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 Abstract 

 Seasonal  snow  in  the  northern  regions  plays  an  important  role  providing  water  resources  for  both  consumption  and 

 hydropower  generation.  Moreover,  the  snow  changes  in  northern  Finland  during  winter  impact  the  local  agriculture, 

 vegetation,  tourism  and  recreational  activities.  In  this  study  we  estimated  snow  depth  using  an  empirical  methodology 

 applied  to  the  dual-polarisation  of  the  Sentinel-1  synthetic  aperture  radar  (SAR)  images  and  compared  with  in  situ 

 measurements  collected  by  automatic  weather  stations  (AWS)  in  northern  Finland.  We  applied  an  adapted  version  of  the 

 empirical  methodology  developed  by  Lievens  et  al.  (2019)  to  retrieve  snow  depth,  using  Sentinel-1  constellation  between 

 2019  and  2022,  and  then  compared  to  measurements  from  three  automatic  weather  stations  available  over  the  same  period. 

 Overall,  the  Sentinel-1  snow  depth  retrievals  were  underestimated  in  comparison  with  the  in-situ  measurements  from  the 

 automatic  weather  stations.  We  found  slightly  different  patterns  for  the  different  years,  and  an  overall  correlation  factor  of 

 0.41,  and  a  higher  correlation  in  the  2020–2021  season  (R=0.52).  The  high  correlation  between  estimated  and  measured 

 snow  depth  at  the  Inari  Nellim  location  (R=0.81)  reinforces  the  potential  ability  to  derive  snow  changes  in  regions  where  in 

 situ  measurements  of  snow  are  currently  lacking.  Further  investigation  is  still  necessary  to  better  understand  how  the 

 physical properties of the snowpack influence the backscatter response over shallow snow regions. 
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 1 Introduction 

 Snow  variations  play  an  important  role  in  the  northern  regions,  providing  water  resources  for  both  consumption  and 

 hydropower  generation.  Seasonal  snow  variations  in  northern  Finland  during  winter  impact  the  local  agriculture,  vegetation, 

 tourism  and  recreational  activities  (Lehtonen  et  al.,  2013;  Luomaranta  et  al.,  2019)  .  Some  regions  in  the  Arctic  are 

 experiencing  a  shortening  in  the  snow  cover  duration  during  the  past  decades,  and  future  projections  demonstrate  an  increase 

 in  the  surface  temperature  and  a  continuous  decrease  of  snow  cover  through  time  for  the  northern  regions  of  Finland 

 (Lehtonen et al., 2013; Luomaranta et al., 2019)  . Thus, extensive monitoring of snow depth is crucial for various purposes. 

 Different  measurements  efforts  play  an  important  role  in  monitoring  snow  depth,  including  the  Automatic  Weather  Stations 

 (AWS;  Luomaranta  et  al.,  2019),  light  detection  and  ranging  (LiDAR)  flights  (Painter  et  al.,  2016)  ,  and  snow  course 

 measurements  (Leppänen  et  al.,  2016)  .  The  collection  of  these  data  provides  valuable  and  accurate  measurements.  However, 

 their  spatiotemporally  limited  coverage  restricts  systematic  monitoring.  On  the  other  hand,  remote  sensing  techniques,  such 

 as  satellite  observations  and  modelling,  are  key  to  improve  the  monitoring  of  snow  over  large  areas  all  year  around  (Tsang  et 

 al.,  2022)  .  Satellites  equipped  with  passive  microwave  radiometry  sensors,  supported  by  the  in  situ  measurements,  have  been 

 extensively  used  to  estimate  snow  water  equivalent  (SWE),  the  total  water  content  in  the  snowpack,  for  decades  (Takala  et 

 al.,  2011;  Pulliainen  et  al.,  2020)  .  However,  despite  their  daily  temporal  resolution,  the  coarse  spatial  resolution 

 (approximately  25  km  by  25  km)  and  the  dependency  on  the  in-situ  measurements  still  impose  some  limitations  on  the  use  of 

 passive microwave radiometry for snow cover monitoring. 

