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Abstract. Mineral dust significantly influences the Earth's climate system by affecting the radiative balance through the emission, 10 

absorption and scattering of solar and terrestrial radiation. Estimating the dust radiative effect remains challenging due to the lack 

of detailed information on the physical and chemical properties of dust. High-spectral-resolution instruments in the infrared (IR) 

spectrum, such as the Infrared Atmospheric Sounding Instrument (IASI), have demonstrated the ability to quantify these aerosol 

properties. A crucial parameter for characterizing mineral dust from space is the complex refractive index (CRI), as it links the 

dust's physical and chemical properties to their optical properties.  15 

Particularly, high-spectral-resolution instruments have shown the ability to measure these aerosol properties, e.g., the Infrared 

Atmospheric Sounding Instrument (IASI). This paperwork examines the impact ofreviews six prior laboratory Complex Refractive 

Index (CRI datasets to improve the characterization of dust microphysical properties using IASI) datasets. The CRIs include older 

measurements obtained through the classical pellet method, commonly employed in mineral dust applications, as well as newer 

datasets that incorporate the latest advancements in laboratory measurement techniques for aerosol generation. , which focus on 20 

advancements in laboratory measurement techniques aimed at characterizing dust propertiesThese datasets are tested on via IASI 

measurements during a dust storm event over the Gobi Desert in May 2017. We evaluate the sensitivity of IASI to different CRI 

datasets using the ARAHMIS radiative transfer algorithm and explore their impact on retrieving size distribution parameters by 

mapping their spatial distribution. The results indicate that the new laboratory CRI datasets decrease the total error of the covariance 

matrix by 30% and . In addition, we assess the capability of accurately reconstructing IASI detections and the extent to which we 25 

can retrieve the microphysical properties of dust particles.that the The choice of CRI significantly impactssignificantly impacts  

the accuracy of dust detection and characterization from satellite observations. Notably, datasets that incorporate recent aerosol 

generation techniques with higher spectral resolution and samples from the case study region show show enhanced improved 

compatibility with IASI observations. The outcomes of this research emphasize two key points: the crucial connection link between 

dust's chemical composition of dust and its optical properties, and the importance of considering and the need to consider the 30 

specific composition of the CRI dataset for improved retrieval of the microphysical parameters. MoreoverFurthermore, this study 

highlights the critical role of ongoing continuous enhancements in CRI measurement approaches, as well as the potential of high-

spectral-resolution infrared sounders for aerosol atmospheric investigation and understanding their radiative impacts. 

1 Introduction 

Mineral dust, carried by strong winds from arid regions into the atmosphere, interacts with solar and terrestrial radiation, 35 

significantly impacting Earth's radiative budget (Kok et al., 2017). To date, estimating the aerosol radiative effect presents 
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considerable uncertainties, as highlighted in reports by the Intergovernmental Panel on Climate Change (IPCC, 2023). These 

uncertainties primarily arise from the lack of detailed knowledge about the physical and chemical physicochemical properties of 

mineral dust, which exhibit significant spatial and temporal variations (Masmoudi et al., 2003; Journet et al., 2014). The size 

distribution of dust particles ranges from hundreds of nanometers to tens of micrometers, with the mineral composition varying 40 

according to the dust's source region (Ryder et al., 2018). This diversity allows remote sensing instruments to detect mineral dust 

by capturing spectral signatures in the ultraviolet (UV), visible (Vis), and infrared (IR) spectral ranges. Notably, satellite sensors 

offer a comprehensive perspective on the mineral dust cycle, encompassing its emission, transport, and deposition, and spanning 

from regional to global scales . Consequently, radiative transfer models have been developed to simulate and reconstruct satellite 

observations. These models incorporate critical knowledge on the physical, chemical, and optical properties of dust particles. 45 

Consequently, radiative transfer models have been developed to simulate spectral fits based on actual satellite observations, 

incorporating valuable data on the physicochemical and optical properties of dust particles.  

In the last 20 years, IR instruments have made significant contributions to the detection of mineral dust due to their high sensitivity 

to the particles' composition. They offer the advantage of distinguishing the vibrational modes of various minerals and excel in 

nighttime detections (Sokolik et al., 1998; Ryder et al., 2019). For example, high-spectral-resolution satellite sounders, such as the 50 

Infrared Atmospheric Sounding Instrument (IASI) and Atmospheric Infrared Sounder (AIRS), exploit the spectral variations of 

dust in the thermal IR range (750 - 1250 cm-1) to quantify their physical and ochemical properties of dust using radiative transfer 

algorithms (Pierangelo et al., 2005; Clarisse et al., 2010; Klüser et al., 2015; Capelle et al., 2018). Nevertheless, significant 

uncertainties persist in IR radiative transfer retrievals from satellite observations, primarily due to our limited knowledge of the 

complex refractive index (CRI) of mineral dust. The CRI links the particles’ optical properties, characterized by absorption and 55 

scattering processes, to their chemical composition or mineralogy, which vary from one source to another.  

One of the earliest datasets for CRI applied to mineral dust originated from Peterson and Weinman, 1969 and focused on pure 

crystalline quartz, a major dust component. They exploited reflectance spectra and dispersion theory of solid crystal that were 

originally obtained by Spitzer and Kleinman, 1961. In the 1970s, the first natural dust samples, obtained from filtered rainout 

precipitation and Saharan dust, were processed into glassy disc KBr pellets to measure reflectivity, and subsequently calculate the 60 

CRI in the IR spectrum (Volz 1972, 1973). 

In the following years, recognizing that mineral dust consists of an aggregate of different minerals such as silicates, clays, 

carbonates, and iron oxides, various pure mineral CRIs were examined across a spectrum from infrared to ultraviolet using the 

pellets technique (Querry et al., 1978; Egan and Hilgeman, 1979; Glotch et al., 2007). Balkanski et al., 2007 further refined aerosol 

radiative forcing assessments in the visible spectrum, employing pure mineral mixtures alongside literature CRIs, yielding more 65 

accurate radiative estimates than those by Volz 1972, 1973 . Furthermore, Capelle et al., 2014 studied the sensitivity of the IASI 

brightness temperature to the change in CRI. By comparing Volz 1972, 1973 to the “revisited” mineral dust CRI by Balkanski et 

al., 2007, the results showed high impact on the radiative transfer model.  

highlighted the IASI brightness temperature sensitivity's 25% error in response to refractive index changes, as identified by 

Balkanski et al., 2007. 70 

From the 2000s, aerosol optical properties research increasingly incorporated advanced experimental techniques. These involved 

aerosol generation methods that are more representative of natural airborne dust, in contrast to the pellet/film approach that alters 

particle size, shape, and vibrational modes. One of the initial systems to combine mineral dust generation with extensive 

measurement analysis, was established at the University of Iowa, utilizing the Multi-Analysis Aerosol flow Reactor System 

(MAARS) (Gibson et al., 2006). This setup was specifically used to generate clay mineral aerosols for extinction measurements 75 

and particle size distribution analysis, with a focus on examining the sphericity of the particles (Hudson et al., 2007). The 
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Rutherford Appleton Laboratory’s Molecular Spectroscopy Facility (RAL-MSF) was also adapted for aerosol generation and high-

resolution extinction spectrum measurements, alongside size distribution analysis to study the sphericity and crystallinity of quartz 

particles and derive the CRI of volcanic ash (Reed et al., 2017, 2018). Moreover, at the University Paris-Est Créteil, the CESAM 

(Chambre Expérimentale de Simulation Atmosphérique Multiphasique) was employed to generate mineral dust aerosols from 80 

various desert soils worldwide. These experiments, conducted under relevant atmosphericdry conditions, involved measuring 

extinction and size distribution to obtain CRI (Di Biagio et al., 2017). Finally, at the University of Lille, the PhysicoChimie des 

Processus de Combustion et de l’Atmosphère (PC2A) platform has been employed for generating samples from the Gobi Desert, 

pure minerals like quartz, illite, kaolinite and calcite and volcanic ash under dry atmospheric conditions, aiming to measure the 

extinction coefficient and size distribution and derive the CRI data spanning a wide spectral range from far infrared to UV 85 

(Deschutter, 2022; Deguine et al., 2023; Chehab et al., 2024).  

