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Abstract. It is highly likely that in the next future the Mediterranean region will experience increased aridity and hydrological

droughts. Therefore, seasonal forecasts of soil moisture can be a valuable resource for agriculture and for evaluating the flux

in the vadose zone towards shallow unconfined aquifers. However, their accuracy in this region has not been evaluated against

observations. This study presents an evaluation of soil moisture in the Central Mediterranean region during the period 2001-

2021 using the seasonal forecast system (SEAS5) of the European Center for Medium-range Weather Forecast (ECMWF).5

In this perspective, standardized anomalies of soil moisture are compared with observed values in ERA5-LAND reanalysis

of ECMWF. In terms of the average magnitude of the forecast error and the anomaly correlation coefficient, the forecasts

demonstrate good performance only in certain regions of the domain for the deepest soil layer: Hungary, Peninsular Italy,

Internal areas of Balkan Peninsula, Provence, Sardinia, and Sicily. These regions correspond to those with the largest memory

time scale of soil moisture, which do not exhibit a complex orography. The obtained results show that seasonal forecasts are10

useful to detect wet and dry events for the deepest soil layer in the mentioned regions, with lead-times of up to six months. In

these regions, the area under the Relative Operating Characteristic (ROC) curve can reach values larger than 0.8. For all soil

layers, dry events are generally better captured than wet events; the best forecast skill, on average, is obtained for the events

where antecedent condition is correspondent to the present condition (dry after dry, wet after wet). To illustrate these features,

the case study of the 2012 drought period demonstrates the capacity of the SEAS5 model to forecast such an event for Central15

and Northern Italy with a six-month lead time. Furthermore, the close correlation between soil moisture and the observed

water table in shallow unconfined aquifers in Italy underscores the significant potential of seasonal soil moisture forecasts for

underground water management applications.
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1 Introduction20

Soil moisture, starting from the terrestrial surface to the deepest soil layers, represents an invaluable parameter which has a

fundamental role in the dynamics of the earth system (McColl et al., 2017). Its variability results from the complex interaction

between the atmosphere, vegetation and soil processes.

On the terrestrial surface, soil moisture is an essential component of the Earth surface energy budget, influencing the sur-

face heat fluxes and evapotranspiration from land to atmosphere (Seneviratne et al., 2010). From the climate point of view,25

Mueller and Seneviratne (2012) showed that the number of hot days is largely determined by a precipitation deficit and, as a

consequence, by small values of soil moisture. This coupling between atmospheric temperature and soil moisture is usually

defined as soil moisture-temperature feedback, where drier soils determine warmer atmosphere (Seneviratne et al., 2010). Such

feedback has the potential to exacerbate global warming by altering the surface heat balance (Qiao et al., 2023). Other studies

(Hohenegger et al., 2009; Hohenegger and Stevens, 2018; Taylor, 2008; Taylor et al., 2010) concentrated on the reciprocal30

influence between soil moisture and precipitation, which is referred to as the soil moisture-precipitation feedback. A number of

processes may contribute to this feedback, acting both on a synoptic scale (by modifying synoptic settings and enhancing the

large-scale transport of water vapor) and locally (by modifying boundary layer characteristics and influencing the organization

of convection). Nevertheless, it remains challenging to ascertain an overall sign (positive or negative) for this feedback.

The soil moisture available in the root zone is essential for vegetation and agriculture. Its values can be used as indexes for35

detecting hydrological drought (Spennemann and Saulo, 2015). Through its impact on photosynthesis processes, Humphrey

et al. (2021) found that the variability of soil moisture in climate model simulations drive the 90% of the inter-annual variability

of the global land carbon uptake.

The deep soil moisture is a fundamental feature with respect to the flux in the vadose zone towards shallow unconfined aquifers.

For example, Rodell et al. (2007) used the satellite observed terrestrial water storage from the Gravity Recovery and Climate40

Experiment (GRACE) to determine the groundwater storage. Later, Getirana et al. (2020) demonstrated that the initialization of

seasonal forecast with such data improves groundwater forecasts in the USA. In addition, Li et al. (2021) evaluated groundwa-

ter recharge from different land surface models and found that the seasonal cycle of simulated groundwater storage compared

well with in situ groundwater observations.

45

Despite its fundamental role, in situ observations of soil moisture are scarce. Satellite and reanalysis products can provide

a useful alternative to fill this gap. However, direct satellite observations are possible only for the first few centimeters below

the surface (Dorigo et al., 2021). These surface observations can be propagated through the root zone by filtering operations,

empirical models or land surface models. Reanalyses offer a great alternative for studying soil moisture and they are character-

ized by significant correlations with in situ observations. Li et al. (2020) compared different reanalysis and found ERA5, the50

fifth generation reanalysis of the European Center for Medium range Weather Foreacasts (ECMWF), to show the highest skill.

Also Bongioannini Cerlini et al. (2017, 2021) showed the strong correlation between ERA5 flux and aquifer water table obser-

vations. The same was found by Spennemann and Saulo (2015) between the Global Land Data Assimilation System (GLDAS)
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and multi-satellite soil moisture anomalies. The utility of soil moisture data from land surface models employed within at-

mospheric general circulation models hinges not on the soil moisture value itself, but on its temporal variations, which are55

particularly well represented when compared to observations (Koster et al., 2009). By analyzing different reanalysis and land

surface models with respect to observational data in Central Italy, Bongioannini Cerlini et al. (2023) found, on average, the best

performances of the ERA5 reanalysis with respect to other well-established reanalysis. As a further feature suggesting the use

of ERA5, its good performance in terms of water budget evaluation in closed lakes must be mentioned (Bongioannini Cerlini

et al., 2022; Saraceni et al., 2024). For these reasons, in this paper ERA5 reanalysis, and its land component ERA5-LAND60

(Muñoz-Sabater et al., 2021), will be used as a reference soil moisture condition.

