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Abstract. The presence of a seasonal snowpack decisively modulates the albedo of terrestrial land surfaces. Global warming-

driven decreases in the duration of the seasonal snow cover are thus expected to lower annual albedo, result in a positive

radiative forcing and thus represent a positive feedback to climate change. Here we quantify future (up to the year 2100)

scenarios of albedo change and the associated radiative forcing for Austria using a machine learning approach which leverages

satellite-derived albedo data and future scenarios of snow depth. Albedo was calculated from the MODIS MCD43A1 v0065

BRDF/albedo product for the period 2002-2019. Snow depth was taken from a novel dataset for Austria (FuSE-AT) covering

the period 1951-2100. A machine-learning model (using LightGBM) was then trained to predict albedo separately for each land

cover type (MODIS MCD12Q1 v006) using snow depth, days since last snowfall, as well as several predictors related to plant

canopy structure (leaf area index, canopy height) and topography (latitude, longitude, elevation above sea level, inclination,

exposition). LAI turned out to be an important predictor in simulating albedo in both snow free and snow covered points in10

time. Time since last snowfall, as a surrogate for snow aging, was more important for short land cover types than for forests.

The correlation coefficients of the trained models varied widely across the different land cover types, ranging from 0.70 to 0.94.

In 5 out of the 6 scenarios used, a significant decline of albedo could be observed. The cumulative time-dependent emission

equivalent resulting from the albedo changes between 2020-2100 corresponds to 0.25-1 (RCP 2.6), 0.8-2.25 (RCP 4.5) or 1-5

(RCP 8.5) times the annual CO2-equivalent emissions of Austria for the year 2021.15
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1 Introduction

The fraction of the incoming solar energy reflected by the Earth back to space is referred to as the planetary albedo. Albedo is a

fundamental component of the Earth’s energy balance and processes that define or influence the albedo of Earth directly affect

Earth’s climate (Stephens et al., 2015). The Earth’s planetary albedo is influenced by many factors, including cloud coverage,20

land cover, or snow and ice cover. Cloud cover influences albedo by modulating the amount of solar radiation reaching the

Earth’s surface and thus affecting the reflection of incoming sunlight. Land, snow, and ice cover influence albedo through their

reflective properties and the amount of incoming solar radiation that they absorb or reflect.
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It is well known that the reflective nature of snow results in a higher albedo. Snow covered surfaces reflect a significant

portion of the incoming solar radiation. Changes in snow conditions such as snow age, wetness, and pollutants can significantly25

influence surface albedo. Thus, the albedo of snow varies, ranging from 0.9 for fresh snow to about 0.4 for melting snow and

can drop as low as 0.2 for contaminated snow (Hall and Martinec, 1985). As the climate undergoes unprecedented changes,

alterations in temperature and precipitation patterns are affecting the duration, extent, and composition of snow cover across

different landscapes. In recent years, snow cover shows a negative trend in a lot of regions (Notarnicola, 2020). A recent study

shows a decreasing trend in March snowpack across the Northern Hemisphere from 1981 to 2020 (Gottlieb and Mankin, 2024).30

While numerous studies have examined the impact of snow presence/absence on albedo, fewer have focussed on the influence

of snow depth. This is significant since the amount of snow present can result in variations in albedo. Shorter vegetation may

be entirely covered by even a small amount of snow, whereas forests might not be covered, the snow-free canopy elements

thus lowering the ecosystem-scale albedo. For forests, maximum canopy height and the fraction of visible ground has been

shown to be strongly correlated with albedo (Webster and Jonas, 2018). This variability of albedo response among land cover35

types underscores the significance of accounting for vegetation types when analyzing the influence of snow depth on albedo.

Moreover, as previously mentioned, the aging of snow can play a crucial role, as it has the potential to significantly impact

snow albedo.

Satellites have revolutionized our ability to observe our planet, providing a wealth of data that is now indispensable in

climate science. This satellite-derived data offers a comprehensive and detailed perspective of the Earth’s surface. The use of40

satellite-based observations enables the ongoing monitoring of these properties on a global scale. Liu et al. (2009) have already

demonstrated the efficacy of satellite-derived data in accurately retrieving albedo. Data products derived from instruments

such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have proven instrumental in providing high-quality

information at various spatial and temporal scales.

