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Abstract 24 

 Nitrous acid (HONO) is a main precursor of hydroxyl radicals (OH), which contribute 25 

to the formation of numerous secondary air pollutants in the troposphere. Despite its 26 

importance in atmospheric chemistry, HONO chemistry has not been fully incorporated into 27 

many chemical transport models (CTMs). Due to the lack of atmospheric HONO processes, 28 

CTM simulations often tend to underestimate atmospheric mixing ratios of HONO. This study 29 

was undertaken because simulations with current Community Multiscale Air Quality (CMAQ) 30 

model have a strong tendency to underestimate the HONO mixing ratio. In search of missing 31 

sources of atmospheric HONO, we attempted to sequentially incorporate the following 32 

potential HONO sources and processes into the CMAQ modeling framework: (i) gas-phase 33 

HONO reactions; (ii) traffic HONO emissions; (iii) soil HONO emissions; (iv) heterogeneous 34 

HONO production on the surfaces of aerosols; (v) heterogeneous HONO formation on tree leaf 35 

and building surfaces; (vi) photolysis reactions of particulates and deposited HNO3/nitrates 36 

called ‘renoxification’. The simulation performances of the modified CMAQ models were then 37 

evaluated by comparing the modeled HONO mixing ratios with the HONO mixing ratios 38 

observed at the Olympic Park station in Seoul, South Korea. When HONO processes were fully 39 

added to the CMAQ model, average daily HONO mixing ratios increased from 0.06 ppb to 40 

1.18 ppb. The daytime HONO mixing ratios produced from the CMAQ model run with a full 41 

account of atmospheric HONO processes were found to be in better agreement with 42 

observations than those from the original CMAQ model (CMAQv5.2.1) runs with improved 43 

statistical metrics (e.g., IOA increased from 0.59 to 0.68, while MB decreased dramatically 44 

from -0.57 ppb to -0.34 ppb). In addition, we investigated the contributions of individual 45 

atmospheric HONO processes to HONO mixing ratios, as well as the impacts of HONO 46 

atmospheric processes on the concentrations of other atmospheric species in South Korea. All 47 

these issues are also discussed in this manuscript. 48 
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1. Introduction 51 

 Hydroxyl radicals (OH) play a key role in atmospheric chemistry. OH radicals oxidize 52 

volatile organic compounds (VOCs), sulfur dioxide (SO2), and nitrogen dioxide (NO2), 53 

contributing to the formation of secondary organic and inorganic aerosols (Pathak et al., 2009). 54 

Therefore, accurate determination of the mixing ratio of OH radicals is crucial to understanding 55 

atmospheric photochemistry in both polluted and remote areas.  56 

Nitrous acid (HNO2 or HONO) has been recognized as a main precursor of OH radicals 57 

via photo-dissociation (R1) (Harris et al., 1982; Alicke et al., 2003; Kleffmann et al., 2005): 58 

        HONO + hv 
𝑗𝐻𝑂𝑁𝑂
→      OH + NO (300 nm < λ < 405 nm)            (R1) 59 

Several studies have estimated that HONO photolysis reactions contribute 20 – 80% of OH 60 

radicals and 30 – 87% of HOx formation in polluted urban areas (Alicke et al., 2003; Ren et al., 61 

2003; Kleffmann et al., 2005; Acker et al., 2006; Monks et al., 2009; Hendrick et al., 2014; 62 

Kim et al., 2014). However, it was also recognized that the HONO chemistry was not yet fully 63 

understood. 64 

 Therefore, many field measurements have been carried out to characterize atmospheric 65 

HONO processes (Su et al., 2008; Li et al., 2012; Kim et al., 2014; Lee et al., 2016). These 66 

studies showed that the observed HONO mixing ratios were significantly higher than those 67 

predicted by atmospheric chemistry-transport model simulations (Su et al., 2008; Vandenboer 68 

et al., 2013; Li et al., 2014; Lee et al., 2016). This indicates that there should be missing HONO 69 

sources or processes that are not considered in current atmospheric models (CTMs). 70 

Recent studies have proposed incorporating several HONO production pathways into 71 

chemical transport models to explain the missing HONO processes. Suggested sources include 72 

i) traffic HONO emissions (Kirchstetter et al., 1996; Kurtenbach et al., 2001; Rappenglück et 73 

al., 2013; Czader et al., 2015; Xu et al., 2015; Nakashima and Kajii, 2017; Li et al., 2018); ii) 74 
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soil HONO emissions (Nagai and Kubota, 1972; Oswald et al., 2013; Weber et al., 2015; 75 

Meusel et al., 2016); iii) HONO emissions from biomass burning (Crutzen and Andreae, 1990; 76 

Cheng et al., 2014; Nie et al., 2015); iv) indoor HONO emissions (Gligorovski, 2016; Zhang 77 

et al., 2019); and iv) heterogeneous conversion of NO2 to HONO on the surfaces of aerosols, 78 

grounds, and leaves (Svensson et al., 1987; Wiesen et al., 1995; Reisinger, 2000; Han et al., 79 

2017). 80 

Among these processes, traffic HONO emissions were reported to be the key factor 81 

influencing the HONO mixing ratio in the Beijing–Tianjin–Hebei (BTH) region at night 82 

(Zhang et al., 2019). Heterogeneous NO2 reactions on aerosol surfaces were an important 83 

source of HONO during the severe haze period in Beijing (Jia et al., 2020). On the other hand, 84 

Zhang et al. (2016) reported that heterogeneous reactions on ground surfaces could be the 85 

dominant source of atmospheric HONO, accounting for ~42% of the HONO mixing ratios in 86 

Hong Kong suburban areas.  87 

These findings may indicate that atmospheric HONO production and a potential cause 88 

of discrepancies between modeled and observed HONO mixing ratios may vary temporally 89 

and regionally. In addition, no research has been conducted on which sources of HONO control 90 

the levels of HONO in Seoul, South Korea. In this context, the aims of this study are three-fold: 91 

i) to determine which HONO sources or processes are significant in South Korea; ii) to estimate 92 

the budget of the HONO mixing ratios from various HONO sources; and iii) achieving 93 

objectives i) and ii) to develop a near-perfect CTM in terms of HONO mixing ratio. To 94 

accomplish these goals, we decided to improve the US EPA CMAQ v5.2.1 model by 95 

incorporating several HONO production pathways including i) homogeneous HONO reactions; 96 

ii) direct HONO emissions from biomass burning, traffic vehicles, and soil; iii) heterogeneous 97 