There is high confidence that the Mediterranean region will suffer from a larger aridity and an increase in hydrological

droughts (Ranasinghe et al., 2021). Moreover, aridity can heavily impact the snowmelt recharge of the aquifers in the mountain

ranges of the Mediterranean area, further affecting hydrological droughts (Lorenzi et al., 2024; Doummar et al., 2018) as well65

as vegetation phenology (Cerlini et al., 2022). In this context of climate change, sub-seasonal to seasonal (S2S) forecasts are

a fundamental tool for adaptation strategies, especially regarding water resources management. The accuracy of S2S forecast

system relies on the simulation of the response of the atmosphere to the slowly varying states of the ocean and land surface

(Koster et al., 2004). Johnson et al. (2019) demonstrates how SEAS5, the seasonal forecasting system of ECMWF, has a par-

ticular strength in the prediction of El Niño Southern Oscillation (ENSO). de Boisséson and Balmaseda (2024) found globally70

useful forecast skill when predicting the occurrence of marine heatwaves (prolonged period of extremely warm sea surface

temperature) for the two seasons after the forecast initialization date. Crespi et al. (2021) analyze the forecast skill of SEAS5

for three key climate variables (temperature, precipitation and wind speed) over Europe and found such forecasts useful for

climate services after a proper bias-adjustment method was applied. Prodhomme et al. (2021) found that seasonal forecasts

from the SEAS5 system starting from the early May can provide useful information about the probability of occurrence of75

European summer heatwaves. A recent study over the Mediterranean region by Calì Quaglia et al. (2022) found that individual

seasonal forecasting systems outperform elementary forecasts of precipitation anomalies based on persistence or climatology.

However, the added value is not uniform over the Mediterranean area. The same dis-homogeneity and potential usefulness of

seasonal forecast in the Mediterranean area was found also by Costa-Saura et al. (2022) for agriculture and forestry. However,

the same analysis could bring different results in regions with marked orographic impact and land-sea contrast such as the80

Mediterranean region. Ceglar and Toreti (2021) show that seasonal climate forecast by SEAS5 provides useful information

for decision-making processes in the European winter wheat-producing sector, by analyzing minimum and maximum daily

temperature and daily total precipitation. In particular, drought events were better predicted than excessive wetness periods.

On the scale of S2S forecasts, soil moisture is one of the most impactful land parameter and is crucial for the forecast skill

(Koster et al., 2004, 2016; Merryfield et al., 2020; Dirmeyer et al., 2018). Esit et al. (2021) found that land initialization85

contributes to approximately a third of the total soil moisture predictability, while the remaining part is attributable to ocean

conditions. Moreover, they found that the same initialization can provide limited skill in the precipitation forecast but enough

skill in the soil moisture forecast. This result suggests that skillful seasonal prediction can be made on drought occurrence
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focusing on the soil state. This can be attributed to reduced variability of soil moisture which is an order of magnitude smaller

than that of rainfall. The study by Kumar et al. (2019) in North America suggested that this source of predictability is connected90

to the soil moisture reemergence process, in which moisture anomalies stored in the deep soil layer can “reemerge” to the sur-

face, restoring the earlier root zone anomaly and providing a year-to-year soil moisture memory. Spennemann et al. (2017)

found that seasonal forecast of Standardized Soil Moisture Anomalies (SSMA) perform better than forecast of precipitation by

using the CFSv2 (Climate Forecast System) in South America. Moreover, the performance were found to be higher for austral

winter than summer, and for dry events rather than wet episodes. This result shows the value of seasonal forecast of SSMA95

for their use for agricultural drought monitoring. A recent study by Boas et al. (2023) found that the Community Land Model

(CLM5), forced by SEAS5 seasonal forecasts, satisfactorily reproduces the inter-annual variation of crop yield and also the

high- and low-yield seasons in Germany and Australia. However, a systematic bias of soil moisture was found when comparing

with satellite observations.

Most of the above results apply to large continental regions in North and South America, while in Europe seasonal forecast100

performances are mostly evaluated for surface atmospheric variables. Accordingly, to fill this gap, this paper focuses on evalu-

ating seasonal forecasts of soil moisture for water resources management, with particular attention to wet and dry events. The

key questions addressed in this study are: i) can the seasonal forecast over the central Mediterranean be used to predict the

soil moisture behavior? ii) does performance vary depending on whether a forecast period is dry or wet? iii) can we use such

information to develop a real-time applications for water resource management?105

The paper is structured as it follows. Section 2 describes the study area, the seasonal forecast system and the reanalysis data

used to validate the forecast. Section 3 provides a description of methods for evaluating the forecast performance. Results

are reported in Section 4, while Section 5 examines some case studies of extreme dry and wet periods. Finally, section 6

summarizes and discuss the main findings of this study.

2 Study area and data110

2.1 Study area

This study focuses on the Central part of the Mediterranean region (5oE-25oE, 35oN-50oN), as shown in Figure 1. Such an

area represents a challenge for seasonal forecasts (Doblas-Reyes et al., 2013) for different reasons. First it is greatly influ-

enced by climate change, sometimes recognized as a hot spot. As stated by the sixth IPCC report (Ranasinghe et al., 2021),

in the Mediterranean region there is a strong agreement between regional climate models that precipitation will decrease and115

temperature will increase by mid- and end-century for the Representative Concentration Pathway (RCP-8.5) and the Shared

Socioeconomic Pathways (SSP5-8.5) scenarios. Therefore, with high confidence, this area will suffer from a larger aridity and

an increase in hydrological droughts. Second, the complex orography of this region (the Alps, the Apennines, the Dinaric Alps,

and part of the Atlas mountains) complicates the precipitation forecasts (Silvestri et al., 2022). Finally, additional sources of

uncertainties comes from land-sea contrast, atmosphere-sea interactions, and the complex dynamics of extra-tropical atmo-120
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spheric circulation.

Figure 1. The study area and its orography as represented by: (a) Digital Elevation Model with 1 km resolution (Danielson et al., 2011,

GMTED) ; (b) ERA5 reanalysis with horizontal resolution of about 31 km (which can be taken as a reference also for SEAS5 system which

has a resolution of about 36 km); (c) is the soil type categories as represented in ERA5-LAND. White dots represent water table observations

in the Veneto and Umbria regions analyzed in this paper as case studies. The black rectangular area is used as a reference area for averaging

anomaly correlation coefficients in Central Italy.
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2.2 Soil moisture reanalysis

ERA5-LAND (Muñoz-Sabater et al., 2021) and ERA5 reanalysis itself (Hersbach et al., 2020) are used here as a reference

dataset for soil moisture since it has been shown to have good performance in representing the observed soil moisture (Muñoz-125

Sabater et al., 2021; Li et al., 2020), especially regarding its seasonal cycle.

