- 1 Supplement of
- 2 Importance of ice elasticity in simulating tide-induced grounding line variations

3 along prograde bed slopes

- 4 Natalya Maslennikova et al.
- 5 *Correspondence to*: Natalya Maslennikova (<u>nmaslenn@cougarnet.uh.edu</u>)
- 6 The copyright of individual parts of the supplement might differ from the article license.

7 S.1. Reference measurements

8 Grounding zone measurements were performed using pairs of DInSAR interferograms at high and low tide; bedrock

9 slope and ice thickness were calculated using Bed Machine Antarctica, and ice flow speed was determined using

10 MEaSUREs (version 2). The measurements, performed along ~20 km-long flow lines (see Figure 1), are provided in

- 11 Table S1.
- Table S1. Grounding zone (GZ), ice thicknesses, bed slope, and ice flow speed measurements over Totten (TOT),
 Moscow University (MU), and Rennick (REN) glaciers.

line km m/yr MU 0 0.6 5.0 1.8 322	type Main Main
MU 0 0.6 5.0 1.8 322	Main Main
	Main
MU 1 1.3 2.8 1.8 319	i vi u i i i
MU 2 1.6 2.4 1.8 316	Main
MU 3 1.7 2.0 1.7 301	Main
MU 4 1.6 2.8 1.7 291	Main
MU 5 1.6 2.9 1.7 291	Main
MU 6 1.4 2.5 1.7 291	Main
MU 7 1.6 2.2 1.7 301	Main
MU 8 1.6 2.1 1.7 310	Main
MU 9 1.4 2.7 1.7 317	Main
MU 10 0.8 5.0 1.8 325	Main
MU 11 0.9 4.9 1.8 327	Main
MU 12 1.0 4.9 1.8 334	Main
MU 13 1.3 3.3 1.9 339	Main
MU 14 1.7 1.7 1.9 348	Main
MU 15 1.8 1.6 1.9 361	Main
MU 16 2.2 1.0 2.0 369	Main
MU 17 1.9 1.7 2.1 369	Main
MU 18 1.7 1.5 2.2 372	Main
MU 19 1.6 2.3 2.2 378	Main
MU 20 1.8 1.4 2.3 373	Main
MU 21 1.9 1.5 2.4 373	Main
MU 22 2.0 1.5 2.4 354	Main
MU 23 1.9 1.7 2.4 347	Main
MU 24 1.4 3.1 2.4 342	Main
MU 25 0.7 4.5 2.4 327	Main
MU 26 0.4 4.9 2.4 319	Main
MU 27 0.4 5.4 2.4 307	Extra
MU 28 0.5 5.4 2.3 289	Extra
MU 29 1.1 3.9 2.3 294	Main
MU 30 5.0 0.01 2.4 327	Main
MU 31 5.2 0.02 2.3 314	Main
MU 32 3.9 0.4 2.3 292	Main
MU 33 3.3 0.3 2.2 261	Main
MU 34 3.3 0.3 2.2 243	Main
MU 35 3.4 0.3 2.2 228	Main
MU 36 3.6 0.4 2.2 207	Main
MU 37 3.7 0.3 2.2 185	Main
MU 38 3.8 0.3 2.1 168	Main
MU 39 9.0 0.1 2.1 165	Main
MU 40 10.2 0.1 2.0 158	Main