 Currently,  several  studies  in  shallow  snow  regions,  where  snow  thickness  is  lower  than  1  m,  make  use  of  the  synthetic 

 aperture  radar  (SAR)  measurements  in  the  Ku-band  (~  12  –  18  GHz),  as  well  as  the  Ka-band  (~  26.5  –  40  GHz),  as  these 

 frequencies  are  more  sensitive  to  snow  pack  changes.  However,  the  exact  knowledge  of  the  penetration  depth  of  the  SAR 

 signal  in  the  snow  pack  still  remains  unknown  and  dependent  on  assumptions  due  to  the  snowpack  characteristics,  hindering 

 accurate assessments  (Tsang et al., 2022; Jutila and Hass, 2023)  . 

 The  use  of  Interferometric  Synthetic  Aperture  Radar  (InSAR)  technique  using  the  L-band  (~  1  –  2  GHz)  has  shown  promise, 

 as  it  operates  at  lower  frequencies  and  is  less  affected  by  the  presence  of  vegetation  and  dry  snow  (Ruiz  et  al.,  2022)  . 

 However,  the  lack  of  freely  available  data  makes  its  use  more  difficult.  Future  missions,  such  as  the  Radar  Observing  System 

 for  Europe  in  L-band  (ROSE-L),  as  well  as  the  NASA-ISRO  Synthetic  Aperture  Radar  (NISAR),  will  provide  freely 

 available L-band data worldwide, improving our understanding of snow changes and improving its monitoring capabilities. 

 The  C-band  backscatter  measurements  are  widely  used  in  several  applications  in  the  cryosphere.  More  specifically  in  the 

 context  of  snow  research,  previous  studies  explore  the  application  of  the  SAR  images  to  provide  information  of  dry  snow 
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 accumulation  (Bernier  and  Fortin,  1998)  ,  and  evaluation  of  snowmelt  dynamics  in  the  alpine  regions  (Marin  et  al.,  2020)  . 

 Despite  some  limitations,  the  use  of  the  C-band  (5  –  6  GHz)  synthetic  aperture  radar  images  have  demonstrated  the  ability  to 

 estimate  snow  depth  and  provide  valuable  information  about  snow  depth  variations  using  the  Sentinel-1  (S1)  constellation 

 (Lievens  et  al.,  2019,  2022)  .  They  demonstrated  the  sensitivity  of  the  co-  and  cross-polarised  backscatter  observations  from 

 the  Sentinel-1  satellites  to  estimate  snow  depth  over  mountainous  regions  in  the  Northern  Hemisphere,  where  the  snow 

 thickness  exceeds  1  m.  These  findings  open  the  potential  and  significance  of  the  use  of  the  Sentinel-1  SAR  images  archive  to 

 estimate snow depth variation. 

 Snow  depth  estimates  with  high  spatio-temporal  resolution  can  improve  our  understanding  of  seasonal  snow  mass  in 

 complex  access  areas.  Thus,  the  objective  of  this  study  is  to  expand  the  use  of  the  empirical  methodology  applied  to 

 synthetic  aperture  radar  images  (Lievens  et  al.,  2019)  to  estimate  seasonal  snow  depth  variations  over  shallow  snow  regions, 

 in  northern  Finland.  The  findings  will  then  be  compared  with  in  situ  measurements  collected  by  automatic  weather  stations 

 (AWS) in the same area. 

 2 Data and methods 

 Study Area 

 The  study  area  is  located  in  the  northern  region  of  Finland,  between  the  latitudes  68.3°  and  69.3°N  (Figure  1).  The  study  area 

 has  a  relatively  flat  topography,  ranging  approximately  between  100  m  to  500  m  in  elevation.  The  snow  depth  (SD) 

 fluctuation  is  influenced  by  the  variation  of  the  local  surface  air  temperature  and  precipitation  (Luomaranta  et  al.,  2019)  .  In 

 the  northern  part  from  1961–2014  the  average  snow  depth  during  winter  was  82.7  cm,  and  maximum  snow  depth  reached 

 121.5  cm  in  2000  (Luomaranta  et  al.,  2019)  .  Due  to  its  proximity,  the  temperature  variations  in  Northern  Finland  have  a 

 strong  influence  of  the  Arctic  Ocean  (Aalto  et  al.,  2016)  .  The  mean  surface  temperature  in  the  north  during  the  winter  from 

 1988–2014  was  -11.1°C,  and  average  maximum  surface  temperatures  reached  approximately  -7.2°C  during  the  winter  for  the 

 same period  (Luomaranta et al., 2019)  . 