Comprehensively measuring snow depth at a high spatial resolution from ground observation systems presents substantial45

challenges. Additionally, gauging snow depth from space through satellites introduces its own set of difficulties. Hence, a large

variety of approaches exists. Hedrick et al. (2015) used regional-scale lidar-derived measurements, Fernandes et al. (2018)

measured snow depth changes using lightweight unmanned aerial vehicle videos and Daudt et al. (2023) used a neural network

to estimate snow depth. Olefs et al. (2020) used a snow cover model together with simulated data from climate models to

derive snow conditions. Here we used the snow data from Olefs et al. (2020) together with satellite-derived data products to50

train machine-learning models for each land cover type using data from 2002-2019.

Our primary objectives in this study are as follows:

1. Attempting to predict future albedo for Austria as influenced by changes in snow depth.

2. Quantifying the resulting radiative forcing due to albedo changes.

3. Demonstrating the significance of snow depth as a predictor in albedo modeling.55

4. Highlighting the importance of snow aging (i.e. days since snowfall) as a predictor.
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2 Data & Methods

2.1 Study area
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Figure 1. Land cover statistics: the mode of the land cover (MCD12Q1) of Austria from 2002 to 2019 (left). Elevation boxplots (upper right;

only land cover types with enough data to compute statistics are displayed). Proportional area of each land cover type across the entire area

(lower right). Definitions of abbreviations are summarized in Table A1.

Austria is a landlocked country in the Eastern Alps in Central Europe with an area of about 83,871 km2. It lies between

latitudes 46° and 49° N and longitudes 9° and 18° E (Figure 1). The minimum elevation above sea level in Austria is 11260

meters, with a maximum elevation reaching 3795 meters (data from The Geoportal of the nine Austrian Provinces). Only 32%

of the country is below 500 meters a.s.l. Austria lies in the temperate climate zone with an average temperature for the current

reference period (1991 - 2020) of 7.4°C (data from GeoSphere Austria). The distribution of land cover types (MCD12Q1) of

Austria are shown in Figure 1.

2.2 Snow depth data65

The FuSE-AT (Olefs et al., 2020) snow depth (SD) data were downloaded at 1000m spatial resolution as NETCDF4 files. FuSE-

AT provides daily modelled snow depth for Austria from 1951-2100. The data were upsampled to 500m spatial resolution and
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Figure 2. Yearly mean SD of Austria for the available FuSE-AT datasets (2000-2100). (a) MPI-M_MPI-ESM-LR_r2i1p1_MPI-

CSC_REMO2009, (b) ICHEC_EC-EARTH_r12i1p1_SMHI_RCA4, (c) ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17, (d)

MPI-M_MPI-ESM-LR_r1i1p1_SMHI_RCA4, (e) MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4, (f) MPI-M_MPI-ESM-LR_r1i1p1_MPI-

CSC_REMO2009, (g) ICHEC_EC-EARTH_r3i1p1_DMI_HIRHAM5.

reprojected to WGS84. Furthermore, these data were used to calculate days since last snowfall (DSS) and the border coordinates

of FuSE-AT were used as the study area. The mask layer included in the FuSE-AT datasets was used to mask all the pixels

outside of Austria.70

Multiple FuSE-AT datasets are available based on different climate models (computer models to simulate the climate for a

given time period) and ensembles (Figure 2). Each dataset is accessible in three versions, corresponding to one of the RCPs –

specifically 2.6, 4.5, and 8.5, resulting in a total of 21 datasets. Due to computational overhead, only two of these were selected

and used as inputs in this study. ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17, based on the regional climate model

COSMO-CLM from the Climate Limited-area Modelling Community (CLMcom) (Figure 2c) as one of the datasets with higher75

mean SD and MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4, based on the Rossby Centre regional atmospheric model RCA4

from the Hadley Centre Global Environment Model version 2 (HadGEM) (Figure 2e) as one of the datasets with lower mean

SD. Based on CLMcom data (rcp26) for the current reference period (1991-2020), on average 3.1% of the Austria is covered

by snow for at least 300 days annually, while 55.4% experiences snow cover for at least 100 days per year where the average
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snow cover duration for the whole country is 58.2 days. Comparatively, HadGem data (rcp26) indicate that on average 1.7% of80

Austria is covered by snow for at least 300 days annually, with 51.0% experiencing snow cover for at least 100 days annually

during the same reference period where the average snow cover duration for the whole country is 53.7 days.

