

1	Measurement report: Formation of tropospheric brown carbon in a
2	lifting air mass
3	
4 5	Can Wu ^{1,2} , Xiaodi Liu ¹ , Ke Zhang ¹ , Si Zhang ¹ *, Cong Cao ^{3,4} , Jianjun Li ³ , Rui Li ^{1,2} , Fan Zhang ^{1,2} , Gehui Wang ^{1,2} *
6 7 8 9	
10 11 12	¹ Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 210062, China ² Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
13 14	 ³State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
15 16 17 18	³ School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY 11794, USA
19 20 21 22	
23 24 25 26 27	*Corresponding authors: Dr. Si Zhang, E-mail: <u>szhang@geo.ecnu.edu.cn</u> Prof. Gehui Wang, E-mail: <u>ghwang@geo.ecnu.edu.cn</u>
28 29	

30	Abstract: An enhanced formation of brown carbon (BrC) with a non-negligible warming effect
31	at the tropopause has recently been found. However, its formation mechanism is unclear. Here
32	we report a BrC formation process that happens during air mass upward transport by
33	conducting simultaneously a 4-hour time resolution of measurement on atmospheric BrC at the
34	mountain foot (MF, 400m a.s.l.) and mountainside (MS, 1120m a.s.l.) of Mt. Hua, China in
35	2016 summer. Our results showed that the daytime light-absorption (Abs _{365nm}) of BrC at MS is
36	approximately 60% lower than that at MF due to a dilution effect caused by the planetary
37	boundary layer expansion, but the daytime light-absorption of BrC relative to black carbon at
38	MS is about 30% higher than that at MF, suggesting a significant formation of secondary BrC
39	in the lifting process of air mass from MF to MS. Such a secondary formation accounted
40	for >50% of BrC at MS but only 27% of BrC at MF. Moreover, N:C elemental ratio of the
41	daytime BrC was 15% higher at MS than that at MF, mainly due to an aerosol aqueous phase
42	formation of water-soluble organic nitrogen (WSON) compounds. Stable nitrogen isotope
43	composition further indicated that such light-absorbing WSON compounds were produced
44	from the aerosol aqueous-phase reaction of carbonyls with $\mathrm{NH_4^+}$. Our work for the first time
45	revealed that ammonia -induced aerosol aqueous reactions can significantly promote BrC
46	formation during the air mass lifting process, which is probably responsible for an enhanced
47	light absorption of BrC in the upper troposphere.
48	Keywords: Brown carbon; Ammonia and carbonyls; Nitrogen-containing organic compounds;
49	Air mass upward transport; Aerosol aqueous-phase reaction.

50

1. Introduction

52	Light-absorbing organic aerosols, known as brown carbon (BrC), can efficiently absorb
53	solar radiation in the visible to near ultraviolet (UV) wavelength range (Laskin et al., 2015; Liu
54	et al., 2020a; Chakrabarty et al., 2023a) which is corresponding to 27~70% of black carbon
55	(BC) light-absorption in the lower troposphere (Saleh et al., 2015; Lin et al., 2014; Lin et al.,
56	2015) suggesting that BrC can perturb substantially the planetary radiation budget (Qian et al.,
57	2015; Lin et al., 2014; Liu et al., 2015). By absorbing solar radiation at short wavelengths, BrC
58	can strongly alter local gas-phase photochemistry and atmospheric oxidation through
59	decreasing the photolysis rates of OH radicals, NO ₂ and O ₃ , leading to a reduction in
60	atmospheric oxidant concentration by up to ~30% (Hammer et al., 2016; Gligorovski et al.,
61	2015; Jo et al., 2016). BrC in the atmosphere also acts as photosensitizers and produces active
62	intermediates, and thus can promote sulfate formation (Liu et al., 2020b). In addition, BrC
63	comprises numerous organic species and can induce adverse human health effects, because
64	some of chromophores are toxic (Huang et al., 2018; Hsu et al., 2014; Yan et al., 2018).
65	Atmospheric BrC has both primary and secondary sources. Biomass burning is believed to
66	be the major source of primary BrC (Chakrabarty et al., 2023b), while emissions from fossil
67	fuel combustion is also an important source of primary BrC in the urban atmosphere (Yan et al.,
68	2017; Corbin et al., 2019), which accounts for even more than 40% of the total BrC in heating
69	season (Li et al., 2023). In the past decades numerous studies reported that BrC can also be
70	secondarily generated in the atmosphere, such as photooxidation of aromatics under high NOx
71	conditions (Lin et al., 2015; Liu et al., 2021), NH4 ⁺ -initiated reactions with atmospherically
72	relevant carbonyls (Li et al., 2021b; Kampf et al., 2012; Laskin et al., 2014; Li et al., 2019b)

94

73	and ·OH/NO ₃ · radical oxidations of various VOCs (Sumlin et al., 2017; Gelencser et al., 2003;
74	Lu et al., 2011). BrC is chemically active, which may undergo photobleaching (Schnitzler et al.,
75	2022; Gilardoni et al., 2016), posing significant challenges for characterizing BrC molecular
76	composition and its links to optical properties.
77	Recently a aircraft measurement conduced over the continental United States observed an
78	enhanced short-wavelength optical absorption of BrC relative to BC at altitudes between 5 and
79	12 km (Zhang et al., 2017), indicating that secondary formation is one of crucial sources for
80	these high-altitude BrC. Numerical model studies reported that global radiative forcing caused
81	by BrC ranges from 0.1-0.6 Wm ⁻² , suggesting a non-negligible impact of BrC on the global
82	climate change. Studies found that such climate effects are highly sensitive to BrC and the
83	sensitivity rapidly increases along with an increase in altitude (Zhang et al., 2017; Nazarenko et
84	al., 2017; Hodnebrog et al., 2014). These abundant BrC at the tropopause would bring about
85	prominent impacts on radiative forcing, which is even twice of that induced by low-altitude
86	BrC (Zhang et al., 2017). Due to the limited number of field observations, however, the vertical
87	distribution and formation mechanism of tropospheric BrC are still unclear especially those in
88	the upper troposphere, where the direct radiative forcing of BrC is much stronger than that in
89	the ground surface atmosphere.
90	To elucidate the formation mechanism of BrC in the troposphere, synchronous
91	observations on atmospheric BrC were conducted on the mountainside and the mountain foot
92	of Mt. Hua, which is located closely to Guanzhong Basin, one of the areas with heaviest $PM_{2.5}$
93	pollution in China owing to intensive activities of fossil fuel combustion and the unfavorable
94	topography (Wang et al., 2022b; Wu et al., 2020; Wang et al., 2011; Wang et al., 2016). Our

95	previous study has shown that inorganic aerosol chemistry in the atmosphere over Mt. Hua is
96	dominated by the air mass transport from the Guanzhong Basin ground surface, in which
97	(NH ₄) ₂ SO ₄ is continuously produced during the air mass lifting process along with a decrease
98	in aerosol acidity (Wu et al., 2022). Here, we investigated the formation mechanism of
99	secondary BrC during the lifting process of air mass from the Guanzhong Basin to the
100	mountainous atmosphere of Mt. Hua. We firstly discussed the differences in vertical
101	distribution and optical absorption of water-soluble BrC between the ground surface and the
102	mountainous atmosphere, then explored their formation mechanism in the upper troposphere.
103	To the best of our knowledge, we for the first time found that ammonia-induced aerosol
104	aqueous phase reaction with carbonyls is the dominant formation pathway of BrC in the air
105	mass lifting process, which is responsible for the high ratio of BrC to BC in the top
106	troposphere.
107	2. Materials and Methods