ERA5 is produced by using the Integrated Forecasting System (IFS) model version CY42R1. The land surface model is HT-

ESSEL (Balsamo et al., 2009) which interacts directly with the atmosphere. Soil moisture is a prognostic variable and, for this

reason, its initial value is needed to run the model. Precisely, observations in ERA5 are assimilated each 12 hours through a 4d-

variational (4d-Var) approach. A simplified Extended Kalman Filter (De Rosnay et al., 2013) is implemented in IFS to produce130

the initial condition for the soil moisture analysis. It is based on two different sources of observations (Albergel et al., 2012):

the surface observations of temperature and relative humidity from synoptic stations (SYNOP) measured at 2 m above the

ground level (the so-called screen level), and MetOp-A, MetOp-B Advanced Scatterometer (ASCAT) soil moisture data from

satellites. Screen-level parameters are indirectly related to soil moisture, while satellites provide a more direct measurement

of the surface soil moisture. Since the latter source is capable of describing only the top few centimeters of the soil (Albergel135

et al., 2012), the root-zone soil moisture is estimated by propagating downwards this information by means of the H-TESSEL

hydrological model.

The high horizontal resolution of ERA5 (0.28o ≈ 31 km), together with an improved physics and data assimilation methods,

make this reanalysis one of the most reliable and physically consistent dataset of global soil moisture. Seasonal forecasts prod-

ucts from SEAS5 come from a different model version, with different initial conditions, different data assimilation methods,140

and different horizontal resolution (see Johnson et al., 2019, for more details).

ERA5-LAND, the land component of ERA5, is produced by running the H-TESSEL hydrological model at a higher horizon-

tal resolution of 9 km. The static and climatological fields, like soil type, land-sea mask and orography, are the same as ERA5

but interpolated to a higher resolution grid. Soil type, which is a relevant parameter for calculating soil moisture, is shown145

in Figure 1c. When moving across different grids, the dominant soil type is selected in order to preserve hydraulic properties

(Balsamo et al., 2009). This is true also for the seasonal forecast system SEAS5 (see below). The other difference between

ERA5 and ERA5-LAND is the thermodynamic input. In particular, in ERA5-LAND the surface pressure and the temperature

are adjusted for the altitude through a daily environmental lapse rate obtained by ERA5 data. As discussed in Muñoz-Sabater

et al. (2021), such a dynamical downscaling of ERA5 implies consistent improvements for soil moisture especially in the150

root zone, when compared to soil moisture observations. Instead, for the top layer, ERA5-LAND slightly improves the ERA5

estimates. The main reasons behind such improvements are due to a better representation of the soil type which changes the

saturation level of soil moisture, thus affecting evapotranspiration.
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2.3 The seasonal forecasting system (SEAS5)

Seasonal forecasts of monthly mean soil moisture were taken from the fifth generation seasonal forecasting system (SEAS5)155

of ECMWF (Johnson et al., 2019). In the following, we briefly provide a few details on SEAS5, but the reader is referred to

Johnson et al. (2019) for further information.

SEAS5 is based on cycle 43r1 of the Integrated Forecast System (IFS) and consists of a coupled system of atmospheric, land

surface, oceanic, and sea-ice components. The horizontal resolution of the atmospheric model physics is about 36 km (O320

grid) with 91 levels in the vertical. The ocean model is ORCA (0.25o) with 75 levels in the vertical. Land surface is represented160

through the H-TESSEL model (Balsamo et al., 2009), while sea-ice is treated with the LIM2 model (Fichefet and Maqueda,

1997). The atmosphere and land surface are initialized using ECWMF operational analyses, while the ocean and sea-ice are

initialized using OCEAN5 (Zuo et al., 2019), which combines the ORAS5 historical ocean reanalysis with the OCEAN5-RT

daily ocean analysis.

In this paper, SEAS5 hindcasts (or reforecasts, that is forecasts produced for the past period between 2001-2016) and forecasts165

between 2016-2021, for a total period of twenty years (2001-2021), are used. There is no substantial difference between the

system set up for hindcasts (reforecasts) and forecasts. Such a distinction is done since the SEAS5 system become operational

in 2017 and the actual forecasts were started from that period. Hindcasts are performed in order to extend the available time

period of seasonal forecasts and allow a better calibration. Moreover, the period until 2016 is used as a reference period for

calculating anomalies and the bias adjustment of forecasts with respect to observations. Each forecast consists of different170

members and lead-time months. The SEAS5 reforecasts have 25 members, while the forecasts have 51 members. To have

a homogeneous number of members throughout all the analyzed period, only the first 25 forecast members are considered.

Regarding the lead-times, each forecast consists of 7-month time steps and it is initialized at the beginning of each month. In

our analysis, all lead-times spanning from 1 to 6 months are considered.

2.4 Water table observations175

In this study, we use surface observations of water table as a direct proxy for dry and wet case study events. We select 2

piezometers in two different Italian regions, Umbria and Veneto, respectively located in the Central and Northern part of Italy

(white dots in Figure 1). The piezometers monitor two different shallow alluvial and unconfined aquifers with a mean depth of

water table below 10 m, whose evolution has been found to be representative of a large area surrounding the point observation

(Bongioannini Cerlini et al., 2021). In such unconfined aquifers, the flux in the vadose zone is the result of the direct interaction180

between land and atmosphere.

The measurements of the water table elevation are provided by the regional piezometric network of the Umbria region, man-

aged by the Regional Environmental Protection Agency [Agenzia Regionale per la Protezione Ambientale (ARPA)] and by

local water management services in Veneto. Daily water table data have been collected for at last 10 years and subjected to

preliminary quality control procedures (see Bongioannini Cerlini et al., 2021, for a detailed description of the quality controls),185
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before calculating their monthly mean and the corresponding standardized anomalies.

3 Methods

Monthly mean values of the soil moisture, θ, from seasonal forecasts are validated against monthly mean values of soil moisture

from both ERA5 and ERA5-LAND reanalysis. Both datasets are interpolated over a regular grid of 0.125o of horizontal190

resolution. The number and the depth of soil layers in each column is the same in both SEAS5, ERA5 and ERA5-LAND: four

soil layers at a depth of 7 cm (soil layer 1), 28 cm (soil layer 2), 100 cm (soil layer 3), and 289 cm (soil layer 4), respectively. The

soil type, when passing across different grids, is taken as the prevailing soil type in order to preserve soil hydraulic properties

(Balsamo et al., 2009).

The evaluation of seasonal forecasts and also the discrimination of dry and wet periods is performed over the Standardized Soil195

Moisture Anomaly (SSMA). Following the approach by Spennemann et al. (2017), SSMA is calculated at each grid point (i,j),

month (m, from January to December), year (y) and soil layer (k) as:

SSMAk(i, j,m,y) =
(
θk(i, j,m,y)− θk(i, j,m)

)
/σθk(i, j,m) (1)

where ·= time average operator over all the reference year, and σ = standard deviation operator. The time period considered

for the forecast validation spans 20 years from 2001 to 2021, while the reference time period considered for evaluating the200

monthly climatology and standard deviation ranges from 2001 to 2016.