The objective of this paper is to investigate the influence of the most new recent CRI laboratory measurements with advanced 

generation and measurements techniques in comparison to previous datasets based on classical methods on IASI mineral dust 

retrievals. Firstly, we assess the sensitivity of IASI observations to a range of CRI datasets from literature. This includes a detailed 

analysis of the information content in these datasets, aiming to understand how variations in CRI measurements influence the 90 

IASI’s ability to accurately detect and characterize the microphysical dust properties. This step is crucial for identifying the 

strengths and limitations of current datasets while emphasizing the need for enhancements in CRI measurement techniques. 

Secondly, we apply the inversion process to a dust event that occurred on 4 May 2017 over the Gobi Desert in East Asia. By 

focusing on this specific event, we examine the capability of accurately reproducing detections and the extent to which we can 

retrieve the microphysical properties of dust particles. This analysis also evaluates how the incorporation of new the most recent 95 

CRI measurements and the mixture methodology from the mineralogical study on East Asia by Alalam et al., 2022 can enhance 

the accuracy of mineral dust microphysical properties retrievals. 

2 Case Study  

East Asia is the second largest source of mineral dust after the Sahara, producing up to 800 Tg per year (An et al., 2018). This 

significant output is primarily associated to cold fronts from Siberia and Mongolia. The significant temperature differences between 100 

cold Siberian air masses and warmer air to the south create strong pressure gradients, leading to high wind speeds that lift and 

transport dust particles particularly during the winter and spring months (Wang et al., 2004). An intense dust storm occuredoccurred 

from 3 to 8 May 2017, affecting visibility across North China. From the southwest of Inner Mongolia, the dust plume travelled 

passing through North China, the Korean peninsula, and Japan before dissipating in Russia. Three cold fronts generated dust loads 

during this event. The first two fronts lifted dust from the Gobi Desert on 3 May. A third front emerged on 4 May, resulting in 105 

distinct dust plumes that merged between May 4 and May 6, originating from both the Horqin Sandy Land and the Gobi Desert 

(Minamoto et al., 2018; Alalam et al., 2022). Due to cloud coverage during the dust event, we only focus on the 4 May, when the 

dust plume was at its maximum dispersion and visibility to the IASI observations.  

To select IASI dust spectra, we employ the 'V-shape' dust criterion. As the dust concentration increases, the 'V-shape' slopes 

become more pronounced, making measurements in the atmospheric window (between 800 and 1200 cm-1) more sensitive to 110 

concentration fluctuations (Sokolik et al., 1998 and 2002). Consequently, the difference in brightness temperature is a reliable 

indicator for the AOD. Based on the differences in brightness temperature of the two 'V-shape' slopes we calculate  ∆TB1 =

 TB,809.25 −  TB,988 and ∆TB2 = TB,1191.25 − TB,1112, and apply a minimum sensitivity condition on both slopes of ∆TB > 0.9 K. 

Specific IASI channels were selected by empirically testing hundreds of dust spectra to minimize the effects of gas absorption 
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lines. Figure 1 illustrates the IASI difference in brightness temperature ∆TB2 during the Gobi dust storm on the 4 May 2017 at 115 

daylight hours. Only ∆TB2 was used for visualization to ensure accurate correction of surface emissivity. This choice is based on 

its spectral range, where surface emissivity significantly affects the spectrum, as detailed by Alalam et al., 2022. 

In this study, we focus on the 4 May when the dust plume was at its most dispersion and visibility to IASI observations. Figure 1 

illustrates the IASI brightness temperature difference during the Gobi dust storm on the 4 May 2017, during daylight hours. To 

select IASI dust spectra, we employ the 'V-shape' dust criteria, which involves computing the difference in brightness temperature 120 

( ∆𝐓𝐁 = 𝐓𝐁,𝟏𝟏𝟗𝟏.𝟐𝟓 −  𝐓𝐁,𝟏𝟏𝟏𝟐). The choice of brightness temperature channels is influenced by two key factors: the concentration 

variability and the narrow absorption bands from gases. As dust concentration increases, the 'V-shape' of the AOD becomes more 

pronounced, making measurements in the MIR more sensitive to concentration fluctuations (Alalam, 2022). Consequently, the 

difference in brightness temperature acts as a reliable indicator for determining the AOD. 

3 The datasets and methods 125 

3.1 IASI data selection 

IASI is an infrared Fourier transform spectrometer that is part of the METOP satellite series, developed by the CNES in cooperation 

with EUMETSAT. Since 2006, two sun-synchronized METOP satellites (B and C) are still in orbit, each with an IASI instrument 

on board. METOP A was switched off in November 2021, and a new generation of IASI-NG will continue the mission for the next 

20 years, featuring increased spectral resolution and radiometric performance (Crevoisier et al., 2014). The instrument scans in 130 

nadir view with a swath of 2200 km. The field of view corresponds to 2 × 2 circular pixels, each with a 12 km diameter footprint 

at nadir. The IASI covers a continuous infrared spectral range between 645 and 2760 cm−1 (3.62 and 15.5 μm) providing 8461 

channels with a spectral resolution of 0.5 cm−1 and low radiometric noise (Blumstein et al., 2004).  

The mineral dust spectral selection method, as detailed by Alalam et al., 2022 is briefly summarized here. The input data are taken 

from IASI-A level 1c and level 2 data from EUMETSAT data center (https://data.eumetsat.int/).  A land surface emissivity (LSE) 135 

correction method is applied to the IASI radiances to remove the LSE effect caused by the high variability of the surface emissivity 

especially, above deserts.  Following this, the spectra are and processed using using a principal component analysis (PCA) code 

developed at the Laboratoire d’Optique Atmosphérique (LOA) by Herbin, 2014 and improved from the method of Atkinson et al., 

2010. The PCA filters spectra into opaque, dust, cloud, and clear sky pixel types, with a requirement of 90% of type homogeneity 

in the IASI pixel.  . Following this, a land surface emissivity (LSE) method is applied to the radiances to correct the LSE effect. 140 

FinallyMineral dust sspectra are selected by the is applied under ca condition on the difference in brightness temperature mentioned 

in Section 2. 

3.2 The CRI data 

In this study, we choose to compare relevant CRI datasets employed in radiative transfer algorithms in the mid-infrared (MIR) 

spectral range as summarized in Table 1., while (further references can be found and are listed by Clarisse et al., 2019. The selected 145 

CRI datasets are as follows: 

1- The first dataset originates from Volz, 1972 (VZ72), where the dust was separated from mid-latitude natural precipitation, 

including a mixture of soil particles, airborne soot, and pollen. This rainout precipitation, carries dust particles that are 

moved over long distances and deposited through a process called ‘wet deposition’. In our study, we consider this dataset 

as it includes dust particles that have been transported over thousands of kilometers. The sample was blended and pressed 150 

under vacuum conditions to form a glassy disc using the classical pellet method. The CRI was calculated based on the 
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measured absorption coefficient of the bulk material. In the MIR, its average spectral resolution is 50 cm-1I. It has 

previously been used in altitude and concentration retrievals from IASI (Vandenbussche et al., 2013; Capelle et al., 2017).  