2.3 Remote sensing data

MODIS MCD43A1 v006 bidirectional reflectance distribution function (BRDF)/albedo model parameters (Schaaf and Wang,

2015), MCD12Q1 v006 land water mask and land cover product (Friedl and Sulla-Menashe, 2019), MCD15A3H v006 leaf85

area index/FPAR product (Myneni et al., 2015) at 500m spatial resolution and the ASTER digital elevation model v003

(NASA/METI/AIST/Japan Spacesystems And U.S./Japan ASTER Science Team, 2019) at 30m spatial resolution were down-

loaded as NETCDF4 files using the AppEEARS API (AppEEARS Team, 2023). The data were requested for the time period

2002-2019 using the bounding box created with the border coordinates of FuSE-AT. MCD12Q1 land cover data are available

yearly, from which the mode was calculated for each pixel over the study period and used to represent land cover (Figure 1).90

Abbreviations were assigned to each land cover type (see Table A1). MCD15A3H leaf area index (LAI) data is available

4-daily. The missing days were linearly interpolated to obtain daily LAI. The ASTER digital elevation model was used to

calculate aspect and slope.

The GEDI global forest canopy height 2019 (Potapov et al., 2021) was downloaded at 30m spatial resolution as a TIF file. It

was cropped and downsampled to 500m spatial resolution to align it with the spatial extent of the rest of the data.95

BESS global shortwave radiation data (Ryu et al., 2018) at 5000m resolution were downloaded as a NETCDF4 files. The

data were cropped and upsampled to 500m spatial resolution. Together with the MODIS MCD43A1 BRDF parameters, actual

(blue sky) albedo was then calculated following Wohlfahrt et al. (2021).

2.4 Machine learning model

In order to simulate albedo, the LightGBM model (Ke et al., 2017) was trained on the available data from 2002-2019. Light-100

GBM showed the best trade-off in terms of memory consumption, prediction speed and prediction accuracy. Separate models

were trained for each land cover type which were then joined to a “combined model” to predict future albedo, based on the

different snow scenarios.

Besides SD, DSS turned out to be an important predictor in modelling albedo in preparatory analyses, since older snow

tends to lower the albedo (Figure 3). All of the analysed land cover types showed this response with varying strengths, yet105

the most pronounced responses could be observed in lower statured land cover types. LAI depicted a similar pattern and

proved to be important even at times when the ground was covered with snow (Figure 3). In addition to the already mentioned,

canopy height, elevation, aspect, slope, latitude and longitude were included as predictors. Recursive feature elimination with

cross-validation has been performed using the scikit-learn library (Pedregosa et al., 2011) which highlighted that every one of

the selected predictors was important to simulate albedo. LightGBM parameters were optimized prior to training the models110

using a scikit-learn grid-search. During training, a validation dataset was used to prevent over-fitting using the L2-loss as a

loss metric. 80% of the data were used for training, 10% for validation and 10% for testing. The training took approximately

5
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Figure 3. Mean albedo per SD of grasslands (left) and mixed forests (right) using all the available data from 2002-2019 (ICHEC_EC-

EARTH_r12i1p1_CLMcom_CCLM4-8-17). Each line represents a different DSS (top) or LAI (bottom) class. The LAI-albedo-snow rela-

tionship for all land cover types is shown in Figure A1. Definitions of abbreviations are summarized in Table A1.

8 hours for a single snow scenario using 16 threads on an AMD Ryzen 7 processor. The model performance was evaluated

using the test dataset, and multiple test metrics were computed; among others the Nash-Sutcliffe efficiency (NSE) (Nash and

Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009). The trained models were used to simulate daily115

albedo for the different snow scenarios from 2020 to 2100. This approach assumes that land cover type, the seasonal course of

LAI (averaged over 2003-2019) and canopy height stay the same in the future and was trained on SD and DSS data from RCP

2.6 for both models.