HONO production on the surfaces of atmospheric aerosols, buildings, and tree leaves; and iv) 98 

photolysis reactions of particulate and deposited HNO3/nitrate (renoxification). 99 
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We then tested the performances of the modified CMAQ models by comparing the 100 

modeled HONO mixing ratios with the HONO mixing ratios observed during the Korea-United 101 

States Air Quality (KORUS-AQ) campaign. After the comparison analysis, we evaluated the 102 

contributions of individual HONO processes to the HONO budget in South Korea and also 103 

investigated the effects of the HONO mixing ratios on the levels of other important atmospheric 104 

species. 105 

2. Methodology 106 

In this study, we incorporated various HONO sources and reactions into the CMAQ 107 

model framework to accurately estimate HONO mixing ratios in the atmosphere. Then, the 108 

simulation results of the modified CMAQ models were analyzed, comparing the modeled 109 

outputs with observations during the KORUS-AQ campaign. Details of the modifications of 110 

CMAQ models, the HONO measurements, and potentially important HONO sources 111 

considered in this study are described in the following sections.  112 

2.1. WRF-CMAQ model configuration 113 

 Simulation of the Community Multiscale Air Quality (CMAQ) v5.2.1 model (Byun 114 

and Schere, 2006) was carried out to estimate the HONO mixing ratios during the period of the 115 

KORUS-AQ campaign (9 May – 12 June, 2016). Figure 1 shows the horizontal domain (A1) 116 

for the CMAQ model simulation. The spatial domain has 273×204 grid cells with a horizontal 117 

resolution of 15  15 km2 and contains 15 vertical layers with the first layer at ~34 m above 118 

the ground.  119 

The photochemical mechanism used in the simulation of the CMAQ model was the 120 

Statewide Air Pollution Research Center-07 (SAPRC-07 TC) (Carter, 2010; Hutzell et al., 121 

2012). The AERO6 module was used for aerosol calculations (Binkowski and Roselle, 2003). 122 

In particular, the heterogeneous reactions considered in this study were embedded into the 123 
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SAPRC-07 TC via the Korean Flexible Chemistry (KFC) editor. The KFC editor is a chemical 124 

mechanism editor in a framework of Graphic User Interface (GUI) developed to quickly 125 

implement the modifications of the chemical mechanisms of the CMAQ model. The details of 126 

the heterogeneous reactions we considered are discussed in Sects. 2.3.5 – 2.3.6. 127 

 The Weather Research and Forecasting (WRF) v3.8.1 model (Skamarock et al., 2008) 128 

was run to generate meteorological fields that drive the CMAQ model. The physical options 129 

used in the WRF run are as follows: i) WRF Single-Moment 6-class Microphysics scheme 130 

(Hong and Lim, 2006); ii) Rapid radiative transfer model (RRTMG) for longwave and 131 

shortwave radiation (Iacono et al., 2008); iii) the NOAH Land Surface scheme (Chen and 132 

Dudhia, 2001); iv) Yonsei University (YSU) Planetary Boundary Layer (PBL) scheme (Hong 133 

et al., 2006); v) MM5 surface layer scheme (Jiménez et al., 2012); and vi) the Grell-Freitas 134 

Ensemble scheme for cumulus physics (Grell and Freitas, 2014). Initial and boundary 135 

conditions for the WRF model runs were obtained from the National Center for Environmental 136 

Prediction Final Analysis (NCEP-FNL) every six hours. 137 

 For anthropogenic emissions, this study used the KORUS v5.0 inventory processed by 138 

the Sparse Matrix Operator Kernel Emissions in Asia (SMOKE-Asia; Woo et al., 2012) (Woo 139 

et al., 2020). The KORUS v5.0 emissions were developed particularly for CTM runs as part of 140 

the KORUS-AQ campaign. Biogenic emissions were generated using the Model of Emissions 141 

of Gases and Aerosol from Nature (MEGAN) v2.10 (Guenther et al., 2012). Fire emissions 142 

were obtained from the Fire Inventory from NCAR (FINN) v1.5 emission inventory 143 

(https://bai.acom.ucar.edu/Data/fire/; Wiedinmyer et al., 2011). The various HONO emissions 144 

considered in this study are discussed in Sects. 2.3.2. – 2.3.4. 145 
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 146 

Figure 1. Spatial distributions of HONO emission rates from biomass burning (panels (a) and 147 

(b)), from traffic (panels (c) and (d)), and from soil (panels (e) and (f)) over East Asia (A1), 148 

South Korea (A2), and the Seoul Metropolitan Area (A3). Several super-monitoring stations 149 

are located at Bangnyung-Do, Bulkwang-Dong, Olympic Park, Mt.Taehwa, Daejeon, Gwangju, 150 

Ulsan, and Jeju. The locations of these super-stations are shown in panel (b). 151 

2.2 Measurements 152 

During the KORUS-AQ campaign period, concentrations of NO2, O3, and particulate 153 

matter were measured at several locations such as Olympic Park (37.52N; 127.12E), 154 

Bangnyung (37.96N; 124.64E), Bulkwang (37.61N; 126.93E), Mt. Taewha (37.31N; 127.31E), 155 

Daejeon (36.35N; 127.38E), Gwangju (35.23N; 126.84E), Ulsan (35.53N; 129.31E), and Jeju 156 

(33.32N; 126.40E) (refer to Fig. 1b regarding the locations). In this study, we also used data 157 

observed at approximately 320 stations from the AIR-KOREA network 158 

(https://www.air.korea.or.kr), officially managed by the Korean Ministry of Environment in 159 

South Korea.  160 
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Surface data observed at the Olympic Park station in Seoul were used for direct comparisons 161 

between simulated and observed HONO mixing ratios. These HONO mixing ratios were 162 

measured using the Monitor for AeRosols and GAses in ambient air (MARGA ADI 2080) 163 

(Applikon-ECN, Netherlands) instrument with a time resolution of 1 hour. This measurement 164 

is based on the wet-denuder-ion-chromatography (WD/IC) method. In the WD/IC system, 165 

HONO molecules absorbed by the solution in the denuder were converted to nitrite (NO2
−), 166 

and then the nitrite concentrations were quantified by ion chromatography (Xu et al., 2019). 167 

