::::
detected

:::::
cloud

::::
base

:::::::
heights

:::::::
(CBH).

:::::::::::
Profile-based

:::::::::
approaches

::::
like

::::::::
Cloudnet

::
or

:::
the

::::::::::::
Virga-Sniffer

:::::
suffer

::::
from

::::
two

::::::
issues:

::::::
Firstly,

::
if
:
gaps occur

in the CBH measurements of the ceilometer (e.g.
:
,
::
for

:::::::::
multilayer

:::::
cloud

::::::::
situations

::
or
:
during heavy precipita-

tion), still a single cloud is detected and not multiple clouds. In addition, more cloud profilesare recognized

in multi-layer cloud situations if the ceilometer signal is attenuated. As a result, a higher number of cloud

profiles are automatically detected by object-based detection methods
:::
even

:::::
when

:::
the

:::::
radar

::::::
detects

:::::::
signals

::::
from

::::::
clouds,

::::::::::::
profile-based

:::::::
methods

:::
do

:::
not

:::::::
register

:::::
these

:::::
cloud

:::::::
profiles.

:::::::
Secondly,

:::::
when

:::::::::::::
distinguishing

:::::::
different

:::::
clouds

:::
by

:::
the

::::::
altitude

::
of

::::
their

::::::
CBH,

::::::::::
profile-based

::::::::::
approaches

:::::
could

::::::::::
erroneously

::::::
classify

:::::::::
individual

::::
cloud

:::::::
profiles

::::::
within

:
a
::::::

single
:::::
cloud

::::::
object

::
as

:::::::
different

:::::
cloud

:::::
types

::
if
:::
the

:::::
CBH

::::::
varies

:::::::
strongly

::::::
within

:::
the

:::::
cloud.

32. line 332: how do you operationally define the bounding box?

* The bounding box is operationally defined for each hydrometeor cluster by the lowest and uppermost pixels at a specific

height, as well as the first and last pixels at a specific time stamp. This is automatically calculated using the regionprops

function from the scikit-image library. We will update the manuscript to clarify this definition.
Sect. X line 334-350.:

:::
The

:::::::::::
object-based

:::::
cloud

:::::::::::
classification

:::::::::
algorithm,

:::::::
utilizing

:::::::::::
object-based

::::::
feature

::::::::
detection

:::::::
methods

:::::
from

:::
the

::::::::::
scikit-image

::::::
library(Van der Walt et al., 2014),

::
is
:::::::

applied
::
to

:::
all

:::::
radar

::::::
signals,

:::::::::
excluding

::::
haze

:::::
echo

:::::
radar

:::::
pixels.

:::
As

:
a
::::::
result,

::::
haze

::::
echo

::::::::::
occurrence

:::::::
statistics

:::
are

:::::::::
unaffected

:::
by

:::
the

:::::
cloud

:::::::::::
classification,

::
as

::::
haze

::::::
echoe

:::::
pixels

:::
are

:::::::
counted

::::::::::::
independently

:::::::::
whenever

::::
they

:::::
occur

::
in

::
a
::::::
profile.

::
A
:::::::::::

hydrometeor
::::::

cluster
:::

is
::::::
defined

:::
as

:
a
:::::
group

:::
of

::
at

:::::
least

::::
three

:::::::::
connected

:::::::
pixels.

::::
CTH

:::
is

:::::::::
determined

:::
by

:::
the

:::::::
highest

:::::::
located

:::::
radar

::::
pixel

:::
of

::
a

::::::::::
hydrometeor

::::::
cluster

::::
that

:::
can

:::
be

::::::::
estimated

:::::
from

:::
the

:::::::
location

::
of

:::
the

:::::::::
bounding

:::
box

::::::::
(Fig. ??)

::
of

:::
the

:::::::
cluster.

:::
The

:::::::::
bounding

:::
box

:::::::
bounds

:::
for

:::::
each

::::::
cluster

:::
are

::::::::
extracted

::::::
using

:::
the

::::::::::::::
regionprops

::::::::
function

::::
from

::::
the

::::::::::::::::::
skimage.measure

:::::::
module,

:::::
which

::
is
::::
part

::
of

:::
the

::::::::::
scikit-image

::::::
library

:
(Van der Walt et al., 2014).

