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Abstract. Rainfall strongly affects landslide triggering; however, understanding how storm characteristics relate to the 

severity of landslides at the regional scale has thus far remained unclear, despite the societal benefits that would result from 10 

defining this relationship. As mapped landslide inventories typically cover a small region relative to a storm system, here we 

develop a proxy dimensionless index for landslide-inducing rainfall, A*, based on extremes of modelled soil water relative to 

its local climatology. We calibrate A* using four landslide inventories, comprising over 11,000 individual landslides over 

four unique storm events, and find that a common threshold can be applied to estimate regional shallow landslide triggering 

potential across diverse climatic regimes in California (USA). We then use the spatial distribution of A*, along with 15 

topography, to calculate the landslide potential area (LPA) for nine landslide-inducing storm events over the past twenty 

years, and test whether atmospheric metrics describing the strength of landfalling storms, such as integrated water vapor 

transport, correlate with the magnitude of hazardous landslide-inducing rainfall. We find that although the events with the 

largest LPA do occur during exceptional atmospheric river (AR) storms, the strength of landfalling atmospheric rivers does 

not scale neatly with landslide potential area, and even exceptionally strong ARs may yield minimal landslide impacts. Other 20 

factors, such as antecedent soil moisture driven by storm frequency, and mesoscale precipitation features within storms, are 

instead more likely to dictate the patterns of landslide-generating rainfall throughout the state. 

1 Introduction 

Rainfall-induced landslides are a global hazard that result in thousands of fatalities (Petley, 2012; Froude and Petley, 2018) 

and billions of dollars in economic losses annually (Schuster and Fleming, 1986; Kjekstad and Highland, 2009). During the 25 

progression of a hazardous storm, shallow landslides, those occurring primarily within a soil-mantled hillslope, are often 

triggered by infiltrating rainwater that interacts with the shallow (typically less than 3 m) groundwater system to produce 

destabilizing pore water pressures (Reid, 1994; Iverson, 2000; Collins and Znidarcic, 2004; Bogaard and Greco, 2016) (Fig. 

1). Over the past five decades, a growing recognition of rainfall-induced landslide hazards has led to a range of efforts in 

developing landslide warning systems that assess when these rainfall thresholds for slope failure might be exceeded using a 30 
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variety of criteria (Campbell, 1975; Keefer, 1987; Baum and Godt, 2010; Kirschbaum and Stanley, 2018; Guzzetti et al., 

2020, and references therein). 

 

 

Figure 1. Examples of landslides triggered by recent storms in California. (a) Aerial photograph of a home in California’s East 35 

Bay region damaged by a landslide initiated during an atmospheric river storm on 06 February 2017. Photo taken by Brian 

Collins.(b) Worldview-2 imagery of landslides triggered by heavy rainfall on 10 January 2005, near the town of La Conchita. (c) 

Worldview-3 imagery of the southernmost San Bernardino Mountains north of Cabazon showing debris flows triggered by the 14 

February 2019, atmospheric river storm that caused extensive damage across Riverside County. Inset shows a map of California 

with annotated circles corresponding to the respective panel. Unlabelled small blue circle corresponds to the location of the 40 

landslide inventory associated with a storm in April 2020 that triggered numerous landslides near the town of Encinitas (Fig. 

2d3d). 
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Whereas operational forecasting of landslides using numerical weather prediction remains rare (e.g., Guzzetti et al., 45 

2020; Kong et al., 2020), a growing body of research suggests that distinct meteorological features at both the synoptic scale 

(~200 to 2000 km, multiple days) and the mesoscale (~2-200 km, minutes to hours) can exert a strong control on landslide 

occurrence and distribution and could potentially be used for landslide forecasting. For example, atmospheric rivers (ARs) 

are synoptic features consisting of long filaments of enhanced water vapor in the lower atmosphere and are typically 

associated with mid-latitude cyclones that transport moisture poleward from the tropics to the mid-latitudes such as the west 50 

coast of the United States. They are a primary generator of precipitation in California (USA) and are typically measured and 

denoted by integrated water vapor transport (IVT) values exceeding 250 kg m-1 s-1 (Ralph et al. 2019). Combining news 

reports of landslide events going back over nearly 150 years with an AR catalogue, Cordeira et al. (2019) showed that in 

California’s San Francisco Bay area 70-80% of reported landslide days occur in association with AR conditions. However, 

the authors also found that only 5-12% of ARs in their catalogue coincided with reported landslide days, leading them to 55 

suggest that other meteorological processes may have accompanied these storms to trigger the reported landslides. Similarly, 

Oakley et al. (2018) found that 60-90% of rainfall events exceeding published landslide-triggering thresholds in California 

over a 22-year period coincided with storms featuring ARs. At a smaller dynamic scale, mesoscale processes that operate 

within synoptic storms and that are shorter-lived phenomena compared to ARs, can provide bursts of higher intensity rainfall 

that can also trigger abundant landsliding. Collins et al. (2020) found a tight spatial clustering between distributed shallow 60 

landslides from a 2018 storm in central California and the stalling of a narrow cold-frontal rainband (NCFR; a band of 

intense convective rainfall that can occur ahead of a cold front) that followed the passage of an atmospheric river over the 

region. Here, the timing of landslide triggering coincided with the NCFR rather than the AR, though rainfall associated with 

the AR likely primed susceptible slopes for later triggering (Collins et al., 2020). Thus, storm characteristics at both the 

synoptic scale and mesoscale can play an important role in shallow landslide occurrence and distribution, and efforts to 65 

forecast landslide occurrence could benefit from assessing the likelihood of these meteorological processes occurring over 

particular landscapes. 

Quantifying both the overall strength of storms and the scale of landslide response across the entire landscape that 

experienced a storm passage remains an ongoing challenge. One way to characterize distributed storm strength is with the R-

CAT scale (Ralph and Dettinger, 2012; Lamjiri et al., 2020), which uses three-day precipitation totals from distributed rain 70 

gauges to delineate broad categories of storm strength, from R-CAT 1 to R-CAT 4. This allows intercomparison of extreme 

rainfall events over the past century when sufficient gauge data exist. On a broader scale, the atmospheric river (AR) scale 

(Ralph et al., 2019) uses the magnitude and duration of the vertically integrated water vapor transport, IVT, to categorize the 

relative strength of atmospheric rivers on a scale of AR1 to AR5 at a point. This avoids the dependence of storm impact 

prediction dependence on site-specific rain gauge data. In the AR Scale, values are suggested to correspond to a balance 75 

between beneficial and hazardous conditions, where AR1 is cast as primarily beneficial rainfall and AR5 represents 

primarily hazardous rainfall, although the authors stress that these are only general guidelines and may often not be the case 
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(Ralph et al., 2019). Although the R-CAT and AR scales allow for intercomparison of storm rainfall or IVT characteristics, 

they do not specifically represent landslide hazard. For example, if an R-CAT 4 or an AR5 event occurs when soil conditions 

are dry, they might produce fewer (or no) landslides than if elevated soil moisture conditions were present preceding the 80 

storm event. These considerations warrant a more hazard-focused characterization of storms. A primary aim of this study is 

to develop a simple hydrometeorological metric for conditions consistent with regional shallow landslide occurrence that can 

be mapped in space and time. We then investigate meteorological characteristics of landslide events used to develop this 

metric for more in-depth characterization of how landslide occurrence and spatial extent relates to meteorological process 

strength and spatial extent. 85 

Evaluating the magnitude of landslide hazard potential across the footprint of a given storm event requires some 

way to estimate landslide triggering. Rainfall intensity-duration thresholds are a common empirical method used to assess 

the landslide potential for a given storm event (Cannon and Ellen, 1985; Keefer et al., 1987; Larsen and Simon, 1993; 

Guzetti et al., 2008; Bogaard and Greco, 2018). These relationships are typically calibrated regionally (or at a specific site 

near a rain gauge) and generally follow a power-law relationship where the triggering rainfall intensity declines 90 

exponentially with storm duration. This exponential relationship between rainfall intensity and duration for landslide-

triggering implies that higher-intensity storms require less rainfall depth to trigger landslides than lower-intensity storms, 

which. This is known to be related to the nonlinear soil moisture storage characteristics that dictate the transmission rate of 

infiltrating pore water (Green and Ampt, 1911; Richardson, 1922; Richards, 1931; Lu et al., 2011). In landscapes that do not 

rapidly drain between storm events, antecedent rainfall may lower the amount of rainfall needed to reach critically unstable 95 

pore water pressure (Crozier and Eyles, 1980; Crozier, 1999; Glade et al., 2000).  