The detection limit of the MARGA instrument for HONO is ~0.02 ppb. At the Olympic Park 168 

station, NO2 and O3 were also measured using commercially available instruments, EC9841 169 

and EC9810, respectively, manufactured by Ecotech. Their detection limits for both species 170 

are ~0.5 ppb during the daytime. Details on the principles of EC9841 and EC9810 can be 171 

found in Keywood et al. (2019). PM2.5 at the Olympic Park station were measured 172 

continuously using a Thermo Scientific Continuous Particulate Monitor, FH62C14, based on 173 

the beta attenuation method. The detection limit of the instrument is 4μg/𝑚3 in hourly 174 

measurements. Further information about instruments is provided in Table S1. 175 

Meteorological data on temperature, relative humidity, pressure, wind speeds, and 176 

wind directions were also measured by the Automated Synoptic Observing System (ASOS) at 177 

the Olympic Park station. In order to test the simulation performances of the WRF-CMAQ 178 

model, observed meteorological data was compared with the modeled outputs, which is shown 179 

in Figure S1 and Table S2. In general, WRF model simulations tended to accurately predict 180 

meteorological fields.  181 
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Table 1. Comparison of parameterizations of HONO processes between CMAQ v5.2.1 and this study. 182 

 183 
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2.3 HONO sources  184 

 In this study, we considered several possible missing HONO sources or processes in 185 

the CMAQ model simulations. The possible missing HONO sources include gas-phase HONO 186 

reactions, three HONO emission sources, three heterogeneous HONO reactions, and two 187 

photolytic reactions. The considered possible missing HONO sources are also contrasted to the 188 

current HONO processes embedded in the CMAQ v5.2.1 model in Table 1. The details of each 189 

HONO process are discussed below.  190 

Table 2. Design for 8 EXP simulations. 191 

HONO 

Source 

Experiment 

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 EXP8 

GAS1) √ √ √ √ √ √ √ √ 

BioB2)  √ √ √ √ √ √ √ 

TRAF3)   √ √ √ √ √ √ 

SOIL4)    √ √ √ √ √ 

HET_A5)     √ √ √ √ 

HET_L6)      √ √ √ 

HET_BD7)       √ √ 

RENOx
8)        √ 

1) Gas-phase reactions; 2) Biomass Burning Emissions; 3) Traffic Emissions; 4) Soil Emissions; 5) Heterogeneous reactions on 192 
aerosol surfaces; 6) Heterogeneous reactions on the surfaces of leaves; 7) Heterogeneous reactions on the surfaces of buildings; 193 
8) Renoxification 194 

2.3.1 Gas Phase reactions (GAS) 195 

  We used the SAPRC-07 TC chemical mechanism as base mechanism. A total of 4 gas-196 

phase HONO-related reactions were considered for HONO formation and dissociation (Carter, 197 

2010; Foley et al., 2010; Appel et al., 2016). HONO is produced by i) photolysis of 198 

nitrophenol (NPHE) (R2) and ii) reaction of NO with OH in the presence of the third body 199 

(M) (R3). Meanwhile, HONO is removed by reaction with OH radicals (R4) and photolytic 200 

dissociation (R1). All these reactions are shown below: 201 

NPHE + hv 
jNPHE
→    HONO + xPROD2             (R2) 202 

 OH + NO + M 
𝑘3
→ HONO                       (R3) 203 
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HONO + OH 
𝑘4
→ H2O + NO2                    (R4) 204 

where, JNPHE (R2) and JHONO (R1) are the photolysis rates constants of NPHE and HONO, 205 

respectively, which were adopted from the study of Stockwell et al. (1990). As shown in Table 206 

1, JNPHE was calculated, based on JNO2 (i.e., JNPHE = 1.50 × 10-3 × JNO2), which was defined 207 

in Bejan et al. (2006). k3 and k4 are the reaction rate constants of (R3) and (R4) and were 208 

obtained from the National Aeronautics and Space Administration (NASA) Jet Propulsion 209 

Laboratory (JPL) Publication 19 (Burkholder et al., 2015). Among these reactions, the reaction 210 

rate constants of (R3) and (R4) were updated in our study (refer to Table 1). The effect of these 211 

gaseous reactions on HONO mixing ratios was tested in the EXP1 simulation (see GAS in 212 

Table 2). 213 

2.3.2 Biomass burning emissions (BioB) 214 

 Biomass combustion includes three types of burning events: natural wildfires, 215 

agricultural fires, and wood burning (Wiedinmyer et al., 2011). In East Asia, agricultural fires  216 

typically occur in early summer and fall (Ryu et al., 2004; Tao et al., 2013; Zhang et al., 2013). 217 

The period of the KORUS-AQ campaign coincides with the period of the agricultural residue 218 

burning after barley and wheat harvest in East Asia. Biomass burning emissions, including 219 

agricultural fire emissions, were obtained from the Fire INventory from NCAR version 1.5 220 

(FINN v1.5, Wiedinmyer et al., 2006; Wiedinmyer et al., 2011). This was then considered in 221 

the EXP2 simulation (see BioB in Table 2). The spatial distributions of HONO emissions from 222 

the biomass burning events in the East Asia domain (A1), South Korea domain (A2), and Seoul 223 

Metropolitan Area domain (A3) are presented in Fig. 1a and 1b. However, we found that the 224 

HONO emission rates used in the EXP2 simulation were relatively small, compared to the total 225 

HONO emission rates presented in Fig. 1 and Table 3.  226 

 227 
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 228 

Table 3. HONO emission rates from biomass burning, traffic, and soil. The total HONO 229 

emission rates during the period of the KORUS-AQ campaign are shown. 230 

Region 

Source 

Biomass 

Burning 

Emission 

(g ∙ s-1) 

Traffic 

Emission 

(Mg ∙ s-1) 

Soil Emission 

(Mg ∙ s-1) 

Total  

(Mg ∙ s-1) 

East Asia (A1) 2.46 6.40 5.65 14.51 

South Korea (A2) 0.00 0.32 0.06 0.38 

Seoul 

Metropolitan 

Area (A3) 

0.00 0.10 0.01 0.1 

2.3.3 Traffic emissions (TRAF) 231 

Traffic emissions are an important HONO source, particularly at night (Zhang et al., 232 

2016). HONO is emitted directly from vehicle exhaust systems. In this study, to estimate the 233 

direct HONO emissions from traffic sources, we assumed that the HONO to NOx emission 234 

ratio is 0.8% for gasoline vehicles and 2.3% for diesel vehicles (Zhang et al., 2016). All off-235 

road vehicles were treated as diesel vehicles in the calculations of HONO emissions 236 

