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Abstract 6 

 7 

Seasonal snow in the northern regions plays an important role providing water resources for both consumption and hydropower 8 

generation. Moreover, the snow changes in northern Finland during winter impact the local agriculture, vegetation, tourism 9 

and recreational activities. In this study we estimated snow depth using an empirical methodology applied to the dual-10 

polarisation of the Sentinel-1 synthetic aperture radar (SAR) images and compared with in situ measurements collected by 11 

automatic weather stations (AWS), and snow courses in northern Finland. We applied an adapted version of the empirical 12 

methodology developed by Lievens et al. (2019) to retrieve snow depth, using Sentinel-1 constellation between 2019 and 2022, 13 

and then compared to measurements from three automatic weather stations available over the same period. Overall, the 14 

Sentinel-1 snow depth retrievals were underestimated in comparison with the in-situ measurements from the automatic weather 15 

stations. We found slightly different patterns for the different years, and an overall correlation factor of 0.41, and a higher 16 

correlation in the 2020–2021 season (R=0.52). The high correlation between estimated and measured snow depth at the Inari 17 

Nellim location (R=0.81) reinforces the potential ability to derive snow changes in regions where in situ measurements of 18 

snow are currently lacking. Further investigation is still necessary to better understand how the physical properties of the 19 

snowpack influence the backscatter response over shallow snow regions. 20 

  21 
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1 Introduction 22 

 23 

Snow variations play an important role in the northern regions, providing water resources for both consumption and 24 

hydropower generation. Seasonal snow variations in northern Finland during winter impact the local agriculture, vegetation, 25 

tourism and recreational activities (Lehtonen et al., 2013; Luomaranta et al., 2019). Some regions in the Arctic are experiencing 26 

a shortening in the snow cover duration during the past decades, and future projections demonstrate an increase in the surface 27 

temperature and a continuous decrease of snow cover through time for the northern regions of Finland (Lehtonen et al., 2013; 28 

Luomaranta et al., 2019). Thus, extensive monitoring of snow depth is crucial for various purposes. 29 

 30 

Different measurements efforts play an important role in monitoring snow depth, including the Automatic Weather Stations 31 

(AWS; Luomaranta et al., 2019), light detection and ranging (LiDAR) flights (Painter et al., 2016), and snow course 32 

measurements (Leppänen et al., 2016). The collection of these data provides valuable and accurate measurements. However, 33 

their spatiotemporally limited coverage restricts systematic monitoring. On the other hand, remote sensing techniques, such as 34 

satellite observations and modelling, are key to improve the monitoring of snow over large areas all year around (Tsai et al., 35 

2019; Awasthi & Varade, 2020; Tsang et al., 2022). Satellites equipped with passive microwave radiometry sensors, supported 36 

by the in situ measurements, have been extensively used to estimate snow water equivalent (SWE), the total water content in 37 

the snowpack, for decades (Takala et al., 2011; Pulliainen et al., 2020). However, despite their daily temporal resolution, the 38 

coarse spatial resolution (approximately 25 km by 25 km) and the dependency on the in-situ measurements still impose some 39 

limitations on the use of passive microwave radiometry for snow cover monitoring. 40 

 41 

Currently, several studies in shallow snow regions, where snow thickness is lower than 1 m, make use of the synthetic aperture 42 

radar (SAR) measurements in the Ku-band (~ 12 – 18 GHz), as well as the Ka-band (~ 26.5 – 40 GHz), as these frequencies 43 

are more sensitive to snow pack changes. However, the exact knowledge of the penetration depth of the SAR signal in the 44 

snow pack still remains unknown and dependent on assumptions due to the snowpack characteristics, hindering accurate 45 

assessments (Tsang et al., 2022; Jutila and Hass, 2023). 46 

 47 

The use of Interferometric Synthetic Aperture Radar (InSAR) technique using the L-band (~ 1 – 2 GHz) has shown promise, 48 

as it operates at lower frequencies and is less affected by the presence of vegetation and dry snow (Ruiz et al., 2022). However, 49 

the lack of freely available data makes its use more difficult. Future missions, such as the Radar Observing System for Europe 50 

in L-band (ROSE-L), as well as the NASA-ISRO Synthetic Aperture Radar (NISAR), will provide freely available L-band 51 

data worldwide, improving our understanding of snow changes and improving its monitoring capabilities. 52 

