Response

Black carbon (BC) is one of the most important aerosol species affecting climate, glaciers and hydrology in Tibetan Plateau (TP). However, large uncertainties still exist in the estimation of BC DRF over the TP, which is related to the mixing states of BC. This study presents multi-point observations of BC mixing states, especially the chemical composition of BC-containing particles, and combines model simulation to reveal the causes of spatial differences and the impacts of transported emission sources. It provides valuable results which may support the future evaluation of BC climate and environmental effects over the TP region. The coupling mechanism between the planetary boundary layer, topography, and pollution mentioned in the text is also interesting. Overall, it is a well-organized manuscript. Thus, I suggest publishing after minor revisions. The detail comments are shown below:

We appreciate the reviewer’s kind effort and insightful comments. The amendment and modification have finished followed by all constructive comments in the revised manuscript and supporting information. Please kindly find our point-by-point responses listed below. The reviewer’s comments are in blue font followed by our responses and revisions in the manuscript (in Italic).

1. My main suggestion is that the model configuration and validation need to be more detailed, which can be described in 2.3 part. Additional figures of model validation can be added into the SI (e.g. meteorological parameters, gaseous pollutants). Furthermore, a brief setup of the chemical transport model should be elucidated within the main text, in addition to its inclusion in the Supplementary Information.

Response 1

Thank you very much for your advice on the introduction of modelling methods, and we have added more details and validation of the modelling in the main text and the SI. We have modified the main text as shown below:

1. Line 115-116: The simulation was conducted for the longer period including the times of whole campaign from 3 June to 11 June 2021;
2. Line 122-131: The Yonsei University planetary boundary layer (YSU PBL) scheme was used to parameterize boundary layer processes (Hong et al., 2006). Other essential physical parameterization options included the unified Noah land surface model (Ek et al., 2003), the Lin microphysics scheme (Lin et al., 1983), and the Grell-Freitas cumulus parameterization scheme (Grell and Freitas, 2014). For representing atmospheric chemistry numerically, we utilized the Carbon-Bond Mechanism version Z photochemical mechanism along with the Model for Simulating Aerosol Interactions and Chemistry aerosol module (Zaveri and Peters, 1999; Zaveri et al., 2008). Both natural and anthropogenic emissions were considered in this regional WRF-Chem modeling study. Anthropogenic emissions were derived from the Multi-resolution Emission Inventory for China (MEIC), which includes emissions from power plants, residential combustion, industrial processes, on-road mobile sources, and agricultural activities (Li et al., 2017). Biogenic emissions were calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN), encompassing more than 20 biogenic species (Guenther et al., 2006)

We have modified the SI in Line 20-32:
Figure S1: The time series of the near-surface air temperature, sulfur dioxide (SO$_2$), ozone (O$_3$) and mass concentration of fine particulate matter (PM$_{2.5}$) in the Xihai and surrounding area. The line and marker represent the results of ambient measurement and modelling respectively. The MB and NMB are mean bias and normalized mean bias (NMB) of each parameter.

In this study, the air temperature at 2 m were evaluated based on the measurement data from our measurement and publicly available meteorological datasets of the University of Wyoming (http://www.weather.uwyo.edu/surface/). The air temperature was pretty close between the modelling and measurement, and the mean bias was +1.00 °C. It was shown that the model had a good performance in the simulation of meteorological fields.

The air quality dataset at Xihai and the monitoring stations near to Xihai (https://quotsoft.net/air/) were used to evaluate the WRF-Chem model in simulating the air pollution. There were overall good agreement and small bias between model-simulated and observed concentration values of gaseous pollutant (SO$_2$, O$_3$) and particulate matter. The modelled SO$_2$ concentration level is relatively low, however, it is not the pollutants of major concern in this study.

2.As I commented earlier in the discussion process, the authors should pay careful attention to the use of significant figures in both the main text and figures. For instance, in Figure 5, the fractions should be reported with 2 significant digits, not 4. Additionally, it is important that the number of significant figures is consistent across all panels in Figures 3 and 7.

Response 2

Thanks for your suggestion. The Figure 3, 5 and 7 have been modified, and the number of significant digits (highlighted by blue font in manuscript) has been unified in the manuscript now. The modified figures are shown below:
Figure 3: The box plots of (a) rBC and (b) BC-containing particles mass concentrations in Xihai and Lulang, the lower and upper lines of box plot represent the 25th and 75th percentiles and the whiskers stand for 5th and 95th values. The charts of normalized frequency distribution show (c) mass ratio of coating substance to rBC core (R_{BC}) and (d) mass absorption cross-section (MAC). Only 1.15% of the R_{BC} exceeded the maximum value of bin (19.5) in Xihai, and no R_{BC} exceeded the maximum value of bin in Lulang.