108 2.1 Sample Collection

109 PM_{2.5} samples with a 4-hour interval were synchronously collected at two locations of Mt. Hua from 27 August to 17 September 2016. One sampling site locates at the mountain foot (MF, 110 34°32'N, 110°5'E) and another one is situated on the mountainside (MS; 34°29'N, 110°3'E) with 111 112 little anthropogenic activities due to its steep terrain in the mountain region. The horizontal distance between the two sites is ~ 8 km and the vertical distance is about 1km (Figure S1). More 113 descriptions on the two sites have been documented by our previous study along with the details 114 on the sampling instrument setup (Wu et al., 2022). Hourly concentrations of PM_{2.5}, NO₂ and O₃ 115 at MS site were monitored by E-BAM (Met One Instruments, USA) and NOx and O3 Analyzer 116

- 117 (Thermo, Model 42i, USA; Thermo, Model 49i, USA), respectively. Meteorological parameters
- 118 of both sampling sites were downloaded from the Shaanxi Meteorological Bureau website
- 119 (<u>http://sn.cma.gov.cn/</u>).
- 120 2.2 Chemical Analysis
- 121 A DRI model 2001 thermal–optical carbon analyzer was used to measure the organic
- 122 carbon (OC) and element carbon (EC) of PM_{2.5} filter samples. Water-soluble organic carbon
- 123 (WSOC) and water-soluble total nitrogen (WSTN) of PM_{2.5} were extracted using Milli-Q pure
- 124 water (18.2 M Ω) and determined using a total organic carbon (TOC) analyzer (Model TOC-L
- 125 CPH, Shimadzu, Japan). Water-soluble organic nitrogen (WSON) is calculated by deducting
- 126 the water-soluble inorganic nitrogen (WSIN) from WSTN (i.e., WSON=WSTN-WSIN).
- 127 Molecular compositions (e.g., nitrophenols, PAHs and other organic tracers) in the PM_{2.5} filter
- samples were quantified by a gas chromatography (HP 7890A, Agilent Co., USA) coupled with
- 129 mass spectroscopy detector (GC/MS) (HP 5975, Agilent Co., USA) after the sample extraction
- 130 and derivatization. Th details of the extraction and derivatization can be found elsewhere (Li et
- al., 2023; Li et al., 2020; Wang et al., 2006). Briefly, one-fourth of the filter sample was
- 132 extracted with a mixture of methanol and dichloromethane (2:1, v/v). Then the extracts were
- 133 derivatized with N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA).
- 134 Additionally, a high-resolution time-of-flight aerosol mass spectrometer (Aerodyne
- 135 Research Inc., Billerica, MA, USA) was employed to determine the chemical compositions of
- 136 water-soluble organic matter (WSOM) in PM_{2.5}, of which the method is similar to the report by
- 137 Daellenbach et al. (2016). The offline analytical procedure has been reported previously, here
- 138 we only give a brief description (Ge et al., 2017; Sun et al., 2011). One-eighth of the PM_{2.5}

139	filter samples was extracted with pure water. Then, the water-extracts were atomized using
140	argon as carrier gas, dried by a diffusion drier, and ultimately quantified by the aerosol mass
141	spectrometer. Purified water was also treated in the same manner prior to each sample running,
142	which was deemed as an analytical blank. As we mainly focused on the WSOM chemical
143	composition, a deep post-processing was conducted for the V-mode data in this study using the
144	Igor-based Aerosol Mass Spectrometer Analysis Toolkit. Element ratios of WSOM including
145	oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C) , and organic
146	mass-to-organic carbon (OM/OC) ratios were determined according to the Improved Aiken (I-
147	A) method (Canagaratna et al., 2015). The mass load of WSOM in ambient air can be
148	accurately estimated using Eq.1, since the chemical species concentration in atomized aerosols
149	depends on the flow rate of the carrier gas and extract concentration.
	WSOM=WSOC×OM/OC _{WSOM} Eq. 1
150	Where WSOM is water-soluble organic matter (WSOM) in the atmosphere ($\mu g m^{-3}$),
151	WSOC is water-soluble organic carbon (WSOC, μ gCm ⁻³) in the atmosphere and measured by
152	the TOC analyzer, and $OM\!/OC_{WSOM}$ is the mass ratio of WSOM and OC determined by the
153	aerosol mass spectrometer.
154	2.3 Optical Absorption of BrC
155	Measurement of UV-vis absorption spectra of water-soluble BrC in PM _{2.5} was performed
156	using a liquid waveguide capillary UV-vis spectrometer with a long effective path length (1
157	m). The extracted solution of BrC were prepared by a similar treatment to WSOC (Text S1), of
158	which absorption spectra were converted into the absorption coefficient at a given wavelength λ

(abs_{λ}, M/m, eq S1). The mass absorption efficiency (MAE_{λ}, m²/gC) corresponding to water-

160 soluble BrC at a given wavelength λ can be calculated as follows:

$$MAE_{\lambda} = \frac{abs_{\lambda}}{M}$$
 Eq. 2

161 Where M (μ gC/m³) is the mass concentration for water-soluble organic carbon (WSOC). 162 Absorption Ångström exponent (AAE) indicates the spectral dependence of a species, which 163 was quantified by a linear regression of log (abs_{λ}) versus log (λ) over a wavelength rang of 300-

164 500 nm (Wu et al., 2020).

165 2.4 Random forest analysis for WSON

166 Random forest (RF), as a powerful tool, has been used widely in the regression and prediction 167 problems upon atmospheric pollutions, even the data have complex nonlinear relationships and 168 interactions (Hu et al., 2017; Vu et al., 2019). To reveal the key factors that may affect the WSON 169 formation during the air mass lifting process, the RF analysis was applied for the daytime samples 170 at MF and MS sites, respectively. And the potential factors, including pH, ALWC, T, RH, NH4⁺, 171 NH₃(aq), NO₂, nitrophenols, O₃ and organic matter (OM), herein were regarded as the predictors for WSON. In the RF model design, about 70% of these original data were randomly divided 172 into the training dataset to construct the RF model, and the rest was deemed as the testing data 173 174 for testing the model performance as testing datasets. To evaluate the performance of the RF 175 model to reconstruct the WSON, three established and robust error measurement metrics were employed here, including correlation coefficients (R²), mean square error (MSE) or root-mean-176 square error (RMSE) and mean absolute error (MAE). As shown in Table S1, the predicted data 177 178 for the testing dataset has strong correlativity with observed ones, with small values for those 179 error metrics; These results indicated a satisfactory performance of the RF model for 180 investigating contributions of these factors to WSON formation.

181 **3. Results and Discussion**

182 **3.1 Enhanced Light Absorption of BrC in the Mountainous Atmosphere**

- 183 Figure 1 shows the temporal variations in light absorption (abs_{365nm}) and concentrations of
- 184 fine particulate WSOC simultaneously observed at the mountain foot (MF) and mountainside
- 185 (MS) sites. Light absorption of BrC at the two sites markedly increased with a decrease in light
- 186 wavelengths. The averaged abs_{365 nm} of BrC was 2.1±1.4 M m⁻¹ at MS, approximately
- 187 corresponding to 40% of that $(5.1\pm2.4 \text{ M m}^{-1}, \text{ Table 1})$ at MF. The light-absorbance level of
- 188 BrC at the high altitude MS site is in the same range as those reported from Chinese megacities
- 189 such as Beijing (Cheng et al., 2016) and Xi'an (Wu et al., 2020), indicating a strong light-
- 190 absorption of BrC in the upper boundary layer over Guanzhong Basin, inland China.
- 191 Absorption Ångström exponent (AAE) at MS is 5.7±1.3 (Table 1), slightly lower than that at
- the ground MF site (6.0 ± 0.5). Such a difference in AAE (p<0.05) is most likely related to the
- 193 difference in chemical composition of the chromophores between the two sites with different
- altitudes. As shown in Figure 1, the water-soluble BrC (i.e., abs_{365 nm}) closely followed the
- 195 variation patterns of WSOC (R^2 >0.70, Figure S2) at both sites, indicating that BrC is an
- 196 important part of WSOC. The averaged mass absorption efficiency (MAE) at MS (MAE_{365 nm},
- 197 $0.67\pm0.2 \text{ m}^2 \text{ g}^{-1}$) was almost equal to that at MF ($0.69\pm0.2 \text{ m}^2 \text{ g}^{-1}$) but 30-40% higher than those
- 198 observed in Chinese megacities such as Beijing (Du et al., 2014) and Nanjing (Chen et al.,
- 199 2018) (~0.5 m² g⁻¹, in summertime), further demonstrating a strong light-absorption nature of
- 200 BrC in the upper boundary layer of Guanzhong Basin, inland China.