(Gutzwiller et al., 2002). Table 3 presents the total emission rates for East Asia, South Korea, 237 

and the Seoul Metropolitan Area, which are 6.40, 0.32, and 0.1 Mg s-1, respectively. Moreover, 238 

as shown in Fig. 1c and 1d, HONO emissions from traffic sources are dominant, particularly 239 

in metropolitan areas such as Seoul, Beijing, Shanghai, and Hong Kong. The contribution of 240 

traffic sources to total HONO emissions was estimated to be dominant in the Seoul 241 

Metropolitan Area. In the EXP3 simulation, the impact of the traffic source (see TRAF in Table 242 

2) on the atmospheric HONO mixing ratios was investigated.  243 

2.3.4 Soil emissions (SOIL) 244 

 Emissions from soil bacterial activity are important sources of HONO. The amount of 245 

their emissions depends on the soil type, land category, fertilization, temperature, soil water 246 
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content (SWC in %), and soil pH (Meusel et al., 2018; Wu et al., 2020). In this study, HONO 247 

emissions were estimated based on the ratio of HONO to NOx emissions from soil (Oswald et 248 

al., 2013). SWC was used as a proxy for soil pH due to the technical limitations of direct 249 

measurement of the soil pH. The SWCs were set at 0-7.5%, 7.5-15%, 15-20%, 20-30% and 30-250 

40% for HONO-to-NOx ratios of 1.0, 0.67, 0.75, 0.5 and 0.25, respectively, because the ratio 251 

of HONO to NOx is very sensitive to the water content in the soil. For this estimation, monthly 252 

soil NOx emissions were acquired from the MEGAN v2.10 model. 253 

The HONO emission rate from soil was estimated at 0.06 Mg s-1 for South Korea, 254 

accounting for ~16% of the total HONO emission rate in South Korea (refer to Table 3). The 255 

spatial distributions of emission are presented in Fig. 1e and 1f. The impact of HONO soil 256 

emissions (see SOIL in Table 2) was examined in the EXP4 simulation. 257 

2.3.5 Heterogeneous reaction of NO2 on atmospheric aerosol surfaces (HET_A) 258 

 In the EXP5 simulation, we added the heterogeneous reaction of NO2 on the surface of 259 

atmospheric aerosols via reaction (R5) (see HET_A in Table 2), which has been reported to be 260 

a possible pathway for HONO formation (Svensson et al., 1987; Wiesen et al., 1995; Reisinger, 261 

2000; Han et al., 2017; Lu et al., 2018).  262 

2NO2 + H2O 
𝑘𝑎𝑒𝑟𝑜𝑠𝑜𝑙
→      HONO + HNO3                   (R5) 263 

We found a similar diurnal pattern of the concentration ratio of HONO/NO2 to the 264 

HONO mixing ratio at the Olympic Park station. This indicates that the conversion of NO2 to 265 

HONO via reaction (R5) may be a main process for HONO formation (Fig. S2). The 266 

HONO/NO2 ratios at the Olympic Park station in Seoul ranged from 1.9% to 6.8% during the 267 

KORUS-AQ campaign, which is also comparable to those observed in Taichung, Taiwan, and 268 

Shanghai, China (Tong et al., 2015; Hao et al., 2020).  269 
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The current AERO6 module in the CMAQv5.2.1 model already considers reaction (R5) 270 

but does not take into account ‘photo-enhancement’. However, several previous studies 271 

suggested that the photo-enhanced reactions should produce more HONO molecules during the 272 

daytime (Li et al., 2010; Czader et al., 2012; Colussi et al., 2013; Levy et al., 2014; Fu et al., 273 

2019). The potential photo-enhancement of the reaction (R5) was taken into account by making 274 

kaerosol dependent on the magnitude of light intensity: 275 

kaerosol  = 

1

4
 × vNO2 × 

Saero

V
× γa,NO2                           (Eq.1) 276 

γa,NO2 = 8.0 × 10−6  (nighttime) 277 

γa,NO2 = 1.3 × 10−4 × (
light intensity

900
)   (daytime) 278 

where, 𝑣NO2, 
Saero

V
, and γa,NO2 represent the mean molecular velocity of NO2 (m∙ s−1), the 279 

aerosol surface density (m2 ∙ m−3 ), and the NO2 uptake coefficient on the surface of 280 

atmospheric aerosols, respectively. The values of γa,NO2  were finally selected from the 281 

sensitivity tests. It should also be noted in Table 1 that the CMAQ v5.2.1 model simply uses a 282 

fixed reaction constant (= 10−4 ×
Saero

V
) for this heterogeneous reaction. 283 

2.3.6 Heterogeneous reactions of NO2 on tree leaf and building surfaces (HET_L and 284 

HET_BD) 285 

 The heterogeneous reaction of NO2 can also take place on the ground surfaces (e.g., 286 

tree leaves and buildings). Several studies have reported that heterogeneous reactions on the 287 

surfaces of tree leaves and buildings via reaction (R6) can contribute to the HONO mixing 288 

ratios in the atmosphere (An et al., 2013; Karamchandani et al., 2015; Hou et al., 2016; Zhang 289 

et al., 2016). Therefore, we also considered these photo-enhanced heterogeneous NO2 reactions. 290 

2NO2 + H2O 
𝑘𝐿&𝐵
→   HONO + HNO3                       (R6) 291 

In this study, kL&B was calculated using equation (2), with a modification of the equation: 292 
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k𝐿&𝐵  = 

1

8
 × vNO2 × γg,NO2 × (

Sg,building
V

+
Sg,leaf
V
)                  (Eq.2) 293 

γg,NO2 = 5.0 × 10−7  (nighttime) 294 

γg,NO2 = 5.8 × 10−6 × (
light intensity

900
)   (daytime) 295 

where γg,NO2 is the NO2 uptake coefficient on the ground surfaces. These values are also 296 

selected from sensitivity tests. Here, 
Sg,building

V
 represents the ratios of the building surface 297 

area to the volume, which were calculated from equation (3): 298 

Sg,building

V
 = PURB ×

0.3
𝑚2

𝑚3

100%
                     (Eq.3) 299 

where, PURB represents the percentage of building area with a maximum value of 0.3 (Zhang 300 

et al., 2016). For vegetation areas, 
Sg,leaf

V
 (the ratio of the leaf surface to volume) was estimated 301 

based on leaf area index (LAI) information, along with equation (4) proposed by Sarwar et al. 302 

(2008): 303 

Sg,leaf

V
 = 

2×LAI

H
                     (Eq.4) 304 

where, H represents the height of the first layer of the model simulation (Sarwar et al., 2008; 305 

Yuan et al., 2011; Zhang et al., 2012). The LAI was obtained from improved Moderate 306 