Figure 5: The stacked bars represent mass concentrations of (a) different species in BC-containing particles (PM$_{BC}$), and (b) different factors of organic aerosol in BC-containing particles. The numbers on the plot show the percentage of different species and organic factors. In subplot (a), PM$_{BC}$ in the TP (this study) was compared to PM$_{BC}$ in urban regions (Collier et al., 2018; Cui et al., 2022).
Figure 7: The maps show the backward trajectories in different clusters of (a) Xihai and (b) Lulang. Each circular marker along the trajectories denotes a 24-hour interval. The background shading represents the anthropogenic BC emission intensity and the orange spots represent the location of wildfire during the campaign in (a) and (b). The stacked bar plots show the mass concentration of coating components and rBC in (c) Xihai and (d) Lulang.

3. Line 27: the term “self-elevated” is typically associated with plume uplift due to the absorption of solar radiation by black carbon. However, as the uplift in question may not be solely attributed to this mechanism, it is recommended to replace the term.

Response 3
Thanks so much for your advice. The relative content has been modified in the Line 26-28 in abstract:

In contrast to Xihai, the thickly coated BC in Lulang was mainly caused by elevation and transportation of biomass burning plume from the South Asia.

4. Line 36: The expression “2,500,000 km2” appears twice in a sentence. Please remove one instance to ensure clarity and conciseness.

Response 4
Thanks so much for pointing out the repetition here. The Line 36 has been modified as followed:

The Tibetan Plateau (TP) is the largest plateau of the world, covering approximately 2.5 million km².

5. Line 150, too many digitals for wind speed and gaseous pollutant concentrations

Response 5
Thanks for your suggestion. We have modified the decimal fraction of number in Line 156, 164 and 165.

Line 156: The mass concentration of rBC shows large temporal variation at both sites, with ranges of 0.02–1.28 µg m⁻³ in Xihai and 0.02-2.22 µg m⁻³ in Lulang.

Line 164-165: with mean value of 1.8 ± 1.2 m s⁻¹ and 1.5 ± 1.2 m s⁻¹, respectively. In terms of gaseous pollutants, higher levels of NOₓ and O₃ were observed in Xihai (5.3 ± 3.4 and 48 ± 13 ppb) than in Lulang.
(4.0 ± 2.5 and 35 ± 15 ppb).

6. Line 175, a t-test is needed when comparing RBC between Xinhan and Lulang

Response 6

Thank you very much for reminding us to show the significance of our statistical results. The t-test ($\alpha=0.05$, $v=50$) results have proved that the difference of R_{BC} in two sites was significant, and we have modified our manuscript in Line 199-200:

The difference on mixing states of PM_{BC} was also demonstrated by the t-test ($t_{RBC}=2.4$).

7. Line 199-200, “MO-OOA had very high O:C (0.84), while the O:C of LO-OOA was only 0.49.” It is better to be rephrased to in Xinhai “MO-OOA exhibited higher O:C ratio (0.84) than LO-OOA (0.49)”

Response 7

Thanks so much for the suggestion. We have modified our manuscript following your suggestion:

Line 220-221: MO-OOA exhibited higher O:C ratio (0.84) than LO-OOA (0.49).

8. Line 201 “Therefore, this POA factor was identified as biomass burning OA (BBOA) in Lulang.”. Since f60 from this factor is not as high as those from biomass burning source test, likely caused by aging process, it is better to state that this factor is likely associated with biomass burning activities.

Response 8

Thanks so much for your attention that the BBOA in Lulang was slightly different from the fresher BBOA. According to your advice, we have added some clarification about BBOA to make it clearer:

Line 223-225: Moreover, the $f_{CO_2^+}$ and $f_{C_2H_4O_2^+}$ (0.07 versus 0.025) of this factor were also within the triangle area in previous BBOA study (Cubison et al., 2011), and the $f_{C_2H_4O_2^+}$ was lower than the fresh BBOA, indicating that this factor was influenced by biomass burning activities and aging processes collectively.

9. Figure 6, in the figure caption, it is better to explain how the grid of x-axis is calculated since RBC equals 0 meaning externally mixed BC.