The same reference period is also considered for the bias adjustment of seasonal forecast. The method used in this work is the

simple Mean and Variance Adjustment method as described by Manzanas et al. (2019). Each member mean and variance over

each grid point is bias-adjusted with respect to the ERA5 observation mean and variance over the period 2001-2016, in the

following form:205

θ′k(l,m,y,n) =
(
θk(l,m,y,n,)− θ̂k(l,m)

)σobs(m)

σf (l,m)
+ θobsk (m) (2)

where l is the forecast lead time, m is the forecast month, n is the index representing each ensemble member, θ̂k(l,m) is

the ensemble and time average of forecasts for each lead time and month over the reference period, σf (l,m) is the standard

deviation of the complete ensemble for each lead time and month over the reference period, θobsk is the time average of all

observation for the considered month over the reference period, and σobs(m) is the standard deviation of all observations for210

the considered month over the reference period. The bias adjustment is computed for each forecast lead-time (l, from 1 to 6

months). In this way, the bias and variance adjustment take into account both the forecast month and the forecast lead time,

which has been found to be beneficial in previous work by Kumar et al. (2014). Although the simplest among different meth-

ods, Manzanas et al. (2019) demonstrated that MVA methods represent a good compromise between computational cost and

performance. This is particularly relevant, since the final aim of this study is to develop real-time applications for climate ser-215

vices. The final effect of the bias adjustment on the forecast ensemble mean is shown in Figure 2, where the Umbria reference
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grid point (see Figure 1) is shown as an example.
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Figure 2. Soil moisture time series over Umbria for (a) soil layer 1, (b) soil layer 2, (c) soil layer 3, (d) soil layer 4. Different lines represent

ERA5-LAND reanalysis (black solid line), SEAS5 seasonal forecast without bias adjustment at lead time 1 month (gray dashed line), SEAS5

seasonal forecast with mean and variance bias adjustment at lead time 1 month (SEAS5-MVA, black dashed line).

In order to analyze the variability of soil moisture and to compare it across different soil layers, we compute the memory

time-scale of each layer as the e-folding time of the temporal autocorrelation function. The autocorrelation is evaluated by220

calculating the Spearman correlation coefficient, shifting the time series by a temporal lag which is between 0 and 365 days.

The corresponding time when the correlation coefficient becomes lower than e−1 is taken as the memory time scale of that

grid point and soil layer. This time scale is evaluated by considering ERA-LAND daily mean soil moisture data over all the

domain. An example of this procedure for the Umbria reference point is reported in Figure 3. As expected, the deeper the soil

layer the longer the memory time scale. This behavior can be observed for all grid points of the study domain, as it will be225
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shown later in subsection 4.1. A further interesting feature is pointed out by the autocorrelation structure. Precisely, after an

initial decay (as expected), the autocorrelation shows a rebound with a secondary statistically significant maximum at a lag

of approximately 300-350 days. Such rebound could be indicative either of the seasonal cycle or of the reemergence of soil

moisture anomalies as hypothesized by (Kumar et al., 2019). However this behavior is not representative of all regions and

then merits further explorations in future research.230
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Figure 3. Memory time scale over Umbria region for the different soil layers: soil layer 1 (dotted line), soil layer 2 (dashed-dotted line),

soil layer 3 (dashed line), soil layer 4 (solid line). The temporal correlation refers to the time series shown in Figure 2. The dashed gray

line represents the threshold e−1 and the corresponding e-folding time (the time when correlation is lower than this threshold) represents the

memory time scale of each soil layer.

The performance of SSMA forecasts is evaluated through three different metrics, two deterministic and one probabilistic.

First, the average magnitude error of SSMA ensemble mean is evaluated trough the Root-Mean-Squared Error (RMSE). This

metric, by definition, puts greater influence on large errors than smaller errors. RMSE is commonly used both in weather

forecast performance assessment (Robertson et al., 2015; Johnson et al., 2019) and seasonal streamflow forecasting (Mendoza

et al., 2017; Yuan, 2016). Successively, the Anomaly Correlation Coefficient (ACC) is used to measure the correspondence235

between forecasted and observed ensemble mean SSMA. ACC is the most widely used skill metric for evaluating the skill of

deterministic forecast (Doblas-Reyes et al., 2013; Mishra et al., 2019; Johnson et al., 2019; Costa-Saura et al., 2022) and it

is not sensitive to forecast bias. Then the ability of SEAS5 ensemble system to discriminate between different event type is

measured by the area under the Relative Operating Characteristic (ROC) curve (Wilks, 2011; Madrigal et al., 2018; Carrao

et al., 2018). An example of the procedure for the evaluation of the ROC curve is reported in Figure 4 for the Umbria reference240

point. In particular, dry and wet events have been defined as those with the SSMA being smaller or larger than 1, respectively

(see Figure 4a). An ensemble (probabilistic) forecast will have a certain probability of detecting that event. Using a set of
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increasing probability thresholds, we build a contingency table (true and false positive, true and false negative). Then we

calculate the true positive rate (or probability of detection) and the false positive rate (or false alarm rate) for each probability

bin. The ROC curve is obtained by plotting the true positive rate against the false positive rate as shown in Figure 4b for the245

different probability bin. For each probability bin, the true positive rate should be larger than the false alarm rate, otherwise the

forecast is not useful. Therefore, the area under the ROC curve can be used as a score to evaluate the usefulness of a forecast.

The diagonal line on Figure 4b, indicates no skill (ROC area close to 0.5), while the perfect forecast would have a ROC area

equal to 1. Each metric has been evaluated for the different forecast lead-times. The first two metrics (RMSE and ACC) are

evaluated by considering the ensemble mean SSMA values, while the latter (ROC) is evaluated by considering all the ensemble250

members. All metrics calculations rely on the xskillscore Python Package (https://github.com/xarray-contrib/xskillscore).

Figure 4. Example of estimation of ROC curve over Umbria (white dot in Figure 1): (a) the time series of SSMA4 over soil layer 4 as

observed by ERA5-LAND (red line) and forecasted by the 25 members of S2S bias-corrected ensemble at lead-time 1 months(S2S-MVA

(LEAD1), black lines). Dry (SSMA4 < 1) and wet (SSMA4 > 1) events are highlighted by red and blue shading, respectively; and (b) ROC

curve for the time series shown in (a) for dry events (red line) and wet events (blue line). The value of the area under the ROC curve is

reported in the legend.

4 Results

In this section, the obtained results are analyzed in terms of soil moisture variability and forecast performance metrics.