 Automatic weather stations 

 In  order  to  compare  and  evaluate  the  snow  depth  estimates  derived  from  Sentinel-1,  we  used  snow  depth  and  surface  air 

 temperature  measurements  from  three  automatic  weather  stations  (AWS),  managed  by  the  Finnish  Meteorological  Institute. 

 The  snow  depths  are  measured  by  the  Campbell  Scientific  SR50AH  instruments  mounted  on  the  stations,  and  the  instrument 

 accuracy,  according  to  the  manufacturer,  is  approximately  1  cm.  We  extracted  information  of  daily  snow  depth  and  surface 
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 air  temperature,  spanning  from  2019  to  2022,  from  the  Finnish  stations  database  around  the  Inari  Lake  (IL)  region.  The 

 chosen  the  AWS’s,  followed  by  their  respective  locations  (Figure  1),  are;  Inari  Nellim  (IN  -  68.849°N,  28.399°E),  Inari 

 Kaamanen (IK - 69.141°N, 27.266°E), and Inari Angeli Lintupuoliselkä (IA - 68.903°N, 25.736°E). 

 Canopy cover 

 We  used  the  canopy  cover  from  the  Multi-source  National  Forest  Inventory  Raster  Maps  of  2021  (MS-NFI),  which  is 

 processed  and  distributed  by  the  Luonnonvarakeskus  (Natural  Resources  Centre)  from  Finland,  to  evaluate  the  correlation 

 with  the  snow  depth  patterns  derived  from  Sentinel-1.  The  main  products  used  to  derive  the  canopy  cover,  and  the  other 

 products  distributed,  are  from  the  Sentinel-2A/B  satellites  of  European  Space  Agency  (ESA)  and  the  Landsat  8  satellite  of 

 United  States  Geological  Survey  (USGS),  the  full  description  of  the  data  is  found  in  Mäkisara  et  al.  (2022).  The  dataset 

 comes  in  the  ETRS-TM35FIN  coordinate  system,  and  the  spatial  resolution  is  posted  at  16  m  by  16  m.  Areas  affected  by 

 cloud coverage, regions outside forest land, and outside Finland are removed and disregarded (Mäkisara et al., 2022). 

 Sentinel-1 data 

 In  this  study  we  estimated  snow  depth  using  single  look  complex  (SLC)  synthetic  aperture  radar  images  acquired  in  the 

 interferometric  wide  swath  (IW)  mode  from  the  Sentinel-1a  satellite  launched  by  the  European  Space  Agency  (ESA)  in 

 October  2014.  Sentinel-1b  was  launched  in  April  2016  and  ended  its  mission  in  December  2021  due  to  technical  issues.  For 

 this  reason,  in  the  present  work,  we  preferred  to  use  only  images  acquired  from  Sentinel-1a,  and  referred  from  here  as 

 Sentinel-1.  The  Sentinel  SAR  instruments  operate  at  C-band  (5.405  GHz),  and  the  IW  mode  has  a  250  km  swath  and  spatial 

 resolution  of  5  m  in  ground  range  and  20  m  in  azimuth.  Each  satellite  from  the  Sentinel-1  constellation  had  a  repeat  cycle  of 

 12  days  and  180  degrees  orbital  phasing  difference.  We  used  the  dual-polarisation  (VH  and  VV)  components  from  56  SAR 

 Sentinel-1  images  acquired  over  the  same  region  in  northern  Finland.  The  data  range  acquired  spans  from  October  2019  to 

 May  2022  (Table  S1  in  the  Supplementary  data),  and  we  followed  the  workflow  described  below  to  derive  56  snow  depth 

 maps. 

 In  the  pre-processing  stage  we  used  ESA’s  Sentinel  Applications  Platform  (SNAP)  software  (version  8.0).  We  performed  a 

 standard  processing  routine  for  all  the  Sentinel-1  SLC  IW  images,  including  the  application  of  the  most  recent  orbit  file, 

 radiometric  calibration,  debursting  and  range-Doppler  terrain  correction  using  the  Copernicus  digital  elevation  model  (DEM) 

 posted  to  a  spatial  resolution  grid  of  30  m.  In  order  to  reduce  speckle  noise  in  the  SAR  measurements,  we  applied  a  moving 

 mean  filter  to  the  data,  using  a  kernel  of  990  m  by  990  m.  The  final  pre-processed  product  was  a  time-series  of  stacked  S1 

 images with  backscatter intensities in decibel (dB) for both HV and VV. σ 0 
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 We  used  an  adapted  version  of  the  empirical  methodology  developed  by  Lievens  et  al.  (2019)  to  estimate  snow  depth  using 