2.5 Radiative forcing and time-dependent emission equivalent

The radiative forcing (W m−2) due to albedo changes was calculated as:120

RF∆α =
∑12

m=1 Km∆αm

12
AA

AE
(1)
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where Km is a monthly climatological albedo change radiative Kernel (W m−2) (Bright and O’Halloran, 2019), ∆αm is the

climatological monthly albedo difference between the average of the albedo of Austria from 2003-2032 and 2070-2099 and

AA and AE are the surface areas (m2) of Austria and the Earth respectively. Given the limited availability of LAI data, which

commenced in July 2002, the year 2003 served as the starting point for the predictions in this study.125

The time-dependent emission equivalent (kg eCO2m−2yr−1) was calculated following Bright et al. (2016) as:

TDEE∆α = kCO2
−1YCO2

−1RF∆α (2)

where kCO2
−1 is the radiative efficiency of CO2 (1.76e-15 W m−2kg−1), YCO2

−1 is the inverse of the lower triangular ma-

trix used to solve the system of linear equations (Bright et al., 2016) and RF∆α (Equation 1) was calculated using the monthly

albedo difference between the reference time range (2003-2019) and the given year as ∆αm. The atmospheric transmissivity130

and albedo change radiative kernels were calculated following Bright et al. (2020) using the EURO-CORDEX ensemble data

(Jacob et al., 2013) on surface downwelling shortwave and top of the atmosphere incident shortwave radiation for the CLMcom

and HadGEM scenarios, respectively. Based on the decision tree in Figure 2 of Bright and Lund (2021), the cumulative TDEE

(e.g
∑

TDEE) is a solid choice in the context of this study. According to Bright et al. (2016), uncertainties associated with the

TDEE largely stem from the uncertainty of the albedo model (or data).135

2.6 Software

Data preparation, modelling and statistical analyses were carried out using Python 3.11 (Van Rossum and Drake, 2009). More

time-intensive parts were written in the Rust programming language v1.73 (Matsakis and Klock II, 2014). Reprojections and

cropping were carried out with the GDAL library (Rouault et al., 2023).

3 Results140

Both combined calculated albedo models (CLMcom and HadGEM) show a similar performance (Figure 4a and Figure A2a).

Since the combined models were composed of sub-models for each land cover type, their skill could be determined separately

(Table A2). Open shrublands (NSE 0.89, KGE 0.94) and grasslands (NSE 0.82, KGE 0.86) together with some of the other

shorter vegetation types showed the best performance. In the case of forest types and croplands, a lower model performance

was observed. Deciduous broadleaf forests (NSE 0.59, KGE 0.66) displayed the highest and deciduous needleleaf forests (NSE145

0.53, KGE 0.52) together with evergreen needleleaf forests (NSE 0.49, KGE 0.56) the lowest test metrics among the forest

types. The combined albedo models generally showed a positive bias of predictions (Figure 4b and Figure A2b). Due to the

non-linear response of albedo to LAI during periods of snow cover (Figure 3), the usage of average seasonal LAI as an input

to the albedo model resulted in an underestimation of albedo, especially in winter, for certain land cover types (Figure A3 and

Figure A4).150
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Among the sub-models, deciduous needleleaf forests and open shrublands showed the highest bias and urban and permanent

wetlands the lowest (Table A2). For croplands, an exploratory analysis revealed that the model skill could be increased by

further subdividing them into more specific subclasses such as pastures, vineyards, and farmland, based on CORINE land

cover classes (European Environment Agency, 2019) (data not shown).
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Figure 4. Model statistics: (a) Taylor diagram for the combined model and its sub-models. Standard deviations (radial axis) are normalised

to the reference standard deviation. (b) Yearly mean predicted (dashed line) vs. actual (solid line) albedo (2003-2019). (c) Combined gain

feature importance of all sub-models. (d) Combined split feature importance of all submodels. Since both models (CLMcom and HadGEM)

display very similar statistics, only CLMcom is shown here. Definitions of abbreviations are summarized in Table A1.