2- Similar measurements were conducted on the second dataset, also from Volz, 1973 (VZ73), with the sample collected 

from Saharan sand in Barbados,  having an average spectral resolution of 10 cm-1s. This dataset has been widely utilized 155 

in Saharan dust retrievals (Clarisse et al., 2019; Desouza-Machado et al., 2010), as well as IASI dust level 2 products 

(ULB and LMD algorithms, https://cds.climate.copernicus.eu). Compared to other data from the Sahara, this dataset has 

shown to be the most representative for long-range transported Saharan dust (Clarisse & Astoreca, 2021).  

3- The third dataset is derived from the Optical Properties of Aerosols and Clouds (OPAC) known as "mineral transported," 

calculated by Hess et al., 1998. It combines data from VZ73 and quartz with an average spectral resolution of 10 cm-1. It 160 

has previously been used for quantifying Saharan and Asian dust (Cuesta et al., 2015; Klüser et al., 2015).  

4- The fourth dataset, from Di Biagio et al., 2017 (DB17), represents a more recent measurement of refractive indices and 

is based on 19 global dust samples, with the soil collected from the Gobi Desert. Aerosols were generated and suspended 

in the CESAM chamber under atmospheric relevantdry conditions, and the CRI was retrieved using an optical inversion 

procedure with a spectral resolution of 2 cm-1. A recent study compared the Gobi and the Taklamakan Deserts' refractive 165 

indices with Volz in 1972, demonstrating a clear impact on the brightness temperature spectrum simulations in the MIR 

(Bi et al., 2020). These datasets were used in a climatological analysis of coarse-mode dust over global oceans 

(Zheng et al. , 2023). 

5- The fifth dataset, as measured by Deschutter, 2022 (DSC22) at the PC2A platform, also involves aerosols generated from 

a Gobi Desert dust sample but under dry atmospheric conditions with a spectral resolution of 1 cm-1. The CRI was 170 

retrieved using an optimal inversion method, and the dataset was previously used by Alalam et al. in 2022 to determine 

the mineralogical fraction of East Asian dust from IASI spectra. 

6- A sixth dataset consists of a mixture of pure minerals (quartz, illite, and calcite), as measured by Deschutter, 2022 with a 

spectral resolution of 1 cm-1. We calculated an effective CRI using the Volume Mixing Approximation (VMA) one of the 

simplest approaches of the effective medium theory. The effective properties of an aggregate of minerals is considered as 175 

a weighted average of the properties of its pure minerals’ constituents, with the weighting factors being their volume 

fractions (for a detailed explanation, refer to Sokolik and Toon, 1999). The volume fractions values are 15.3%, 80.0%, 

4.7% for quartz, illite and calcite respectively. The percentages were determined based on linear combination calculations 

by Alalam et al., 2022, using the experimental extinction coefficient of the Gobi sample from which DSC22 CRI was 

derived.  180 

Figure 2 illustrates the complex refractive indices in the MIR range. Spectral signatures variations are apparent, primarily due to 

differences in the sampled dust regions, and therefore differences in the mineralogy. The most pronounced contrast in the CRI can 

be observed for VZ72, which originates from rainout precipitation rather than desert dust. DB17 and DSC22, both sampled from 

the Gobi Desert, exhibit similar spectral features but with distinct values, indicating that the setup and method used can also 

influence the derived CRI. However, the mineralogical variation of the soil sample collection region has a significant impact as 185 

well. . On the other hand, OPAC is derived from a mixture of VLZ73 and quartz and has a greater impact on the real index than 

the imaginary index. Notably, the molecular signatures of quartz are more prominent in the vicinity of 800 and 1100 cm-1. 

3.3 The inversion process 

The inversion process follows the formalism of the optimal estimation method (OEM) described by Rodgers, 2000. This approach 

allows us to assess the sensitivity of the measurement and its information content, and the separation of parameters derived directly 190 

https://cds.climate.copernicus.eu/
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from the measurement and those provided by the a priori state. Furthermore, it enables the calculation of errors arising from 

measurement noise and the smoothing effect imposed on the actual profile by the observation system, which includes both the 

instrument measurement and the non-retrieved parameters. 

3.3.1 The forward model  

To solve the forward transfer equation, we use an analytical relationship that links between the set of observations y (in this case, 195 

the IASI radiances), and the state vector 𝒙, which its elements consist of the variables to be retrieved, and it is written as: 

𝒚 = 𝑭(𝒙, 𝒃) + 𝜺             (1) 

where 𝑭 represents the forward model 𝒃 correspond to the fixed parameters affecting the measurement (i.e., the atmospheric 

conditions, gases concentrations, surface emissivity and temperature) and 𝜺 is the measurement error vector.  

For this purpose, we employ the ARAHMIS code, a line-by-line radiative transfer code developed at LOA. This code has been 200 

previously used by El Kattar et al., 2020 to characterize greenhouse gases (CO2 and CH4) using the ground-based high-spectral-

resolution infrared instrument CHRIS. Moreover, it is currently employed as a reference code for the preparation of space missions 

such as IASI-NG, HYSP, and Microcarb. This code has been previously used by El Kattar et al., 2020 to characterize greenhouse 

gases (CO2 and CH4) using the ground-based high-spectral-resolution infrared instrument CHRIS. Moreover, it is currently 

employed as a reference code for the preparation of space missions such as IASI-NG, HYSP, and MicrocCarb. 205 

In this work, the state vector 𝒙 elements are: 

(1) The geometric size mean diameter 𝐷𝑔, which follows a lognormal distribution with a geometric standard deviation 𝜎𝑔. To 

compare results with literature, we calculate an effective diameter (𝐷𝑒 = 𝐷𝑔𝑒2.5(𝑙𝑛𝜎𝑔)2
) corresponding a fixed geometric 

standard deviation 𝜎𝑔 = 2.0 μm  as suggested by Clarisse et al., 2019.  This values falls within the typical range measured for 

dust aerosols between 1.75 and 2.25 μm (Reid et al., 2003). Note that for other types of particles, this assumption may not be 210 

valid.This values falls within the typical range measured for dust aerosols between 1.75 and 2.25 μm (Reid et al., 2003). Note 

that for other types of particles, this assumption may not be valid. 

(2) The volume mixing ratio (VMR), which is defined as the ratio of the volume of a dust with respect to the total volume of the 

air sample. It expressed in parts per million (ppm) providing a standardized way to express the aerosols concentration in the 

atmosphere. 215 

We chose only these two elements to establish a link between the microphysical properties of dust (size and concentration) and 

their mineralogical composition identified in Alalam et al., 2022, for the same case study. The forward model is computed using 

the ARAHMIS line-by-line full physics radiative transfer codealgorithm, allowing for precise simulations of observed IASI 

radiances across the MIR, from which we select spectra ranging from 785 to 1235 cm-1. The atmosphere is discretized into layers, 

each with a 1 km thickness. Gaseous spectroscopic parameters, including spectral line positions, intensities, and half-maximum 220 

widths, are computed based on the updated HITRAN 2020 database. The atmospheric conditions, such as pressure, temperature, 

and water vapor profiles, were derived from the UWYO database at the Dalanzadgad station 

(http://weather.uwyo.edu/upperair/sounding.html). The ozone profile was obtained from the WOUDC database at the Xhianghe 

station (https://woudc.org). The CO2 and CH4 profiles were taken from the CAMS Greenhouse Gases reanalysis 

(https://ads.atmosphere.copernicus.eu). Surface temperature data were acquired from the level 2 IASI product provided by 225 

EUMETSAT (https://data.eumetsat.int/). Surface emissivity was originally obtained from Zhou et al. in 2014. Nevertheless, it's 

essential to note that in this case study the our IASI detections are primarily over land areas, and can be highly affected by the 

surface emissivity variabilitys. To address this, we use the Zhou et al., 2014 datasets and apply the land surface emissivity (LSE) 

method demonstrated by Alalam et al., 2022 to reduce the variability effect before the selection process. A correction factor  is 
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calculated using the Reststrahlen feature criterion, which is found in both the emissivity spectra and IASI radiances of desert 230 

surfaces. This approach helps to correct the surface temperature and emissivity differently for each observation. Therefore, we 

applied a correction factor, employing the method described by Alalam et al., 2022, to ensure appropriate adjustments for surface 

emissivity in IASI spectral simulations. 