 Sentinel-1  products  (Equations  1  and  2).  The  algorithm  utilises  changes  in  the  cross-polarized  backscatter  measurements  of 

 SAR  images  repeatedly  acquired  on  the  same  location  and  orbit  to  avoid  geometry  distortions.  We  calculated  the  ratio 

 between  the  two  cross-polarised  (  and  )  backscatter  intensities  in  a  pixel  scale  for  the  entire  image  time-series.  We σ
 𝑣ℎ 
 0 σ

 𝑣𝑣 
 0 

 considered  the  entire  region  as  susceptible  to  snow  accumulation,  and  the  snow  index  (SI)  in  the  time  step  t  i  ,  was  calculated 

 as described in the Equation (1). Moreover, if SI(t  i  ) < 0, it was considered as zero. 

 SI(t  i  ) = SI(t  i-1  ) + [(  /  )(t  i  ) - (  /  )(t  i-1  )]  (Equation 1) σ
 𝑣ℎ 
 0 σ

 𝑣𝑣 
 0 σ

 𝑣ℎ 
 0 σ

 𝑣𝑣 
 0 

 The translation to snow depth (SD), in metres, is then calculated using Equation 2. 

 SD(t  i  )=  SI(t  i  )  (Equation 2) 
 𝑎 

 1    −    𝑏𝐹𝐶 ( 𝑖 )( )

 The  parameter  a=1.1  m  dB  -1  (Equation  2)  is  constant  and  was  estimated  using  in  situ  measurements,  minimising  the  mean 

 absolute  error  (MAE)  between  the  times  series  of  the  global  average  snow  depth  measurements  and  Sentinel-1  estimates  in 

 mountain  regions  (Lievens  et  al.,  2019).  The  forest  cover  (FC)  used  here  is  the  canopy  cover  from  the  Multi-source  National 

 Forest  Inventory  Raster  Maps  of  2021  (MS-NFI).  As  the  canopy  cover  attenuates  the  backscatter  from  the  snow,  an 

 additional parameter b=0.6 (dimensionless), estimated by Lievens et al. (2019), is applied. 

 Errors  in  our  snow  depth  estimates  arise  mainly  through  the  radiometric  accuracy  for  Sentinel-1,  specified  as  ~1  dB  (Torres 

 et  al.,  2012).  Due  to  the  fact  we  averaged  all  the  images  to  reduce  speckle,  an  additional  0.5  dB  was  considered  into  the σ 0 

 overall  radiometric  accuracy  (Torres  et  al.,  2012).  The  resulting  radiometric  accuracy  of  1.5  dB,  representing  ~10-15%  of  the 

 signal, was used to determine the uncertainty of the snow depth measurements. σ 0 

 3 Results and Discussions 

 We  used  the  Sentinel-1  dataset  (Table  S1)  between  2019–2022  to  produce  up-to-date  snow  depth  at  our  designated  study  area 

 (Figure  1).  To  explore  changes  in  snow  depth  over  space  and  time,  we  further  extracted  time  series  of  snow  depth  to  compare 

 them  to  independent  measurements  from  the  three  automatic  weather  stations  (Figure  2).  Then,  we  show  mean  snow  depths 

 yearly  in  Figure  3.  Figure  4  presents  the  snow  depth  estimates  separated  by  canopy  density  intervals.  Furthermore,  in  order 
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 to  evaluate  the  snow  depth  estimates  from  S1,  the  dataset  was  compared  to  the  automatic  weather  stations  in  different 

 scenarios, presented in the Figures 5 and 6. 