Figure 2 shows the diurnal variations of abs_{365 nm} and MAE_{365 nm} at both sites during the

202 campaign. At MF site a morning peak of abs_{365 nm} driven by enhanced traffic emissions

203	occurred at 8:00~12:00 (local time, thereinafter), and then gradually decreased and reached a
204	minimum at 12:00~16:00 with the lowest MAE at 365 nm wavelength (MAE _{365 nm} , 0.57 ± 0.14
205	m ² g ⁻¹ (Figures 2a and 2b). Such a ground surface decease in light absorption of BrC at early
206	afternoon can be attributed to the daytime boundary layer growth and photobleaching. This can
207	be verified by the oxidation state of carbon (OSc) measured by the aerosol mass spectrometer,
208	of which higher value is indicative of a deeper degree of atmospheric oxidation (Li et al.,
209	2019a). As seen in Figure 3a, $abs_{365 nm}$ negatively correlated with OSc, which is consistent with
210	those reported by previous laboratory experiments (Lee et al., 2014; Zhao et al., 2015; Sumlin
211	et al., 2017) and suggests that atmospheric aging can significantly diminish the light-absorption
212	of BrC. On the contrary, abs365nm at MS site remarkably enhanced with the boundary layer
213	growth and peaked at 12:00~16:00 (Figure 2a), despite the fact that the aerosol was further
214	oxidized during the upward transport as indicated by the OSc values, which are higher at MS
215	than at MF (Figure 3b). Moreover, a moderate-increased MAE _{365nm} was also observed in this
216	process (Figure 2b). As shown in Table 1, the light absorption of BrC at 365 nm relative to BC
217	at 550 nm (abs ₃₆₅ -BrC/abs ₅₅₀ -BC) during the daytime at MS was 0.28±0.08, which is
218	approximately 30% higher than that (0.22±0.08, Table 1) at MF. Our previous study at Mt. Hua
219	found that changes in sources of primary organic aerosols in the air mass transported from MF
220	to MS were insignificant (Wu et al., 2022), indicating that there was no additional emission of
221	BrC during the air mass upward transport. Thus, the enhanced light-absorption of BrC relative
222	to BC at MS is solely ascribed to a secondary formation of absorbing BrC (Figure 2c); and
223	these secondary BrC were highly light-absorbing despite more aged atmosphere aloft, as
224	verified by a strongly positive correlation between MAE365nm and OSc values at MS site

225 (Figure S3).		
------------------	--	--

226	To further elucidate the above hypothesis, a PMF analysis (Text S2) was applied for the
227	source apportionment of the daytime $abs_{365 nm}$ at both sites. As seen in Figure S4, four types of
228	BrC sources were identified. In brief, fossil fuel combustion and biomass burning influenced by
229	local-related emissions were primary sources for the surface BrC, consistent with observations
230	in other cities (Li et al., 2023; Wu et al., 2020; Wang et al., 2022a). However, BrC at MS site
231	was produced dominantly from secondary formation, of which the contribution to the total BrC
232	is 53% and about twice of that at MF (Figure 2d,) further corroborating a substantial formation
233	of BrC with relatively stronger light-absorptivity during the air mass lifting process. These
234	secondarily formed BrC chromophores engender a more light-absorption of high-altitude BrC
235	compared with that of BC (or EC, Figure 2c), coincident with the in-situ aircraft measurements
236	over the continental US and Beibu Gulf of China (Zhang et al., 2017; Yang et al., 2023),
237	indicating that such a vertical profile of BrC is globally prevalent in the upper troposphere.
238	3.2 Secondary Formation of BrC in the Air Mass Lifting Process
239	Figure 4a illustrates the diurnal cycles of N:C ratio of the water-soluble organic matter in
240	$PM_{2.5}$ measured by the high-resolution time-of-flight aerosol mass spectrometer. At the MF site
241	N:C ratio did not vary much with time and was even leveling off in the daytime, which
242	indicates that the compositions of light-absorbing chromophores are similar throughout the day.
243	Nonetheless, the diurnal pattern of N:C ratio at MS was analogous to that of $abs_{365 nm}$ and
244	$MAE_{365 nm}$ with a daily peak at 12:00~16:00 and a moderate positive correlation was also
245	observed between N:C ratio and $abs_{365 \text{ nm}}$ (R ² =0.38, P<0.01), suggesting that nitrogen-
246	containing organic compounds (NOCs) have considerable contributions to the BrC light-

247	absorption in the upper troposphere. Such a results is consistent with the laboratory simulation,
248	in which NOCs have been reported to contribute up to 60% of the absorbance of secondary BrC
249	over a wavelength rang of 300-400 nm (Lin et al., 2015). Moreover, the daytime N:C ratios
250	were 20% higher at MS (0.066±0.014) than those at MF (Figure 4a), indicating that additional
251	NOCs were produced in the air mas lifting process. In fact, numerous N-containing organic
252	fragments including C_xH_yN and $C_xH_yO_zN$ at the MS site were detected by the aerosol mass
253	spectrometer, which accounted for $\sim 13\%$ of the total water-soluble OM and was 20% higher
254	than that at the MF site (Figure S5), clearly suggesting an enhanced formation of WSON during
255	the air mass transport from the lower mountain foot site to the upper mountainside site. Since
256	WSON at MS strongly was positively correlated with light absorption of BrC at λ =365nm
257	(Figure S6), the enhancement in BrC light-absorption at MS can largely be attributed to
258	secondary formation of NOCs during the air mass transport from the ground surface to the
259	upper boundary layer.
260	Light-absorbing NOCs including reduced nitrogen species (e.g., imidazoles and pyrazines)
261	and oxidized ones (e.g., nitroaromatics) can be generated via various types of gas- and particle-
262	phase reactions, such as, NH3-mediated carbonyl-to-imine reactions, nitration of aromatic
263	compounds, and heterogeneous reactions of \cdot OH and NO ₂ ⁻ \cdot radicals with phenolic compounds
264	(Moise et al., 2015; Laskin et al., 2015). The potential pathways and dominating factors for
265	NOCs formation at MS site will be explored in the following sections.
266	3.3 Gas-Phase Formation of BrC in the Air Mass Lifting Process
267	Nitroaromatic compounds (NACs) are strong light-absorbing compounds and are

268 ubiquitous in the atmosphere. In this study, a total of six NACs in the PM_{2.5} samples were