For aerosols, we consider the single scattering approximation, which assumes that the distance between aerosol particles is larger 

than the range of their size distribution. Consequently, the particles are sufficiently spaced such that the scattering of light by one 235 

particle occurs independently of others. This assumption is applicable in our case where we select only non-opaque IASI spectra 

using the PCA code. To calculate the aerosols extinction coefficient 𝑘𝑒𝑥𝑡
𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠, we use a Mie scattering code designed for spherical 

particles. This approach was previously used in the MIR as it is less sensitive to the shape of particles (Yang et al., 2007; Di Biagio 

et al., 2017). The particle size distribution is assumed to be monomodal and lognormal, similar to the method described by 

Pierangelo et al., 2005.Since it is difficult to differentiate between fine and coarse modes in the MIR spectrum, a single median 240 

size distribution mode with a wider standard deviation can be used. The particle size distribution is assumed to be monomodal and 

lognormal, similar to the method described by Pierangelo et al., 2005. This distribution is characterized by the total number of 

particles 𝑁0, a geometric size mean diameter  𝐷𝑔 and a geometric standard deviation 𝜎𝑔. The mean layer dust altitude is set at Z = 

2 km with a thickness of L = 1 km. This choice is based on the lidar CALIOP/ CALIPSO track orbit track above the dust plume 

on May 4, 2017, as illustrated by Alalam et al., 2022.   245 

Figure 3 illustrates a comparison of the extinction coefficient as derived from the six CRI datasets using Mie theory and assuming 

an effective diameter 𝐷𝑔=1.0 μm. The extinction was normalized to remove the dependency on the concentration. All six dataset 

exhibit a characteristic signature associated with silicates, the familiar bent observed in the neighbouring of 1050 cm-1. Deguine et 

al., 2020 highlighted that as the silica fraction increases, the extinction peak values move to higher wavenumbers. DB17, DCS22, 

and VMA are smoother and have more pronounced peaks: similar double peak tectosilicates feature is observed near 778 and 795 250 

cm−1, carbonates peak at 879 cm-1 and phyllosilicates peak at 916 cm-1. While a contrast in peaks intensities reflects the difference 

in mineralogy between DB17 and DSC22.  NNotably, the spectral resolution is low in other datasets: in OPAC no double peak 

features can be distinguished, while VZ72 does not show any discernible peaks between 750 and 980 cm-1, and VZ73 only exhibits 

a signature near 916 cm-1. This difference may be attributed to the improvement in the experimental measurement in the late years, 

the spectral resolution and the chemical composition of the dust source. 255 

3.3.2 Information content analysis 

The information content (IC) analysis enables us to establish the sensitivity of the inversion for each parameter sought, and hence 

make an optimal selection of those parameters and the constrains applied depending on their sensitivity on the spectrum. This 

analysis allows to quantify the impact of each parameter on the retrieval accuracy and allows us to gain in computational time and 

increase the quality of adjustment, by constraining parameters and hence avoid too great correlation between them.  260 

Following Herbin et al., 2013, two matrices (A and 𝐒𝒙) can fully characterize the information provided by IASI and they are needed 

to perform this analysis. 

The averageingaveraging Kernel matrix A, gives the sensitivity of the retrieved state to the true state, and is given by: 

𝐀 =  𝛿𝑥̂ 𝛿𝑥⁄ = 𝐆𝐊             (2) 

 265 

where K is the Jacobian matrix written by 𝐊 =  δ𝐹 δx⁄  , and G is the gain matrix which rows are the derivatives of the retrieved 

state with respect to the spectral points, and is written by: 

𝐆 =  𝛿𝑥̂ δy⁄ =  (𝐊𝐓𝐒𝛆
−𝟏𝐊 +  𝐒𝐚

−𝟏)−𝟏𝐊𝐓𝐒𝛆
−𝟏            (3) 
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where 𝐒𝐚 is the uncertainty covariance matrix on the knowledge of the prior state and 𝐒𝛆 the error covariance matrix of the forward 270 

model and the measurement. 

 

Rodgers, 2000 showed that the trace of A represents the total degree of freedom for signal (dofs), that gives the number of 

independent pieces of information provided by the observing system as regards the state vector.   

The knowledge of the state vector posterior to the measurement is described by the total error covariance matrix 𝐒𝐱, and can be 275 

written as:  

𝐒𝐱 =  𝐒smoothing +  𝐒meas. +  𝐒fwd.mod.            (4) 

where 𝐒smoothing  is the smoothing error covariance matrix and describes the vertical sensitivity of the measurements to the 

retrieved profile, and it is given by: 

𝐒smoothing =  (𝐀 − 𝐈)𝐒a(𝐀 − 𝐈)T                            (5) 280 

𝐒meas. is the contribution of the measurement error covariance 𝐒m associated with spectral noise, and it is written as:  

𝐒meas. =  𝐆𝐒m𝐆𝐓                                                                 (6) 

𝐒fwd.mod.  is the contribution of the forward model error covariance matrix 𝐒f associated with uncertainties from non-retrieved 

model parameters described by the covariance matrix 𝐒b: 

𝐒fwd.mod. =  𝐆𝐊b𝐒b( 𝐆𝐊b)𝐓 =  𝐆𝐒f𝐆
𝐓                                                           (7) 285 

where 𝐊b is the forward model derivative as regards non-retrieved model 𝐱𝐛 and 𝐒b is the uncertainty covariance matrix attached 

to 𝐱𝐛. 

 

3.3.2.1 A priori error covariance matrix 

The a priori error covariance matrix 𝐒𝒂 is assumed diagonal with the ith diagonal element (𝐒𝒂,𝒊𝒊  ) defined as: 290 

𝐒𝒂,𝒊𝒊 =  𝝈𝒂,𝒊
𝟐  with 𝜎𝑎,𝑖 =  𝑥𝑎,𝑖.

𝑝𝑒𝑟𝑟𝑜𝑟

100
                                                                       (8) 

where 𝜎𝑎,𝑖 is the standard deviation in the Gaussian statistics formalism. The subscript i represents the ith parameter of the state 

vector. The prior knowledge of aerosol parameters (Dg, VMR) is supposed to be known with an uncertainty of 100 % (Frankenberg 

et al., 2012). 

 295 

3.3.2.2 Measurement error covariance matrix 

The measurement error covariance matrix is influenced by the radiometric calibration and the radiometric noise, given by the 

signal-to-noise ratio (SNR). This error covariance matrix is also assumed to be diagonal, and the ith diagonal element can be 

computed as follows: 

𝐒𝒎,𝒊𝒊 =  𝝈𝒎,𝒊
𝟐  with 𝜎𝑚,𝑖 =  

𝑦𝑖

SNR
                                                                           (9) 300 

where 𝜎𝑚,𝑖  is the standard deviation of the ith measurement (𝑦𝑖  ) of the measurement vector y, representing the noise equivalent 

spectral radiance. In the case of the IASI instrument the SNR in the mid-infrared is set to 500 as the noise is stable within this 

spectral range between 660 and 1220 cm-1the MIR range and is equal to 2x10-4 W.m-² sr-1 (cm-1)-1 (Clerbaux et al ., 2009). 

 

3.3.2.3 Non-retrieved parameters characterization and accuracy 305 

For the temperature profile and surface temperature, we assumed a realistic uncertainty of 1 K, compatible with the typical values 

used for the IASI instrument, on each layer of the temperature profile as well as on surface temperature (Pougatchev et al., 2009). 
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The contribution to the ith diagonal element of the forward model error covariance matrix from the jth level temperature can be 

computed as: 

𝜎𝑓,𝑇𝑗,𝑖 =  
𝛿𝐹𝑖

δ𝑇𝑗
∆𝑇                                                                                                             (10) 310 

where j stands for the jth level and i for the ith measurement. 