Resolution Spectroradiometer (MODIS) land use data (Yuan et al., 2011). 307 

2.3.7. Photolysis reactions (RENOx) 308 

 Several measurement studies have reported that the photolytic dissociation of 309 

particulate nitrate (pNO3) in the atmosphere (R7) may be able to explain the high HONO 310 

mixing ratios observed during the daytime (Ye et al., 2017; Romer et al., 2018). Other studies 311 

suggested that the photolysis reactions of HNO3 and nitrate deposited on tree canopies and 312 

artificial surfaces (R8) can also be significant sources of daytime HONO, particularly in rural 313 

areas (Zhou et al., 2011; Ye et al., 2016). All these heterogeneous reactions from N(V) to N(III) 314 

or N(IV) are called atmospheric ‘renoxification’. Some studies have also reported that these 315 
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types of reduction reactions actually take place in the snow (Chen et al., 2019). In order to 316 

better estimate the daytime mixing ratios of HONO in the atmosphere, reactions (R7) and (R8) 317 

were included in the EXP8 simulation (see RENOx in Table 2).  318 

pNO3
ℎ𝑣
→  0.67 HONO + 0.33 NO2                 (R7) 319 

deposited_HNO3/nitrate
ℎ𝑣
→  0.67 HONO + 0.33 NO2        (R8) 320 

In the EXP8 simulation, we chose equations for both the photolysis rate constant of particulate 321 

NO3
−  (denoted by JpNO3 ) and the photolysis rate constant of HNO3/nitrate deposited on 322 

surfaces (denoted by JD_HNO3/nitrate), following the methods proposed by Zhang et al. (2022), 323 

and Fu et al. (2019). These equations are presented below: 324 

JpNO3  = 118 × JHNO3                          (Eq.5) 325 

JD_HNO3/nirate  = 48 × JHNO3                   (Eq.6) 326 

where, JHNO3  is the reaction rate constant of gaseous HNO3 photo-dissociation, which is 327 

calculated by the photolysis rate preprocessor module (JPROC) in the CMAQ model.  328 

3. Results and Discussions  329 

In this section, we first evaluated the performances of the modified CMAQ models in 330 

terms of HONO mixing ratios by comparing the model outputs with ground-based observations 331 

from the Olympic Park station in South Korea. We then carried out sensitivity tests to estimate 332 

the contributions of the various atmospheric HONO processes to atmospheric HONO mixing 333 

ratios. 334 

3.1 Observed vs Simulated HONO mixing ratios 335 

 Figure 2 presents the hourly variations of the HONO mixing ratios at the Olympic Park 336 

station. Observations are marked with open black circles, and colored lines represent HONO 337 

mixing ratios calculated from the 8 EXP simulations. When HONO sources were added 338 
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sequentially to the experiments, the HONO mixing ratios averaged over the entire simulation 339 

period increased from 0.06 ppb (EXP1 simulation) to 1.18 ppb (EXP8 simulation). The 340 

averaged HONO mixing ratios in the EXP8 simulation, which took into account all the HONO 341 

processes, were almost comparable to those observed from the ground (1.35 ppb of HONO).  342 

 The CMAQ-simulated HONO mixing ratios were particularly underestimated from 19 343 

May to 23 May, 2016 (refer to gray-shadow period in Fig. 2). This period was characterized 344 

by low wind speeds and poor mixing within planetary boundary layer height (PBLH), which 345 

can lead to the accumulation of air pollutants (Crawford et al., 2021). On the other hand, the 346 

WRF model has a strong tendency to produce higher wind speeds than the actual ones, which 347 

may lead to underestimation of air pollutant concentrations (Jo et al., 2017). In particular, the 348 

modeled wind speed during the stagnant period is overestimated by 36.3% compared to the 349 

observed wind speed, which is significantly higher than the overestimation of 23.4% for the 350 

entire KORUS-AQ period. Therefore, the underestimation of the HONO mixing ratios may be 351 

caused by the overestimation of the wind speed on a given period. Despite all the discrepancies, 352 

the HONO mixing ratios agree relatively well with the observed HONO mixing ratios during 353 

the period of the KORUS-AQ campaign. 354 

 355 

Figure 2. Hourly variations of the HONO mixing ratios (unit: ppb) at the Olympic Park station 356 

in Seoul. The observations are marked with black circles and the colored lines represent the 357 

HONO mixing ratios obtained from the 8 experimental simulations. 358 

Figure 3 shows the diurnal variations of averaged HONO mixing ratios estimated from 359 

the 8 EXP simulations, together with HONO observations at the Olympic Park station. For the 360 



19 

analysis of Fig. 3, daytime and nighttime are defined as 06:00–18:00 and 18:00–06:00 local 361 

standard time, respectively. The EXP1 simulation showed slightly elevated HONO mixing 362 

ratios during the daytime (purple line in Fig. 3) due to the net production of HONO in the gas 363 

phase. The peak mixing ratio of the simulated HONO is ~0.14 ppb, which is significantly lower 364 

than the observed mixing ratio. The large differences between EXP1 results and observations 365 

suggest that there should be more unaccountable sources of HONO, which should be further 366 

taken into account in our model simulations.  367 

In the EXP2 simulation, HONO emissions from biomass burning were added. Several 368 

studies have reported that direct and indirect sources emitted from biomass burning events 369 

could contribute to the primary/secondary HONO formation (Gen et al., 2021; Wang et al., 370 

2021; Jiang et al., 2023). However, the addition of these biomass burning emissions resulted 371 

in nearly negligible impact on the HONO mixing ratios, because no major biomass-burning 372 

events occurred in South Korea during the period of the KORUS-AQ campaign (refer to Fig. 373 

1b). Thus, there are minimal differences between the EXP1 and EXP2 simulations (i.e., 374 

between the purple and grey lines in Fig. 3). 375 

EXP3 simulation was then carried out to examine the impact of traffic sources (TRAF) 376 

on HONO mixing ratios. The average HONO mixing ratio increases to ~0.55 ppb. As 377 

previously discussed in Fig. 1c, HONO emissions from traffic sources can be significant, 378 

particularly in the Seoul Metropolitan Area. However, simulated levels of HONO are still much 379 

lower than observed levels of HONO. 380 

HONO emissions from soil (SOIL) were further included in the EXP4 simulation. As 381 

discussed previously, several studies have reported that the consideration of soil emissions can 382 

lead to large increases in atmospheric HONO mixing ratios, particularly in East Asia (Fig. 1e). 383 