11

https://github.com/xarray-contrib/xskillscore


4.1 Soil moisture variability

The monthly mean soil moisture variability for each soil layer is shown in Figure 5. Both ERA5 and ERA5-LAND datasets255

are reported in order to highlight the differences between these datasets. Along with to the soil moisture reanalysis products,

also the unbiased version of SEAS5 is reported at the following lead times: 1 month (L1), 3 months (L3) and six months (L6).

The boxplot represents the spread of soil moisture both in time (i.e., soil moisture variations across different years for the same

month) and space (i.e., soil moisture variations across all the domain grid points).

Figure 5 shows that there is a strong seasonal cycle in the upper layers (Figures 5a-c) and a weak seasonal cycle in the deep-260

est soil layer (Figure 5d), where the median values of soil moisture exhibit very small variations across the year. Regarding

the median values, ERA5 differs from ERA5-LAND. In particular, ERA5 has smaller values of soil moisture with respect to

ERA5-LAND. This may be related to the different thermodynamic input and soil properties, which modify the evapotranspi-

ration contribution, as discussed in Muñoz-Sabater et al. (2021). The need for a bias-adjustment of the seasonal forecast is

evident in Figure 5: the median values are not always aligned with the soil moisture reanalysis, especially during the autumn265

season (September, October, November) for the three uppermost soil layers. In the deepest soil layer the bias is smaller and

homogeneous throughout the year, but still present.

The spread of soil moisture across all domain points and years, measured as the difference between the 75th percentile and the

25th percentile, consistently vary across the months in the three uppermost soil layers and it reaches its maximum variations

during summer and autumn seasons. On the contrary, it remains almost constant throughout the year for the deepest soil layer.270

In general, the magnitude of the spread and its variability seems to be well represented by the seasonal forecasting system.

Finally, moving across different forecast lead times, a largest bias can be found as the lead time increases, whereas the spread

in general remains constant.

The most important result from Figure 5 regards the smaller variability of soil moisture in the deepest layer, with respect to that

of the surface layers. As expected, the dynamics of the deepest soil layer is slower than the three uppermost layers and this may275

be important for a seasonal forecasting system where slowly varying variable can be a source of predictability (Kumar et al.,

2019). In the following, we will use ERA5-LAND as main products for comparing with forecasts. However, all the analysis

have been done also for ERA5 reanalysis in order to confirm that results are not significantly affected by the choice of the

reanalysis system.

280

To confirm such results and show the different dynamics of the soil layers across all the central Mediterranean region, Figure

6 provides the memory time scale, as evaluated from ERA5-LAND daily mean soil moisture. The memory time scale in the first

soil layer (Figure 6a) is between 1 and 2 months, with minimum values of 5 days over complex orographic region (Alps and

Dinaric Alps) where fast oscillations of soil moisture occur, and maximum values of 64 days over the other regions. In general,

the memory time scale increases for all regions as we move toward the deepest soil layer, even though in some areas it remains285

also below 40 days. In the soil layer 2, the maximum values of memory time scale is around 3 months, with some regions in

the Alps and the dinaric Alps still exhibiting values as low as 6 days. In soil layer 3, minimum values equal to two weeks are
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Figure 5. Boxplot of monthly mean soil moisture values for all the land grid points (land percentage > 75%) for ERA5 (white), ERA5-

LAND (gray), SEAS5-L1 (lead time 1 month, red), SEAS5-L3 (lead time 3 months, yellow), SEAS5-L6 (lead time 6 months, cyan): (a) soil

layer 1 (7 cm), (b) soil layer 2 (28 cm), (c) soil layer 3 (100 cm), and (d) soil layer 4 (289 cm).
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Figure 6. Memory time-scale of daily mean ERA5-LAND soil moisture over the period 2001-2020 for the Central Mediterranean for: (a)

soil layer 1 (7 cm), (b) soil layer 2 (28 cm), (c) soil layer 3 (100 cm), and (d) soil layer 4 (289 cm). The time-scale is reported in days

and corresponds to the time in which the temporal autocorrelation becomes lower than e−1. Land regions where color shading is absent are

regions where the memory time scale exceeds 1 year. Red contour line indicates where the memory time scale corresponds to 40 days.
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still present in the Alps, while the maximum values even larger than 6 months appear in the Northern part of Africa. Finally,

in the soil layer 4, the minimum time scale is 1 month in some region of the Alps, while the maximum values can exceed also

the entire year (white areas in Figure 6d). There is a marked variability of soil moisture time scale in the fourth layer which290

exhibits a close connection to the orography of the domain (Figure 1b). Complex orographic areas, with the exception of few

regions such the Northern Africa, usually exhibit smaller memory time scale than the flat areas.

4.2 Root-Mean-Squared Error (RMSE)

The RMSE of the seasonal forecasts ensemble mean SSMA over all soil layers is shown in Figure 7 for lead-times 1, 3 and 6

months. In all cases, the average magnitude error is almost larger than one standard deviation of soil moisture (1 SSMA) over295

soil layer 1 and soil layer 2 (Figures 7a and 7d). This error remains almost constant over different forecast lead-times.

Going towards the deepest soil layers and considering lead-time 1 month, the RMSE decreases over certain regions (Provence

in France, Central and North Italy, Hungary and Romania), with values below 0.75, while it largely increases in other regions

like the Alps, South-eastern Sicily, Sardinia and Tunisia (Figure 7l). The same distribution of average errors characterizes also

lead-times 3 and 6 months, even if with a slight increase of RMSE over all regions. As a result, the accuracy of seasonal300

predictions increases for the deeper soil layers. This can be attributed to the slower dynamics of the deep soil layers as shown

in Figure 6.

4.3 Anomaly Correlation Coefficient (ACC)

Figure 8 shows the ACC between forecasted and observed SSMA. As found for the RMSE, ACC reaches significant values

(as indicated by black dots in Figure 8) above 0.8 (shaded contours in Figure 8) only on the deepest soil layer and over certain305

regions like Central and Northern Italy, some parts of France, Croatia and Hungary (Figure 8l). At lead-time 6 month, some

regions like Central and Northern Italy and Bavaria, still exhibit high correlation values (Figure 8n). On the other hand, no

correlation is found for the upper soil layers at 3 and 6-months lead-time (Figures 8b,c,e,f,h,i). This absence of correlation is

also present at the deepest soil layer in the Alps, the Sardinia, the South-western coast of Italy, and in Tunisia, where correlation

coefficient become negative (Figure 8n). At 6-month lead-times, the correlation disappears also for all the Western coast of310

Balkan peninsula (Figure 8n), where there are positive values at 1 and 3 lead-time month (Figure 8l and 8m, respectively).