 Figure  2  displays  the  seasonal  changes  in  the  snow  depth  over  three  consecutive  winters  at  the  AWS  sites.  We  observe  that 

 the  snow  depth  estimates  from  S1  at  the  Inari  Nellim  location  (Figure  2a)  follows  the  seasonal  variations  measured  by  the 

 automatic  weather  stations  measurements,  despite  the  underestimated  values.  The  snow  depth  products  derived  from 

 Sentinel-1  from  the  other  weather  stations,  IK  and  IA  (Figure  2a),  also  follow  the  seasonality  of  the  weather  stations 

 measurements,  although  they  exhibit  an  evident  underestimation  relative  to  the  AWS  measurements.  Automatic  weather 

 stations  are  usually  located  in  relatively  flat  and  non-forested  terrain,  which  may  not  accurately  represent  the  surrounding 

 area,  susceptible  to  changes  in  e.g.,  forest  cover  and  terrain.  Thus,  it  is  important  to  highlight  the  challenges  when  comparing 

 observations  from  a  point-scale  measurement  from  the  AWS’s,  and  the  grid-scale  estimates  from  Sentinel-1  (Lievens  et  al., 

 2022)  .  Overall,  we  observed  clear  underestimations  in  the  shallow  snow  depth  regions  (Figure  2),  in  agreement  with  Lievens 

 et  al.  (2019)  .  Theoretically,  the  underestimation  is  possibly  due  to  the  water  content  in  the  snowpack,  reflecting  and 

 absorbing  the  backscatter  signal,  as  the  ground  temperature  in  the  accumulation  period  remains  approximately  the  same, 

 insulated  by  the  snow  (Lievens  et  al.,  2019;  Marin  et  al.,  2020)  .  The  mean  snow  depths  from  S1  estimates  are  ~20.0  cm, 

 ~10.1  cm,  and  ~13.4  cm,  for  Inari  Nellim,  Inari  Kaamanen,  and  Inari  Angeli  L.  locations  respectively  (Table  1).  In  contrast, 

 the  mean  snow  depth  measured  by  the  automatic  weather  stations  IN,  IK  and  IA  are,  respectively,  ~37.1  cm,  ~46.9  cm,  and 

 ~44.9  cm  (Table  1).  We  notice  from  Figure  S1,  presenting  the  bias  evolution  of  the  snow  depth  as  a  function  of  the  days  of 

 the  year,  that  the  snow  season  onset  is  well  estimated  by  the  method,  despite  the  rapid  bias  increase  as  the  snow  season 

 progresses. 

 The  maps  in  Figures  3  present  the  average  snow  depth  along  the  years.  Overall,  we  find  higher  mean  snow  depth  estimates  in 

 2019–2020  (Figure  3a),  following  the  AWS’s  measurements  from  the  time  series  in  Figure  2  during  the  same  year. 

 Furthermore,  we  noticed  higher  mean  snow  thickness  over  water  bodies  regions,  reaching  values  over  50  cm  for  all  the 

 estimates  along  the  years  (Figure  3).  In  order  to  compare  the  snow  thickness  estimates  from  Sentinel-1,  we  plotted  the  snow 

 depth  measured  in  snow  pits  (sp1-4  in  Figure  1)  during  a  field  campaign  around  the  Inari  Lake  region  from  the  3  rd  to  7  th  of 

 April  2022  against  the  estimates  6  th  of  April  2022  from  S1  (Figure  S2),  as  this  is  the  closest  estimate  to  the  field 

 measurements.  We  observe  that,  in  comparison  with  the  snow  pits  measurements  on  the  lake  region,  all  the  snow  depth 

 derived  from  S1  are  overestimated  (Figure  S1).  Moreover,  visually  comparing  the  backscatter  signal  from  the  co-  and  cross- 

 polarizations,  VV  and  VH  respectively,  from  S1  (Figures  S3  and  S4),  we  can  observe  that  the  VV  component  demonstrates 

 to  be  more  sensitive  when  the  lake  starts  freezing,  around  11th  November.  The  backscatter  signal  increases  (Figures  S3  and 

 S4), leading to an increase in the snow depth values. 
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 Forest  areas  attenuate  the  radar  waves,  scattering  the  emitted  and  the  received  signal  from  the  satellite  to  the  snow  cover  on 

 the  ground,  and  vice-versa,  leading  to  an  underestimation  of  the  results  (Lievens  et.  al,  2019;  Tsang  et  al.,  2022).  In  order  to 

 investigate  the  influence  of  the  forest  cover,  we  divided  the  canopy  density  map  (Figure  4a),  from  Multi-source  National 

 Forest  Inventory  Raster  Maps  of  2021,  into  forest  cover  density  intervals  and  calculated  the  mean  snow  depth  for  each 

 interval  yearly  (Figure  4b).  We  observe  for  all  the  years,  and  overall  mean,  thicker  snow  depth  values  over  dense  vegetation 

 and  water  bodies  areas,  where  the  canopy  density  is  equal  to  0%  (Figure  4b).  The  mean  snow  depth  from  the  year  2021-2022 