The combined feature importance for the two calculated albedo models are shown in Figure 4c and d and Figure A2 c and d.155

LAI displayed a very high gain feature importance (70.2% CLMcom, 69.9% HadGEM) in all land cover types, meaning LAI

attributed a lot to the information gain. SD (15.4% CLMcom, 15.0% HadGEM) and DSS (15.3% CLMcom, 15.8% HadGEM)

were among the highest in split feature importance, meaning they were used more frequently for splitting (making decisions)

in the model. This was also true for a model which excludes instants in time when SD equals 0. LAI maintained a high gain

feature importance of 68.0%, while SD (21.0%) and DSS (11.3 %) were still at the top of the split feature importance, which160

means LAI was important to model the albedo for snow covered and not snow covered points in time, confirming the results

of the exploratory analysis shown in Figure 3.
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Figure 5. Yearly mean simulated albedo 2003-2100 of Austria for the three different scenarios for both models. The dashed line represents

a linear regression over the mean values and is shown when the slope is significantly different from zero (α = 0.05).

Yearly averages showed a significant decline of albedo over the years for the RCP 4.5 and RCP 8.5 scenarios (Figure 5).

This was true for both CLMcom and HadGEM, while HadGEM also showed a significant decline for the RCP 2.6 scenario and

stronger declines for RCP 4.5 and RCP 8.5.165

The radiative forcing resulting from albedo changes showed the lowest values for the RCP 2.6 scenario and the highest for

the RCP 8.5 scenario in both CLMcom and HadGEM, as indicated in Table A3. HadGEM consistently displayed higher values

than CLMcom, due to the greater decrease in albedo. The cumulative time-dependent emission equivalents for the RCP 2.6,

4.5, and 8.5 scenarios were 14.5, 40.7, and 118.0 Mt CO2 for CLMcom, and 50.1, 115.4, and 260.3 Mt CO2 for HadGEM,

respectively (Figure 6). HadGEM consistently demonstrated higher values than CLMcom across the scenarios, mirroring the170

observed trends in radiative forcing from albedo changes (Table A3).

4 Discussion

The results of the machine learning-based simulations present an insight into possible future dynamics of albedo, driven

primarily by changes in snow depth and time since last snowfall under the RCP 2.6, 4.5 and 8.5 scenarios. The simulations
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Figure 6. Cumulative sum of the time-dependent emission equivalent of Austria for the two selected snow scenarios.

indicate negative trends in albedo, particularly in the RCP 4.5 and 8.5 scenarios. Moreover, the extent of albedo change is175

significantly influenced by the choice of climate model used in generating snow depth products. Here we intentionally selected

two climate models that differ greatly in terms of future SD development, which resulted in inter-model albedo differences to

exceed differences between RCPs of the single models.

Exploratory analysis showed correlations among DSS, SD, LAI and albedo (Figure 3). These correlations were especially

evident in shorter vegetation types. Fresh snow typically possesses a naturally high albedo, but this reflectivity can diminish180

over time, for instance, through processes like contamination by various pollutants or increasing water content (Wiscombe and

Warren, 1980; Chen et al., 2014). Furthermore, the albedo is dependent on the canopy and the bare soil that it is going to shade

(Lugato et al., 2020). Forests usually have a very low albedo due to their high canopy density and and their ability to mask the

high albedo of snow on the ground or in the understory (Bonan, 2008). The albedo of forests also generally increases less with

snow while the albedos of nonforested surfaces become much larger with snow (Jin et al., 2002).185

The test runs for the trained sub-models revealed that not every land cover type is easily modelled (Figure 4a). Figure A3 and

Figure A4 illustrate a notable discrepancy between predicted and modeled albedo, particularly during winter months, for forest

land cover types and croplands. The utilization of seasonal mean LAI appears to distort albedo values in winter, highlighting the

significance of considering LAI during this season for accurate albedo simulation. Even when incorporating actual LAI values,

there remains a slight deviation in albedo for the specified land cover types, indicating the possible necessity for additional190

predictors. Another explanation could be that the seasonal mean LAI does not accurately reflect the albedo. The mean albedo

is influenced in a non-linear fashion by a few instances of high albedo with low LAI and numerous instances of low albedo
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with high LAI (Figure 3, Figure A1). Using the mean LAI would therefore result in a lower albedo than the true mean. It seems

plausible that land cover types with a low LAI dependency would exhibit reduced seasonal bias when using the mean LAI.