Figure 9 shows the average ACC for all forecast months and lead-times. The first column shows values averaged over all

domain, while the second column shows values averaged over Central Italy (black squared shown in Figure 1). Either averaging

over all the domain or only over Central Italy, correlation is evident only in the deepest soil layer (SSMA4) is considered.

With regard to the correlation of SSMA4 forecasts with observations, the domain-average ACC is always below 0.8, while it315

increases above 0.8 over Central Italy. In general, the highest correlations are found over the Autumn (SON) season, while the

lowest are during the winter (DJF) season. In areas with a high correlation, like Central Italy, the most correlated target-months

are between April and October, with a minimum in December and January.

15



SS
M

A
1

SS
M

A
2

SS
M

A
3

SS
M

A
4

a) b) c)

f)

i)

n)

e)

h)

m)

d)

g)

l)

Figure 7. RMSE of Standardized Soil Moisture Anomalies (SSMA) averaged over the whole analyzed period (2001-2021). Rows show

different soil layer: (a,b,c) soil layer 1 (7 cm); (d,e,f) soil layer 2 (28 cm); (g,h,i) soil layer 3 (100 cm); (l,m,n) soil layer 4 (289 cm). Columns

show the same statistics for the forecast values at different forecast lead-times (1, 3, and 6 months).
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Figure 8. Anomaly Correlation Coefficient (ACC) of Standardized Soil Moisture Anomalies (SSMA) averaged over the whole analyzed

period (2001-2021). Rows show different soil layer: (a,b,c) soil layer 1 (7 cm); (d,e,f) soil layer 2 (28 cm); (g,h,i) soil layer 3 (100 cm);

(l,m,n) soil layer 4 (289 cm). Columns show the same statistics at different forecast lead-times (1, 3 and 6 months). Significant correlation

(p-value < 0.05) are marked with black dots.
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Figure 9. Area averaged Anomaly Correlation Coefficient (ACC) for each target month (x axis) and for different lead-times (y axis). Average

values are computed over the whole domain (a,c,e,g) and Central Italy (b,d,f,h, black squared areas reported in Figure 1a). Rows show

different soil layers: top layer (SSMA1, 7 cm depth), second layer (SSMA2, 28 cm depth), third layer (SSMA3, 100 cm depth), and bottom

layer (SSMA4, 289 cm depth).
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4.4 Relative Operating Characteristic (ROC)

The ability of the seasonal forecasts to discriminate between dry and wet events is examined trough the area under the ROC320

curve. In this paper, a wet and dry event is considered as the one in which SSMA is above or below 1, respectively. A ROC

area larger than 0.5 means that forecasts can give more information than climatology alone, thereby indicating the potential

usefulness of the forecasts. Figure 10 shows the ROC area for dry events for the first three soil layers at lead-time 1, 3, and 6

months, respectively. As also found for RMSE and ACC, it is evident that the forecast becomes more effective going towards

the deepest soil layers. Values larger than 0.8 concern only SSMA2 and SSMA3 and some regions (i.e., Central and Northern325

Italy, internal areas of Hungary). The values in question exhibit a decline as the forecast lead time increases. This trend reaches

its maximum at lead time six months, at which point no skill is evident in any region or soil layer. The sole exception to this

is found in some regions of southern Europe, namely Northern Africa, Apulia and Sicily. The same behavior is observed for

wet events, but with smaller values of ROC area, indicating that wet events are less predictable than dry events (not shown).

From Figure 10 it is evident that seasonal forecast for the upper three layers is useful only in certain regions like the Central330

and Northern part of Italy and some internal area of Hungary, and only for shorter lead-time months. There are also some

areas which exhibit no skill at all, neither at different layers or different lead-time months: the South-western coast of Italy, the

Southern part of the Balkan peninsula, and the Alps.

The picture changes for the deepest soil layer 4 as shown in Figure 11. At lead-time 1 month, dry and wet periods show

similar spatial distribution of ROC area, but with dry events (Figure 11a) having larger values than wet events (Figure 11b).335

Areas with no skill are still present and they are very similar to those listed above for the other soil layers: South-western

coast of Italy, the Alps, Tunisia, the Alps and the Southern portion of Balkan Peninsula. There are also regions, like Sicily and

Sardinia, where the ROC area is larger than 0.5 for dry events, but it turns into values smaller than 0.5 for wet events.

When examining lead-time 6 months, there are some areas where the seasonal forecasts are still very useful and exhibit large

ROC area: Provence, South eastern coast of Italy, Central and Northern Italy, internal areas of Balkan peninsula. Instead, other340

areas loose their predictability, such as the Adriatic coast of Balkan peninsula or the Alps.

4.5 Sensitivity to soil moisture preconditions

In order to better understand the system’s predictive ability to different soil moisture conditions, we study wether the forecast

performance varies with varying antecedent soil moisture preconditions. In Section 4.1, we demonstrated that the memory

time scale of soil moisture in the deepest soil layer is, on average, approximately three months. Consequently, we will consider345

the soil moisture antecedent condition to be that which was three months earlier. In order to have a larger number of events,

differently from the previous section, we will consider dry events and wet events as those where the SSMA was lower than

-0.5 and higher than 0.5, respectively. The dry precondition is considered to be present when the antecedent SSMA is negative,

while a wet precondition is verified when the SSMA is positive. An example of event selection for the Umbria reference point

is reported in Figure 12.350
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Figure 10. Area under the ROC curve averaged over all dry events during 2001-2021 for: (a,d,g) soil layer 1 (7 cm) SSMA1; (b,e,h) soil

layer 2 (28 cm) SSMA2; (c,f,i) soil layer 3 (100 cm) SSMA3. Different rows concern different lead-times.

20



a) b)

d)c)

e) f)

Figure 11. Area under the ROC curve averaged over all dry (a,c,d) and wet (b,d,g) events during 2001-2021 for the deepest soil layer 4 (289

cm) SSMA4; different rows concern different lead-times.
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Figure 12. Example of event selection based on soil moisture pre-condition over the Umbria reference point for ERA5-LAND SSMA in the

deepest soil layer 4 (289 cm). Dry periods are considered as those with SSMA <−0.5, while wet periods are those with SSMA > 0.5. A

period is considered to happen after a dry period when the SSMA evaluated three months earlier is negative (SSMA < 0), while a period

is considered to happen after a wet period when the SSMA evaluated three months earlier is positive (SSMA > 0). The result of such a

selection is reported with the following lines: entire time series (gray solid line), dry period after a dry period (red solid line), dry period after

a wet period (red dotted line), wet period after a dry period (blue dotted line), wet period after a wet period (blue solid line).