269	detected (Table S2), which exhibited a significant correlation with abs _{365 nm} at both sampling
270	sites (Figure S2c and S2d), indicating an important impact of NACs on the aerosol light-
271	absorption. As seen in Figure 5a, both NACs concentration and NACs/OC ratio decreased
272	gradually at MF, reaching the daily minimum at 12:00-16:00. Such an abatement in NACs was
273	mainly attributed to the boundary layer expansion and an enhanced photooxidation (Figure 3).
274	Furthermore, the daytime NACs at MF well correlated with (BbF+levoglucosan), which are
275	tracers for combustion emissions ($R^2=0.70$), but not correlated with gaseous NO ₂ (Figure 5e),
276	suggesting that most of NACs at the ground surface site were directly emitted from combustion
277	sources. As partial NACs at the MF site can be transported aloft by anabatic valley winds, thus
278	a moderate correlation (R ² =0.49, Figure 5d) between NACs and (BbF+levoglucosan) was
279	observed at MS site. However, a strong correlation between NO ₂ and NACs (R^2 =0.57, Figure
280	5f) observed at MS suggests a non-negligible formation of secondary NACs under the transport
281	process. Previous studies reported that NACs could be produced via gas-phase or aqueous
282	reactions under higher NOx/NO3·/·OH conditions (Wang and Li, 2021; Li et al., 2021a). But a
283	poor relationship between NACs and ALWC (R ² =0.34, P>0.05), indicating that the gas-phase
284	reaction is a dominant formation pathway for nitrophenols aloft. Moreover, the aerosol pH
285	simulated by our previous study was higher at MF (3.4 \pm 2.2) than that at MS (2.9 \pm 2.0) (Wu et
286	al., 2022). Such a decreasing acidity condition can promote the protonation of NACs and thus
287	enhance their light-absorption at visible wavelengths (Liu et al., 2023b).
288	The preceding discussion provided explicit evidence that partial NACs could be formed by
289	gas-phase reactions, but they only accounted for a very small fraction of OC (Figure 5a-b),
290	suggesting that gas-phase formation is probably not the major formation pathway of secondary

291	NOCs during the air mass vertical transport. Further evidence for this hypothesis was provided
292	by a random forest (RF) analysis that was used for quantifying the contributions of these
293	influencing factors (aerosol liquid water content (ALWC), pH, T, NO ₂ , NH ₄ ⁺ , etc.) to WSON at
294	both sampling sites (Figure 4b and Figure S7). As revealed by RF model results, nitrophenols
295	and gaseous NO_2 factors together explained up to 35% of the daytime WSON at MF site
296	(Figure S7) but only~15% of that aloft (Figure 4b), confirming a less importance of the gas-
297	phase reactions for the light-absorbing NOCs formation in the upper troposphere.
298	3.4 Aerosol Aqueous Formation of BrC in the Air Mass Lifting Process
299	As shown in Figure 4b, RF analysis showed that the variation in concentration of WSON
300	in PM _{2.5} at MS was largely affected by $\rm NH_4^+$ (23.0%) and ALWC (17.3%). Given a relatively
301	strong correlation between WSON and NH_4^+ (R ² =0.70, Figure 4c), we proposed that aqueous
302	phase reactions induced by ammonium is the major formation pathway for water-soluble NOCs
303	at MS. For further demonstrating such a hypothesis, we analyzed nitrogen isotope composition
304	$(\delta^{15}$ N-NH ₄ ⁺) of ammonium in the PM _{2.5} samples at both sites, of which the analytical details
305	has been described in our previous study (Wu et al., 2022). As seen in Figure 4d, WSON
306	showed a strong negative correlation with δ^{15} N-NH ₄ ⁺ , because a lighter isotope reacts at a
307	faster rate due to its higher zero-point energy, which can result in the products enriched in
308	lighter ¹⁴ N and depleted in heavier ¹⁵ N during the NH ₃ neutralization process. In contrast,
309	WSON at MF presented a similar correlation with $\mathrm{NH_4^+}$ as that at MS but did not correlate with
310	δ^{15} N-NH ₄ ⁺ (Figures S8a and b).
311	Previous studies have demonstrated the importance of $\mathrm{NH_4^+/NH_3}$ in the formation of light-

312 absorbing imidazoles and N-heterocycles from the carbonyls (e.g., glyoxal (Gly) and

313	methylglyoxal (mGly) generated from oxidation of VOCs) (Li et al., 2021b; Moise et al., 2015;
314	Kampf et al., 2012; Liu et al., 2023a). Figure S9 depicts a simple reaction pathway for above
315	aqueous reactions, in which the chromophore products contain less amounts of O and H atoms.
316	Such a phenomenon was found for the daytime NOCs at MS. As shown in Figure S10, the H/N
317	and O/N ratios of BrC in $PM_{2.5}$ at MS exhibited a strongly negative correlation with N/C ratio,
318	respectively ($R^2=0.92$ for H/N and $R^2=0.84$ for O/N). Considering the fact that Gly and mGly
319	are abundant at the daytime atmosphere of Mt. Hua (Qi et al., 2023), the aqueous reactions of
320	dicarbonyls with NH_4^+/NH_3 are probably the major pathway to yield NOCs during the vertical
321	transport.
322	Above aqueous reactions could also occur at MF site as depicted in Figure S8, but it was
323	insignificant compared to that at MS site, attributing the disparity in chemical compositions.
324	Our previous study found that the ground surface MF aerosols were more acidic (pH=2.9) and
325	dominated by NH4HSO4, while the upper boundary layer MS aerosols were less acidic
326	(pH=3.4) and dominated by abundant (NH ₄) ₂ SO ₄ . Such differences in aerosol acidity and
327	chemical compositions between two sites can favor the formation of NOCs at the MS site, as
328	evident from a recent experimental observation by Li et al. (2021b), who found that NOCs
329	yield on the (NH ₄) ₂ SO ₄ seeds exposing to Gly or mGly vapor was relatively higher than that on
330	$\rm NH_4HSO_4$ seeds. Also, they found that mGly has a larger uptake coefficient on $\rm (NH_4)_2SO_4$
331	particles with a relatively higher NOCs yield compared to Gly, because mGly has a stronger
332	interfacial attraction and thus has a more efficient nucleophilic addition involving the
333	carbenium ions (Li et al., 2021b). Our previous study showed that the summertime atmosphere
334	of Mt. Hua is dominated by biogenic VOCs and the concentration of fine particulate mGly is

335	about five times that of Gly (Meng et al., 2014). Such a predominance of mGly over Gly and a
336	less acidic aerosol aqueous aerosol phase at the MF site are favorable for light-absorbing NOCs
337	formation on (NH ₄) ₂ SO ₄ particles, which can mainly be responsible for the enhanced light
338	absorption of BrC at the mountainous site with the ratio of light absorption of BrC to BC higher
339	in the upper boundary layer than that in the ground surface.
340	4. Conclusion and atmospheric implications
341	Our work provides an evolution profile of BrC during air mass vertical transport, and
342	highlights a rapid formation of BrC in this process, which can be responsible for the
343	enhancement of BrC relative to BC in the upper troposphere. As revealed by aircraft
344	observation over the continental US (Zhang et al., 2017), the high-altitude BrC have longer
345	lifetime, and can disperse rapidly into a large area, exerting significant influence on regional
346	climate. The heating effect of BrC is even comparable to BC in the upper tropical troposphere
347	(Jo et al., 2016). In this work, we revealed a vital role of aqueous-phase reactions for the
348	secondary formation of BrC in the air mass lifting process, specifically the $\mathrm{NH_4^+/NH_3}$ -induced
349	reactions (e.g., Maillard reaction) that can form NOCs with stronger light-absorptivity. As
350	ammonia and carbonyls such as glyoxal and methylglyoxal are ubiquitous in the troposphere,
351	thus our work suggests that the above formation mechanism on the light-absorbing NOC
352	aerosols could extensively occur in the troposphere.
353	In the past decade, the haze pollution in China has changed from previous sulfate-
354	dominated environment (SD) to the current nitrate-dominated environment (ND) due to the
355	effective sulfur emission control, which would significantly enhance the aerosol ALWC since
356	nitrate is more hygroscopic than sulfate at a given RH and aerosol loading. While, as indicated