 53 

The C-band backscatter measurements are widely used in several applications in the cryosphere. More specifically in the 54 

context of snow research, previous studies explore the application of the SAR images to provide information of dry snow 55 

https://www.zotero.org/google-docs/?n1QQN3
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https://www.zotero.org/google-docs/?idg6EW
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accumulation (Bernier and Fortin, 1998), and evaluation of snowmelt dynamics in the alpine regions (Marin et al., 2020). The 56 

behaviour of the C-band backscatter inside the snowpack is complex, and still an ongoing area of investigation (Hoppinen et 57 

al., 2024). Previous studies show that backscatter variations during mid-winter for shallow snow regions are dominated by the 58 

snow-ground interface and the dielectric constant of the soil, minimising the effect of the dry snowpack (Sun et al., 2015). 59 

However, minimal changes in the snow microstructure, and in the water liquid content in the snowpack, impacts the surface 60 

and volume scattering of the snow (Lievens et al., 2019, 2022). Despite some challenges and limitations, the use of the C-band 61 

(5 – 6 GHz) synthetic aperture radar images have demonstrated the ability to estimate snow depth and provide valuable 62 

information about snow depth variations using the Sentinel-1 (S1) constellation (Lievens et al., 2019, 2022; Dunmire et al., 63 

2024; Hoppinen et al, 2024). They demonstrated the sensitivity of the co- and cross-polarised backscatter observations from 64 

the S1 satellites to estimate snow depth over mountainous regions in the Northern Hemisphere, where the snow thickness 65 

exceeds 1 m. These findings open the potential and significance of the use of the Sentinel-1 SAR images archive to estimate 66 

snow depth variation.  67 

 68 

Snow depth estimates with high spatio-temporal resolution can improve our understanding of seasonal snow mass in complex 69 

access areas. Thus, the objective of this study is to expand the use of the empirical methodology applied to synthetic aperture 70 

radar images (Lievens et al., 2019) to estimate seasonal snow depth variations over shallow snow regions, in northern Finland. 71 

The findings will then be compared with independent in situ measurements collected by automatic weather stations (AWS), 72 

and snow courses, in the same area. 73 

 74 

 75 

2 Data and methods 76 

 77 

Study Area 78 

 79 

The study area is located in the northern region of Finland, between the latitudes 68.3° and 69.3°N (Figure 1). The study area 80 

has a relatively flat topography, ranging approximately between 100 m to 500 m in elevation. The snow depth (SD) fluctuation 81 

is influenced by the variation of the local surface air temperature and precipitation (Luomaranta et al., 2019). In the northern 82 

part from 1961–2014 the average snow depth during winter was 82.7 cm, and maximum snow depth reached 121.5 cm in 2000 83 

(Luomaranta et al., 2019). Due to its proximity, the temperature variations in Northern Finland have a strong influence of the 84 

Arctic Ocean (Aalto et al., 2016). The mean surface temperature in the north during the winter from 1988–2014 was -11.1°C, 85 

and average maximum surface temperatures reached approximately -7.2°C during the winter for the same period (Luomaranta 86 

et al., 2019). 87 

 88 

https://www.zotero.org/google-docs/?s5bIv7
https://www.zotero.org/google-docs/?A5y90a
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https://www.zotero.org/google-docs/?rsglCJ
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Automatic weather stations 89 

 90 

In order to compare and evaluate the snow depth estimates derived from S1, we used snow depth and surface air temperature 91 

measurements from three automatic weather stations (AWS), managed by the Finnish Meteorological Institute. The snow 92 

depths are measured by the Campbell Scientific SR50AH instruments mounted on the stations, and the instrument accuracy, 93 

according to the manufacturer, is approximately 1 cm. We extracted information of daily snow depth and surface air 94 

temperature, spanning from 2019 to 2022, from the Finnish stations database around the Inari Lake (IL) region. The available 95 