LAI was shown to be a crucial predictor in the albedo simulation. Bsaibes et al. (2009) investigated the LAI-albedo rela-195

tionship for croplands and concluded that it is influenced by multiple factors such as soil background, canopy architecture, and

potentially other variables like chlorophyll content. In the context of this study, comprehending the LAI-albedo relationship

might pose additional challenges, given the investigation of multiple land cover types.

The predicted albedo allowed us to calculate the radiative forcing due to albedo changes, which is however unfamiliar

to many and hard to put into perspective. We thus followed Bright et al. (2016) and calculated cumulative time-dependent200

emissions equivalence metrics, which yields the accumulated CO2-equivalent emissions that these positive radiative forcings

correspond to. The quantification of the emission-equivalents underscores the significance of the albedo decrease. Even though

the predicted changes in albedo may appear small (Figure 5), the resulting albedo changes can have a huge impact on Earth’s

climate, which has been known for a long time. Sagan et al. (1979) already discussed how alterations in land cover, such

as deforestation and urbanization, can influence albedo and subsequently contribute to changes in the Earth’s climate. The205

significance of albedo changes may not be immediately apparent, but their emission-equivalents cumulate to years worth of

greenhouse gas emissions. In 2021, Austria emitted 48.8 Mt of CO2 equivalents (Umweltbundesamt GmbH, 2023), covered

by the EU Regulation 2018/842 (European Parliament and Council, 2018). The predicted cumulative TDEE (Figure 6) thus

corresponds to 0.25-1 (RCP 2.6), 0.8-2.25 (RCP 4.5) or 1-5 (RCP 8.5) times the annual CO2-equivalent emissions of Austria

for the year 2021.210

A limitation of the model lies in its assumption of constant future parameters, namely LAI, land cover, and canopy height.

Changes in these factors over time, such as alterations in land cover due to abandonment or shifts in vegetation patterns resulting

from global warming or bio-based climate mitigation efforts, are not accounted for. The susceptibility to land abandonment in

mountainous regions, like Austria, is particularly pronounced (Dax et al., 2021). Climate warming can exacerbate the frequency

and severity of drought events, reducing soil moisture availability and increasing water stress on vegetation. Such conditions215

can lead to significant vegetation change and decreased vegetation coverage over time (Yin et al., 2023). Furthermore, research

by Ridgwell et al. (2009) highlights that bio-geoengineering techniques, particularly those focused on leaf albedo modification,

can induce dynamic alterations in vegetation properties and, consequently, surface albedo. All of these factors could signif-

icantly impact surface albedo, potentially leading to discrepancies between model predictions and real-world observations.

Therefore, the model’s ability to accurately capture long-term trends and dynamics may be limited by the static representation220

of these key variables.

The observed decrease in albedo carries substantial implications for the energy balance of Austria and national efforts

towards reaching climate neutrality. Although snow cover (presence/absence) may be the predominant factor influencing albedo

changes in the future, it is essential to acknowledge the role of snow depth in accurately modeling albedo. It has been shown,

that a certain snow depth is necessary to effectively mask the underlying surface (Baker et al., 1991). Our study reveals that225

particularly for shorter vegetation, the combination of average snow depth and snow aging (DSS) contributes substantially

to observed variability in albedo during snow-covered conditions (Figure 3). Incorporating these factors into climate models
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might be essential for ensuring accurate representations of albedo dynamics in seasonally snow-covered regions in response

to changing environmental conditions. Such refinements contribute to a more comprehensive understanding of the complex

interplay between canopy and snow characteristics in governing albedo, crucial for reliable climate predictions.230
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Appendix A: Tables

Table A1. MODIS land cover names and selected abbreviations.