Incorporating antecedent moisture into regional estimates of slope stability has taken several forms. Thomas et al. 

(2018) considered antecedent soil moisture and rainfall depth thresholds for driving positive pore water pressure in soil 

columns using physically based infiltration models (i.e., using the Richards equation; Richards, 1931). They found a 

nonlinear relationship between antecedent soil moisture and the necessary rainfall depth to generate pore water pressures that 100 

trigger shallow landslide initiation in California’s San Francisco Bay region. The nonlinearity results from the shape of the 

soil water characteristic curves: as soil saturates from dry to wet conditions, the soil hydraulic conductivity increases by 

several orders of magnitude (e.g., van Genuchten, 1980), resulting in increasingly fast transmission of pore water from the 

surface to the water table. The Antecedent Water Index (AWI) proposed by Godt et al. (2006) uses only rainfall data in a one-

dimensional mass balance model initially derived by Wilson and Wieczorek (1995) that tracks theoretical predictions of soil 105 

water throughout a rainy season. This class of reduced complexity soil hydrologic models are commonly referred to as 

“leaky barrel” or “tank” models, where rainfall immediately enters the model reservoir and drains at a rate proportional to 

the reservoir height. While AWI does not directly incorporate the physical processes of rainfall infiltration into the soil 

surface (i.e., it does not use the nonlinear soil water characteristic curve relationships upon which the Richards equation is 

based), the model has nevertheless proven to capture the dynamics of a range of soil hydrologic processes. Where Wilson 110 

and Wieczorek (1995) calibrated their model to observed changes in pore water pressure for a landslide early warning 
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system in the San Francisco Bay Area, Godt et al. (2006) calibrated AWI to local measurements of soil water content and 

used an AWI threshold as part of a decision tree to forecast landslide events in the Seattle, Washington (USA) region. 

Similarly, the Japanese Meteorological Agency used a three-tank model calibrated to a specific watershed to develop a soil 

water index (SWI) that has been used to help establish rainfall-induced landslide thresholds across the country (Okada, 2001; 115 

Saito and Matsuyama, 2010). Additional examples of hydrometeorological thresholds used in various landslide forecasting 

frameworks can be found in Mirus et al. (2024).  

Regional variability also plays a role in setting rainfall thresholds, and several studies have used various forms of 

normalization of rainfall and/or soil moisture variables to account for this variability (Cannon et al., 1985; Keefer, 1987; 

Wilson, 1997; Guzetti et al., 2008; Saito and Matsuyama, 2012; Peruccacci et al., 2017). Cannon (1988) normalized rainfall 120 

totals by the gauge-specific mean annual precipitation (MAP) to account for regional differences in triggering rainfall.  

Wilson and Jayko (1997) later updated Cannon’s maps using the “rainy day normal” (RDN = MAP/number of rainy days) to 

further account for regional differences in triggering. They noted that that the recurrence interval of storm events is 

important in the equilibrium of landscapes. Marc et al. (2019) tested the efficacy of the 10-year recurrence, 48-hour rainfall 

anomaly (R*
48) as a predictor of shallow landslide concentration in Japan and showed that a strong correlation exists between 125 

landslide concentration and the magnitude of the rainfall anomaly. For the same storm, Saito and Matsuyama (2012) showed 

that normalizing the SWI by its locally maximum value over the preceding decade also correlated with clustering of 

landslides. 

Wilson and Jakyo (1988), Peruccacci et al. (2017) and Marc et al. (2019) all posited that landscapes must be 

geomorphically tuned to extreme rainfall, and there are a number of potential reasons why long-term rainfall rates might 130 

shape landscapes in ways that result in varying landslide triggering thresholds across climates. For example, soil production 

and hence soil thickness can change with increasing precipitation (Richardson et al., 2019; Pelletier et al., 2015). 

Furthermore, root reinforcement of hillslopes is controlled by vegetation density (e.g., Schmidt et al., 2001), which also 

varies with precipitation (Nemani et al., 2002; Tao et al., 2016). Additionally, theoretical and numerical work shows that 

local rainfall intensity can alter long-term landscapes by changing factors like drainage density and mean slope (Tucker and 135 

Slingerland, 1997), which in turn can lead to nonlinear increases in runoff (Carlston, 1963) that can subsequently drive 

shallow landslide and debris flow initiation. Thus, there is strong conceptual basis for the normalization of rainfall thresholds 

with respect to the regional climatology of their respective landscapes. 

Quantifying both the overall strength of storms and the scale of landslide response across the entire landscape that 

experienced a storm passagethat trigger shallow landslides also remains an ongoing challenge. One way to characterize 140 

distributed storm strength is with the R-CAT scale (Ralph and Dettinger, 2012; Lamjiri et al., 2020), which uses three-day 

precipitation totals from distributed rain gauges to delineate broad categories of storm strength, from R-CAT 1 to R-CAT 4. 

This allows intercomparison of extreme rainfall events over the past century when sufficient gauge data exist. On a broader 

scale, the atmospheric river (AR) scale (Ralph et al., 2019) uses the magnitude and duration of the vertically integrated water 

vapor transport, IVT, to categorize the relative strength of atmospheric rivers on a scale of AR1 to AR5 at a point. This 145 
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avoids the dependence of storm impact prediction dependence on site-specific rain gauge data. InWith the AR Scale, 

assigned values are suggested to correspond to a balance between beneficial and hazardous conditions, where AR1 is cast as 

primarily beneficial rainfall and AR5 represents primarily hazardous rainfall, although the authors stress that these are only 

general guidelines and may often not be the case (Ralph et al., 2019). Although the R-CAT and AR scales allow for 

intercomparison of storm rainfall or IVT characteristics, they do not specifically represent landslide hazard. For example, if 150 

an R-CAT 4 or an AR5 event occurs when soil conditions are dry, they might produce fewer (or no) landslides than if 

elevated soil moisture conditions were present preceding the storm event. These considerations warrant a more hazard-

focused characterization of storms.  

A primary aim of this study is to develop a simple hydrometeorological metric for conditions consistent with 

regional shallow landslide occurrence that can be mapped in space and time. We then investigate meteorological 155 

characteristics of landslide events used to develop this metric for more in-depth characterization of how landslide occurrence 

and spatial extent relates to meteorological process strength and spatial extent 

Combining aspects of both the rainfall anomaly approach of Marc et al. (2019) as well as Saito and Matsuyama (2012), here 

we calibrate a regional proxydevelop a universal index for landslide triggering based on anomalous values of theoretical soil 

water based on the Antecedent Water Index of Godt et al. (2006) and Wilson and Wieczorek (1995), which we call A*. To 160 

calibrate the methodology, we use landslide inventories from four storms in California that span both arid and temperate 

regions of the stateCalifornia, a vast and notably geomorphically and climatically diverse region. We show that in the case of 

our four inventories, a threshold of A* can be utilized to identify landslide events in both space and time, which bolsters the 

use of A* to broadly estimate regionally hazardous rainfall conditions outside the areas of mapped landslides.  

To estimate the footprint of potentially hazardous (i.e., shallow landslide-inducing) rainfall across the state, we 165 

measure the distribution of hillslopes impacted by above-threshold A* for each storm to define a landslide potential area, 

LPA. A similar approach has been used effectively in studies quantifying the impacts of earthquake-induced landslides by 

considering both ground shaking and topographic metrics. For example, Marc et al. (2017) utilize seismic scaling 

relationships and topographic slope to delineate a cumulative landslide-affected area resulting from an earthquake. Tanyas 

and Lombardo (2019) employ a statistical approach using a catalog of earthquake-induced landslide inventories and consider 170 

the role of both PGA and a coarse metric for landslide susceptibility based on topographic slope and relief to map landslide-

affected areas. Here we attempt to use a universal threshold  

We then investigate meteorological characteristics of landslide events used to develop this metric for more in-depth 

characterization of how landslide occurrence and spatial extent relates to meteorological process strength and spatial extent. 