AWS’s, followed by their respective locations (Figure 1), elevation in meters above sea level (m.a.s.l.), and percentage of 96 

forest cover (FC) extracted from the Multi-source National Forest Inventory Raster Maps of 2021 described below) are; Inari 97 

Nellim (IN - 68.849°N, 28.399°E, 121 m.a.s.l., 33% of FC), Inari Kaamanen (IK - 69.141°N, 27.266°E, 158 m.a.s.l., 26% of 98 

FC), and Inari Angeli Lintupuoliselkä (IA - 68.903°N, 25.736°E, 240 m.a.s.l., 24% of FC). 99 

 100 

Snow courses 101 

 102 

There are approximately 140 snow courses across Finland. Snow course measurements are operated, and provided, by the 103 

Finnish Environment Institute (SYKE). Systematic measurements have been made, for some locations, by SYKE and the 104 

Finnish Meteorological Institute (FMI) since the 1930s (Leppänen et al., 2016). Typically, each snow course is 2 to 4 kilometers 105 

long, measured in the middle of each month, and at about 80 regularly spaced points, usually every 50 meters along the route 106 

(Leppänen et al., 2016). In this paper, we used averaged snow depth measurements along 6 snow courses (Figure 1); Inari 107 

Nellim (IN - 68.849°N, 28.399°E), Inari Angeli Lintupuoliselkä (IA - 68.903°N, 25.736°E), Inari Mutusjärvi (IM - 68.961°N, 108 

26.739°E), Inari Repojoki (IR - 68.450°N, 25.977°E), Inari Kaamasmukka (IKa - 69.307°N, 26.656°E), and Inari Laanioja (IL 109 

- 68.371°N, 27.453°E).  110 

 111 

 112 

Canopy cover 113 

 114 

We used the canopy cover from the Multi-source National Forest Inventory Raster Maps of 2021 (MS-NFI), which is processed 115 

and distributed by the Luonnonvarakeskus (Natural Resources Centre) from Finland, to evaluate the correlation with the snow 116 

depth patterns derived from S1. The main products used to derive the canopy cover, and the other products distributed, are 117 

from the Sentinel-2A/B satellites of European Space Agency (ESA) and the Landsat 8 satellite of United States Geological 118 

Survey (USGS), the full description of the data is found in Mäkisara et al. (2022). The dataset comes in the ETRS-TM35FIN 119 

coordinate system, and the spatial resolution is posted at 16 m by 16 m. Areas affected by cloud coverage, regions outside 120 

forest land, and outside Finland are removed and disregarded (Mäkisara et al., 2022). 121 

 122 
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Sentinel-1 data 123 

 124 

In this study we estimated snow depth using single look complex (SLC) synthetic aperture radar images acquired in the 125 

interferometric wide swath (IW) mode from the S1a satellite launched by the European Space Agency (ESA) in October 2014. 126 

Sentinel-1b was launched in April 2016 and ended its mission in December 2021 due to technical issues. For this reason, in 127 

the present work, we preferred to use only images acquired from Sentinel-1a, and referred from here as S1. The Sentinel SAR 128 

instruments operate at C-band (5.405 GHz), and the IW mode has a 250 km swath and spatial resolution of 5 m in ground 129 

range and 20 m in azimuth. Each satellite from the S1 constellation had a repeat cycle of 12 days and 180 degrees orbital 130 

phasing difference. We used the dual-polarisation (VH and VV) components from 56 SAR S1 images acquired over the same 131 

region in northern Finland. The data range acquired spans from October 2019 to May 2022 (Table S1 in the Supplementary 132 

data), and we followed the workflow described below to derive 56 snow depth maps. 133 