The surface emissivity (𝜀𝑠) uncertainty is set to 𝑝𝜀𝑠
= 2 % , as estimated by Capelle et al., 2012. and The surface emissivity’sits 

contribution to the ith diagonal element of the forward model error covariance matrix is: 

𝜎𝑓,𝜀,𝑖 =  
𝛿𝐹𝑖

δ𝜀𝑠
∆𝜀𝑠, with ∆𝜀𝑠 = 𝜀𝑠.

𝑝𝜀𝑠

100
                                                                                                       (11) 

Another parameter that was not retrieved is the molecular gas concentration, 𝐶𝑚𝑜𝑙  (in ppm). H2O is presumed to have an a priori 315 

error on the concentration profile of 𝑝𝐻2𝑂=10%. This error value is compatible with the a posteriori uncertainty from IASI Level 

2 products given by Clerbaux et al., 2007. The CO2 uncertainty is set to 𝑝𝐶𝑂2
=1% from Engelen and Stephens, 2004 while the 

O3 error is 𝑝𝑂3
=5% (Boynard et al., 2016). The CH4 error is estimated to be 5%, which is compatible with the estimation of De 

Wachter et al., 2017. For the other interfering molecule concentrations (N2O, cfc-11 and cfc-12), we consider a weak prior 

knowledge, and their uncertainties are fixed to 100 %.  320 

The prior contribution to the ith diagonal element of the forward model error covariance matrix can be computed as: 

𝜎𝑓,𝐶𝑚𝑜𝑙,𝑖 =  
𝛿𝐹𝑖

δ𝐶𝑚𝑜𝑙
∆𝐶𝑚𝑜𝑙 , with ∆𝐶𝑚𝑜𝑙,𝑘 = 𝐶𝑚𝑜𝑙 .

𝑝𝐶𝑚𝑜𝑙

100
                                                                                                         (12) 

The uncertainty percentages are summarized in Table.2. 

Finally, the total forward model error covariance matrix 𝐒f, assumed diagonal in the present study is given by the sum of all error 

contributions for each diagonal element, and the ith diagonal element  𝐒f,𝑖𝑖 is given by: 325 

𝐒f,𝑖𝑖 = ∑ 𝜎𝑓,𝑇𝑗,𝑖
𝟐𝒏𝒍𝒆𝒗𝒆𝒍

𝒋=𝟏 +  𝜎𝑓,𝜀,𝑖
𝟐  + ∑ 𝜎𝑓,𝐶𝑚𝑜𝑙,𝑘,𝑖

𝟐𝒏𝒎𝒐𝒍
𝒌=𝟏                                                                                                                   (13) 

Here, we did not consider the spectroscopic line parameter, line-mixing, continua or calibration errors. 

4 IASI IC analysis: CRI evaluation   

In this section, we study the impact of the laboratory CRI measurements to extract information on microphysical aerosol 

parameters: the geometric diameter 𝐷𝑔  and VMR.  Accordingly, an IC analysis was performed for the elements of the state vector 330 

separately, considering the IASI spectral range between 785 and 1235 cm−1, where mineral dust is detectable. We compute the 

extinction coefficient (𝑘𝑒𝑥𝑡) at 1020 nm. The AOD value at 1020 nm is often used as a reference because this wavelength is 

included in AERONET network data and facilitates easier comparisons with climatological studies e.g.,  adapted from Dubovik et 

al., 2002 showing that the regression of the optical parameters with 1020 nm are more robust. To avoid saturation the 𝐴𝑂𝐷 values 

at 1020 nm must be less than 2.00 and to avoid loosing sensitivity it must be greater than 0.05. Subsequently, we derive the VMR 335 

at the 𝐴𝑂𝐷 values interval (0.25 - 1.50), in which IASI is sensitive to dust but also the spectral detection is not close to saturation 

where we lose the sensitivity to dust parameters, and it is given by: 

𝑉𝑀𝑅 =  
𝐴𝑂𝐷

𝐶𝑎𝑖𝑟 𝑘𝑒𝑥𝑡 𝐿
                                                                                                                                                                 (14) 

where 𝐶𝑎𝑖𝑟  (in ppm) is the concentration of the air in the atmospheric profile and L is the layer thickness fixed by 1 km (as 

mentioned in the Section 3.. 340 

Figure 4 illustrates the dofs and total error from the vector state vector parameters 𝐷𝑒  and VMR separately as function of the 

𝐴𝑂𝐷 and 𝐷𝑒  between 1.5 and 5.0 μm . For all CRIs, the dofs is typically greater than 0.50, indicating that the information on 

mineral dust comes mainly from the measurement y. An exception is VZ72 at 𝐷𝑒 = 1.5 𝜇𝑚, which exhibits the worst case with a 
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𝑑𝑜𝑓𝑠,𝑉𝑀𝑅 ofis 0.31 for an 𝐴𝑂𝐷 =  0.25. Conversely, the best case is observed for VMA, where the 𝑑𝑜𝑓𝑠,𝐷𝑒
is 0.99 for an 𝐴𝑂𝐷 =

 1.00. As the 𝐴𝑂𝐷 increases, the  𝑑𝑜𝑓𝑠,𝐷𝑒
 and  𝑑𝑜𝑓𝑠,𝑉𝑀𝑅 increase and tend to 1, which indicates that the observation system should 345 

adequately provide the necessary information to derive 𝐷𝑒  and VMR.  

On the other hand, the results suggest that at given 𝐷𝑒 , all CRI errors 𝑆𝑥,𝐷𝑒
 and 𝑆𝑥,𝑉𝑀𝑅 tend to decrease by 50 % as the 𝐴𝑂𝐷 

increases from 0.25 to 1.50, showing a negative correlation of the total errors with the AOD. For instance, VZ72 errors at 𝐴𝑂𝐷 =

 0.25 are 𝑆𝑥,𝐷𝑒
= 0.20% and  𝑆𝑥,𝑉𝑀𝑅 = 0.80% ,while 𝐴𝑂𝐷 = 1.50 the errors decrease to 𝑆𝑥,𝐷𝑒

= 10% and  𝑆𝑥,𝑉𝑀𝑅 = 40% . The 

relative behavior of The the CRIs have a similar trend whenwith increasing 𝐷𝑒 ,  drops 𝑆𝑥,𝐷𝑒
 and 𝑆𝑥,𝑉𝑀𝑅  drop by 35%. For example, 350 

at 𝐴𝑂𝐷 =  1.00 , DB17 errors are 𝑆𝑥,𝐷𝑒𝑔
= 12% and  𝑆𝑥,𝑉𝑀𝑅 = 37%  at 𝐷𝑒 = 1.5 µm , while these values decrease to 𝑆𝑥,𝐷𝑒

=

8% and  𝑆𝑥,𝑉𝑀𝑅 = 25% at 𝐷𝑒 = 5.0 µm. However, OPAC deviates from this general trend and exhibits an opposite behaviour. 