We then apply our methodology to a diverse set of nine impactful landslide-inducing storms across California from 2005-175 

2021. California’s landscape encompasses 11 mapped distinct geomorphic provinces distinct in their climatic and 

topographic characteristics (Jenkins, 1938), and therefore provides an ideal study area in which to evaluate the utility of our 

hazard index A* that represents theoretical estimates of anomalous soil water against highly variable climatological 

conditions. TFinally, to examine how the strength of AR conditions relates to the severity of shallow landsliding, we 
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compare the landslide potential area (LPA) with the AR Scale (Ralph et al., 2019), and show that while ARs are clearly 180 

important drivers of the events in our catalogue, antecedent conditions controlled by factors such as AR climatological 

frequency rather than individual AR strength, as well as mesoscale features that often define the distribution of brief but 

intense periods of rainfall, appear to exert a dominant control on shallow landsliding and should therefore be assessed when 

examining patterns of landslide-inducing rainfall. 

2 Methods 185 

2.1 Development of dimensionless landslide indexproxy A* and associated universal threshold 

Here we develop a proxy for rainfall-induced shallow landslide potential by establishing a normalized index parameter A* 

that represents extreme values of the Antecedent Water Index (AWI) relative to its local climatology: 

𝐴∗ ൌ  ௐூ

ௐூ
            (1) 

where AWIRI is the value of AWI at a given recurrence interval (RI). This is similar to the normalized rainfall metric R* 190 

proposed by Marc et al. (2019) and also conceptually similar to the normalized soil water index pioneered by Okada (2001) 

and Saito and Matsuyama (2010); however, here we use the hydrologic tank framework of AWI since it does not rely on a 

specifically calibrated and more complex 3-tank model and has already been effectively utilized in applications of landslide 

forecasting along the U.S. West Coast (Wilson and Wieczorek, 1995; Godt et al., 2006). Similar leaky bucket models have 

been utilized to develop thresholds for monsoonal landslides in the Himalaya (Gabet et al., 2004; Burrows et al., 2023).  195 

Importantly, this approach using A* to define a universal hydrometeorological landslide index does not explicitly 

assess the susceptibility of individual slopes to rainfall-induced failure as is commonly done for physically based models of 

shallow slope stability (e.g., Montgomery and Dietrich, 1994; Baum et al., 2008). Rather, the normalization process is 

purposefully focused on a broader, regional scale. At this coarse spatial scale, we argue that distributions of A* illustrate 

overall patterns of hazardous rainfall, which helps provide a framework for intercomparison of storms and the 200 

meteorological conditions associated with rainfall-induced landslides. 

The AWI index used in our study was formalized by Godt et al. (2006) to develop a landslide forecast system for 

Seattle, Washington (USA). The index provides a measure of theoretical soil water using a simple hydrologic tank model 

developed by Wilson and Wieczorek (1995). The tank model employs a mass balance where rainfall is immediately added to 

a reservoir with a lower outlet that drains proportionally to the water level in the reservoir. In the model design, reservoir 205 

drainage does not occur until sufficient rain has fallen to completely fill soil pores bound by capillarity that restrict water 

flow. This filling parameter is termed R0 and herein taken to be equal to 0.180 m (Godt et al., 2006) which is approximately 

the amount of water needed to bring a 1-m-thick loamy soil to field capacity. Once the seasonal rainfall depth exceeds R0, the 

flux of additional soil water not bound by capillarity is modelled as follows:  

𝐴𝑊𝐼௧ ൌ  𝐴𝑊𝐼௧ିଵ𝑒ି∆௧   
ூ

ሺ1 െ 𝑒ି∆௧)          (2) 210 
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where Ii is the rainfall rate added to the reservoir [m/hr], kd is a drainage constant that proportionally modulates the flux out 

of the system [1/hrs], ∆t is the time step [hrs], and the first term in the equation is the value of AWI [m] at the previous 

timestep (t-1) that has experienced drainage over ∆t.  Following rainfall, AWI decays back toward the value of R0. The model 

assumes that ∆t exceeds the timescale required for infiltrating rainwater to integrate fully with the existing pore water in the 

soil. The model also resets at the beginning of each water year (to R0), which approximates the impact of processes like 215 

evapotranspiration that tend to dry soils from their field capacity back toward their residual moisture content. Whereas 

constants the constant kd in eqn. (2) may influence the local magnitude of AWI, for A* only the relative value is important for 

a given grid cell. F, and for the case of the similar normalized soil water index, the changing rate constants does not 

significantly impact the normalized parameter index (Osanai et al., 2010), and we conduct a similar sensitivity analysis here. 

Lastly, although this model does not directly consider the physical processes of infiltration through the vadose zone into a 220 

shallow unconfined aquifer (e.g., Iverson, 2000; Collins and Znidarcic, 2004; Thomas et al., 2018), given that we are 

modelling changes in seasonal average moisture storage, the model simplifications are reasonable for a depth-averaged 

estimate of soil moisture, and Wilson and Wieczorek (1995) and Godt et al. (2006) both show that the model can replicate 

changes in pore water pressure and soil moisture that have been used as part of landslide early warning systems in both 

northern California and Seattle, Washington, respectively. Here we consider AWI as reflecting a general mass balance of soil 225 

water and do not attempt to tie AWI to a specific measurable soil variable such as moisture content or pore pressure.  

Estimating the spatial distribution of AWIRI across our study area required calculating an AWI climatology using a 

gridded precipitation dataset from which we could estimate local AWI values at varying recurrence intervals. Here we used 4 

km grids of six-hourly rainfall from the National Oceanic and Atmospheric Administration (NOAA) California Nevada 

River Forecast Center (CNRFC) Stage IV Quantitative Precipitation Estimate (QPE) (Seo and Breidenbach, 2002; Nelson et 230 

al., 2016; CNRFC, 2023a). These precipitation products are generated by interpolating rain gauge data using the elevation-

precipitation relationships established by the PRISM Climate Group (PRISM, 2023). Unlike other NOAA River Forecast 

Centers, because of poor radar coverage in crucial mountainous areas in California, the CNRFC does not incorporate radar 

data in their QPE (Nelson et al., 2016). From this archive of gridded precipitation estimates we calculated six-hourly AWI for 

Water Years 2004-2022 across the state of California. To then calculate AWIRI values for each grid cell, we used a block 235 

maxima method (i.e., taking each annual maximum of AWI for each Water Year) to create generalized extreme value 

distributions from which we calculate local recurrence intervals along each grid cell (e.g., Marc et al., 2019). Figure 2 

illustrates the methodology for an example pixel in our study domain. Panel (a) shows the 19-year time series of rainfall for a 

representative pixel in southern California, and panel (b) shows the AWI model results calculated from the rainfall data, with 

annual maxima shown as open circles. These annual maxima are then plotted as a histogram (panel (c)) from which an 240 

extreme value distribution can be fit (blue line). Recurrence intervals can then be directly estimated from the best-fit 

distribution. To be discussed in Section 4.1, for this analysis we selected the 1510-year recurrence interval for AWIRI, and the 

resulting grid was smoothed with a median filter to ensure continuity between pixels. 
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Figure 2. An example from Southern California showing the methodology for calculating a climatology of AWI (b) using a 19-year 

record of six-hourly rainfall (a). AWI annual maxima are shown as open circles in (b), and years whose maxima are below zero 

(indicating that antecedent conditions were not met in this water year) are not shown. A generalized extreme value distribution is 255 

fit to a histogram of AWI annual maxima (c) from which any recurrence interval can be calculated. Here the 10-year recurrence 

value is shown as the bold black line in (c).  