Original name Abbreviation

Barren BAR

Closed Shrublands CSH

Cropland Natural Vegetation Mosaics CVM

Croplands CPL

Deciduous Broadleaf Forests DBF

Deciduous Needleleaf Forests DNF

Evergreen Broadleaf Forests EBF

Evergreen Needleleaf Forests ENF

Grasslands GRA

Mixed Forests MXF

Open Shrublands OSH

Permanent Snow and Ice ICE

Permanent Wetlands PWL

Savannas SAV

Urban and Built up Lands URB

Water Bodies WBD

Woody Savannas WSA
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Table A3. Radiative forcing (µW m−2) calculated from the monthly albedo difference between the average of the albedo of Austria from

2003-2032 and 2070-2099 (sorted from highest to lowest). The sum of separate land cover values does not equal ALL since we use the area

of Austria, ignoring that not all pixels are classified (unclassified land cover). Furthermore, the area of the separate land covers was estimated

using the number of pixels for a certain land cover type multiplied by the ratio of the area of Austria to the total sum of pixels inside Austria.

Definitions of abbreviations are summarized in Table A1.

ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17

ALL GRA WSA MXF BAR ENF SAV ICE CPL DBF CVM PWL URB OSH DNF

rcp26 19.43 6.10 3.43 2.38 1.03 0.87 1.08 0.28 1.34 0.04 0.15 0.01 0.12 0.00 0.00

rcp45 28.35 9.37 4.89 4.90 2.32 1.52 1.07 0.31 0.15 0.25 0.07 0.02 0.04 0.00 0.00

rcp85 65.99 24.16 11.14 10.07 5.29 3.42 2.57 0.86 -0.64 0.45 0.17 0.07 -0.10 0.00 0.00

MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4

ALL GRA MXF WSA CPL ENF BAR SAV URB DBF ICE CVM PWL OSH DNF

rcp26 50.16 14.49 9.02 8.85 2.85 2.61 2.67 1.60 0.40 0.27 0.49 0.09 0.03 0.00 0.00

rcp45 115.47 32.79 20.09 20.44 7.24 6.69 6.03 3.26 1.51 0.84 1.05 0.17 0.17 0.00 0.00

rcp85 260.31 59.42 55.67 38.09 27.50 13.52 8.58 8.73 9.01 4.32 1.10 0.95 0.82 0.00 0.00
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Appendix B: Figures
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Figure A1. Mean albedo per SD using all the available data from 2002-2019 (ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17). Each

line represents a different LAI class. Note the different y-axis limits on the various panels. Definitions of abbreviations are summarized in

Table A1.
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Figure A2. Model statistics MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4: (a) Taylor diagram for the combined model and its sub-models.

Standard deviations (radial axis) are normalised to the reference standard deviation. (b) Yearly mean predicted (dashed line) vs. actual (solid

line) albedo (2003-2019). (c) Combined gain feature importance of all sub-models. (d) Combined split feature importance of all submodels.

Definitions of abbreviations are summarized in Table A1.
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Figure A3. Mean albedo per month (2003-2019) for ICHEC_EC-EARTH_r12i1p1_CLMcom_CCLM4-8-17: the solid line (MODIS)

shows the actual albedo. The dotted blue line (PRED_LAI) shows the predicted albedo using the actual LAI data. The dashed line

(PRED_LAI_MEAN) shows the predicted albedo using seasonal LAI (averaged over 2003-2019). The shaded area shows the standard

deviation of the actual (MODIS) albedo. Note the different y-axis limits on the various panels. Definitions of abbreviations are summarized

in Table A1.
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Figure A4. Mean albedo per month (2003-2019) for MOHC_HadGEM2-ES_r1i1p1_SMHI_RCA4: the solid line (MODIS) shows the actual

albedo. The dotted blue line (PRED_LAI) shows the predicted albedo using the actual LAI data. The dashed line (PRED_LAI_MEAN) shows

the predicted albedo using seasonal LAI (averaged over 2003-2019). The shaded area shows the standard deviation of the actual (MODIS)

albedo. Note the different y-axis limits on the various panels. Definitions of abbreviations are summarized in Table A1.
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