While for VMA, no matter the size diameter, its errors remain the least affected. This implies that VMA's errors to changes in 

particle diameter stay minimal as the diameter grows. Moreover, VZ73 with a close behaviour to DSC22 with 𝑆𝑥,𝐷𝑒
of 4% and 5% 

respectively at 𝐴𝑂𝐷 =  1.50, shows a good compromise that gives low errors regardless of the diameter choice justifying its use 355 

so far in the most IR remote sensing applications. DB17 shows an improvement compared to VZ72, consistently with a gain of 

30% in sensitivity for all diameters. In conclusion, the different CRIs behaviour’s in response to changes in size diameter can vary 

significantly. Compared to all other datasets, VZ72 exhibits the highest errors, which are primarily attributed to its low spectral 

resolution, as previously illustrated in Fig. 3. The fewer spectral features and structures the CRI possesses, the lower its sensitivity, 

resulting in higher errors. While most CRIs show an increase in sensitivity with increasing 𝐷𝑒 , exceptions like OPAC demonstrate 360 

that unique characteristics and behaviours exist within the set. In addition, East Asian dust are transported at low altitudes, hence 

when the AOD  value iis very high, the thermal contrast between the dust layer and the surface temperatures limits the sensitivity 

of satellite observations. This is the case of VMA at 𝐷𝑒 = 5.0 µ𝑚, where the errors increase again at 𝐴𝑂𝐷 = 1.50AOD= 1.50.  

These results highlight that the selection of an appropriate CRI is crucial in remote sensing retrievals. 

5 Solving the inverse problem 365 

In this study, instead of using the linear scale, the iterative process is refined by using the logarithmic scale since the order of 

magnitude can highly vary between the vector state parameters i.e., the diameter value (in μm) is approximately ten orders of 

magnitude greater than the VMR value is by tenth the order of magnitude of the VMR value (in ppm). This is also the case between 

the order of magnitude of the vector state 𝐱 and the measurement 𝐲. The logarithmic scale compresses the range making it easier 

to analyze trends and patterns, especially in the case of large variation in order of magnitude. The iterative process is then refined 370 

by: 

𝑙𝑛𝑥𝑖+1 = 𝑙𝑛𝑥𝑎 + (𝐊𝐢
𝐓𝐒𝛆

−𝟏𝐊𝐢 + 𝐒𝐚
−𝟏)

−1
𝐊𝐢

𝐓𝐒𝛆
−𝟏 × [𝑦 − 𝐹(𝑥𝑖) + 𝐊𝐢(𝑙𝑛𝑥𝑖 − 𝑙𝑛𝑥𝑎)]                                                           (15) 

where in this case 𝐊𝐢 =  δF 𝛿𝑙𝑛𝑥𝑖⁄  and 𝐒𝐚 =  𝝈𝒂
𝟐 with 𝜎𝑎,𝑖 =  𝑙𝑛𝑥𝑎 .

𝑝𝑒𝑟𝑟𝑜𝑟

100
 

In this section, the inversion method is used to quantify the microphysical dust parameters (𝐷𝑒  and VMR) and measure the ability 

of the simulated spectra to reproduce the IASI measurement we calculate the Root Mean Square (𝑅𝑀𝑆 =  √𝛴(𝑦𝑖  −  𝐹(𝑥𝑖))² / 𝑛,  375 

where n is the number of the spectral channels of 1804). The higher the value of the RMS, the wider is the spread around the IASI 

spectra and the less is the ability of the spectral fit to reproduce the IASI spectrumgreater the uncertainty of the spectral fit.  
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5.1 Application to three spectral pixels  

To evaluate the uncertainties impact of the six refractive indices datasets in reproducing the IASI dust measurements, we applied 

the inversion process to three observations from the Gobi dust event on 4 May 2017, and calculated the RMS as a measure of the 380 

capability to reproduce the IASI spectra uncertainty. We selected spectra with large spectral features, whose simulation presents 

significant challenges and thereby provides a rigorous test for the CRIs. These observations are distinguished by their contrast in 

terms of brightness temperature differences ∆𝐓𝐁𝟐: spectrum 1 at (44.3°N, 119.1°E) with ∆𝐓𝐁𝟐= 2.6 K, spectrum 2 at (44.0°N, 

119.4°E) with ∆𝐓𝐁𝟐= 5.0 K and spectrum 3 at (49.6 °N, 124.6°E) with ∆𝐓𝐁𝟐= 6.9 K. Each spectrum exhibits a different V-shaped 

slope, indicating varying AOD, thereby providing a rigorous test for the CRIs to accurately reproduce the spectral observation. 385 

Figure 5 illustrates the spectral fits (in red) from ARAHMIS to IASI observations (in blue) in terms of brightness temperature (in 

K). A good fit would mean that the model is able to reproduce the observed data with high fidelity, which in turn implies that the 

model's assumptions and inputs (i.e., atmospheric composition, temperature profiles) are accurate representations of the actual 

atmospheric conditions. For the spectrum 1, having a small difference in brightness temperature, the simulations yield high 

precision across all CRIs. This underscores the capability of the atmospheric model and the ARAHMIS code to accurately 390 

reproduce the measurements, thereby affirming the reliability of these tools in the case of minimal aerosol concentration. The 

ability to reproduce the spectral fits decrease for all CRIs while ∆𝐓𝐁𝟐 increase, nevertheless the extent of this reduction varies 

across different indices.  As ∆𝐓𝐁𝟐 increases, the spectral fits from VZ72, VZ73, and OPAC exhibit challenges in replicating 

observations, particularly between 780 and 980 cm−1. Meanwhile, between 1100 and 1230 cm−1, the VZ72 and DB17 fits encounter 

the most difficulties, whereas VMA fits primarily experience difficulties only between 950 and 980 cm−1. Notably, DSC22 fits 395 

exhibit a more robust capability in reproducing observations. By comparing with Fig. 3, it becomes evident that CRIs with the 

highest extinction values within a specific spectral range tend to face greater challenges in reproducing observations accurately 

within that range.  Therefore, the CRIs spectral resolution and features affect the ability to reproduce spectral observations.  

We also evaluate the impact of the CRIs on the dust microphysical properties retrieval. 𝐷𝑒  and VMR, along with the associated 

RMS in K and W·m⁻²·sr⁻¹·(cm⁻¹)⁻¹, are presented in Table 2.   Indeed, all datasets demonstrate a rise in RMS values progressing 400 

with increasing ∆𝐓𝐁𝟐, indicating a loss of accuracy between the spectral fits and IASI observations. The DSC22 and VMA datasets 

exhibit the highest accuracy with the lowest RMS values, followed by DB17 and VZ73, while OPAC and VZ72 show the highest 

RMS values. In addition, the VMA dataset shows consistency in the RMS values regardless the difference in brightness 

temperature. As we approach saturation, the spectra increasingly reflect thermal emission from the aerosol layer, leading to a loss 

of sensitivity due to reduced spectral variation. This makes it more challenging to accurately reproduce the spectra. The results 405 

demonstrates no matter the CRI dataset used, as the aerosol loading increases, our ability to accurately reproduce the IASI spectra 

decreases, as given by the increasing RMS values. Moreover, by increasing ∆𝐓𝐁𝟐, most datasets exhibit a decreasing trend in the 

𝐷𝑒  and an increasing trend for VMR values except for DB17. Notably, VMA, DSC22 and VZ73 display the smallest effective 

diameters in the neighbouring of 3.2 μm, while DB17 shows the highest effective diameters for an average of 5.7 µm.  