 

2.2 Calibration ofDetermination of a common A* thresholdo using four landslide-producing storms in California 

We calibrate determine a common A* threshold usingon a series of four landslide-inducing storms that impacted different 260 

regions of California from 2005–2020 (Fig. 23). These events were chosen either because landslide inventories already 

existed or could be easily mapped from available satellite data. The four calibration events include the January 2005 storm 

that produced abundant landsliding throughout southern California (Corbett and Perkins, 2024a; Table 1), including the 

tragic La Conchita landslide that claimed 10 lives during the event (Jibson, 2006); the January 2017 storm that produced 

thousands of landslides in the East Bay Hills of the San Francisco Bay Area (Corbett et al., 2023; Thomas et al., 2017); the 265 
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February 2019 storm that produced landslides both in the northern San Francisco Bay Area as well as in southern 

California’s Riverside County (Hatchett et al., 2020; Corbett and Perkins, 2024b); and the April 2020 storm that produced 

localized landslides and debris flows north of San Diego (CW3E, 2020; California Geological Survey, 2024)  (Table 1). 

These inventories together yield a total of 11,668 individual landslides. 

To find a common threshold that is consistent with all four storms and distinguishes landsliding-producing storms 270 

from storms that caused no observed landsliding, we first compare the maximum AWI for each landslide point (i.e., 11,688 

points) during the passage of each storm against its background AWI value (as discussed below, we use the 1510-year 

recurrence value). This serves as a simple test whether the triggering AWI is a constant threshold across different regions in 

California, which would plot as a horizontal line, or whether any threshold depends on the background AWI itself (sensu 

Cavagnaro et al., 2023). As the landslide spacing is small relative to the 4 km grid cells of the AWI datasetdataset, we use the 275 

grdtrack function within the PyGMT software package (Uieda et al., 2021) that interpolates a precise value between 

neighboring grid cells. After identifying an acceptable common AWI recurrence interval for normalizing A* (see Results), we 

also examined the 19-year time series of A* across each inventory to illustrate the unique occurrence of these values 

throughout each of the four calibration storms. 

 280 

2.3 Calculating the footprint of hazardous rainfall using landslide potential area (LPA) 

One of the main goals of our study was to develop a methodology for both dynamically mapping conditions across the state 

consistent with distributed shallow landsliding. Our approach was to use A* as a proxy for distributed shallow landslide 

occurrence and then calculate the spatial distributions of maximum A* across a given storm (Table 1). To do this, we 

identified the time window bracketing the passage of each storm over land (typically on the order of 72 hours; Table 1) and 285 

then calculated the maximum of A* for each pixel in the domain. The landslide potential area (LPA) is then calculated simply 

as the area of hillslopes in our study area (units of km2) with A* > 1. To exclude flat terrain (i.e., not capable of shallow 

landsliding) and terrain covered in snow (where shallow landslides are unlikely), we created  a mask of sloping terrain 

greater than 5° utilizing a 30 m SRTM-derived digital elevation model (DEM) (Farr et al., 2007), and also excluded grid 

cells with elevations greater than the typical winter snowline in the state (1024 m; see Hatchett et al., 2017). Here we also do 290 

not consider the bedrock-dominated deserts east of the Sierra Nevada where our soil moisture storage model for shallow 

landsliding is not strictly applicable. Whereas Although the 5° mask is a low threshold for shallow landslide producing 

hillslopes, we assume a conservative basis threshold given the relatively large DEM grid size compared to the size of typical 

shallow landslides. This yields a grid of shallow-landslide-prone terrain throughout the study area. To calculate LPA [km2] 

we then interpolated the grid of A* maxima to the masked hillslope raster and calculated the area of hillslope cells with an A* 295 

maximum equal to or greater than our defined threshold. While here we do not propose that LPA specifically quantifies all 

areas impacted by landslides, instead we propose this approach offers a reasonable proxy of conditions consistent with 

observed shallow landsliding that can be used to coordinate potential landslide response. 
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2.4 Evaluating A* and LPA for a catalogue of recent landslide-triggering storms 300 

We tested our analytical framework for regional shallow landslide triggering on a catalogue of nine landslide-inducing storm 

events in California since 2005, including the four calibration events described in Section 2.2 (Table 1). Whereas there are 

notable and well-documented landslide-inducing storms that occurred prior to 2005 in California, the gridded rainfall 

product we use in our analyses was not available prior to 2005 (Section 2.2.1). Thus, we were limited to evaluating only 

more recent storms. These storms were selected because they were either exceptionally large storms with a few well-305 

documented landslide occurrences (essentially null events, e.g., October 2021), had mapped landslides with slightly less 

constrained timing (e.g., February 2005), or were storms with known reports of extensive landsliding but no available 

inventories (e.g., December 2005). 

 For each storm in our catalogue, we also examined the synoptic and mesoscale conditions using a variety of 

meteorological data. This included analysis of several meteorological variables such as geopotential height at various levels, 310 

integrated water vapor (IWV) and integrated water vapor transport (IVT), and upper-level winds from the ERA5 reanalysis 

dataset (Hersbach et al, 2020). We used NEXRAD weather radar data archived at the California-Nevada River Forecast 

Office (CNRFC, 2023b) and at the National Centers for Environmental Information (NCEI, 2023) to evaluate spatial patterns 

of rainfall in storms and to identify areas of short-duration, high-intensity rainfall associated with mesoscale features such as 

narrow cold frontal rainbands or thunderstorms, which are represented by high reflectivity values.  315 

We calculated the AR scale value for each storm using the methodology of Ralph et al. (2019) at all ERA5 grid 

cells along the California coast for a time window spanning four days preceding the landslide event of interest; the AR scale 

requires a minimum 72-hour window for calculation. We use the maximum AR scale at landfall in the State as representative 

of the AR scale of the event. This is common practice in reporting the magnitude of AR events affecting a broad region of 

interest (e.g., Center for Western Weather and Water Extremes, 2023a), but may differ from the AR scale value calculated at 320 

any individual landslide location. Most events affected multiple parts of the State, or the maximum AR scale at landfall 

corresponded to the location of one or more of the observed landslides. The exception is the April 2020 San Diego County 

event. In this event, weak AR conditions were present in far northern California during the event window, but were 

irrelevant to the event itself, with no AR conditions present south of the San Francisco Bay. Thus, it was most appropriate to 

represent this event as 0, no AR. For the February 2005 Chino Hills event, AR1 conditions were present at a few grid points 325 

north of Point Conception, a far distance from the event but still in the broader Southern California region. While this event 

registered as having AR conditions on the AR scale, this event did not feature synoptic features consistent with an AR. Thus, 

we rank it as AR1, but do not consider it as an AR in the synoptic features column. 
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Table 1. Event catalogue of storms used in the analysis. The Synoptic Features column indicates whether the event featured a 330 

closed or cutoff low-pressure system, or an atmospheric river (AR), two synoptic-scale features commonly associated with 

impactful rainfall events in California (CA). The Mesoscale Features column indicates whether a mesoscale feature producing 

high-intensity rainfall (i.e., reflectivity >45 dBZ) was observed in radar imagery in the area where landslides were observed at the 

approximate time of landslide occurrence. "Embedded convection” refers to localized areas of high-intensity rainfall embedded 

within the broader storm system. Dashes indicate no observed features. Also indicated for each event are the measured 335 

Atmospheric River (AR) scale using the methodology of Ralph et al. (2019), and the calculated Landslide Potential Area (LPA).  