After the event selection, we calculate the area under the ROC curve for each grid point, following the procedure already

used for dry and wet events in Section 4.4. The results are reported in Figure 13 for the deepest soil layer and considering only

the forecast at lead time 1 month.

As expected, most of the predictive ability of the system comes from the memory of the deepest soil layer itself, since

the area under the ROC curve is larger on average for the events where antecedent condition is correspondent to the present355

condition (dry after dry, wet after wet). When the system is in transition from a dry period to a wet period, only few regions

exhibit values of the area under the ROC curve larger than 0.7: some regions of central and northern Italy, internal regions of the

Balkan peninsula and the Hungary region. In particular, the Hungary region (the Great Hungarian Plain) seems to have a large

values of the score for all the events type. Regarding the wet after dry period the score is relevant also for the southern-east

coast of Italy and the Wallachia in Romania.360

5 Links with groundwater levels: the 2012-2013 dry and wet periods

In this section, we shows a possible application of seasonal forecasts of soil moisture for groundwater management.

Figure 14a shows the water table level observations (expressed as a standardized anomalies with respect to their mean and

standard deviation) in two different locations of Italy, Umbria and Veneto regions, in the Central and Northern part of Italy,

respectively (Figure 1). The monitored aquifers are selected to be shallow (depth smaller than 10 m) and unconfined in order to365
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Figure 13. Area under the ROC curve for the deepest soil layer 4 (289 cm), SSMA4 and for the forecast lead time 1 month as averaged over

all: (a) dry after dry events; (b) dry after wet events; (c) wet after dry events; (d) wet after wet events.
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be directly influenced by atmospheric conditions rather than other groundwater processes (Bongioannini Cerlini et al., 2021).

From such observations we detect only three dry periods (in 2007, 2012 and 2017) where the standardized anomalies of the

water table level were less than -1 for both regions. On the other hand, wet periods in the water table observations, where values

larger than 1 are observed, seem to happen more frequently.

370
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Water table obs. ERA5-LAND SSMA4
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Figure 14. The correspondence between standardized anomalies of the water table elevations from a piezometric network and SSMA4 from

ERA5-LAND reanalysis for two points of the Mediterranean region: (a) Umbria region and (b) Veneto region, as shown in Figure 1).

The water shortage in 2007, 2012 and 2017 in different regions of Italy is an indication of the synoptic scale character of

such drought periods. The variability of water table level is well captured by the variability of deep soil moisture as extracted

from ERA5 reanalysis, as shown in Figure 14b. In 2007, 2012 and 2017 negative anomalies are observed also for SSMA4 in

both the analyzed piezometers, with the 2017 anomaly being weaker with respect to the others.

In the below analysis, we focus on the 2012 dry period and the following wet period in order to test the ability of seasonal375

forecasts to predict such events. Figures 15a, 15b and 15c show the spatial distribution of SSMA4 over the Central Mediter-

ranean on June 2012, December 2012, and June 2013, respectively. These periods are taken as a reference for the start of the

dry period, the end of the dry period and the start of the wet period, as observed in Figure 14b for North-Central Italy.

June 2012 is characterized by a large negative anomaly over all the domain expect for the Alps, Sicily, Tunisia and the Adri-380

atic coast of the Balkan Peninsula. Seasonal forecasts for lead-time 1 month predict smaller negative anomalies over Central

Italy and the Balkan peninsula, while largely underestimating the positive anomalies over the Alps (Figure 15d). The forecast

slightly improves in Northern Italy and Balkan peninsula going to lead-time 3 and 6 months (Figure 15g and 15l), while it gets
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Figure 15. Spatial distribution of observed ERA5-LAND (a,b,c) and forecasted SSMA4 anomalies (d-n) during the analyzed case studies:

first column for the dry period of June 2012, second column for the dry period of December 2012, and third column for the wet period of

June 2013. Figures (d,e,f) concern forecast lead-time 1 month, (g,h,i) lead-time 3 months and (l,m,n) lead-time 6 month.
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worse for Sicily and Tunisia.

December 2012 shows a similar spatial distribution of SSMA4 except for larger positive anomalies on the Alps, the South-385

western coast of Italy, and the South-western coast of the Balkan Peninsula (Figure 15b). Also the amplitude of negative

anomalies of SSMA4 decreases in Central and Northern Italy. The seasonal forecasts perform well in Central and North Italy,

in the South-eastern coast of Italy, in Sicily and in Provence for all lead-times (Figure 15e-h-m). However, it was not able to

detect the large increase in positive anomalies over the Alps, the Western coast of Balkan peninsula, and the Tyrrhenian coast

of Italy. Also the larger negative SSMA4 in the internal regions of the Balkan peninsula was not detected.390

The wet period of June 2013 involved especially the Northern part of the domain with large positive anomalies of SSMA4 (Fig-

ure 15c). Seasonal forecasts show in general a good performance especially in Central and North Italy at lead-time 1-month

(Figure 15f), while they tend to underestimate such positive anomaly at larger lead-times, especially over Hungary (Figure

15i-n).

395

6 Discussion and conclusions

This study provides a first assessment of seasonal forecast of soil moisture for the Central Mediterranean Region. The seasonal

model analysed in this study is SEAS5, whereas the reanalysis is ERA5-LAND, both produced by the ECMWF. ERA5-LAND

is considered as a reference dataset for soil moisture observations. Twenty-five member seasonal forecasts with lead-times from

1 to 6 months have been analyzed from 2001 to 2021, by considering the hindcast period 2001-2016 as climatology. In this400

reference period, the standardized soil moisture anomaly (SSMA) has been evaluated and the forecasts have been bias-adjusted

trough the mean-variance adjustment method. Then Root Mean Squared Error (RMSE), the Anomaly Correlation Coefficient

(ACC) have been evaluated for SSMA for all soil layers considered in ERA5-LAND. To test the ability of the forecast to

discriminate between dry and wet events, the Relative Operating Characteristic (ROC) area has been calculated. Finally, a case

study of the dry and wet periods during 2012-2013 has been studied in detail, to show the potential usefulness of the seasonal405

model. The outcomes of the research can be summarized as it follows.