5.2 Application to the full dust plume 410 

A large dust plume was dispersed between southwest and northeast China within a 2000 km² area in 4 May 2017. We select 1447 

IASI dust observations (between 2 and 4 UTC (between 10 am and 12 pm in Beijing local time)) using the PCA code and study 

the impact of the six CRIs to retrieve the microphysical parameters using ARAHMIS. Figure 6 shows the maps of effective 

diameter, the VMR and the RMS of the fitted spectra. The mean value represents the central tendency of each parameterindicates 

the range of each parameter, while the standard deviation the degree of dispersion around the mean, providing offering insight into 415 

the variability within each CRI. From 1447 selected observations, the retrieval process had no rejected values. Moreover, itIt is 
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also important to notice that there is a very weak correlation between the RMS and the microphysical parameters 𝐷𝑒  and VMR, 

across different CRIs, which demonstrates that the inversion process does not bias the retrievals. Therefore, the output for the 1447 

observations aligns with a gaussian distribution for De, VMR and RMS. An example of distribution of De, VMR and RMS 

corresponding for DSC22 dataset is shown in Fig. 7, other datasets histograms are found in the supplementary material. There 420 

is a significant variation of approximately 30% in RMS values, with the highest being for VZ72 and the lowest for DSC22. The 

optimal mean RMS is 2.1 ×  10−3 W·m⁻²·sr⁻¹·(cm⁻¹)⁻¹, is associated with the DSC22 and VMA datasets for 1447 pixels. The 

radiometric noise for the IASI instrument is approximately 2×10−4 W⋅m−2⋅sr−1⋅(cm−1)−1 in the mid-infrared region. Given the 

complexity of our radiative transfer model, which includes numerous non-retrieved parameters such as temperature, pressure, and 

gases concentrations, a mean RMS of 2×10−3 W⋅m−2⋅sr−1⋅(cm−1)−1 is considered within an acceptable range.  and having a value 425 

close to the IASI noise, followed by DB17.Similarity between DSC22 and VMA’s RMS values shows consistency between the 

CRIs obtained by Deschutter, 2022 and the mineralogical composition reported by Alalam et al., 2022. However, the RMS values 

for DB17 are consistently lower. This can be caused by the influence of humidity since DB17 reported that small amounts of water 

vapor and CO2 contaminated the dust spectra below 7 µm. In contrast, DSC22 and VMA were obtained from the PC2A platform, 

which uses a nitrogen purge to reduce gases content in the apparatus. This difference could account for the observed variations. 430 

DSC22 and DB17 datasets are derived from measurements generated from Gobi Desert samples, while the VMA set is a mixture 

of pure minerals calculated for the Gobi samples' mineralogy, as previously calculated by Alalam et al. in 2022. Note that, there 

are two regions in the neighbouring of (38.0°N; 104.0°E and 43.0°N; 112.0°E) where the RMS is slightly higher for all CRIs. This 

corresponds to finer size distributions for which the MIR is less sensitive, and this is confirmed by the smaller size diameter 

retrieval for all CRIs. When natural dust CRIs are excluded, the most favorablefavourable RMS is observed for the VMA dataset, 435 

suggesting that a CRI calculated from a pure mineral mixture can be used as a reliable proxy for the natural dust sample CRI. This 

is consistent with the hypothesis of heterogeneous mixture of pure minerals, as verified by Deschutter, 2022 for the DSC22 sample 

using the Scanning Electron Microscopy (SEM). Integrating new CRI measurements and the mixing methodology detailed in the 

mineralogical study by Alalam et al., 2022, has shown the potential to improve the measurements reproduction. 

The distribution of retrievals across all plume pixels exhibits a uniform range of magnitude across all CRIs, despite variations in 440 

specific values. A factor of 1.6 is observed between the lowest and highest values for the mean effective diameter (lowest in VMA 

and highest in DB17) and inversely for the VMR.  As both DB17 and DSC22 CRIs are obtained from dry Goby dust samples, the 

difference is mainly due to the variation in the imaginary part of the refractive index, which can arise from differences in the 

chemical composition of these samples. The standard deviation indicates significant variability in these parameters among different 

CRIs. DSC22 exhibits the largest standard deviation (i.e., variability) for the effective diameter, while VZ73 has the lowest. This 445 

contrast highlights the differences in particle size distribution retrieval between these two CRIs. On the other hand, VMA shows 

the largest distribution width for VMR, therefore a high degree of variability. Conversely, OPAC has the narrowest distribution, 

suggesting more uniform VMR values. This analysis reveals different degrees of variability in the effective diameter and VMR 

across various CRIs.  

From a geographical aspect, for all CRIs the spatial distribution displays an increase in diameter from southwest to northeast China. 450 

Following the mechanism of the wind front, dust is blown with large diameters northeast particularly from the Horqin Sandy Land 

and floating dust with smaller diameters from the Gobi Desert. DSC22 has the widest range of effective diameter values. Notably, 

only VMA and DSC22 show high VMRs in the center of the plume that align with the wind front lines as illustrated by Minamoto 

et al., 2018.  

To validate our results, we didn’t find enough ground measurements within the dust plume event that are statistically representative. 455 

Nevertheless, two Sun–Sky Radiometer Observation Network (SONET) stations include measurements within the dust plume at 
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the same date and time of the IASI observations: Beijing (40.005; 116.379) and Yanqihu (40.408; 116.674). The size distributions 

are retrieved using an inversion method as described by Li et al., 2018. In both stations, the mean effective coarse diameter retrieved 

was of 3.4 μm with a standard deviation of 1 μm. Our results show coherent effective size diameters that fall in the range of 

SONET retrievals, especially the DCS22 dataset, where the mean effective diameter for the overall observations was found to be 460 

3.2 μm with a standard deviation of 1.4 μm. However, it is remains challenging to compare two different observational and 

inversion methods in which IASI is a satellite-based instrument measuring the infrared spectrum, while SONET employs ground-

based sun-sky radiometers in visible spectrum, therefore different sensitivity to dust detection. Nevertheless, our results show 

coherent effective size diameters that fall in the range of SONET retrievals, especially the DCS22 dataset, where the mean effective 

diameter for the overall observations was found to be 3.1 μm with a standard deviation of 1.4 μm. 465 

Finally, through this case study, we have been able to quantify the impact of CRIs on the retrieval of the aerosol microphysical 

parameters (size and concentration) which play a significant role in estimating the dustir radiative effect. 

Conclusion and perspectives 

This study provides valuable insights into the role of dust CRIs in the aerosol microphysical retrievals using infrared remote 

sensing, in particular IASI detections. It emphasizes the critical importance of selecting the appropriate CRI for accurately 470 

determining the microphysical properties of these particles. Initially, we use; the ARAHMIS radiative transfer algorithm to evaluate 

the IASI measurements sensitivity to various CRIs commonly used in previous studies: VZ72, VZ73, OPAC, DB17, DSC22 and 

VMA. The information content shows that the IASI measurements is able to accurately retrieve particle size and volume mixing 

ratio, particularly at higher AOD levels. Moreover, the selection of an appropriate CRI can decrease the total error by 30% which 

was shown to be the best for the VMA dataset. Hence, improvements in optical properties dust measurements are demonstrated 475 

significant potential in aerosol parameter retrieval. This progress is important for future atmospheric studies and applications that 

rely on CRI laboratory measurements that have higher reliability to satellite spectral observations. 

 

The next step, we applied the retrieval process on a dust storm that occurred over China's Gobi Desert on 4 May 2017. By applying 

the inversion process on three contrasted spectra in terms of brightness temperature difference, VMA and DSC22 showed the most 480 

accurate spectral fits to the dust observations. For the overall dust plume results, the microphysical parameters have a uniform 

distribution across all different indices despite the spread of the values. The spatial distribution of aerosol retrieved parameters was 

plotted across the East Asian region. The distribution patterns vary for different CRIs, which reflect the influence of CRIs choice 

on the retrieval. A very weak correlation between RMS and the microphysical properties across different CRIs suggests that the 

ARAHMIS inversion process is reliable, as it does not produce errors across the range of retrieved parameters. The RMS is only 485 

significant in the case of small diameters, indicating lower sensitivity to this size range.A very weak correlation between RMS and 

the microphysical properties across different CRIs suggests that the ARAHMIS inversion process is reliable, as it does not produce 

errors across the range of the retrieved parameters.  