However, it was found that almost no significant changes had occurred in South Korea. This is 384 
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because the low soil NOx levels in the South Korea are linked to several factors: (i) 385 

geographical feature mainly covered by forest and mountains areas; (ii) use of low nitrogen 386 

fertilizers; (iii) the reduced availability of nitrogen in the soil caused by acidic deposition; and 387 

(iv) the relatively high soil water content (SWC) over the Korean Peninsula (Kim et al., 2008; 388 

An et al., 2023).  389 

 In the EXP5 simulation, the heterogeneous reactions of NO2 on the surfaces of 390 

atmospheric aerosols (HET_A) were further taken into account. The addition of these reactions 391 

was found to have only minor effect on the HONO mixing ratios, because γa,NO2 used in Eq. 392 

(1) is too small to enhance the HONO mixing ratios in reaction (R5). In our study, the 393 

heterogeneous reactions on the surface of atmospheric aerosols contribute only ~0.06 ppb. The 394 

heterogeneous reactions can be potentially important in more polluted regions where larger 395 

aerosol surface areas are available (Zhang et al., 2019).  396 

On the contrary, the HONO mixing ratios can be greatly enhanced by NO2 to HONO 397 

conversions on the surfaces of the tree leaves and buildings. These two processes were 398 

implemented in the EXP6 and EXP7 simulations (HET_L and HET_BD). In these two cases, 399 

there were significant increases in the HONO mixing ratios, particularly during the nighttime 400 

(i.e., on average, increases of 0.23 and 0.55 ppb in the HONO mixing ratios were found in the 401 

EXP6 and EXP7 simulations, respectively). 402 

Finally, the photolytic renoxification of nitrate was added to the EXP8 simulation. In 403 

this EXP8 simulation, the averaged HONO mixing ratios increased by 0.11 ppb. The 404 

enhancement in the HONO mixing ratios was particularly large in the early morning (an 405 

increase of ~0.23 ppb was found at 6 a.m.). Overall, the EXP8 simulation produced the best 406 

HONO mixing ratios (averaged value of 1.18 ppb), compared to observed HONO mixing ratio 407 

(1.35 ppb). Also, the estimated HONO mixing ratios were more comparable than those in the 408 
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CTRL (original CMAQ v5.2.1) model simulation (represented by black squares in Fig. 3). 409 

Again, it is noted that our simulations incorporated ‘new HONO processes’ such as: i) the 410 

photo-enhanced HONO production pathway through (R5) and (R6); ii) daytime HONO 411 

production from renoxification reactions through (R7) and (R8); and iii) HONO emissions 412 

(refer to Table 1).  413 

In addition to the graphical comparison in Fig. 3, several statistical metrics were also 414 

calculated to evaluate the performances of the 8 EXP and CTRL simulations in Table 4. 415 

Significant improvements were found when the HONO processes were sequentially added 416 

from the EXP1 to the EXP8 simulations. For example, the index of agreement (IOA) increases 417 

from 0.44 to 0.76, and the mean bias (MB) decreases drastically from -1.29 ppb to -0.17 ppb 418 

from the EXP1 to the EXP8. In particular, the EXP8 simulation showed the best performance, 419 

compared to the CTRL simulation during the daytime. For example, the IOA during the 420 

daytime increased from 0.59 to 0.68, while the MB decreases from -0.57 to -0.34, respectively. 421 

The root mean square error (RMSE) also decreased from 0.80 to 0.70 during the daytime.  422 

Although the EXP8 simulation showed a notable enhancement in HONO production, 423 

the HONO mixing ratios were still underestimated during the daytime. Such underestimation 424 

of HONO mixing ratios during the daytime could be attributed to stronger HONO photo-425 

dissociation than in real situations. This is possibly due to failure in predicting cloud shades 426 

fractions in meteorological modeling and/or due to additional sources that were not considered 427 

in this study (e.g., acid displacement for HNO3 and HCl, nitrate and Fe(II) in iron-organic 428 

complex under irradiation, and renoxification of nitrate in presence of carbonaceous aerosols) 429 

(Vandenboer et al., 2013; Gen et al., 2021; Wang et al., 2021). This certainly indicates that 430 

additional work is needed to further investigate HONO formation and removal during the 431 

daytime. 432 

 433 
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 434 

Figure 3. Diurnal variations of HONO mixing ratios (unit: ppb) at the Olympic Park station 435 

averaged over the period of the KORUS-AQ campaign. Error bars and grey-shaded areas 436 

indicate one standard deviation and nighttime (18 – 06 LST, Local Standard Time), 437 

respectively. 438 

 439 

 440 

 441 

 442 

 443 

 444 

Table 4. Statistical analysis with modeled and observed HONO mixing ratios at the Olympic 445 

Park station, Seoul, Korea. 446 

Experiment 
Observed 

mean (ppb) 

Modeled 

mean (ppb) 
RMSE (ppb) MB (ppb) IOA 

CTRL 1.35 0.78 1.06 -0.57 0.75 

EXP1 1.35 0.06 1.68 -1.29 0.44 

EXP2 1.35 0.06 1.68 -1.29 0.44 

EXP3 1.35 0.55 1.15 -0.79 0.63 

EXP4 1.35 0.56 1.15 -0.79 0.64 

EXP5 1.35 0.61 1.12 -0.73 0.66 

EXP6 1.35 0.75 1.02 -0.60 0.72 

EXP7 1.35 1.07 1.05 -0.28 0.77 

EXP8 1.35 1.18 1.12 -0.17 0.76 

 447 

3.2 Relative contribution of HONO sources 448 
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 Individual HONO processes affect the HONO mixing ratios in different ways. Figure 449 

4 summarizes the relative contribution of HONO processes to the HONO mixing ratios. During 450 

the daytime, both GAS and RENOx contribute significantly to the production of atmospheric 451 

HONO molecules. In particular, the contribution of these two processes is the largest between 452 

10:00 and 16:00 local time, when sunlight is strong. These two processes account for 29.1% 453 

and 29.8% of the daytime HONO production, respectively, but are almost negligible during the 454 

nighttime. 455 

During the nighttime, TRAF (denoted by navy color in Fig. 4) contributes the large 456 

portion of 47.2% of the total HONO production. However, there is a possibility that TRAF 457 

might have been somewhat overestimated during the nighttime since we applied constant 458 

diurnal anthropogenic NOx emissions, including those from traffic source. In turn, HET_BD 459 

and HET_L exhibit substantial contributions of 28.5% and 10.6%, respectively during the 460 

nighttime. The contributions of other processes such as biomass burning (BioB) and 461 

heterogeneous reactions on atmospheric aerosols (HET_A) are minimal. HET_A contributes 462 

only 4.3% during the nighttime. Its contribution increases to 4.2% during the daytime. In terms 463 

of the average 24-hour contribution, TRAF (41.4%), HET_BD (27.1%), and HET_L (11.1%) 464 

are the large sources of atmospheric HONO at the Olympic Park station. 465 

Using the same approach, we analyzed the HONO source contributions across South 466 