 (red  bars  in  Figure  4)  presents  a  slight  snow  depth  decrease  where  the  canopy  density  is  above  40..  For  the  2019-2020  and 

 2020-2021  years,  we  found  thicker  snow  layers  over  denser  canopy  regions  (orange  and  green  bars  in  Figure  4b, 

 respectively).  Despite  the  aligned  increase  of  snow  thickness  and  canopy  density,  the  estimated  snow  depth  over  the  forested 

 areas  are  underestimated  if  compared  to  the  automatic  weather  stations  (Figure  2).  Figure  5b  shows  a  maximum  snow  depth 

 of  ~57  cm  (canopy  density  over  20%)  in  2019-2020,  and  a  maximum  snow  depth  of  ~37  cm  for  the  remaining  years.  Similar 

 results  were  found  using  L-band  SAR  images,  showing  that  the  snow  depth  variations  over  the  forested  areas  are  also 

 underestimated  compared  to  vegetation  free  regions  (Ruiz  et  al.,  2022).  It  is  important  to  comment  that  we  also  utilised  the 

 same  approach  described  before  (Figure  4)  to  correlate  our  snow  depth  estimates  with  terrain  elevation  intervals.  We  divided 

 the  digital  elevation  model  in  intervals  every  100  m,  going  up  to  its  maximum  (~500  m).  However,  we  have  not  found  any 

 significant correlation to include in this manuscript. 

 In  order  to  compare  the  S1  estimates  and  the  AWS’s  measurements,  we  calculated  the  temporal  correlation  coefficients  in 

 two  different  scenarios  (Figs.  5  and  6).  In  the  first  scenario  (Sc1)  we  considered  all  the  measurements  at  once,  as  well  as 

 separated  AWS’s  locations  (Figure  5).  In  the  second  scenario  (Sc2),  we  looked  at  individual  years  separately  (Figure  6). 

 Figure  5  displays  the  overall  correlation,  Sc1,  using  all  the  174  measurements  for  all  the  years  and  from  the  three  sites.  It 

 presented  a  low  correlation  of  0.41  and  a  mean  absolute  error  of  ~26.1  cm  (Table  2).  The  estimates  at  the  Inari  Nellim 

 weather  station  had  a  high  correlation  of  0.81,  when  compared  with  the  other  locations  with  R=0.09  and  R=0.55  for  Inari 

 Kaamanen  and  Inari  Angeli  locations,  respectively  (Figure  5).  Figure  6  presents  all  the  174  measurements  separated  yearly. 

 We  observe  that  the  year  2020–2021  had  the  higher  correlation  factor,  R  =  0.52,  as  well  as  the  smaller  mean  absolute  error 

 (~15  cm;  Table  2)..  The  years  2019–2020  and  2021–2022  presented  correlation  factors  of  0.29  for  both  years,  and  mean 

 absolute errors of ~38.9 cm and ~25.5 cm, respectively (Table 2). 

 The  uncertainty  in  the  AWS  snow  depth  observations  (~1  cm)  is  considerably  smaller  than  the  uncertainty  of  the  SAR-based 

 estimates  due  to  radiometric  noise  in  the  SAR  imagery.  At  the  Nellim  site,  a  considerable  part  of  the  bias  between  the 

 SAR-based  estimate  and  ground  truth  could  be  explained  by  the  estimation  uncertainty,  yet  the  same  does  not  hold  for  either 

 Kaamanen  or  Angeli.  We  thus  conclude  that  the  observed  underestimation  should  be  considered  significant  in  relation  to  the 

 uncertainty of the estimation method. 
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 The  backscatter  signal  from  co-polarised  images  in  the  C-band  on  dry  snow  conditions  is  strongly  influenced  by  the  ground 

 underneath,  and  by  the  water  content  in  the  snowpack  (Marin  et  al.,  2020;  Lievens  et  al.,  2022).  ERS  and  Radarsat,  both  in 

 the  C-band,  demonstrated  an  increase  in  the  co-polarised  backscatter  signal  during  the  snow  accumulation  periods  (Bernier 

 and  Fortin,  1998)  and  a  decrease  over  shallow  areas  (Rott  and  Nagler,  1993).  Following  the  same  empirical  hypothesis 