As indicated by the RMSE, the average magnitude of the forecast errors decreases as we go deeper into the soil. Only in

the deepest soil layer at 289 cm depth, the RMSE can reach values below 0.5 even for lead-time 6 months. However, this is

valid only over certain regions like Central and Northern Italy, Hungary, some internal regions of the Balkan Peninsula and410

the Provence region. The RMSE remains too large in other regions, even when considering only the deepest layer. Significant

values of the ACC, with values larger than 0.8, can be found over the mentioned regions even at lead-time of 6 months. The

analyzed performance depends on the memory time scale of the soil layer: the higher the memory time scale the higher the

forecast performance. The main physical factors affecting the spatial variability of memory time scale are various: soil depth,

orographic complexity, local climatology (e.g. soil aridity, mean precipitation) and soil hydraulic properties. In general, we415

found better forecast performance in the deepest soil layer and in regions with low orographic complexity, corresponding to
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regions with larger memory time scale. This is in agreement with previous studies on the spatial variability of soil moisture

memory. For example, MacLeod et al. (2016) found a large sensitivity of soil moisture memory on soil hydraulic parameters

(e.g. Brunone et al., 2003) and found a longer memory in the deepest soil layers. The dependence on soil depth was ascribed to

the smallest influence of the throughfall precipitation, which is partly absorbed by evapotranspiration before penetrating into420

the deepest soil layers. Moreover, Orth et al. (2013) analyzed the influence of altitude, topography and dryness index on soil

moisture memory time scales, finding that memory time scales decrease with elevation and increase with topography (measured

by a topographic index which is a function of the slope) and aridity. Our study identified comparable signals in the Central

Mediterranean. However, further investigations are required to ascertain which factors (soil properties, altitude, orographic

complexity, climate) are most influential in shaping the soil moisture memory in a given region. Such an investigation could425

inform a more robust modeling approach, incorporating additional parameter uncertainty into the forecasting system, which

may ultimately enhance the skill of seasonal forecasts (MacLeod et al., 2016).

The ability of seasonal forecasts to detect wet and dry events exhibits a large variability within the domain. However, a ROC

larger than 0.8 can be found in certain regions for the deepest soil layer also for lead-time 6 months. This indicates that in

those regions, like Provence, Central and North Italy, the South-eastern coast of Italy and the internal regions of Balkan penin-430

sula, seasonal forecasts can be used to detect such events in advance. The area under the ROC curve for dry and wet events

in the two uppermost soil layers is about 0.5 when lead times exceeding three months are considered. This suggests that the

seasonal forecasting is not a reliable method for predicting the evolution of upper soil moisture beyond three months. A small

ROC area for dry and wet events is found at lead-time 6 months especially in mountainous regions (Alps and Dinaric Alps),

confirming the spatial variability already found for RMSE and ACC indicators. In general, for all soil layers, dry events are435

generally better captured than wet events. From the water management point of view, this indicates that information provided

by seasonal forecast on soil moisture should be trusted more for supporting drought-risk management rather than flood-risk

management. The most useful forecasts are produced for events where the antecedent and present conditions are aligned (e.g.,

dry after dry, wet after wet). This further validates the significance of soil moisture memory and soil moisture pre-condition

for the predictability of the system.440

In the areas with large correlation coefficients, the larger correlations are found between April and October, while a minimum

correlation is found in December and January. Such a feature is of great relevance in terms of water resources management as

the critical period is late spring and summer, when the water demand is the largest in the year for both agriculture and civil

activities. As an example, the case study of 2012 drought period shows how the SEAS5 model is able to predict such an event445

for Central and Northern Italy 6 months before. Moreover, the strict connection between the deepest soil moisture and the water

table of shallow unconfined aquifer in Italy, highlights the large potential usefulness of seasonal forecasts of soil moisture for

water management purposes.

A local water management service, especially those located in the most effective areas, could monitor the forecasted soil mois-

ture anomalies across all soil layers, as publicly provided by the Copernicus Climate Data Store. The seasonal forecasting450

system can provide a probability of either a wet, dry, or normal month at different lead times, thus assisting in the decision-
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making process for the management of drought or flood risks. Moreover, groundwater models or simpler methods such as those

in Bongioannini Cerlini et al. (2021) could be run starting from forecasted soil moisture products for monitoring groundwater

levels in unconfined aquifers. In this case, when using these data in very local application, an evaluation of the influence of

irrigation input could be of great importance. However, the volume of water used for irrigation – a critical quantity towards455

water resources management – is a data that is very difficult to find for a number of reasons. One of the most important is the

poor measuring instrumentation installed in irrigation systems. Consequently, it is difficult to estimate the contribution to soil

moisture. The irrigation volume being equal, the dispersion towards the aquifer depends on the type of irrigation practiced.

Maximum dispersion occurs in flowing systems, whereas in the case of drop irrigation in pressurised networks, dispersion

can be considered negligible. For the Veneto irrigation systems, due to the extreme relevance of aquifers, reliable quantitative460

assessments are available (Altissimo et al., 1999; Rinaldo et al., 2010). These irrigation systems, active for the entire year, are

supplied by surface water and are of the flowing type with unlined channels in 70% of the cases. Groundwater withdrawals are

carried out by water utilities for drinking water use. On the basis of the data provided by the land reclamation consortia and

water utilities, it is shown that the entity of dispersion of the irrigation systems, minus withdrawals for drinking water use, is

comparable to that of effective rainfall (Altissimo et al., 1999; Rinaldo et al., 2010). In the Umbria region, even if analogous465

documentation is not available, the same situation can be assumed. However, since in this study the analysis is focused on the

soil moisture anomaly, the contribute of the irrigation volume is not effective, as it is almost constant over the year. On the

contrary, in cases where irrigation were active only in few months, its effect should be taken into account provided that data

availability allows.

To refine the proposed approach two possible paths can be followed in future research. The first is to use different seasonal fore-470

casting models, different reanalysis and observation products (e.g. MERRA-2 (Gelaro et al., 2017) and GLEAMv3 (Martens

et al., 2017)). The second path is to analyze in more detail the behavior of the autocorrelation function of soil moisture

anomalies across different soil layers. This to evaluate the role of the seasonal cycle and the reemergence of soil moisture

as hypothesized by Kumar et al. (2019). Then, this would allow us to compare the seasonal forecast performance with those

obtained by memory-prediction models, following the approach proposed by Esit et al. (2021).475

Code availability. The python packages xarray and xskillscore have been used extensively in this work and they are freely available at

https://docs.xarray.dev/en/stable/ and https://xskillscore.readthedocs.io/en/stable/

Data availability. ERA5 and ERA5-LAND reanalysis data and Seasonal forecasts data are available on the Copernicus Climate Data Store.

The water table data of Umbria that support the findings of this study are available upon request from https://apps.arpa.umbria.it/acqua/

contenuto/Livelli-Di-Falda.480
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