Response 9

Thanks so much for your suggestion. We agree that this may cause the misunderstanding. The R_{BC} was calculated averagely in different bins from 0 to 20 in Xihai, and the width of bin is 1.5. In Lulang, the bin of R_{BC} was from 0 to 12 with the same bin width. The coating composition at $R_{BC}=0$ was average composition of BC coating with R_{BC} between 0 and 1.5 in original figure. We have revised the Fig. 6. The x-axis is corresponding to the median value of each R_{BC} bin, rather than the boundary value of each R_{BC} bin.
The variation of BC coating composition with R_{BC} between (a) Xihai and (b) Lulang. The x-axis represents the mass ratio of BC coating components and rBC cores (R_{BC}), and the y-axis represents the mass fractions of BC coating components coated on rBC. The mass fraction of components was averaged in each bin of R_{BC} (bin width: 1.5).

10. Line 191: “The POA factor had higher signal of C4H7+ and C4H9+ in its mass spectrum…”. Please explain the major sources of C4H7+ and C4H9+ and add proper references here.

Response 10
Thanks so much for your reminder, we have explained the major sources of the two important ions and added the references in the revised manuscript.

11. Line 214: “OA was the dominant component of BC coating (Fig. 5b) at both sites”. Here it should refer to Fig. 5a rather than Fig. 5b.

Response 11
Thanks so much for your carefully reviewing and attention, we have corrected this image number in the revised manuscript.

12. Line 219: “The dominance of MO-OOA in BC coating was resulted from strong atmospheric oxidizing capacity in TP and fast aging process during transport.”. Based on Fig. 5, I don’t think there is information about the atmospheric oxidation capacity and aging rates during transport. If this discussion is located in the latter part of the article, it is suggested to place this sentence in a more appropriate location.

Response 12
Thank you very much for the advice that makes the figures more relevant to the viewpoints. We have modified the article followed by your suggestion:

Line 242-245: The BC coating was dominated by MO-OOA which was importantly affected by
atmospheric oxidizing process. The concentration of O$_3$ highly relative to atmospheric oxidizing capacity improved significantly in afternoon (Fig. S8), and the enhanced oxidizing capacity could cause increase of MO-OOA in BC coating in both Xihai and Lulang.

13. Line 305: is there any observed MAC in TP region? If yes, it is recommended to compare the results in this study with previous observations (references need to be added accordingly).

Response 13
Thanks so much, your suggestion is important to demonstrate the representativeness of our observations results. The manuscript has been modified as shown below:

Line 331: The MAC were all relatively high in three clusters of airmasses of Xihai, with distribution peaked between 12 and 14 m2 g$^{-1}$ that numerically comparable to previous studies (Wang et al., 2015).

Line 336: The MAC in Lulang was also comparable to previous studies (Wang et al., 2018) that the peak of MAC distribution was 7.6 m2 g$^{-1}$ at 870 nm (12.0 m2 g$^{-1}$ at 550 nm if the Absorption Ångström Exponent of BC is 1.0).

Line 338: In CL1 airmasses of Lulang, MAC mainly distributed at the bin between 12 and 14 m2 g$^{-1}$ that is close to MAC (13.1 m2 g$^{-1}$ at 550 nm) at other TP sites affected by biomass burning plume (Tan et al., 2021).

14. The abbreviations of CL 1,2,3 should be defined in the main text.

Response 14
Thanks so much for your carefully reviewing, the abbreviations of the three clusters of the airmasses have been clarified in Line 278-279:

In Xihai, the airmasses were dominantly from eastern region outside of TP, as indicated by airmasses cluster1 (CL1), followed by the airmasses of cluster2 (CL2) from the northwest of Xihai, and the airmasses of cluster3 (CL3) from west of Xihai (Fig. 7a).

Reference

Li, N., and Li, J. D.: Black carbon aerosol in winter northeastern Qinghai-Tibetan Plateau, China: the source, mixing
state and optical property, Atmospheric Chemistry and Physics, 15, 13059-13069, 10.5194/acp-15-13059-2015, 2015.
Y., and Wu, J. R.: Sources and physicochemical characteristics of black carbon aerosol from the southeastern Tibetan
Plateau: internal mixing enhances light absorption, Atmospheric Chemistry and Physics, 18, 4639-4656, 10.5194/acp-
S., and Wu, Z. J.: Measurement report: Strong light absorption induced by aged biomass burning black carbon over the
southeastern Tibetan Plateau in pre-monsoon season, Atmospheric Chemistry and Physics, 21, 8499-8510, 10.5194/acp-