33. line 370: what is the link between haze echo occurrences and cloud base height? not very clear (see also points above)
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* In response to your comment, we have restructured the relevant section to provide a clearer explanation.
Sect. 3.2 line 344-347.:

:::
The

:::::::::::
object-based

:::::
cloud

:::::::::::
classification

:::::::::
algorithm,

:::::::
utilizing

:::::::::::
object-based

::::::
feature

::::::::
detection

:::::::
methods

:::::
from

:::
the

::::::::::
scikit-image

::::::
library(Van der Walt et al., 2014),

::
is

::::::
applied

:::
to

::
all

:::::
radar

:::::::
signals,

::::::::
excluding

::::
haze

:::::
echo

:::::
radar

:::::
pixels.

:::
As

:
a
::::::
result,

::::
haze

::::
echo

::::::::::
occurrence

:::::::
statistics

:::
are

:::::::::
unaffected

:::
by

:::
the

:::::
cloud

:::::::::::
classification,

::
as

::::
haze

::::::
echoe

:::::
pixels

:::
are

:::::::
counted

:::::::::::
independently

:::::::::
whenever

:::
they

:::::
occur

::
in
::
a
::::::
profile.

34. section name 4.3: I would call it "Method validation using Virga sniffer". It would be nice to find a name for the method

presented in the paper..

* We prefer not to give the method a specific name, as the goal is to integrate it into the CloudnetPy processing framework

rather than treating it as an independent tool. The primary focus is on utilizing Cloudnet’s target categorization and clas-

sification products for the identification process, which makes it more of an integrated approach, rather than a standalone

method.

35. section 4.3: It is very confusing for the reader to understand an evaluation that is based on different cloud definitions,

and different methods to identify clouds. Is it so crucial to add here and not in the appendix the comparison with ship obs?

I think that by presenting the evaluation only on BCO data would give value to the analysis of the long-term statistics,

without putting too many things to see on the plate. I would compare with Meteor in a different section, maybe in the

appendix. It is very difficult to follow in this way because of all these differences, which for you are obvious because you

created the algorithms, but can make readers get lost and miss the point.

* We understand that the presentation of different cloud definitions and methods for identifying clouds may be confusing

for the reader. To address this concern, we have moved all "standalone" Virga-Sniffer results including the RV Meteor

comparison to the appendix.

36. line 413: I think you need to mention how Virga sniffers detect precip and haze briefly: profile method based on the

thresholds...or whatever it is, specify, concisely.
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* We agree that the detection method for precipitating and haze echoes needs to be mentioned more clearly.
Sect. 2.6 line 204-208.:

The detection of precipitation, clouds, and CTH is performed by analyzing radar signals. Precipitation is

identified at each range gate of the radar reflectivity mask below CBH. The process involves downward

assignment from the CBH until the lowest radar signal. The downward assignment is continued until the gap

larger than the specified threshold of 150 is encountered. This ensures that tilted fall streaks and vertically

separated cloud layers are captured. Radar-based surface rain flag is set if Ze is larger than 0 in the first radar

rage gate. Additionally, surface rain information is obtained from the rain flag in the Cloudnet data
::::::
Surface

:::
rain

::
is
::::::::
detected

::::
from

:::::
radar

:::::::::::
reflectivities

::
in

:::::::::::
combination

::::
with

:::
the

::::::::
Cloudnet

::::
rain

::::
flag, which incorporates

measurements of
::::
from the MRR. The virga-mask is further refined through the incorporation of cloud radar

mean Doppler velocity data. [..]
:
.
:::
The

::::::::::::
velocity-mask

::::::
restricts

:::::
virga

::::
from

::::::::
occurring

:::
for

:::::::
negative mean Doppler

velocities. [..] .
::::
The

::::::::::::
configurations

::
of

::::
both

:::
the

::::::::::
clutter-mask

::::
and

:::::::
velocity

::::
mask

:::
are

:::::::
detailed

::
inRoschke et al.

(2024).