MU	41	11.5	0.1	19	151	Main
MU	42	11.5	0.1	1.9	155	Main
MU	43	12.5	0.01	1.7	149	Main
REN	0	0.8	5.2	0.7	113	Extra
REN	1	1.4	2.4	0.8	135	Extra
REN	2	1.9	1.5	0.9	150	Extra
REN	3	2.1	1.2	0.9	158	Extra
REN	4	2.2	1.2	1.0	171	Main
REN	5	2.4	1.0	1.0	176	Main
REN	6	2.4	0.8	1.0	183	Main
REN	7	2.9	0.6	1.0	186	Main
REN	8	2.8	0.7	1.1	187	Main
REN	9	3.1	0.6	1.1	188	Main
REN	10	2.8	0.7	1.1	187	Main
REN	11	3.3	0.3	1.1	187	Main
REN	12	3.2	0.5	1.2	185	Main
REN	13	2.8	0.5	1.1	183	Main
REN	14	2.3	1.0	1.2	178	Main
REN	15	1.8	1.5	1.1	174	Main
REN	16	1.9	1.1	1.1	169	Main
REN	17	2.2	1.0	1.0	162	Main
REN	18	2.2	1.1	1.0	152	Main
ТОТ	0	0.9	4.6	2.3	696	Main
ТОТ	1	1.0	4.1	2.3	674	Main
ТОТ	2	1.8	2.1	2.4	722	Main
ТОТ	3	3.5	0.4	2.4	754	Main
ТОТ	4	4.6	0.2	2.3	758	Main
TOT	5	6.3	0.06	2.3	740	Main
ТОТ	6	7.0	0.03	2.3	731	Main
ТОТ	7	7.5	0.06	2.2	709	Main
ТОТ	8	7.6	0.07	2.2	690	Main
ТОТ	9	6.0	0.03	2.1	680	Main
ТОТ	10	5.5	0.02	2.1	683	Main
ТОТ	11	5.6	0.1	2.0	735	Main
ТОТ	12	3.0	0.5	1.9	747	Main
ТОТ	13	2.2	1.0	1.9	683	Main
TOT	14	1.8	1.5	1.9	636	Main
TOT	15	1.7	1.6	1.8	547	Main
TOT	16	1.3	2.8	1.8	569	Main

14

15 S.2. Mesh sensitivity analysis

Models' sensitivity to mesh size was analyzed using 200 grounding zone width values (Figure S1), obtained for different mesh sizes of the lower domain surface (from 10 m to 250 m with 10 m step) and constant mesh size of 250 m at the upper domain surface. For both models, the tests were performed for four sets of input parameters: 1) bed slope of 0.5 %, glacier thickness of 1 km, and ice inflow speed of 100 m/year (green dots in Figure S1); 2) bed slope of 5 %, glacier thickness of 1 km, and ice inflow speed of 100 m/year (red dots in Figure S1); 3) bed slope of 5 %, glacier thickness of 2.5 km, and ice inflow speed of 100 m/year (blue dots in Figure S1); 4) bed slope of 5 %, glacier thickness of 1 km, and ice inflow speed of 800 m/year (black dots in Figure S1).

24 Figure S1. Models mesh sensitivity check. Plots (a) and (c) correspond to the viscous model, and plots marked (b)

25 and (d) represent the viscoelastic model.

26 S.3. DInSAR data-inferred parameters as model inputs

- Fixing 50 m and 250 m as mesh sizes at the lower and upper domain boundaries, respectively, and keeping the constant
- 28 glacier domain length of 20 km, each model was executed 192 times using all possible combinations of input
- 29 parameters, listed in Figure S2.

Variables

31 Figure S2. Schematic representation of the initial parameters. All possible combinations of these variables were

32 examined in the paper.

33 S.4. Grounding zone evolution with glacier thickness

34 The dependence of grounding zone width (GZ) on glacier thickness (H) for each inflow speed and bed slope,

- approximated with a linear function $GZ = a \cdot H + b$, provides unique coefficients a and b for each model formulation,
- 36 bed slope, and ice inflow speed. These a and b values are listed in Table S2.
- Table S2. Equations of the approximating lines of all considered dependences of the grounding zone magnitude
 from the glacier thickness.

