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Table S1. Fitting parameters 𝑎 and 𝑏 of different calibration experiments.  28 
Experiment 

No. 
Particle diameter (nm) Mass loading (ng) 𝑎 b 

1 200 150.7 -0.197 1.056 

2 200 241 -0.167 1.768 

3 200 407 -0.206 3.732 

4 100 90.5 -0.218 3.641 

5 100 110.6 -0.241 5.229 

6 100 150.8 -0.243 4.451 
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Table S2. The detailed information of three selected periods. 30 
 Periods Days 

Long-range 

Transport 

14-20 October; 29 October-1 November; 3-4 November; 7-10 

November; 14 November 
18 

Urban Air 

Masses 
7-9 October; 23-27 October; 1-2 November; 13 November 11 

Coastal Air 

Masses 
2-4 October; 10-12 October; 22 October; 12 November 8 

 31 
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 34 

Figure S1. Location of the measurement site and Guangzhou city. This map was obtained from Map 35 
World. 36 
  37 
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 38 

Figure S2. Normalized 72 hours backward trajectories arriving at the measurement site during (a) 39 
the whole measurement, (b) long-range transport period, (c) urban air masses period, and (d) coastal 40 
air masses period. 41 
  42 
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 43 
Figure S3. Mass spectral profile of six OA factors. The colors represent different family groups. 44 
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 46 
Figure S4. (a) Measured 𝑇௠௔௫  vs 𝑃௦௔௧  literature values for PEG 5-8 at different diameters and 47 
collected mass loadings and (b) corresponding fitted calibration lines. 48 
  49 
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 50 

Figure S5. Normalized probability density function of collected mass loading on the filter of the 51 
FIGAERO-I-CIMS. The collected mass loading is calculated based on collection time, flow rate 52 
through the filter, and the organic concentration measured by the SP-AMS. 53 
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 55 
Figure S6. Van-Krevelen diagram (O/C ratio versus H/C ratio) of gas-phase organic compounds 56 
measured by FIGAERO-CIMS. The symbol size is proportional to the mass concentration of organic 57 
vapors and the color code represents the volatility. The black solid line divided the organic vapors 58 
potentially formed through the autoxidation pathway (upper regime) and multi-generation OH 59 
oxidation pathway (lower regime)(Wang et al., 2022; Wang et al., 2020).  60 
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 62 

Figure S8. Relationship between particle surface area and SOA factors (MOOA, LOOA and 63 
aBBOA). 64 
  65 
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 66 

Figure S8. Relationship between the concentration of organic vapors and six OA PMF factors. The 67 
color represents the CS values. 68 
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 71 

Figure S9. Relationship between odd-oxygen (OX, OX=O3+NO2) and the concentration of organic 72 
vapors measured by the FIGAERO-CIMS in the afternoon (10:00-16:00 LT). 73 
  74 
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 75 
Figure S10. The average diurnal variation of Ox during the whole campaign, long-range transport, 76 
urban air masses, and coastal air masses periods. 77 
  78 
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 79 
Figure S11. Volatility distribution of the number of calibrated and semi-quantified species 80 
measured by the FIGAERO-CIMS. 81 
 82 
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 84 

Figure S12. Average sum thermograms measured by the FIGAERO-CIMS in the afternoon 85 
(12:00-16:00 LT) during the whole campaign, long-range transport, urban air masses, and coastal 86 
air masses periods. 87 
  88 
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 89 

Figure S13. Relationship between the SVOC+LVOC in FIGAERO OA and LOOA in AMS OA 90 

during (a) the whole campaign, (b) long-range transport, (c) urban air masses, and (d) coastal air 91 

masses periods.  92 
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 94 
Figure S14. 72h backward trajectories arriving at the measurement site with 500 m height at 95 
00:00, 06:00, 12:00, and 18:00 on 2 November 2019. 96 

 97 
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 99 
Figure S15. Variation of (a) PNSD, (b) sum thermograms, and (c) wind speed and direction on 2 100 
November 2019. 101 
  102 



19 
 

 103 

Figure S16. The average diurnal variation of NOx during the whole campaign and three selected 104 
periods.  105 
  106 
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 107 

Figure S17. Diurnal variation of CHON compounds in (a) condensable organic vapors, (b) non-108 
condensable organic vapors, and (c) FIGAERO OA and (d-f) their corresponding mass ratio. 109 
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