 

 

 

 340 

Event name and primary 

impacted regions in CA 

Start Date 

(MM/DD/YYYY) 

End Date 

(MM/DD/YYYY) 

Synoptic 

Features 
Mesoscale Features AR Scale 

𝑳𝑷𝑨 

(km2) 

January 2005. Transverse 

Ranges 
01/07/2005 01/11/2005 AR, Closed low Embedded convection 3 11,950 

February 2005. Southern 

CA, Chino Hills 
02/18/2005 02/21/2005 Cutoff low Embedded convection 1 6,160 

December 2005. Northern 

CA, Coast Ranges, 

Klamath, Sierra Nevada 

12/26/2005 
01/03/2006 

 
AR 

Ring-like band of 

moderate rainfall 
4 38,600 

January 2017. Northern 

CA 
01/08/2017 01/10/2017 AR 

Convective bands in 

Sierra Nevada, San 

Francisco bay Area 

5 25,750 

February 2017. Northern 

CA, San Francisco Bay 

Area 

02/04/2017 02/08/2017 AR - 5 5,920 

March 2018. Central CA 

coast; western Sierra 

Nevada foothills 

03/21/2018 03/23/2018 AR 
Narrow cold frontal 

rainband 
4 1,550 

February 2019. Statewide 02/13/2019 02/16/2019 AR 

Convective bands in 

Sierra Nevada, embedded 

convection in Southern 

CA 

4 5,510 

April 2020. San Diego 

County 
04/07/2020 04/11/2020 Cutoff low Isolated thunderstorms 0 1,620 

October 2021. Northern 

CA San Francisco Bay 

Area, Sierra Nevada 

10/22/2021 10/25/2021 AR - 5 60 
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3 Data: Meteorological characteristics of storms 

The nine storms in our catalogue (Table 1) show a range of meteorological characteristics that caused rainfall-induced 

landslides. The January 2005 and February 2005 storms both impacted southern California; the January 2005 storm caused 

landslides along the coastal hillslopes and inland canyons of Ventura County (Jibson, 2006; Stock and Bellugi, 2011; Fig. 1) 

and the February 2005 storm produced hundreds of landslides in the Chino Hills region east of the city of Los Angeles 345 

(Prancevic et al., 2019). Both storms featured atmospheric rivers, with AR scale values of AR1 and AR3, respectively.  They 

also exhibited embedded convection at the mesoscale, which can produce short bursts of high-intensity rainfall. Both events 

were also associated with cutoff- or closed- low pressure systems. Cutoff lows are mid-to-upper-level low pressure systems 

that are removed from the mean westerly flow and can result in persistent precipitation in a focused area (Oakley and 

Redmond, 2014; Barbero et al. 2019) thereby potentially affecting the resultant spatial distribution of landsliding. Localized 350 

zones of high-intensity precipitation during or in the vicinity of ARs figured prominently in several storms in our catalogue. 

For example, the December 2005 storm in northern California featured an extreme atmospheric river (AR4) and produced 

historic flooding and extensive landsliding across the region (Stock and Bellugi, 2011) including in the San Francisco Bay 

area, in the Klamath River region and in the Sierra Nevada. 

The January 2017 and February 2017 events were part of a series of AR storms during the historically wet season of 355 

2016-2017 in the San Francisco Bay area that produced over 9,000 landslides within the East Bay hills region alone (Corbett 

and Collins, 2023; Fig. 1). In the January 2017 storm in particular, convective bands of high-intensity precipitation were 

observed in both the Bay Area and the Sierra Nevada foothills. In the March 2018 event, a stalling narrow cold-frontal 

rainband occurring immediately after the passage of AR conditions (AR4) produced abundant landslides over a section of 

the Tuolumne River canyon, west of Yosemite National Park (Collins et al., 2020). 360 

The February 2019 AR storm showed evidence of convective bands in the Sierra Nevada (for reference, 

approximately 150 km east of the photo in Fig. 1a) and embedded convection in southern California, where historic flooding 

was observed in Riverside County (Hatchett et al., 2020) and hundreds of landslides occurred (Fig. 2c3c). The April 2020 

storm was a cutoff-low pressure system. As the cutoff low passed over the San Diego region, isolated thunderstorms 

developed, producing high-intensity rainfall and triggering numerous landslides around the town of Encinitas (CGS, 2023; 365 

CW3E, 2020). This storm did not reach classification on the AR Scale.  

Finally, the October 2021 storms consisted of an AR5 event on 24 October 2021 that that pummeled the U.S. West 

Coast and was the strongest AR to make landfall in northern California in the past 40 years during the month of October 

(CW3E, 2021). This storm led to flooding throughout northern California, in addition to landslides in the northern California 

Coast Ranges and the northern Sierra Nevada. 370 
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4 Results 

4.1 Calibration of A* and development of regional threshold for shallow landslide-triggering conditions 

The triggering AWI for landslides from each of the four calibration inventories in our catalogue (January 2005, January 2017, 

February 2019, and April 2020 storms; Table 1, Fig. 2a3a-d) varies with the background value of AWI for each location (Fig. 375 

2e3e). Furthermore, the 1510-year recurrence value of AWI (AWI15AWI10) appears to serve as a common threshold (i.e., the 

1:1 line) that nearly all mapped landslides exceed across the four events. Whereas the January 2017, February 2019, and 

April 2020 landslide AWI points are closer to this threshold, the January 2005 event plots farther above the 1:1 line. While 

this appears to suggest that hillslopes with a higher AWI15 AWI10 may have a comparatively higher triggering threshold, 

evaluation of more landslide events across a broader climatic gradient is required to test this idea sufficiently. We thus take 380 

AWI15 AWI10 as the universal normalization parameter in the calculation of A* for this analysis.  

 

Figure 23. Landslide inventories (a-d) used to estimate a reasonable antecedent water index (AWI) recurrence threshold above 

which most landslides occurred. Panel (e) shows a plot of peak AWI modelled during the storm windows interpolated to each 

landslide point (x-axis) against the 1510-year recurrence AWI at each point (y-axis). A regionally consistentconstant threshold 385 

across regions would plot as a horizontal line., Over 97% and here most of the mapped landslideslandslides plot above their 1510-

year recurrence value (the 1:1 line). Dashed lines are the 0.9:1 and 1.1:1 lines. Shaded relief for (a)-(d) derived from NASA SRTM 

30 m DEM (NASA, 2013). 
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  390 

 

 

Figure 34. Time series of median A* within a box surrounding each landslide inventory shown in Fig. 23. Dashed black line 

corresponds to a threshold value of 1, equivalent to the 1510-year recurrence value of modelled antecedent water index (AWI) 

(eqn. 2) at each site. Approximate landslide timing (black star) corresponds to the maximum value of A* across each respective 395 

time series. For the case of (b), where landslide observations have been commonplace, no similar instance of extensive landsliding 

(e.g., Coe and Codt, 2001) has occurred during the modelled interval indicating no false positives. For the case of (c), the above-

threshold peak from December 2010 corresponds to a massive regional storm event that produced numerous landslides and 

flooding in the region, and the 2005 peak corresponds to the same landslide-inducing storm described in (a), which also produced 

landslides in Riverside County (see discussion in section 4.1).   400 
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Because our definition of A* utilizes a high storm recurrence interval (i.e., 15 10 years) A* values above 1 are, by 

definition, rare. Yet we nevertheless find value in looking at the 20-year time series of A* across each of our landslide  

 

Figure 5. Plots showing the sensitivity of A* to the drainage coefficient kd used in the AWI model (Eqn. 2) for the San Diego 405 

example shown in Fig. 4d. Red lines show the A* time series for each kd value ranging from 0.001 hr-1 (a) to 0.2 hr-1 (d). Panel (b) is 

the same data as shown in Fig. 4d. Blue star denotes landslide timing in the April 2020 event, and grey dashed line represents the 

threshold A* value of 1 (e.g., Fig. 3). In this example, landslide timing is at or near the threshold value across the range of kd; 

however, overall peaks in A* are broader for slower-draining soils (e.g., (a)) and narrow considerably with increasing drainage 

rate as the effect of soil storage declines. Thus, peaks in A* at these drainage rates depend more on instantaneous rainfall intensity 410 

and less on multi-day accumulation which featured prominently in the April 2020 storm (Table 1).   