Slope, %	Inflow	Approximating line	R^2 value,	Approximating line	R^2 value,	
1 /	speed,	equation, viscous model	viscous	equation, viscoelastic	viscoelastic	
	m/year	-	model	model	model	
5.0	5.0 100 $0.119 \cdot x + 1.209$		0.998	$0.081 \cdot x + 0.799$	1.000	
	350	$0.071 \cdot x + 1.265;$	0.975	$0.080 \cdot x + 0.779$	1.000	
	600	$0.033 \cdot x + 1.297$	0.914	$0.072 \cdot x + 0.779$	0.987	
	800	$0.027 \cdot x + 1.286$	0.985	$0.060 \cdot x + 0.776$	0.987	
4.5	100	$0.119 \cdot x + 1.222$	0.999	$0.088 \cdot x + 0.904$	0.967	
	350	$0.104 \cdot x + 1.216$	0.999	$0.076 \cdot x + 0.896$	0.969	
	600	$0.083 \cdot x + 1.256$	1.000	$0.076 \cdot x + 0.868$	0.901	
	800	$0.061 \cdot x + 1.303$	0.990	$0.064 \cdot x + 0.880$	0.874	
4.0	100	$0.146 \cdot x + 1.316$	0.975	$0.120 \cdot x + 0.901$	1.000	
	350	$0.126 \cdot x + 1.318$	0.987	$0.128 \cdot x + 0.860$	0.996	
	600	$0.118 \cdot x + 1.294$	0.976	$0.112 \cdot x + 0.868$	0.942	
	800	$0.111 \cdot x + 1.269$	0.985	$0.076 \cdot x + 0.908$	0.901	
3.5	100	$0.225 \cdot x + 1.296$	0.989	$0.124 \cdot x + 1.001$	0.989	
	350	$0.167 \cdot x + 1.369$	0.982	$0.132 \cdot x + 1.001$	0.983	
	600	$0.090 \cdot x + 1.501$	0.939	$0.116 \cdot x + 0.977$	0.987	
	800	$0.081 \cdot x + 1.527$	0.918	$0.108 \cdot x + 0.949$	0.975	
3.0	100	$0.239 \cdot x + 1.415$	0.985	$0.152 \cdot x + 1.053$	0.997	
	350	$0.205 \cdot x + 1.440$	0.976	$0.140 \cdot x + 1.081$	0.972	
	600	$0.143 \cdot x + 1.545$	0.965	$0.144 \cdot x + 1.041$	0.973	
	800	$0.099 \cdot x + 1.624$	0.975	$0.120 \cdot x + 1.073$	0.987	
2.5	100	$0.227 \cdot x + 1.693$	0.969	$0.228 \cdot x + 1.049$	0.994	
	350	$0.183 \cdot x + 1.731$	0.944	$0.188 \cdot x + 1.129$	0.991	
	600	$0.194 \cdot x + 1.670$	0.958	$0.184 \cdot x + 1.121$	0.983	
	800	$0.176 \cdot x + 1.685$	0.959	$0.150 \cdot x + 1.191$	0.977	
2.0	100	$0.246 \cdot x + 1.925$	0.982	$0.276 \cdot x + 1.113$	0.994	
	350	$0.221 \cdot x + 1.929$	0.975	$0.248 \cdot x + 1.276$	0.988	
	600	$0.265 \cdot x + 1.839$	0.979	$0.244 \cdot x + 1.249$	0.982	
	800	$0.216 \cdot x + 1.900$	0.968	$0.218 \cdot x + 1.235$	0.974	
1.5	100	$0.370 \cdot x + 2.010$	0.970	$0.293 \cdot x + 1.372$	0.989	
	350	$0.318 \cdot x + 2.113$	0.953	$0.309 \cdot x + 1.424$	0.985	
	600	$0.350 \cdot x + 2.043$	0.975	$0.249 \cdot x + 1.568$	0.974	
	800	$0.293 \cdot x + 2.165$	0.966	$0.249 \cdot x + 1.532$	0.993	
1.0	100	$0.421 \cdot x + 2.628$	0.966	$0.492 \cdot x + 1.381$	0.999	
	350	$0.333 \cdot x + 2.865$	0.986	$0.456 \cdot x + 1.618$	0.997	
	600	$0.429 \cdot x + 2.565$	0.987	$0.380 \cdot x + 1.838$	0.991	
	800	$0.391 \cdot x + 2.762$	0.994	$0.384 \cdot x + 1.778$	0.988	
0.5	100	$1.002 \cdot x + 2.789$	0.911	$0.633 \cdot x + 1.705$	0.995	