Korea during the period of the KORUS-AQ campaign. As shown in Fig. 5f and 5c, HET_L 467 

and TRAF were modeled to have the largest impacts on HONO production, contributing 0.15 468 

ppb (41.5%) and 0.08 ppb (18.1%), respectively, across South Korea (also, refer to the 469 

incremental ratio in Fig. S3).  470 

Fig. 6 shows the contributions of different sources to the HONO mixing ratios at 8 471 

super monitoring stations. As shown in Fig. 6, each station has different characteristics in terms 472 
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of source contribution. In particular, the contribution of HET_L at the Daejeon is 44.4%. Also, 473 

TRAF in Bulkwang, Olympic Park, Mt.Taehwa, Ulsan, and Gwangju have large contributions 474 

of 41.2%, 41.4%, 29.3%, 29.6%, and 40.5%, respectively. As for TRAF and HET_BD, their 475 

contributions are high only in densely populated cities (refer to Fig. 5c and 5g). On the other 476 

hand, the contributions of BioB, SOIL, HET_A, and RENOx sources were insignificant, as 477 

shown in Fig. 5b, 5d, 5e, and 5h.  478 

Meanwhile, at the Bangnyung and Jeju stations, RENOx has the largest contribution 479 

of 70.4%, and 33.2%, respectively. This is because the amounts of NO2 and HONO from direct 480 

emissions (BioB, TRAF, and SOIL) are relatively small. The Bangnyung and Jeju stations are 481 

located on remote and less populated islands. 482 

 483 

Figure 4. Diurnal contributions of individual HONO processes to the HONO mixing ratios at 484 

the Olympic Park station during the period of the KORUS-AQ campaign. 485 
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 486 

Figure 5. Spatial impacts of (a) gas phase reactions; (b) biomass burning emissions; (c) traffic 487 

emissions and (d) soil emissions; (e) heterogeneous reactions on the aerosol surfaces, (f) 488 

heterogeneous reactions on the leaf surfaces, and (g) heterogeneous reactions on the building 489 

surfaces; and (h) renoxification on HONO mixing ratios, based on model simulations during 490 

the period of the KORUS-AQ campaign in South Korea. 491 
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 492 

Figure 6. Contributions of individual processes to the average HONO mixing ratios at 8 493 

monitoring stations during the period of the KORUS-AQ campaign. 494 

3.3 Impact of HONO processes on atmospheric species 495 

3.3.1 Impact on atmospheric species 496 

 We also investigated the effect of HONO processes on atmospheric levels of HOx 497 

(=OH + HO2), HCHO, O3, NO, and PM2.5 at the Olympic Park station. Figure 7 presents the 498 

diurnal concentrations of these gaseous and particulate species at the Olympic Park station. 499 

The mixing ratios of OH and HO2 radicals in the EXP8 simulation increased by 0.02 ppt (35.2%) 500 

and 0.23 ppt (39.2%), respectively, compared to those in the CTRL simulation. This is certainly 501 

due to the enhancement in OH levels due to HONO photo-dissociation, and then HO2 levels in 502 

the HOx cycle. As shown in Fig. 7a (and 7b), the OH (and HO2) mixing ratios increased from 503 

0.21 ppt to 0.29 ppt (1.71 ppt to 2.28 ppt) at 1 p.m. local standard time. Subsequently, the 504 
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HCHO mixing ratios were also enhanced by 0.18 ppb (8.8%), due to increased VOC oxidation 505 

resulting from elevated levels of OH radicals (Fig. 7c). On the contrary, the NO mixing ratios 506 

in the EXP8 simulation decreased by 2.13 ppb (20.1%). This may be due to an increase in the 507 

mixing ratios of HO2 and RO2 radicals (organic peroxyl radicals) reacting with NO molecules 508 

(Fig. 7d). In other words, the reduced levels of NO indicate active NO to NO2 conversion via 509 

NO+HO2 and NO+RO2 reactions. Such active NO to NO2 conversion increases the mixing 510 

ratio of atmospheric ozone because these two reactions are rate-determining reactions for ozone 511 

production. This is presented in Fig. 7e. In Fig. 7e, the modeled ozone mixing ratios increased, 512 

approaching the observed ozone mixing ratios. This is another good result showing that the 513 

incorporation of atmospheric HONO processes may be able to enhance the accuracy of 514 

prediction of ozone mixing ratios. More details about ozone production are discussed in Sect. 515 

3.3.2. 516 

Elevated levels of atmospheric O3 and HOx can change the rates of particulate nitrate 517 

and sulfate production. In particular, the formation of particulate nitrates and sulfates can also 518 

be enhanced by increasing the levels of HNO3, N2O5, and H2SO4. In addition, the nitrate 519 

concentration can also be enhanced by the HONO reaction (i.e., via NO2 + H2O → H+ + NO3
− 520 

+ HONO, as accounted for by R6) during the nighttime. In total, the addition of HONO 521 

processes increases PM2.5 by 4.19 μg m-3 (18.6%) at the Olympic Park station. However, PM2.5 522 

in the EXP8 simulation was still underestimated by 3.16 μg m-3 at the Olympic Park station, as 523 

shown in Fig. 7f. There are several potential reasons for this underestimation, such as the 524 

underestimation of secondary organic aerosol (SOA) formation (e.g., Murphy et al., 2017). 525 

This issue may require further investigation in the future. 526 

Figure S4 presents similar results for 320 AIR KOREA monitoring stations in South 527 

Korea. The impacts of HONO processes on atmospheric levels of OH, HO2, O3, and PM2.5 are 528 

also presented in Fig. S5. Overall, we found that incorporating HONO chemistry into the 529 
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modeling system tends to enhance the mixing ratios of HOx, which in turn increases the mixing 530 

ratios of O3 and PM2.5.  531 

 532 

Figure 7. Diurnal variations of the mixing ratios of (a) OH, (b) HO2, (c) HCHO, (d) NO, (e) 533 