 demonstrated  by  Lievens  et  al.  (2019)  and  Lievens  et  al.  (2022),  the  cross-polarised  backscatter  signals  at  C-band  are  more 

 responsive  to  dry  snow  accumulation,  in  comparison  to  the  backscatter  influence  from  the  ground.  Lievens  et  al.  (2019) 

 suggest  that  dry  snow  is  represented  by  layers  of  large  clusters  of  irregular  ice  crystals,  scattering  on  the  snow  layer 

 interfaces.  Therefore,  for  deep  snow  locations,  it  is  expected  that  layered  snow  enhances  and  dominates  the  backscatter 

 signal, from cross-polarised observations (Lievens, et al., 2019). 

 Given  the  considerable  underestimation  of  snow  depth  over  land,  and  conversely  considerable  overestimation  of  snow  depth 

 over  lake  ice,  our  results  reinforce  the  idea  that  the  EM  properties  of  the  surface  underlying  the  shallow  seasonal  snowpack 

 likely  play  a  major  role  in  the  observable  SAR  backscatter.  There  is  a  clear  need  for  dedicated  studies  to  improve  radiative 

 transfer  modelling  of  volume  scattering  of  snow  in  order  to  better  explain  the  observed  behaviour,  as  pointed  out  by  Lievens 

 et  al.  (2019).  Finally,  it  is  worth  pointing  out  that  the  backscatter  ratios  are  converted  into  snow  depth  through  empirical 

 coefficients.  While  the  calibration  coefficients  are  based  on  a  large  number  of  data  (Lievens  et  al.,  2019),  they  are  based  on 

 relationships  observed  for  mountainous  snow  packs,  and  thus  not  necessarily  valid  for  shallow  snow  packs  elsewhere. 

 Recalibration  of  the  coefficients  is  not  considered  here  due  to  the  limited  number  of  reference  snow  depth  observation  sites 

 in  our  study  area.  We  also  point  out  that  at  Kaamanen  in  particular,  the  temporal  evolution  of  the  backscatter  ratios  would  not 

 have  tracked  the  snow  depth  evolution  even  if  other  linear  calibrations  were  attempted.  This  further  points  to  a  need  for 

 rigorous  radiative  transfer  studies  to  better  understand  the  composition  of  C-band  SAR  backscatter  over  seasonal  shallow 

 snowpacks. 

 4 Conclusions 

 We  investigated  the  use  of  co-  and  cross-polarised  backscatter  from  Sentinel-1  SAR  C-band  images  from  the  Sentinel-1 

 satellite  to  estimate  snow  depth  variations  over  the  northern  region  of  Finland  from  2019  to  2022.  We  presented  a  high 

 temporal  resolution  comparison  between  snow  depth  estimated  from  Sentinel-1  images  and  measurements  from  automatic 

 weather  stations,  and  correlated  with  canopy  cover  provided  by  Luonnonvarakeskus  (Natural  Resources  Institute  of  Finland). 

 The  use  of  the  C-band  SAR  to  estimate  snow  depth  over  shallow  snow  regions  presented  limitations.  In  general,  we  found 

 underestimation  for  all  the  years  and  locations.  It  is  important  to  highlight  the  snow  depth  estimates  at  the  Inari  Nellim 

 location,  which  demonstrated  the  best  results  (R=0.81),  when  compared  to  the  automatic  weather  station  measurements  at  the 
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 same  location.  Looking  throughout  the  years,  the  year  2020–2021  presented  better  results  (R=0.52),  when  compared  to  the 

 previous years. 

 We  also  investigated  the  correlation  between  the  canopy  coverage  and  the  snow  depth  estimations,  and  we  observed  thicker 

 snow  depth  values  over  dense  vegetation  and  water  bodies  regions.  These  findings  are  possibly  due  to  the  high  sensitivity  of 

 the  VV  component  over  freshly  frozen  water,  increasing  the  backscatter  significantly.  We  recognize  that  deriving  shallow 

 snow  depths  using  C-band  SAR  images  is  still  a  challenge  and  further  investigation  is  necessary  to  better  understand  the 

 observed  underestimation.  Thanks  to  the  effort  of  international  space  agencies,  we  have  available  currently,  and  will  have  in 

 the  near  future,  global  coverage  at  high-temporal  and  -spatial  resolution  of  SAR  imagery.  Combined  with  installed  automatic 

 weather  stations,  this  opens  the  possibility  of  a  wide  spatial  monitoring  of  snow  variations  independent  of  weather  or  solar 

 illumination  conditions.  However,  given  the  present  under-  and  overestimations  observed  against  reference  snow  depth  data, 

 we  emphasise  the  first-order  need  for  rigorous  radiative  transfer  model-based  studies  to  comprehensively  understand  the 

 drivers of SAR backscatter from snowpacks. 