 

calibration sites for which we have consistent rainfall data. For each of the four calibration events, we find that the landslide-

inducing storm exhibited the largest peak in A* across their respective 20-year histories (Fig. 34). At a minimum, this implies 
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setting an A* threshold of 1 produces no false positives for each site, with the possible exception of the February 2019 415 

Riverside area (Fig. 3c4c). Here there are two additional above-threshold peaks in the ~19-year climatology. The early peak 

coincides with the January 2005 event, and while we do not have landslide mapping from this event in this region, landslides 

were indeed reported in surrounding Riverside County from this event (e.g., Los Angeles Times, 2005). Similarly, the 

second peak in A* occurred in December 2010 and triggered landslides and debris flows across southern California, 

including in Riverside County, leading to a request for $110 million in federal disaster relief for storm damage (FEMA, 420 

2011). Thus, while we cannot corroborate these two events as producing landslides within the specific boxes due to a lack of 

detailed landslide inventory information, at the local scale they can be classified as true positives. In the case of the April 

2020 storm in the San Diego region, we also show that while the pattern of A* is somewhat sensitive to the choice of 

drainage parameter kd, the timing of the landslide event is captured over several orders of magnitude in kd (Fig. 5). 

When considering false negatives (i.e., distributed shallow landslides for average A* values less than 1), assessing 425 

their outcome becomes more difficult because we do not have detailed histories of landsliding (or absence thereof) at all four 

sites. However, for the East Bay hills in the San Francisco Bay Area, (Fig. 2d3d, 3d4d), we do know that the regional 

distributed landsliding produced by the January 2017 and February 2017 storms (combined number of landslides > 9000) has 

not been observed since the winter of 1997-1998 (Coe and Godt, 2001; Corbett and Collins, 2023). Because these storms 

occurred so closely in time, it is not possible to determine which of the January versus February 2017 storms produced the 430 

majority of landslides (Fig. 3l4b), although both are known to have caused landslides. Notably, both events produced A* 

values exceeding 1 within the map area (Fig. 4e6e,h). Overall, we see that mapped landslides from each of these four 

calibration storms coincide with peaks in A* in both space and time, and that a common threshold value of A*=1 based on a 

comparison to the 1510-year climatology can be applied to discriminate the events from storms that occurred in these 

locations and that did not produce widespread landsliding. 435 

4.2 A*, Landslide Potential Area, and the impact of atmospheric river strength  

All nine storms in our catalogue show at least some patches of above-threshold A*; however, the magnitude and spatial 

distribution of A* is highly variable (Fig. 46). The inter-quartile ranges of A* for above-threshold hillslopes mostly occur 

between 1.0 and 1.1, and do not markedly change with the area of impacted hillslopes (Fig. 5). Both the January 2005 and 

February 2005 storms show larger inter-quartile ranges of A* with higher absolute values, and interestingly, both storms 440 

occurred within two months of each other in the winter of 2005 and impacted the same regions within southern California 

(Fig. 4d6d, g). Both storms had embedded convection and favorable orographic conditions (Table 1), which can lead to 

locally high rainfall totals (Section 4.1). LPA values, which represent the total area of hillslopes experiencing above-

threshold A* for each storm, vary by nearly an order of magnitude and range from approximately 60 km2 in the case of the 

October 2021 event to just over ~38,000 km2 in the case of the December 2005 storm that led to severe flooding and 445 

landslides across northern California (Fig. 46).  
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Figure 46. Distributions of A* and resulting landslide potential area (LPA) for the nine landslide-inducing storms in our catalogue 450 

(Table 1). Panel numbers (a) – (i) are ranked in order of increasing LPA: (a) October 2021, northern California (CA); (b) March 

2018, Central Coast and Sierra Nevada; (c) April 2020, Encinitas, (d) February 2019, Riverside County; (e) February 2017, 

northern CA; (f) February 2005, Chino Hills and eastern CA; (g) January 2005, La Conchita and southern CA; (h) Jan 2017, 

northern CA;  (i) December 2005, northern CA. Hillslopes in our study region are shown in grey, and distributions of A* are 

shown as warm colors from A*=1 (orange) to A*=>1.75 (yellow). A* values outside of hillslopes are shown as semi-transparent, and 455 

approximate landslide inventory bounds are shown as teal squares.  
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Red contours show the full spatial distribution of above-threshold A*, and blue pixels show the hillslopes where LPA is calculated. 

In other words, the LPA for each storm is proportional to the total number of blue pixels within the red contours. Topographic 

data derived from NASA SRTM 30 m DEM (NASA, 2013). Color scale ranges from A*=1 (orange) to 1.75 (yellow).  

 460 

 

Given that most storms in our catalogue feature ARs, it is logical to investigate how the magnitude of shallow 

landsliding, as represented by LPA, compares to the magnitude of the associated AR conditions (i.e., via the Ralph et al., 

2019 scale). Our results show that there is considerable variability between these variablesparameters (Fig. 57). For example, 

the three storms reaching AR5 (January 2017, February 2017, and October 2021) span the smallest LPA to the second largest 465 

(Table 1), indicating limited predictability of landslide hazard from measures of IVT alone. This comports with the findings 

of Cordeira et al. (2019) who find only a small percentage of reported ARs are associated with reported landslides in the San 

Francisco Bay Area. One reason for this variability is precisely related to our basing A* on a model that accounts for 

antecedent soil moisture conditions. The AR scale does not incorporate any information on antecedent precipitation or soil 

moisture conditions that may precondition hillslopes and potentially affect subsequent landslide triggering. 470 

Notably, when event LPA is plotted against the month in which the storm occurred, a more systematic relationship 

becomes apparent (Fig. 5b7b). Within our event catalogue, the largest landslide responses occur in late December and 

January,  

 

 475 

Figure 57. Plots showing the relationship between A*, landslide potential area (LPA), and the Ralph et al. (2019) atmospheric river 

(AR) scale. Panel (a) shows how the population of above-threshold values of A* (threshold=1) varies with LPA and the AR scale 

(color). Dots show the median value of above-threshold A*, and vertical lines show the interquartile range. While most events have 

median values somewhere close to 1, both the January 2005 and February 2005April 2020 events have higher median values close 

above to 1.15 and much larger interquartile ranges. This likely reflects either the strong orographic and/or convective nature of 480 

these two storms in southern California (see discussion). High AR-scale events exhibit both the highest and lowest values of LPA in 

our catalogue. Panel (b) shows LPA variation (left axis) with the time of year. Events in December and January have the highest 

LPA, with decreasing impacted area (i.e., smaller LPA) later in the rainy season. Right axis shows the average annual AR arrivals 



20 
 

along the U.S. West Coast from reanalysis data (Mundhenk et al., 2016). Panel (c) shows the relationship between antecedent A* 

(the value of A* preceding a given storm window) for pixels that ultimately exceeded the A*=1 threshold, and resultant LPA. The 485 

relationship is well fit by an exponential relationship.  

 

 

and progressively decline throughout the year in an almost exponential fashion. Although the event catalogue is lacking in 

spring events relative to winter events, the overall apparent trend indicates that seasonal processes are at play that likely 490 

modulate the antecedent soil moisturhydrologic conditionse in landslide-prone hillslopes. This supports our use of a soil 

moisture water balance (i.e., AWI) anomaly-based metric for identifying landslide-inducing storms; soil moisture generally 

decreases in the spring months (March-April-May) as storms become less frequent (Figure 5b7b) and evapotranspiration 

increases with longer days and temperatures. Thus, LPA tracks well with storm frequency metrics such as the frequency of 

AR arrivals along the west coast of the United States (Mundhenk et al., 2016) which peaks in December and January with a 495 

decline similarand declines similarly to the monthly decline in LPA (Fig. 5b7b). This is similar to the January peak observed 

in the monthly frequency of historic landslide days in the San Francisco Bay Area region (Cordiera et al., 2019) as well as 

theA similar pattern is seen in the peak in observed seasonal shallow landslide activity inof the Pacific Northwest (Luna and 

Korup, 2022), indicating the role of soil moisture storage and groundwater conditions in driving the seasonality of regional 

shallow landslide activity (Luna et aland Korup., 2022). Because A* and LPA represent local extremes of soil water, this 500 

consistent trend across all events suggests that the observed seasonality in LPA persists across the state despite the large 

differences in annual rainfall (and AWI). 