357	by our previous observational evidences (Lv et al., 2023), high ALWC load induced by
358	abundant nitrate would efficiently promote more WSOC partitioning into the aerosol phase
359	compared with that in SD ones, and thus may increase the BrC yield because WSOC contains
360	numerous BrC precursors. With the increase in relative abundance of nitrate to sulfate, nitrate-
361	enhanced gas-to-particle partitioning of WSOC will become highly efficient in China in the
362	near future, meaning that the BrC formation will be more active hereafter. Additionally, the
363	national VOCs and NH3 emissions have remained at high levels, and even have shown a slight
364	increasing trend. The abundant NH3 can not only participates in the formation of BrC but also
365	affects BrC optical properties by regulating the aerosol acidity. To further reveal the impact on
366	the BrC, the NH ₃ concentration and MAE _{$365 nm$} value of water-soluble BrC in different region
367	of China were statistically explored on a national scale (Figure 6a). As depicted in Figure 6, the
368	spatial pattern of $MAE_{365 nm}$ is closely coincident with NH_3 levels with a robust positive
369	correlation (R^2 =0.87). Such a spatial distribution pattern indicates that NH ₃ -rich conditions are
370	favorable for formation of BrC with strong light-absorptivity. China is one of the countries with
371	strongest NH3 emissions in the world due to huge demand for N-fertilizer (Van Damme et al.,
372	2018), and thus atmospheric NH_3 in China is much higher than that in Europe and the United
373	States. This is probably one of the factors causing the higher concentrations of BrC with
374	stronger light-absorptivity in China compared with developed countries (Figure 6b). Therefore,
375	NH ₃ emission control in China is indispensable for further alleviating haze and BrC pollutions
376	in the country.
377	Data availability. The data used in this study are freely available at

378 https://doi.org/10.5281/zenodo.10926469 (Wu, 2024). And Meteorological data and hourly

- 379 PM_{2.5}, NO₂, O₃ concentrations can be obtained from <u>https://doi.org/10.5281/zenodo.7413640</u>
- 380 (Wu, 2022a).
- 381 Author contributions. G.W. designed research and contributed analytic tools. C.W., C.C. and
- 382 J.L. collected the samples. C.W., X.L., K.Z. and G.W. conducted the sample analysis. C.W.,
- 383 S.Z. and G.W. performed the data interpretation. C.W. and G.W. wrote the paper. All authors
- 384 contributed to the paper with useful scientific discussions.
- 385 **Competing interests.** The authors declare no competing interest.
- 386 Acknowledgements. This work was financially supported by the National Natural Science
- 387 Foundation of China (No. 42130704, 42007202) and ECNU Happiness Flower program.
- 388

389 References

- Bosch, C., Andersson, A., Kirillova, E. N., Budhavant, K., Tiwari, S., Praveen, P. S., Russell, L. M., Beres, N. D.,
 Ramanathan, V., and Gustafsson, O.: Source-diagnostic dual-isotope composition and optical properties of
 water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian
 Ocean, J. Geophys. Res.-Atmos., 119, 11743-11759, 10.1002/2014jd022127, 2014.
- Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner,
 E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental
 ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved
 calibration, and implications, Atmos. Chem. Phys., 15, 253-272, 10.5194/acp-15-253-2015, 2015.
- Chakrabarty, R. K., Shetty, N. J., Thind, A. S., Beeler, P., Sumlin, B. J., Zhang, C., Liu, P., Idrobo, J. C., Adachi, K.,
 Wagner, N. L., Schwarz, J. P., Ahern, A., Sedlacek, A. J., Lambe, A., Daube, C., Lyu, M., Liu, C., Herndon, S.,
 Onasch, T. B., and Mishra, R.: Shortwave absorption by wildfire smoke dominated by dark brown carbon, Nat.
 Geosci., 16, 683-+, 10.1038/s41561-023-01237-9, 2023a.
- 402 Chakrabarty, R. K., Shetty, N. J., Thind, A. S., Beeler, P., Sumlin, B. J., Zhang, C. C., Liu, P., Idrobo, J. C., Adachi,
- K., Wagner, N. L., Schwarz, J. P., Ahern, A., Sedlacek, A. J., Lambe, A., Daube, C., Lyu, M., Liu, C., Herndon,
 S., Onasch, T. B., and Mishra, R.: Shortwave absorption by wildfire smoke dominated by dark brown carbon,
- 405 Nature Geoscience, 16, 10.1038/s41561-023-01237-9, 2023b.
- Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M., Zhang, Y., and Chen, M.: Seasonal light
 absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China, Atmos.
 Environ., 187, 230-240, 10.1016/j.atmosenv.2018.06.002, 2018.
- Cheng, Y., He, K.-b., Du, Z.-y., Engling, G., Liu, J.-m., Ma, Y.-l., Zheng, M., and Weber, R. J.: The characteristics
 of brown carbon aerosol during winter in Beijing, Atmos. Environ., 127, 355-364,
 10.1016/j.atmosenv.2015.12.035, 2016.
- 412 Corbin, J. C., Czech, H., Massabo, D., de Mongeot, F. B., Jakobi, G., Liu, F., Lobo, P., Mennucci, C., Mensah, A.
- 413 A., Orasche, J., Pieber, S. M., Prevot, A. S. H., Stengel, B., Tay, L. L., Zanatta, M., Zimmermann, R., El Haddad,

414	I., and Gysel, M.: Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust,
415	npj Clim. Atmos. Sci., 2, 10.1038/s41612-019-0069-5, 2019.
416	Daellenbach, K. R., Bozzetti, C., Krepelova, A. K., Canonaco, F., Wolf, R., Zotter, P., Fermo, P., Crippa, M., Slowik,
417	J. G., Sosedova, Y., Zhang, Y., Huang, R. J., Poulain, L., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot,
418	A. S. H.: Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry,
419	Atmospheric Measurement Techniques, 9, 23-39, 10.5194/amt-9-23-2016, 2016.
420	Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., and Weber, R.: A yearlong study of water-
421	soluble organic carbon in Beijing II: Light absorption properties, Atmospheric Environment, 89, 235-241, 2014.
422	Ge, X., Li, L., Chen, Y., Chen, H., Wu, D., Wang, J., Xie, X., Ge, S., Ye, Z., Xu, J., and Chen, M.: Aerosol
423	characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other
424	techniques, Environ. Pollut., 225, 74-85, 10.1016/j.envpol.2017.03.044, 2017.
425	Gelencser, A., Hoffer, A., Kiss, G., Tombacz, E., Kurdi, R., and Bencze, L.: In-situ formation of light-absorbing
426	organic matter in cloud water, Journal of Atmospheric Chemistry, 45, 25-33, 10.1023/a:1024060428172, 2003.
427	Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M., Decesari, S., Sandrini, S., Costabile,
428	F., Gobbi, G. P., Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S., and Facchini, M. C.: Direct observation
429	of aqueous secondary organic aerosol from biomass-burning emissions, Proceedings of the National Academy
430	of Sciences of the United States of America, 113, 10013-10018, 10.1073/pnas.1602212113, 2016.
431	Gligorovski, S., Strekowski, R., Barbati, S., and Vione, D.: Environmental Implications of Hydroxyl Radicals (•OH),
432	Chem. Rev., 115, 13051-13092, 10.1021/cr500310b, 2015.
433	Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V., Torres, O., Ridley, D. A., and Spurr, R. J. D.:
434	Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption
435	by organic aerosols: implications for atmospheric oxidation and direct radiative effects, Atmos. Chem. Phys.,
436	16, 2507-2523, 10.5194/acp-16-2507-2016, 2016.
437	Hodnebrog, O., Myhre, G., and Samset, B. H.: How shorter black carbon lifetime alters its climate effect, Nature
438	Communications, 5, 10.1038/ncomms6065, 2014.
439	Hsu, HI., Lin, MY., Chen, YC., Chen, WY., Yoon, C., Chen, MR., and Tsai, PJ.: An Integrated Approach to
440	Assess Exposure and Health-Risk from Polycyclic Aromatic Hydrocarbons (PAHs) in a Fastener
441	Manufacturing Industry, International Journal of Environmental Research and Public Health, 11, 9578-9594,
442	10.3390/ijerph110909578, 2014.
443	Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating
444	PM _{2.5} Concentrations in the Conterminous United States Using the Random Forest Approach,
445	Environ. Sci. Technol., 51, 6936-6944, 10.1021/acs.est.7b01210, 2017.
446	Huang, RJ., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W., Wang, K., Lin, C., Ni, H.,
447	Corbin, J. C., Wu, Y., Zhang, R., Tie, X., Hoffmann, T., O'Dowd, C., and Dusek, U.: Brown Carbon Aerosol in
448	Urban Xi'an, Northwest China: The Composition and Light Absorption Properties, Environ. Sci. Technol., 52,
449	6825-6833, 10.1021/acs.est.8b02386, 2018.
450	Jo, D. S., Park, R. J., Lee, S., Kim, SW., and Zhang, X.: A global simulation of brown carbon: implications for
451	photochemistry and direct radiative effect, Atmos. Chem. Phys., 16, 3413-3432, 10.5194/acp-16-3413-2016,
452	2016.
453	Kampf, C. J., Jakob, R., and Hoffmann, T.: Identification and characterization of aging products in the
454	glyoxal/ammonium sulfate system - implications for light-absorbing material in atmospheric aerosols, Atmos.
455	Chem. Phys., 12, 6323-6333, 10.5194/acp-12-6323-2012, 2012.
456	Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115, 4335-
457	4382, 10.1021/cr5006167, 2015.