The RMS values of DB17, DSC22, and VMA are significantly better than those of VZ72, VZ73, and OPAC, highlighting 

improvements in retrieving CRIs from resuspended particles, particularly in reproducing IASI detections. In addition, The results 490 

suggest that the accuracy of aerosol property measurements is associated with the source of the dust samples. In the absence of 

definitive dust CRIs, the optical properties of pure mineral aggregates can reliably reflect the regional mineral composition, as 

shown by low RMS values in such case. This opens the perspectives to better quantify not only the dust mineralogical composition 

as shown in Alalam et al., 2022, but also, to retrieve more precise microphysical properties through an enhanced understanding of 
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the composition. Understanding the physico-chemical properties of dust more thoroughly is crucial for accurately assessing its 495 

radiative effects and its impact on climate and human health. 

the optimal mean RMS is linked to CRI datasets derived from the Gobi Desert. This RMS value indicates that despite the challenges 

posed by non-retrieved parameters, our model is reasonably capable of reproducing the IASI observations. In future, more 

improvements can focus on refining the treatment of non-retrieved parameters. On the other hand, our comparison was limited by 

the availability of ground measurements, with data only from two SONET network sites. We acknowledge the importance of 500 

comprehensive verification and will consider expanding our verification dataset in future studies as more data become available. 

This will help to further validate our findings and enhance the robustness of our results.The optimal mean RMS is linked to datasets 

derived from specific sources, in this case of the Gobi Desert. In the absence of definitive dust CRIs, the optical properties of pure 

mineral aggregates can reliably reflect the regional mineral composition, as shown by low RMS values in such case. This opens 

the perspectives to better quantify not only the dust mineralogical composition as shown in Alalam et al., 2022, but also, to retrieve 505 

more precise microphysical properties through an enhanced understanding of the composition. Understanding the physico-

chemical properties of dust more thoroughly is crucial for accurately assessing its radiative effects and its impact on climate and 

human health. 

 

The results also suggest that the accuracy of reproducing IASI spectra is associated with the source of the CRI dust samples. In the 510 

absence of definitive dust CRIs, the optical properties of pure mineral aggregates can reliably reflect the regional mineral 

composition, as shown by low RMS values in such case. This opens the perspectives to better quantify not only the dust 

mineralogical composition as shown in Alalam et al., 2022, but also, to retrieve more precise microphysical properties through an 

enhanced understanding of the composition which is crucial for accurately assessing its radiative effects and its impact on climate 

and human health. 515 
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Figure 1. Difference in brightness temperature from IASI dust selection during the dust storm in 4 May 2017 at daylight. 

Table 1. Summary of CRIs datasets used in this study. 

Reference 

 

Abbreviation Sample Method 

Total 

spectral 

range (cm-1) 

Spectral 

resolution 

in MIR 

(cm-1) 

Volz, 1972  VZ72 Mid-latitude rainout dust  Pellet 250–50000 ~50 

Volz, 1973  VZ73 Saharan sand, Barbados, West Indies Pellet 250–4000 ~10 

Hess et al., 1998  OPAC Mixture of Volz,1973 and quartz Pellet 250–4000 ~10 

Di Biagio et al., 2017  DB17 Gobi desert, China Suspended aerosols 666–3333 2 

Deschutter, 2022  DSC22 Gobi desert, China  Suspended aerosols 650 - 40000 1 

Deschutter, 2022 

 

VMA 

Internal mixture of quartz , illite and 

calcite using the Volume mixing 

approximation. 

Suspended aerosols 650 - 40000 1 
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Figure 2. Spectral variation of the complex refractive indices of six datasets VZ72: Volz, 1972; VZ73: Volz, 1973; OPAC: Hess et al., 1998; 

DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: Volume mixing approximation mixture from Deschutter, 2022. 
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Figure 3. Spectral variation of the extinction coefficient using Mie theory of spherical particle of 1 μm of diameter on six CRI complex refractive 

indices datasets VZ72: Volz, 1972; VZ73: Volz, 1973; OPAC: Hess et al., 1998; DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: 

Volume mixing approximation mixture from Deschutter, 2022. 
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Table 12. Non-retrieved parameter a priori and uncertainty references. 740 

Non-retrieved 

parameters 
A priori value reference 

A priori 

uncertainty 
Uncertainty reference 

H2O UWYO database 10% Clerbaux et al., 2007 

CO2 CAMS 1% Engelen & Stephens, 2004 

O3 WOUDC database 5% Boynard, et al., 2016 

CH4 CAMS 5% De Watcher et al., 2017 

N2O Mid-latitude winter standard 100% - 

CFC-11 Mid-latitude winter standard 100% - 

CFC-12 Mid-latitude winter standard 100% - 

Surface Temperature IASI l2 Product (EUMETSAT) 1K Pougatchev et al., 2009 

Surface emissivity Zhou et al., 2014 + Alalam et al, 2022 2% Capelle et al., 2012 

 

 

 

 

Formatted Table

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold

Formatted: Font: Not Bold, Complex Script Font: Not Bold



23 

 

 745 

 

 

Figure 4. The dofs and total error Sx (in %) of the state vector parameters as function of the AOD for each literature complex refractive index.  

De is the effective particle diameter, and VMR is the volume mixing ratio. VZ72: Volz, 1972; VZ73: Volz, 1973; OPAC: Hess et al., 1998; 

DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: Volume mixing approximation mixture from Deschutter, 2022. 750 
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Figure 5. Retrieval of IASI spectral examples from 4 May 2017 using six CRI datasets: VZ72: Volz, 1972; VZ73: Volz, 1973; OPAC: Hess et 

al., 1998; DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: Volume mixing approximation mixture from Deschutter, 2022. 
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Table 23. Retrieved parameters using ARAHMIS applied on three spectra using different complex refractive indicesCRIs. VZ72: Volz, 1972; 

VZ73: Volz, 1973; OPAC: Hess et al., 1998; DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: Volume mixing approximation 765 
mixture from Deschutter, 2022. 

 Spectrum VZ72 VZ73 OPAC DB17 DSC22 VMA 

Effective diameter 

(𝛍𝐦) 

1 4.5 3.6 4.9 4.8 3.4 3.5 

2 4 2.7 4.4 5.1 3.6 2.9 

3 4.2 3.1 4.3 5.7 2.9 3.1 

VMR  

(in ppm) 

1 4.5 x 10-12 6.0 x 10-12 5.9 x 10-12 3.7 x 10-12 6.5 x 10-12 6.7 x 10-12 

2 9.9 x 10-12 2.6 x 10-11 1.2 x 10-11 5.6 x 10-12 1.0 x 10-12 2.4 x 10-11 

3 2.0 x 10-11 3.0 x 10-11 3.2 x 10-11 7.5 x 10-12 5.1 x 10-11 3.1 x 10-11 

RMS  

(in K) 

1 1.3 1.3 1.4 1.2 0.9 1.2 

2 2.1 1.5 2 1.5 1.1 1.3 

3 2.3 1.8 2.5 1.8 1.2 1.3 

RMS  

(in 

W.m-2.sr-1. (cm-1)-1) 

1 1.6 x 10-3 1.6 x 10-3 1.9 x 10-3 1.5 x 10-3 1.2 x 10-3 1.5 x 10-3 

2 2.2 x 10-3 1.9 x 10-3 2.6 x 10-3 1.9 x 10-3 1.4 x 10-3 1.6 x 10-3 

3 2.9 x 10-3 2.3 x 10-3 3.2 x 10-3 2.4 x 10-3 1.5 x 10-3 1.6 x 10-3 
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Figure 6. Maps of the aerosol microphysical properties ARAHMIS retrieval from the Gobi dust plume event occurred in 4 May 2017. Retrieval 

from IASI observations is applied on six literature CRIscomplex refractive indices: VZ72: Volz, 1972; VZ73: Volz, 1973; OPAC: Hess et al., 

1998; DB17: Di Biagio et al., 2017; DSC22: Deschutter, 2022; VMA: Volume mixing approximation from Deschutter, 2022. 770 
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Figure 7. Histograms of the effective diameter, VMR and RMS from ARAHMIS retrieval of the dust plume from 4 May 2017 detected by IASI 

using the complex refractive index dataset DSC22: Deschutter, 2022. 
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