 To test this relationship more explicitly, we examined whether storm LPA correlates with the degree of antecedent 

A* values for pixels that ultimately exceeded the landslide threshold during a storm event. Fig. 7c reveals a nonlinear 

relationship where the largest-LPA events in the catalogue tend to have higher antecedent A* values, and both early-season 505 

(e.g., October 2021) and late-season (e.g., April 2020) storms with low antecedent A* conditions exhibit comparatively low 

LPA values. This relationship is well-fit by an exponential function (R2 = 0.85), indicating that, perhaps unsurprisingly, the 

degree to which the landscape is pre-conditioned by prior rainfall in our study region exerts a strong control on the area 

impacted by landslide-inducing rainfall. This result may therefore provide a causative link between the apparent relationship 

between characteristic AR arrival frequency and the magnitude of landslide potential area (Fig. 7b), as frequent rainfall 510 

events across a region may keep the hydrologic mass balance in an elevated state more prone to exceed its local threshold 

should a comparatively strong storm system arrive.  
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5 Discussion and Conclusions 

5.1 Effect of low antecedent moisture on large, early-season storm impacts 

The October 2021 AR5 storm offers an important example of how low antecedent soil moisture can blunt the impacts of an 515 

exceptional storm producing record precipitation in California’s highly seasonal climate (Fig. 68). This storm followed a 

year of drought and came uncharacteristically early for an AR of its magnitude (e.g., Ralph et al., 2019; CW3E, 2021). 

Because of this, soils were close to their residual moisture content. Despite generating a wide swath of highly anomalous 48-

hour rainfall with R*
48 values locally exceeding 3 from the San Francisco Bay area to the Sierra Nevada (Fig. 6a8a,b), no 

reports of major landsliding occurred outside of a few isolated events. Notably, Marc et al. (2019) report R*
48 values 520 

exceeding 2 as an approximate threshold for what should lead to high-density distributed landsliding. In our calculation of 

A*, the initially dry soil conditions at the storm onset that occurred only a few weeks into the rainfall season (beginning 

October 1 in California), contributed to a diminished distribution of A* and therefore little predicted landsliding (Fig. 5c8c). 

Thus, in Mediterranean climates where dry soils can mitigate the hazardous effects of anomalously high rainfall, 

consideration of soil storage is an important factor when using normalized thresholds for regional prediction of shallow 525 

landslides in soil-mantled hillslopes (e.g., Fig. 6b). 

 

 

 

 530 

Figure 68. (a) Map showing 48-hour maximum precipitation from the October 25th, 2021 Atmospheric River scale 5 (AR5) that 

struck northern and central California and produced widespread flooding but few landslides (Table 1). (b) R*
48 metric of Marc et 
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al. (2019) showing highly anomalous two-day rainfall totals for the region, calculated by taking the results of panel (a) and dividing 

by the 10-year recurrence 48-hour rainfall estimates from the NOAA Atlas-14 dataset (Perica et al., 2014). (c) Map of A* showing 

that despite anomalously high rainfall, little few impacts was predicted for from distributed shallow landslide occurrence may be 535 

expected. Shaded relief for all plots from NASA SRTM 30 m DEM (NASA, 2013). 

5.2 Dissecting the role of synoptic and mesoscale meteorological processes on landslide hazard 

Our study of a wide range of landslide-inducing storms allows evaluation of the role that storm characteristics might have on 

the distribution of landslides. We found that whereas AR presence is often associated with landslide events (e.g., as in 

Cordeira et al. 2019), the strength of ARs as measured by the AR Scale did not exert a significant control on the magnitude 540 

of landslide-triggering rainfall investigated here. We also find that mesoscale features producing short-duration, high-

intensity rainfall may play a more important role in dictating where shallow landslides and associated debris flows occur 

(Wooten et al., 2008; Coe et al., 2014; Collins et al., 2020). Landslides from the April 2020 storm, one of the events with the 

smallest LPA values in our catalogue, were triggered by an isolated thunderstorm following a persistent, multi-day period of 

rainfall associated with a cutoff low-pressure system (CW3E, 2023). The mapped landslides spatially correlate with a 545 

roughly 10-km wide area of high (>50 dBZ) radar reflectivity representing the isolated effects of the thunderstorm (Fig. 

7a9a). In a similar example of landslide control by mesoscale processes, extreme rainfall in the March 2018 Central 

California/Sierra Nevada storm event was influenced by a narrow cold-frontal rainband (NCFR) that stalled over the region 

(Fig. 7b9b) following the passage of an AR4 atmospheric river (Collins et al. 2020). Here the pattern of landsliding closely 

matched matches the radar reflectivity signature of the NCFR passage across the region. These two cases in particular 550 

highlight how synoptic and mesoscale atmospheric features may work together to produced localized landsliding. In each 

case, the synoptic feature (cutoff-low or atmospheric river) provided long-duration rainfall which sufficiently primed the 

soils for failure. This was followed by a high-intensity, short-duration burst of rainfall from a mesoscale feature that acted as 

a landslide trigger (e.g., Collins et al., 2020; Bogaard and Greco, 2018). The resultant footprint of A* in these two examples 

thus directly reflects the passage of these synoptic and mesoscale features. 555 



23 
 

 

Figure 79. Maps showing examples of a range of spatial scales of precipitation influencing landslide-inducing rainfall distribution 

in California. (a) Mesoscale features such as isolated thunderstorms produced very high intensity rainfall and led to localized 

landslide hotspots in the April 2020 storm in southern California (Table 1; black circles). (b) Narrow cold frontal rainbands 

(NCFR), on the order of a few km wide and tens of km long, are another mesoscale feature that can produce high-intensity 560 

rainfall, leading to regional zones of landsliding as was the case along the Sierra Nevada foothills during the March 2018 event 

(Table 1). Large circles are mapped landslides from Corbett et al. (2020), and triangles are National Weather Service local storm 

reports of slope failures during the event (Iowa Environmental Mesonet Cow, 2023), and white arrows show the propagation 

direction of the NCFRs. (c) Broad areas of persistent moderate-intensity precipitation may develop under favorable atmospheric 

conditions, as in the December 2005 storm in northern California (Table 1), which and can also lead to widespread distributions of 565 

of enhanced rainfall that can result in extensive landsliding over a large region and consequently high resultant landslide potential 

area (LPA) when antecedent conditions are sufficiently high over widespread mountainous terrain (Fig. 7c). Map tiles copyrighted 

by Stamen Design, 2023, under a Creative Commons Attribution (CC BY4.0) license.  

 

Conversely, the highest-magnitude LPA event in the dataset, the December 2005 storm in northern California (LPA 570 

= 38,600 km2), was associated with persistent (multi-hour) moderate intensity rainfall over broad areas (~200 km-scale) (Fig. 

7c9c). This may occur due to the persistence of AR conditions over an area or from increased precipitation rates associated 

with the development of mesoscale frontal waves or secondary cyclones developing near landfalling ARs (e.g., Martin et al. 

2019), among other atmospheric processes. The observed rainfall intensities were not as high as the other two events 

featuring well-defined mesoscale high-intensity rainfall features, but the persistence of moderate-intensity rainfall 575 

resultedover an area with very high antecedent A* (Fig. 7c) resulted in excessively anomalous rainfall at the large regional 

scale. This region of Northern California also has a broader concentration of mountainous terrain than elsewhere in the state 

(e.g., Fig. 6), which will inherently result in a larger LPA given similar meteorological conditions. Taken together, these 

results suggest spatial patterns of multi-hour moderate intensity precipitation and short-duration, high-intensity rainfall can 
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both impact a storm’s resulting LPA depending on the antecedent A* distribution. If hillslope soils are relatively dry over a 580 

region then the pattern of A* may closely resemble the shape of the meteorological structures that yield high-intensity 

precipitation, which typically occur at a finer spatial scale (e.g., Fig 9a,b). If the soils are relatively wet over a broad region, 

then the pattern of landslide-inducing rainfall may reflect larger meteorologic structures that yield prolonged, moderate-

intensity rainfall (e.g., Fig. 9c). We therefore argue that the mesoscale precipitation characteristics of a storm have the 

potential to exert a dominant control on its hazard potential and potentially outweigh in some cases the synoptic scale 585 

features. In this way, for many storms the distribution of antecedent A* may act as an aperture that limits what meteorologic 

structures imprint themselves on the landscape via distributed shallow landsliding.  