- Laskin, J., Laskin, A., Nizkorodov, S. A., Roach, P., Eckert, P., Gilles, M. K., Wang, B., Lee, H. J., and Hu, Q.:
 Molecular Selectivity of Brown Carbon Chromophores, Environ. Sci. Technol., 48, 12047-12055,
 10.1021/es503432r, 2014.
- Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of Solar Radiation on the Optical
 Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon, Environ. Sci.
 Technol., 48, 10217-10226, 10.1021/es502515r, 2014.
- Li, D., Wu, C., Zhang, S., Lei, Y., Lv, S., Du, W., Liu, S., Zhang, F., Liu, X., Liu, L., Meng, J., Wang, Y., Gao, J.,
 and Wang, G.: Significant coal combustion contribution to water-soluble brown carbon during winter in Xingtai,
 China: Optical properties and sources, J. Environ. Sci., 124, 892-900, 10.1016/j.jes.2022.02.026, 2023.
- Li, J., Zhang, Q., Wang, G., Li, J., Wu, C., Liu, L., Wang, J., Jiang, W., Li, L., Ho, K. F., and Cao, J.: Optical
 properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in
 northwest China, Atmos. Chem. Phys., 20, 4889-4904, 10.5194/acp-20-4889-2020, 2020.
- Li, L. J., Ho, S. S. H., Feng, B., Xu, H., Wang, T., Wu, R., Huang, W., Qu, L., Wang, Q., and Cao, J.: Characterization
 of particulate-bound polycyclic aromatic compounds (PACs) and their oxidations in heavy polluted atmosphere:
 A case study in urban Beijing, China during haze events, Sci. Total Environ., 660, 1392-1402,
 10.1016/j.scitotenv.2019.01.078, 2019a.
- Li, X., Hu, M., Wang, Y., Xu, N., Fan, H., Zong, T., Wu, Z., Guo, S., Zhu, W., Chen, S., Dong, H., Zeng, L., Yu, X.,
 and Tang, X.: Links between the optical properties and chemical compositions of brown carbon chromophores
 in different environments: Contributions and formation of functionalized aromatic compounds, Sci. Total
 Environ., 786, 10.1016/j.scitotenv.2021.147418, 2021a.
- Li, Y., Ji, Y., Zhao, J., Wang, Y., Shi, Q., Peng, J., Wang, Y., Wang, C., Zhang, F., Wang, Y., Seinfeld, J. H., and
 Zhang, R.: Unexpected Oligomerization of Small alpha-Dicarbonyls for Secondary Organic Aerosol and Brown
 Carbon Formation, Environ. Sci. Technol., 55, 4430-4439, 10.1021/acs.est.0c08066, 2021b.
- Li, Z., Nizkorodov, S. A., Chen, H., Lu, X., Yang, X., and Chen, J.: Nitrogen-containing secondary organic aerosol
 formation by acrolein reaction with ammonia/ammonium, Atmos. Chem. Phys., 19, 1343-1356, 10.5194/acp19-1343-2019, 2019b.
- Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou, C.: Radiative forcing of organic aerosol in the
 atmosphere and on snow: Effects of SOA and brown carbon, J. Geophys. Res.-Atmos., 119, 7453-7476,
 10.1002/2013jd021186, 2014.
- Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A.: Molecular characterization of brown
 carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene, Physical
 Chemistry Chemical Physics, 17, 23312-23325, 10.1039/c5cp02563j, 2015.
- Liu, D., He, C., Schwarz, J. P., and Wang, X.: Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere,
 npj Clim. Atmos. Sci., 3, 40, 10.1038/s41612-020-00145-8, 2020a.
- Liu, S., Huang, D., Wang, Y., Zhang, S., Liu, X., Wu, C., Du, W., and Wang, G.: Synergetic effects of NH3 and NOx
 on the production and optical absorption of secondary organic aerosol formation from toluene photooxidation,
 Atmos. Chem. Phys., 21, 17759-17773, 10.5194/acp-21-17759-2021, 2021.
- Liu, S., Aiken, A. C., Gorkowski, K., Dubey, M. K., Cappa, C. D., Williams, L. R., Herndon, S. C., Massoli, P.,
- 496 Fortner, E. C., Chhabra, P. S., Brooks, W. A., Onasch, T. B., Jayne, J. T., Worsnop, D. R., China, S., Sharma,
- N., Mazzoleni, C., Xu, L., Ng, N. L., Liu, D., Allan, J. D., Lee, J. D., Fleming, Z. L., Mohr, C., Zotter, P., Szidat,
 S., and Prevot, A. S. H.: Enhanced light absorption by mixed source black and brown carbon particles in UK
- 499 winter, Nature Communications, 6, 10.1038/ncomms9435, 2015.
- Liu, X., Wang, H., Wang, F., Lv, S., Wu, C., Zhao, Y., Zhang, S., Liu, S., Xu, X., Lei, Y., and Wang, G.: Secondary
 Formation of Atmospheric Brown Carbon in China Haze: Implication for an Enhancing Role of Ammonia,