O3, and (f) PM2.5 (black lines represent the mixing ratios from the CTRL simulation and the 534 

red lines represent those from the EXP8 simulation) and observations (marked with white open 535 

cycles) at the Olympic Park station during the period of the KORUS-AQ campaign. Shaded 536 

areas represent one standard deviation for each simulation. 537 

3.3.2 Impact on net ozone production 538 

 The ozone mixing ratio is determined by the balance between ozone formation and 539 

destruction in the atmosphere. To better understand the impacts of HONO chemistry on ozone 540 

production, we quantitatively analyze the rate of net ozone production (P(O3)). The P(O3) is 541 

defined by equation (7): 542 
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P(O3) = F(O3) – D (O3)                       (Eq. 7) 543 

where, F(O3) and D(O3) represent the rate of ozone formation and destruction, respectively. 544 

F(O3) and D(O3) can be calculated from equations (8) and (9), respectively (Song et al., 2003; 545 

Mazzuca et al., 2016). 546 

F(O3) = 𝑘𝐻𝑂2+𝑁𝑂[HO2][NO] + 𝑘𝑅𝑂2+𝑁𝑂[RO2][NO]                 (Eq. 8) 547 

D(O3) = 𝑘𝑁𝑂2+𝑂𝐻[NO2][OH] + 𝑘𝑂3+𝑉𝑂𝐶[O3][VOC] + 𝑘O(1D)+𝐻2𝑂[O(1D)][H2O]          548 

+ 𝑘𝑂3+𝑂𝐻[O3][OH] + 𝑘𝑂3+𝐻𝑂2[O3][HO2] + 𝑘𝑅𝑂2+𝑁𝑂2[RO2][NO2]  549 

+ 2𝑘𝑁𝑂3+𝑉𝑂𝐶[NO3][VOC] + 3khet[N2O5]                    (Eq. 9) 550 

where ki represents the reaction rate constants for each reaction i. In particular, khet denotes the 551 

heterogeneous reaction rate constants of N2O5 radicals. 552 

Figure 8a shows the diurnal variations of F(O3), D(O3), and P(O3) from the CTRL and 553 

EXP8 simulations. Including HONO processes in the EXP8 simulation resulted in an average 554 

P(O3) that was 10.6% higher than in the CTRL simulation. This is the primary reason for the 555 

ozone enhancement in Fig. 7e.  556 

 Figures 8b and 8c provide more details about the budget of ozone production. The 557 

main increase in F(O3) occurred through the reactions of HO2 + NO and RO2 + NO. On the 558 

other hand, the increase in D(O3) was mainly controlled by the NO2 + OH reaction at the 559 

Olympic Park station. The increases in the HO2 + NO and RO2 + NO reaction rate exceeded 560 

the increases in the reaction rate of NO2 + OH, leading to the net positive ozone production 561 

(i.e., positive P(O3)) shown in Fig. 8a.  562 
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 563 

Figure 8. Diurnal variations of (a) net ozone production rate (P(O3); black line), ozone 564 

formation rate (F(O3); red line), and ozone loss rate (D(O3); blue line). The dashed and solid 565 

lines represent the CTRL and EXP8 simulations, respectively. Cumulative bar chart for D(O3) 566 

and F(O3) in case of (b) CTRL and (c) EXP8 simulations at the Olympic Park station during 567 

the period of the KORUS-AQ campaign. 568 

4. Conclusions 569 

 In this study, we successfully incorporated the following HONO processes into the 570 

CMAQ modeling framework to enhance the accuracy in the predictions of HONO mixing 571 

ratios: i) gas-phase HONO reactions; ii) HONO emission from biomass burning; iii) HONO 572 

emission from traffic and soil; iv) photo-induced heterogeneous reactions on the surfaces of 573 

atmospheric aerosols, tree leaves, and buildings; and v) photolysis reactions of particulate 574 
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nitrate and deposited HNO3/nitrate. The analysis showed that the incorporation of HONO 575 

processes into the CMAQ model framework increased the average HONO mixing ratios from 576 

0.78 ppb to 1.18 ppb compared to the CTRL simulation. Average mixing ratios of HONO and 577 

its diurnal patterns became much more comparable to observations, with large improvements 578 

in statistical parameters. Especially during the daytime, IOA increased from 0.59 to 0.68, while 579 

the MB decreased from -0.57 ppb to -0.34 ppb, and RMSE dropped from 0.80 ppb to 0.70 ppb, 580 

as HONO processes were fully incorporated into the CMAQ model. 581 

Several findings also emerged from the sensitivity simulations. First, each HONO process 582 

had a different effect on the HONO mixing ratios during the daytime and the nighttime at the 583 

Olympic Park station. For example, the GAS (29.1%) and RENOx processes (29.8%) had major 584 

contributions to the mixing ratios of HONO during the daytime, while the TRAF (47.2%) and 585 

HET_BD (28.5%) processes had large contributions to the mixing ratios of HONO during the 586 

nighttime. During the period of the KORUS-AQ campaign, HONO mixing ratios estimated at 587 

the Olympic Park station were enhanced by an average of 41.4% (TRAF), 27.1% (HET_BD), 588 

and 11.1% (HET_L).  589 

In the experimental simulation including all the HONO processes (i.e., EXP8 simulation), 590 

the mixing ratios of OH, HO2, HCHO, O3, and PM2.5 at the Olympic Park station increased by 591 

0.02 ppt (35.2%), 0.23 ppt (39.2%), 0.18 ppb (8.8%), 7.86 ppb (30.8%), and 4.19 μg 𝑚−3 592 

(18.6%), respectively, compared to those from the CTRL simulation. The net ozone production 593 

rate was enhanced by 0.19 ppb h-1 (10.6%) with the EXP8 simulation. This increases in P(O3) 594 

were caused mainly by the increased reaction rates of HO2 + NO. 595 

 In this study, we improved our understanding of atmospheric HONO processes in 596 

South Korea. Nevertheless, we believe that both further field studies and modeling 597 

investigations are necessary for many remaining HONO-related issues such as NO2 uptake 598 
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coefficient, possible missing HONO sources, and daytime photochemical reaction pathways of 599 

HONO. Such studies will also help to further improve the performances of current CTMs. 600 

For example, the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) 601 

field campaign organized by the National Institute of Environmental Research (NIER) in Korea 602 

and the National Aeronautics and Space Administration (NASA) in the U.S. is planned in 2024 603 

in South Korea. In this campaign, the HONO mixing ratios are scheduled to be measured in 604 

the aircraft and at the ground station. This joint campaign is thus expected to provide a valuable 605 

opportunity to expand our knowledge on atmospheric HONO processes and HONO photo-606 

chemistry.  607 

 608 
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