37. section 4.3.1: What is the main message of par 4.3.1? I don’t find a clear message from this section, because all results

seem to be conditioned by some aspects and don’t provide a more general conclusion. I would suggest sharpening the

core message without specifying so many details and moving all that is not the core message in the appendix. It is very

dispersive for the reader. I understand that you created such algorithms and you are interested in their main differences,

but out of those details, what is that we are learning about the processes? What is the statistical info you want modelers

to remember when they read the paper to find results to compare their runs with (I am making an example, here, of

possible users of your work)

* We understand that Section 4.3.1 currently lacks a clear core message, with many results being conditioned by specific

aspects. We hope that the new structure of the manuscript will sharpen the core message.

38. fig 9: How does it compare with old Cloudnet? is there a way to show that, instead of only showing Virga sniffer results?

I think a good message is also to show the improvement with what is the current state of the art, so the standard Cloudnet

categories of drizzle/rain.

* This is included already in the Fig.10, where it can be seen in c) that the occurrence of haze echoes leads to an overesti-

mation of 16% of Drizzle or rain in the dry season within the "old" Cloudnet target classification

39. line 448: it is quite dispersive so it is not easy to remember the difference between the two methods. I would recall

here that the developed haze method is based on probability and the Virga sniffer haze echo detection is based on ?? I

understood a combination of thresholds, but I am not sure, and add that you want to compare them.
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* We agree that the Virga-Sniffer haze echo detection could be recalled before comparing them to the introduced method.
Sect. 4.3 line 424-427.:

::::
This

:::::::::
subsection

::::::::
compares

:::
the

::::
haze

:
echo detection method

:::
with

:::
the

::::
-50 dBZ

:::::::::
-reflectivity

::::::::
threshold

:::::::
method

:::
and

:::
the

::::::
results

::::
from

:::
the

::::::::::::
Virga-Sniffer.

::::::
Recall that the Virga-Sniffer

::::
haze

::::
echo

::::::::
detection

:::
(cf.

:::::
Sect.

:::
??)

::::
uses

:
a
:
profile-based

::::
cloud

:::::::::::
identification

:::::::
method

::::::::
combined

::::
with

::
a
::::::::::
pixel-based

:::::::::::
precipitation

:::::::
detection

::::::
while

:::
the

:::::
newly

::::::::
developed

:::::
haze

::::
echo

::::::::
detection

::::::
method

::
is

:::::
solely

::::::::::
pixel-based.

40. line 464: Can you please motivate again this choice? (also commented before) I don’t understand why consider haze

only when there’s a cloud above. I don’t understand why you want to exclude the cases that occur without a cloud base,

as if they are physically different. In my view, they should not be different, and they should not be excluded.

* See answer to comment 30. The respective section can now be found in the appendix.

41. line 476: what do you mean here exactly by rain proportion? Have you checked the rain amounts? or is it a count of

rain occurrence? please clarify..

* The proportion of rain refers to the amount of pixels related to the occurrence of rain at the surface, which can be

identified using the Virga-Sniffer rain flag. This process is already described in the Virga-Sniffer method section.

42. line 505: where? refer to the plot, would be nice to follow your words with visual support

* We added case studies to section 4.3 where the simultaneous occurrence of haze echoes and Drizzle or rain can be

observed.
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Figure 7.
:::
BCO

::::
case

:::::
study

::
19

::::::::
December

:::::
2022:

:::::::
Cloudnet

::::
target

::::::::::
classification

:::::
(old)

::
a),

:::::::
Cloudnet

:::::
target

::::::::::
classification

::::
(with

::::
new

::::
haze

::::
echo

:::::::
category)

::
b),

:::::::::::
Virga-Sniffer

:::::
output

:::
c),

::::
radar

::::::::
reflectivity

:::::
factor

:::
d),

::::
radar

:::::
mean

:::::::
Doppler

::::::
velocity

::
e)

:::
and

:::::::::
ceilometer

::::::::
attenuated

:::::::::
backscatter

::::::::
coefficient

::
f).

::::
Pixels

::::
with

::::
radar

::::::::
reflectivity

:::::
below

:::
-50dBZ

:::
are

::::::
hatched

:
in
::
b)
:::
and

:::
c).
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43. line 506: I think this is a too strong sentence if you want to base it on results from Acquistapace et al., 2019’s case

study. In Fig 13b of Acquistapace et al. 2019, it is clearly visible that the distribution of drizzle mature, which is the

larger drizzle stage, does not have a sharp peak at -10 dBz, but instead, it shows a tail extending to -40. Therefore, it

is not true that clouds with Ze lower than -10 dBZ do not indicate the presence of drizzle. Your values below -10 dBZ

completely match the drizzle growth stage, which has a long tail of values of mean Doppler velocities corresponding to

falling hydrometeors (fig. 13d).