502	Environ. Sci. Technol., 57, 11163-11172, 10.1021/acs.est.3c03948, 2023a.						
503	Liu, X. D., Wang, H. Y., Wang, F. L., Lv, S. J., Wu, C., Zhao, Y., Zhang, S., Liu, S. J., Xu, X. B., Lei, Y. L., and						
504	Wang, G. H.: Secondary Formation of Atmospheric Brown Carbon in China Haze: Implication for an						
505	Enhancing Role of Ammonia, Environmental Science & Technology, 57, 11163-11172,						
506	10.1021/acs.est.3c03948, 2023b.						
507	Liu, Y., Wang, T., Fang, X., Deng, Y., Cheng, H., Bacha, AUR., Nabi, I., and Zhang, L.: Brown carbon: An						
508	underlying driving force for rapid atmospheric sulfate formation and haze event, Sci. Total Environ., 734,						
509	139415, 10.1016/j.scitotenv.2020.139415, 2020b.						
510	Lu, J. W., Flores, J. M., Lavi, A., Abo-Riziq, A., and Rudich, Y.: Changes in the optical properties of benzo a pyrene-						
511	coated aerosols upon heterogeneous reactions with NO2 and NO3, Physical Chemistry Chemical Physics, 13,						
512	6484-6492, 10.1039/c0cp02114h, 2011.						
513	Lv, S., Wu, C., Wang, F., Liu, X., Zhang, S., Chen, Y., Zhang, F., Yang, Y., Wang, H., Huang, C., Fu, Q., Duan, Y.,						
514	and Wang, G.: Nitrate-Enhanced Gas-to-Particle-Phase Partitioning of Water- Soluble Organic Compounds in						
515	Chinese Urban Atmosphere: Implications for Secondary Organic Aerosol Formation, Environmental Science						
516	& Technology Letters, 10, 14-20, 10.1021/acs.estlett.2c00894, 2023.						
517	Meng, J., Wang, G., Li, J., Cheng, C., Ren, Y., Huang, Y., Cheng, Y., Cao, J., and Zhang, T.: Seasonal characteristics						
518	of oxalic acid and related SOA in the free troposphere of Mt. Hua, central China: Implications for sources and						
519	formation mechanisms, Sci. Total Environ., 493, 1088-1097, 10.1016/j.scitotenv.2014.04.086, 2014.						
520	Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary Organic Aerosols and Their Changes by						
521	Chemical Processes, Chem. Rev., 115, 4400-4439, 10.1021/cr5005259, 2015.						
522	Nazarenko, L., Rind, D., Tsigaridis, K., Del Genio, A. D., Kelley, M., and Tausnev, N.: Interactive nature of climate						
523	change and aerosol forcing, J. Geophys. ResAtmos., 122, 3457-3480, 10.1002/2016jd025809, 2017.						
524	Qi, W. N., Zhang, Y. F., Shen, M. X., Li, L., Dai, W. T., Chen, Y. K., Liu, Y. L., Guo, X., Cao, Y., Wang, X., Jiang,						
525	Y. K., and Li, J. J.: Comparison of Gas-Particle Partitioning of Glyoxal and Methylglyoxal in the Summertime						
526	Atmosphere at the Foot and Top of Mount Hua, Molecules, 28, 10.3390/molecules28135276, 2023.						
527	Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J., Wang, H., Wang, M., Warren, S.						
528	G., and Zhang, R.: Light-absorbing Particles in Snow and Ice: Measurement and Modeling of Climatic and						
529	Hydrological impact, Adv. Atmos. Sci., 32, 64-91, 10.1007/s00376-014-0010-0, 2015.						
530	Saleh, R., Marks, M., Heo, J., Adams, P. J., Donahue, N. M., and Robinson, A. L.: Contribution of brown carbon						
531	and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions,						
532	J. Geophys. ResAtmos., 120, 10285-10296, 10.1002/2015jd023697, 2015.						
533	Schnitzler, E. G., Gerrebos, N. G. A., Carter, T. S., Huang, Y., Healdc, C. L., Bertram, A. K., and Abbatt, J. P. D.:						
534	Rate of atmospheric brown carbon whitening governed by environmental conditions, Proceedings of the						
535	National Academy of Sciences of the United States of America, 119, 10.1073/pnas.2205610119, 2022.						
536	Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J., and Chakrabarty, R. K.: Atmospheric						
537	Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning,						
538	Environmental Science & Technology Letters, 4, 540-545, 10.1021/acs.estlett.7b00393, 2017.						
539	Sun, Y., Zhang, Q., Zheng, M., Ding, X., Edgerton, E. S., and Wang, X.: Characterization and Source Apportionment						
540	of Water-Soluble Organic Matter in Atmospheric Fine Particles (PM2.5) with High-Resolution Aerosol Mass						
541	Spectrometry and GC-MS, Environ. Sci. Technol., 45, 4854-4861, 10.1021/es200162h, 2011.						
542	Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., and Coheur, PF.:						
543	Industrial and agricultural ammonia point sources exposed, Nat., 564, 99-103, 10.1038/s41586-018-0747-1,						
544	2018.						
545	Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.: Assessing the impact of clean air						

- action on air quality trends in Beijing using a machine learning technique, Atmos. Chem. Phys., 19, 1130311314, 10.5194/acp-19-11303-2019, 2019.
- 548 Wang, D., Shen, Z., Zhang, Q., Lei, Y., Zhang, T., Huang, S., Sun, J., Xu, H., and Cao, J.: Winter brown carbon over
- six of China's megacities: light absorption, molecularcharacterization, and improved source apportionment
 revealed by multilayerperceptron neural network, Atmos. Chem. Phys., 22, 14893-14904, 10.5194/acp-2214893-2022, 2022a.
- Wang, G., Li, J., Cheng, C., Hu, S., Xie, M., Gao, S., Zhou, B., Dai, W., Cao, J., and An, Z.: Observation of
 atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009-Part 1: EC, OC and
 inorganic ions, Atmos. Chem. Phys., 11, 4221-4235, 10.5194/acp-11-4221-2011, 2011.
- Wang, G. H., Kawamura, K., Lee, S., Ho, K. F., and Cao, J. J.: Molecular, seasonal, and spatial distributions of
 organic aerosols from fourteen Chinese cities, Environmental Science & Technology, 40, 4619-4625,
 10.1021/es060291x, 2006.
- Wang, G. H., Zhang, R. Y., Gomez, M. E., Yang, L. X., Zamora, M. L., Hu, M., Lin, Y., Peng, J. F., Guo, S., Meng,
 J. J., Li, J. J., Cheng, C. L., Hu, T. F., Ren, Y. Q., Wang, Y. S., Gao, J., Cao, J. J., An, Z. S., Zhou, W. J., Li, G.
 H., Wang, J. Y., Tian, P. F., Marrero-Ortiz, W., Secrest, J., Du, Z. F., Zheng, J., Shang, D. J., Zeng, L. M., Shao,
- M., Wang, W. G., Huang, Y., Wang, Y., Zhu, Y. J., Li, Y. X., Hu, J. X., Pan, B., Cai, L., Cheng, Y. T., Ji, Y. M.,
 Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation
- 563from London Fog to Chinese haze, Proceedings of the National Academy of Sciences of the United States of564America, 113, 13630-13635, 10.1073/pnas.1616540113, 2016.
- Wang, Q., Zhou, Y., Ma, N., Zhu, Y., Zhao, X., Zhu, S., Tao, J., Hong, J., Wu, W., Cheng, Y., and Su, H.: Review of
 Brown Carbon Aerosols in China: Pollution Level, Optical Properties, and Emissions, J. Geophys. Res.-Atmos.,
 127, 10.1029/2021jd035473, 2022b.
- Wang, S. and Li, H.: NO3 center dot-Initiated Gas-Phase Formation of Nitrated Phenolic Compounds in Polluted
 Atmosphere, Environ. Sci. Technol., 55, 2899-2907, 10.1021/acs.est.0c08041, 2021.
- Wu, C., Cao, C., Li, J., Lv, S., Li, J., Liu, X., Zhang, S., Liu, S., Zhang, F., Meng, J., and Wang, G.: Different physicochemical behaviors of nitrate and ammonium duringtransport: a case study on Mt. Hua, China, Atmos.
 Chem. Phys., 22, 15621-15635, 10.5194/acp-22-15621-2022, 2022.
- Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z., and Cao, F.:
 The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical
 properties, Atmos. Chem. Phys., 20, 2017-2030, 10.5194/acp-20-2017-2020, 2020.
- 576 Wu, C., Observation of Brown carbon and its optical properties on Mt. Hua, Zenodo [data set],
 577 https://doi.org/10.5281/zenodo.10926470, 2024.
- Wu, C., Synchronous observation of aerosol at Mt. Hua, Version 1, Zenodo [data set],
 https://doi.org/10.5281/zenodo.7413640, 2022a.
- Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A. P., Collett, J. L., Zhao, B., Wang, S., He,
 K., and Gustafsson, O.: Important fossil source contribution to brown carbon in Beijing during winter, Sci. Rep.,
 7, 10.1038/srep43182, 2017.
- Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon aerosols: Recent progress and
 perspectives, Sci. Total Environ., 634, 1475-1485, 10.1016/j.scitotenv.2018.04.083, 2018.
- Yang, X., Ji, D., Li, J., He, J., Gong, C., Xu, X., Wang, Z., Liu, Y., Bi, F., Zhang, Z., and Chen, Y.: Impacts of
 springtime biomass burning in Southeast Asia on atmospheric carbonaceous components over the Beibu Gulf
 in China: Insights from aircraft observations, Sci. Total Environ., 857, 10.1016/j.scitotenv.2022.159232, 2023.
- Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E., Jimenez, J. L., Campuzano-
- 589 Jost, P., Wang, Y., Nenes, A., and Weber, R. J.: Top-of-atmosphere radiative forcing affected by brown carbon