 

Due to the role of mesoscale processes in driving landslide-inducing rainfall (Wooten et al., 2008; Minder et al., 

2009; Coe et al., 2014; Collins et al., 2020), the quality of the quantitative precipitation estimates (QPEs) used in A* and the 590 

resultant LPA is important. QPEs that incorporate radar observations may better capture smaller-scale convective features 

that may not be represented by interpolated rain gauge observations such as the CNRFC 6-hourly QPE (CNRFC, 2023). This 

is particularly true in landscapes where rain gauges may be heterogeneously distributed. For example, the NCFR passage 

that drove landsliding in the March 2018 storm was captured well by radar (Fig. 7b) but not particularly well in the rain 

gage-interpolated precipitation dataset along the Sierra Nevada mountain frontfoothills where gauge data are relatively 595 

sparse (Collins et al., 2020Fig. 9b). However, QPE incorporating radar observations may be limited by radar coverage in the 

complex terrain of the western United States. 

5.3 Evaluating A* performance at the statewide level: an example from the Winter 2023 atmospheric river sequence 

Concerns also remain as to the degree of predictive success for A* across a broader range of events and beyond the relatively 

small regions (10s to 10,000s km2) used for model calibration (e.g., Fig. 23). More systematic and complete landslide 600 

inventories are therefore needed at the mega-regional scale (i.e., many 100,000 km2; California is 424,000 km2 in size) to 

better evaluate how variations in A* map with changes in both the presence and absence of landslides and their relative 

spatial density. Further, if these parameters indices are utilized in decision-making schemes for evaluating risk and regional 

warning criteria, more work is required to not only examine a broader range of events, particularly large storms that did not 

trigger landslides, but to examineexamine how A* correlates to landslide triggering across changes in parameters such as 605 

topography, lithology, and vegetation, and evapotranspiration. For example, Marc et al. (2019) showed that increasing R* 

scales with increasing landslide spatial density, and that accounting for lithologic differences further increased correlation. 

The A* threshold in this analysis is designed to signify regions of widespread shallow landsliding, but to what extent do 

increases in A* correlate with increases in shallow landslide density, and how sensitive a predictor is A* for more isolated 

landslide events? 610 

 Recently, California experienced an extreme storm sequence of nine back-to-back atmospheric river arrivals from 

December 2022 to January 2023 (DeFlorio et al., 2024), driving statewide impacts including flooding, landslides and debris 
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flows, and significant wind damage that produced an estimated $5-$7 billion in damages (Moody’s RMS, 2023). Throughout 

the emergency response to the ongoing impacts, the California Geological Survey (CGS) collated and verified reported 

landslides from State and Federal government agencies (i.e., Brien et al., 2023), social media, California Highway Patrol, 615 

news reports, and citizen submissions to include in the CGS Reported Landslides Database (2023). The resulting inventory 

includes over 700 landslide reports from across the state, mostly nearby road networks where observers were located. 

Although the inventory does not include a full, detailed accounting of shallow landslides from satellite imagery (e.g., Fig. 

23), it covers the entire California study area and thus provides an opportunity to explore how variations in A* throughout the 

AR sequence correlate with the location and relative densities of reported landslides. To examine how relative landslide 620 

density may correlate with A* magnitude, we sum the landslide points and spatially average A* maxima in 15 arc-minute 

(~20 km) bins (Fig. 10c).  

 

 

 625 

Fig. 810.  Maps showing distributions of A* maxima and reported landslides during two periods of the December 2022 - January 

2023 atmospheric river sequence: (a) 30 December – 03 January which strongly impacted the San Francisco Bay area; and (b) 09 

January – 11 January, which strongly impacted the central coast and southern California. Yellow symbols are landslides from 

each time period from the California Geological Survey Reported Landslides. Panel (c) shows a plot relating a grid of landslide 

point density (y-axis) to A* maxima for each respective period in the storm sequence. Although a number of isolated slides show 630 

low values of A*, as A* approaches 1 landslide density begins to rise rapidly. This highlights the efficacy of the method for 

identifying zones of widespread landsliding rather than locally isolated events. Shaded relief in (a) and (b) from NASA SRTM 30 

m DEM (NASA, 2013).  
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Figure 8 shows snapshots of A* maxima and reported landslides from the CGS database during two of the most intense storm 

periods during the 2023 AR sequence: 30 December 2022 – 03 January 2023 (AR3; Fig. 8a10a), and 09 January – 11 

January 2023 (AR3; Fig. 8b10b). Overall, the footprints of A* generally cover the zones of high landslide density at the 

regional scale for both cases. Isolated landslides are not very well-resolved by the method; however, some events in the 

reported landslide database may be related to roadcut failuresland use and may not reflect purely natural conditions. 640 

Additionally, at this level of mapping it is difficult to evaluate false positives (i.e., zones of above-threshold A* where 

reported landslides are absent) because of potential reporting biases. For example, landslides may be under-reported in areas 

of low road or population density, or in instances when certain roads may have already been closed due to storm damage. 

Future work with a more robust mapping of natural failures across the entire domain (a rare and comprehensive, time-

consuming but essential effort) would help quantify prediction uncertainty and likely provide more statistically robust 645 

relationship between increasing A* and landslide spatial density. Even so, a gross comparison of reported landslide spatial 

density with increases in A* (Fig. 8c10c) shows a marked rise in landslide kernel spatial density as A* approaches and 

exceeds a value of 1, our calibrated threshold based on the local 1510-year recurrence of AWI.   

 Although the climatic normalization process does appear to account for regional landslide susceptibility differences 

potentially driven by the geomorphic tuning of the landscape to the regional climate (e.g., Marc et al., 2019), more While 650 

local site heterogeneity in soil strength and root cohesion are likely to exert a strong second order control on the relationship 

landslide triggering during extreme rainfall events (e.g., McGuire et al., 2016; Rengers et al., 2016; Perucacci et al., 2017), ). 

beyond what is accounted for in the climatic normalization process (eqn. 1; Marc et al. 2019),The analysis presented here 

indicates, however, this analysis suggests that to first order, A* is an effective metric for delineating zones of widespread 

landsliding and can hence serve as a useful guide for evaluation of regional hazard potential. 655 

5.4 Towards predicting the effects of rainfall-induced landslide hazards 

A primary goal of this analysis was to work towards enhancing situational awareness for rainfall-induced shallow landslide 

hazard. Global forecast models such as the Global Forecast System (NOAA, 2023) and the European Center For Medium-

Range Weather Forecasts (ECMWF, 2024 provide precipitation forecasts out to approximately two weeks and can be used as 

input to provide forecasts of A* (and hence LPA). Gridded precipitation estimates such as the NOAA Stage IV product (Seo 660 

and Breidenbach, 2002; Nelson et al., 2016) could be used to calculate season-to-date A* in an operational scenario, which 

itself can provide a glimpse into what potential impacts from an incoming storm may look like (e.g., Fig. 7c). In data-poor 

regions where calibrated gridded precipitation datasets may not be available, this methodology could be tested using globally 

available satellite-derived precipitation products.  Although the methods developed herein are only applicable for situational 

awareness of hazardous rainfall at the scale of the precipitation data used and which are typically coarser than the spatial 665 

scale of individual hillslopes, one potential advantage is its simplicity of implementation as only rainfall data are needed as 

model input for A*. In future work, a more rigorous investigation of model rate constants and additional controls on the water 

mass balance such as evapotranspiration could be investigated. This would could be particularly important for Mediterranean 
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climates like California, which are projected to see an increasing number of dry days in a warming climate (Polade et al. 

2014).  670 

 Nevertheless, our analysis shows that A* provides a good first-order indication of landslide-inducing rainfall for 

soil-mantled hillslopes across a range of climatic conditions in California. This simple approach could be used with 

precipitation forecasts and estimates to provide early warning of landslide hazards and support emergency management 

decisions ahead of potential events. Additionally, the approach presented here can be used to provide insight into the 

meteorological and climatic processes that control landslide hazard, conduct intercomparisons of past landslide events, or be 675 

used for climate model output to assess the potential for increased landslide hazard in future storm events. 
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