	350	$0.930 \cdot x + 3.055$	0.951	$0.709 \cdot x + 2.021$	0.989
	600	$0.906 \cdot x + 3.271$	0.912	$0.725 \cdot x + 2.181$	0.984
	800	$0.827 \cdot x + 3.549$	0.902	$0.685 \cdot x + 2.301$	0.975
0.1	100	$2.698 \cdot x + 2.020$	1.000	$1.021 \cdot x + 1.717$	0.999
	350	$2.731 \cdot x + 3.276$	0.997	$1.465 \cdot x + 1.950$	1.000
	600	$2.673 \cdot x + 4.187$	0.991	$1.565 \cdot x + 2.691$	0.999
	800	$2.583 \cdot x + 5.715$	0.969	$1.601 \cdot x + 2.827$	0.999
0.05	100	$3.41 \cdot x + 1.707$	1.000	$1.117 \cdot x + 1.838$	0.993
	350	$3.891 \cdot x + 2.764$	0.997	$1.690 \cdot x + 2.021$	0.999
	600	$3.983 \cdot x + 3.644$	0.987	$1.982 \cdot x + 2.518$	0.999
	800	$4.510 \cdot x + 4.792$	0.978	$2.026 \cdot x + 2.418$	0.998

39

40 S.5. Modifications in modeled grounding zones resulting from input parameters changes

41 Differences in grounding zone widths for the thickest and thinnest modeled glaciers for every inflow speed and every

42 bedrock slope for both models are provided in Table S3.

43 **Table S3.** Grounding zone width difference (in meters) for a 2500 m-thick glacier and a 1000 m-thick glacier.

$\Delta GZ = GZ_{H=2.5km} - GZ_{H=1.0km}, m \text{ (viscous model)}$												
Speed, m/yr	Bed slope, %											
	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1	0.05
100	175	175	200	360	390	375	385	635	740	1866	4091	5066
350	120	160	170	265	350	320	370	550	545	1651	4266	6127
600	60	125	155	145	240	315	430	575	715	1696	4281	6627
800	35	85	150	145	135	270	370	510	615	1565	4412	6701
Mean	98	136	169	229	279	320	389	568	654	1695	4263	6130
			$\Delta GZ =$	$= GZ_{H=2}$	$\frac{1}{5km} - GZ$	$Z_{H=1.0km}$, m (visco	oelastic r	nodel)			
Speed,	Bed slope, %											
m/yr	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1	0.05
100	121	141	180	200	240	360	440	481	761	961	1502	1521
350	120	121	201	220	240	300	400	501	720	1141	2222	2543
600	100	141	201	180	240	300	400	421	600	1202	2362	2963
800	80	121	141	180	200	260	370	401	620	1142	2482	3143
Mean	105	131	181	195	230	305	403	451	675	1112	2142	2543

44

45 S.6. Data-derived characteristics of the glaciers

46 The relative distributions of data-derived bed slopes, ice thicknesses, and ice floe speeds for the glaciers of interest

47 are shown in Figure S3. The empty dots in the boxplots correspond to measurements determined by the IQR

48 (Interquartile Range) method outliers. The IQR-based method identifies a data point as an outlier if it lays outside the

49 $[Q_1 - 1.5 \cdot IQR; Q_3 + 1.5 \cdot IQR]$ range, where Q_1 and Q_3 are the 25th and the 75th percentile of a considered dataset.

50

Figure S3. Distributions if the ice-bed characteristics, measured along the selected profiles. Subplots (a) - (c)correspond to Moscow University (MU) glacier; Subplots (d) - (f) correspond to Totten (TOT) glacier; Subplots (g) - (i) correspond to Rennick (REN) glacier; Subplots (m) - (o) show the box plots for all three considered glaciers. Left column of subplots shows the glacier distribution based on bed slope, middle column – distribution based on

55 glacier thickness, and right column – distribution based on ice flow speed.