* TODO:We agree and have adjusted the text accordingly.
Sect. X line Xff.:

::
As

::::::
shown

:::
in

::::::::
Fig. ??a),

:::
for

:::::::
shallow

::::::::
cumulus

::::::
clouds,

::::
the

:::::::
in-cloud

:::::
radar

::::::::::
reflectivity

:::::
factor

:::::::
remains

:::::
well

:::::
below

:
-10 dBZand thus do not

:
,
::::
both

:::
for

::::
the

:::::::::
December

::
19

:::::
2022

::::
case

::::::
study

:::
and

::::
the

::::::::
long-term

:::::::
period.

::::
Both

::::::::::
distributions

::::::
could indicate the presence of drizzle. Only

:::::
larger

::::::
drizzle

::::::
drops.

::::::::
However,

:::
we

:::
can

::::
not

::
be

::::::
certain

:::::::
because

:::
of

::::::
lacking

::::::::
skewness

:::::::::::
information.

::::
For

:::
the

::::::::
long-term

:::::::::
statistics,

::::
only

:
17% of all radar

reflectivity factors in shallow cumuli
::::
radar

:::::::::
reflectivity

:::::
values

::::::
within

:::::::
shallow

:::::::
cumulus

::::::
clouds range between

-30 and -10dBZ. Accordingly, a clear majority (83 ) of all pixels within ,
:::::::::
indicating

:::::::
possible

::::::
drizzle

::::::
growth

:::
and

:::::::
reaching

:::
the

::::::
typical

::::::
drizzle

::::::::
thresholds

:::
as

::::::::
suggested

::
by

:::::::::::::::::
Kogan et al. (2012)

:::
and

:::::::::::::::
Frisch et al. (1995)

:
.
::::
This

:::
low

:::::::::
percentage

:::::::
implies

::::
that,

:::::
while

::::::
drizzle

::::::::
formation

:::::
inside

:::
the

::::::
clouds

::
is

::::::::
possible,

:
it
::
is
:::
not

:::::::::
dominant

::
in

:::
the

shallow cumulus clouds in our study have radar reflectivity values that do not indicate the presence of

drizzle formation.
:
at
:::

the
::::::

BCO. A study by Albright et al. (2023) at the BCO further supports the idea that

very shallow clouds over Barbados rarely produce precipitation. From their observations, they hypothesize

that a large part of the condensate from clouds, that form within the transition layer between 550 and 700m

and have CTH below 1.3 km, evaporates as the role of these clouds is to humidify the transition layer. In the

two-year dataset analyzed here, we also detect haze echoes below these very shallow clouds and in-line
::
in

:::
line

:
with Albright et al. (2023) conclude that for these clouds, misclassification of precipitation as sea salt

aerosols is unlikely.

44. line 541: do you have an example of this situation to discuss with plots?

* It remains unclear to us, what this question refers to.

45. line 589: Why is this section in this paper and not in the Virga sniffer paper? Do we need it if in the end you used the

cloud base from Cloudnet (fig 5) and you seem to suggest that the cloud base detection algorithm in Tuononen et al,

2019 is performing better? I am asking for the sake of the readability. In the paper, it is a continuous jump between the

virga sniffer and the algorithm you want to present in this paper, and it is very dispersive. ( see comments above)

* We agree that the transitions are somewhat disjointed, and we have moved the Virga Sniffer content to the appendix and

the technical note publication.
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46. line 589: designed

* Thank you for noting the word repetition; we have revised the text accordingly.

47. appendix c: Again: are you presenting the virga sniffer tool or the other algorithm? I find it confusing to present an

evaluation of an algorithm in your previous paper in the paper in which you introduce a new algorithm. I suggest

removing it and publishing it elsewhere. Or, just change the title and structure and introduce this new algorithm as a

development of Virga sniffer. It is extremely hard to follow for me, maybe it is my problem.

* We agree thus have substantially revised the manuscript.

48. table B1: is this stat relevant to the sea salt discrimination that you have in the title? I think it is off-topic.

* Please refer to the general comment for further details.
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