 Data availability.  The dataset will be available on the METIS - Finnish Meteorological Institute Research Data repository. 
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 Figures 

 Figure  1:  Average  snow  depth  estimated  from  Sentinel-1  between  2019–2022  (between  October  and March).  Black  triangles 

 indicate  the  automatic  weather  stations’  locations;  Inari  Nellim  (IN),  Kaamanen  (IK),  and  Angeli  Lintupuoliselkä  (IA), 

 respectively.  The  red  dots  are  representing  the  snow  pits  measurements  (sp1–sp4).  The  inset  figure  shows  the  study  region  in 

 Finland. 
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 Figure  2:  Snow  depth  variation  between  2019  and  2022.  The  blues  represent  the  snow  depth  variation  estimated  from  the  S1 

 images  before  the  correction  done  due  the  calibration  and  forest  cover  (FC)  attenuation.  Corrected  values  are  represented  by 

 the  red  dots.  The  uncertainties  ranges  are  represented  by  the  light  blue  shading.  On  the  left  y-axis,  the  solid  black  line 

 represents  snow  depth  from  the  automatic  weather  stations  and  the  blue  dots  are  snow  depth  estimates  derived  by  Sentinel-1. 

 On the right y-axis, the solid red lines represent surface temperature daily averaged respectively. 
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 Figure  3:  Average  snow  depth  estimated  from  Sentinel-1  during  the  years  of  2019–2020  (a),  2020–2021  (b),  and  2021–2022 

 (c), respectively. 
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 Figure  4:  Canopy  density  map  represented  from  2021  (a).  Mean  snow  depth  separated  in  different  canopy  density  intervals 

 (b).  The  bottom  and  top  of  the  vertical  boxes  represent  the  25th  and  75th  interquartile,  respectively.  The  solid  black  line 

 inside  the  boxes  represents  the  median  snow  depth  estimate  for  each  interval.  Values  outside  the  whiskers’  extent  are  not 

 shown and they are statistically considered outliers. 
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 Figure  5:  In  situ  measurements  of  snow  depth  compared  to  snow  depth  estimates  derived  from  Sentinel-1.  Different  colours 

 represent the different automatic weather stations, and the solid lines represent linear regressions of the dataset. 
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 Figure  6:  In  situ  measurements  of  snow  depth  compared  to  snow  depth  estimates  derived  from  Sentinel-1.  Different  colours 

 represent different years, and solid lines represent linear regression for each year. 
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 Table  1:  Mean  snow  depth  values  measured  by  the  automatic  weather  stations  (AWS)  and  derived  from  the  Sentinel-1 

 images separated by years. 

 AWS mean (cm)  Sentinel-1 mean (cm) 

 2019-2020  2020-2021  2021-2022  2019-2022  2019-2020  2020-2021  2021-2022  2019-2022 

 Inari Nellim 
 (IN)  53.7±1  22.1±1  35.5±1  37.1±1  31.0±16  13.7±8  14.8±8  20.0±11 

 Inari Kaamanen 
 (IK)  70.9±1  28.3±1  41.6±1  46.9±1  8.5±7  11.6±6  10.2±7  10.1±7 

 Inari 
 Angeli 

 Lintupuoliselkä 
 (IA) 

 61.7±1  28.1±1  44.9±1  44.9±1  16.3±12  8.8±6  15.4±9  13.4±9 

 Overall  56.6±1  22.4±1  38.0±1  39.0±1  18.6±12  11.3±7  13.5±8  14.5±9 

 Table 2: Mean absolute error (MAE) and root mean square error (RMSE) separated by years. 

 MAE (cm)  RMSE (cm) 

 2019-2020  38.9  48.6 

 2020-2021  14.0  18.7 

 2021-2022  25.5  32.7 

 2019-2022  26.1  35.6 
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