- 590 in the upper troposphere, Nat. Geosci., 10, 486-489, 10.1038/ngeo2960, 2017.
- 591 Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical processing of aqueous
- tmospheric brown carbon, Atmos. Chem. Phys., 15, 6087-6100, 10.5194/acp-15-6087-2015, 2015.

593

594

595

596 597

598

Table 1 Optical properties of BrC and mass concentrations organic carbon/nitrogen in PM_{2.5} and
 meteorological parameters at the two sampling sites.

601

	Mountain foot (MF)			Mountainside (MS)				
	Average	Daytime	Nighttime	Average	Daytime	Nighttime		
(i) Optical properties of BrC and acidity of PM _{2.5}								
abs ₃₆₅ (M m ⁻¹)	5.1±2.4	$5.0{\pm}2.5$	5.2 ± 2.2	2.1±1.4	2.6±1.3	1.6±1.3		
$MAE_{365}(m^2 g^{-1})$	0.69 ± 0.2	0.66 ± 0.18	0.73±0.18	0.67±0.21	0.67 ± 0.15	0.68 ± 0.26		
AAE	6.0 ± 0.5	6.1±0.51	6.0 ± 0.51	5.7±1.3	5.5 ± 0.9	5.8±1.7		
abs365-BrC/abs550-BCa	0.18 ± 0.09	0.22 ± 0.08	0.17 ± 0.09	$0.26{\pm}0.08$	0.28 ± 0.08	0.25 ± 0.07		
pH	$2.9{\pm}2.0$	2.3±1.6	$3.6{\pm}2.1$	3.4±2.2	3.5 ± 2.2	3.3±2.2		
(ii) Concentrations of carbonaceous PM _{2.5} and aerosol liquid water content (ALWC)								
WSOC (µgC m ⁻³)	7.3±2.5	7.6 ± 2.8	$7.0{\pm}2.1$	3.2±2.1	4.0±2.1	2.4±1.7		
WSON (µgN m ⁻³)	2.3±1.6	$2.5{\pm}1.7$	$2.0{\pm}1.4$	1.2±0.9	1.5 ± 1.1	0.8 ± 0.7		
OC (µg m ⁻³)	14.0 ± 4.7	12.4±4.6	15.4±4.4	$5.0{\pm}2.8$	6.3 ± 2.8	3.8±2.3		
EC (µg m ⁻³)	4.3±2.0	3.1±1.0	$5.4{\pm}1.9$	1.1±0.7	1.3±0.7	0.8 ± 0.4		
Nitrophenols (ng m ⁻³)	16±13	12±10	19±15	$2.5{\pm}1.9$	3.2±2.2	$1.7{\pm}1.1$		
ALWC (µg m ⁻³)	28±64	11±15	44±86	27±71	18±24	35±95		
WSOC/OC	0.54 ± 0.15	0.62±0.13	0.47 ± 0.11	0.62±0.21	0.62 ± 0.16	0.61±0.25		
(iii) Meteorological para	meters							
T (°C)	23±4.2	27±3.0	20±2.4	15±2.5	16±2.3	14±2.3		
RH (%)	69±18	56±14	81±14	63±20	62±19	63±21		
Wind speed (m s ⁻¹)	1.3±1.1	1.5±0.93	$1.2{\pm}1.2$	3.2±2.0	2.7±1.5	3.8±2.3		
Visibility (km)	14±9.5	16±9.6	12±9.0	22±12.1	21±12	24±12.0		

⁶⁰² ^aThe abs_{550-BC} was calculated according to the mass absorption efficiency (MAE) of BC (black

603 carbon) reported by Bosch et al. (2014), and the light wavelengths for the abs_{365} -BrC and abs_{550} -

604 BC are 365 nm and 550 nm, respectively.

608

Figure 1. Temporal variations of light absorption of BrC in the ground surface (mountain
 foot site, MF) and the upper boundary layer (mountainside site, MS) atmospheres in

foot site, MF) and the upper boundary layer (mountainside site, MS) atmospheres in
inland China. (a, b) Abs₃₆₅ and boundary layer height (BLH). (c, d) Concentration of WSOC

and the ratio of light absorption of BrC at λ =365 nm to BC at λ = 550 nm.

613

615 616

617

618 Figure 2. BrC formation in air mass lifting process. (a) and (b) Diurnal variations in abs365nm and MAE at the mountain foot (MF) and mountainside (MS) sites. (c) Ratio of light absorption 619 620 of BrC at λ =365 nm to that of BC (abs-BrC/abs-BC) at λ =550 nm in daytime at both sites (The

MS

MF

621 abs_{-BC} at λ =550 nm was calculated according to mass absorption efficiency of EC reported by Bosch et al. (2014). (d) Source apportionment for the daytime BrC at the two sites. 622

MF

MS

Figure 3. Evolution in chemical composition of daytime water-soluble BrC in the air mass
transport from the mountain foot (MF site, red dots) to the mountainside (MS site, blue
dots). (a) and (c) Light absorption (abs₃₆₅) of daytime water-soluble BrC as a function of their
oxidation state (OSc=2O/C-H/C) at MF and MS sites, respectively. (b) The VK-triangle
diagram of water-soluble BrC at the two sites.

643

Figure 4. Formation of water-soluble organic nitrogen compounds (WSONs) in the air mass lifting process. (a) Diurnal variations in elemental ratio of N/C of fine particulate watersoluble organics at the mountain foot (MF) and mountainside (MS) sites. (b) Random forest analysis for the key factors affecting the WSON formation in the daytime PM_{2.5} at MS site. (c) and (d) Linear fit regressions for WSONs with NH₄⁺ and δ^{15} N-NH₄⁺ in the daytime PM_{2.5} aerosols at MS site, respectively.

650

652 653

654

656 Diurnal variations in nitrophenols and mass ratio of nitrophenols to OC (nitrophenols/OC).

- 657 Linear fit regression for nitrophenols with BbF+levoglucosan (c and d) and NO₂ (e and f),
- 658 respectively.
- 659

660

Figure 6. Impact of NH3 on atmospheric BrC over China. (a) Linear correlation between NH3 and MAE of BrC in different regions of China (NCP, north China Plain; FWP: Fenwei Plain; YRD, Yangtze River delta; PRD, Pearl River delta; TP: Tibetan Plain). (b) MAE₃₆₅ of BrC in China and other countries (The details of datasets from literatures, including specific sites, time periods, and sources, etc., are given in Table S3 and S4).