 134 

In the pre-processing stage we used ESA’s Sentinel Applications Platform (SNAP) software (version 8.0). We performed a 135 

standard processing routine for all the S1 SLC IW images, including the application of the most recent orbit file, radiometric 136 

calibration, debursting and range-Doppler terrain correction using the Copernicus digital elevation model (DEM) posted to a 137 

spatial resolution grid of 30 m. Previous studies showed that speckle noise makes the data product more variable, and the 138 

upscaling of the S1 data has presented better snow depth estimates (Lievens et al., 2022; Dunmire et al., 2024; Hoppinen et 139 

al., 2024). In order to reduce speckle noise in the SAR measurements, we applied a moving mean filter to the data, using a 140 

kernel of 990 m by 990 m. The final pre-processed product was a time-series of stacked S1 images with 𝜎0 backscatter 141 

intensities in decibel (dB) for both HV and VV. 142 

 143 

We used an adapted version of the empirical methodology developed by Lievens et al. (2019) to estimate snow depth using 144 

S1 products (Equations 1 and 2). The algorithm utilises changes in the cross-polarized backscatter measurements of SAR 145 

images repeatedly acquired on the same location and orbit to avoid geometry distortions. We calculated the ratio between the 146 

two cross-polarised (𝜎𝑣ℎ
0  and 𝜎𝑣𝑣

0 ) backscatter intensities (in dB) in a pixel scale for the entire image time-series. We considered 147 

the entire region as susceptible to snow accumulation, and the snow index (SI) in the time step ti, was calculated as described 148 

in the Equation (1). Moreover, if SI(ti) < 0, it was considered as zero. 149 

 150 

SI(ti) = SI(ti-1) + [(𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 )(ti) - (𝜎𝑣ℎ
0 /𝜎𝑣𝑣

0 )(ti-1)]   (Equation 1) 151 

 152 

The translation to snow depth (SD), in metres, is then calculated using Equation 2. 153 

 154 

SD(ti)= (
𝑎

1 − 𝑏𝐹𝐶(𝑖)
) SI(ti)    (Equation 2) 155 

https://www.zotero.org/google-docs/?SWDnEs
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 156 

The parameter a=1.1 m dB-1 (Equation 2) is constant and was estimated using in situ measurements, minimising the mean 157 

absolute error (MAE) between the times series of the global average snow depth measurements and S1 estimates in mountain 158 

regions (Lievens et al., 2019). The forest cover (FC) used here is the canopy cover from the Multi-source National Forest 159 

Inventory Raster Maps of 2021 (MS-NFI). As the canopy cover attenuates the backscatter from the snow, an additional 160 

parameter b=0.6 (dimensionless), estimated by Lievens et al. (2019), is applied. 161 

 162 

Errors in our snow depth estimates arise mainly through the radiometric accuracy for S1, specified as ~1 dB (Torres et al., 163 

2012). Due to the fact we averaged all the 𝜎0  images to reduce speckle, an additional 0.5 dB was considered into the overall 164 

radiometric accuracy (Torres et al., 2012). The resulting radiometric accuracy of 1.5 dB, representing ~10-15% of the 𝜎0  165 

signal, was used to determine the uncertainty of the snow depth measurements. 166 

 167 

 168 

3 Results and Discussions 169 

 170 

We used the S1 dataset (Table S1) between 2019–2022 to produce up-to-date snow depth at our designated study area (Figure 171 

1). To explore changes in snow depth over space and time, we further extracted time series of snow depth to compare them to 172 

independent measurements from the three automatic weather stations (Figure 2). Then, we show mean snow depths yearly in 173 

Figure 3. Figure 4 presents the snow depth estimates separated by canopy density intervals. Furthermore, in order to evaluate 174 

the snow depth estimates from S1, the dataset was compared to the automatic weather stations in different scenarios, presented 175 

in the Figures 5 and 6.  176 

 177 

Figure 2 displays the seasonal changes in the snow depth over three consecutive winters at the AWS sites. We observe that the 178 

snow depth estimates from S1 at the Inari Nellim location (Figure 2a) follows the seasonal variations measured by the 179 

automatic weather stations measurements, despite the underestimated values. The snow depth products derived from S1 from 180 

the other weather stations, IK and IA (Figures 2b and 2c), also follow the seasonality of the weather stations measurements, 181 

although they exhibit an evident underestimation relative to the AWS measurements. Automatic weather stations are usually 182 

located in relatively flat and non-forested terrain, which may not accurately represent the surrounding area, susceptible to 183 

changes in e.g., forest cover and terrain. Thus, it is important to highlight the challenges when comparing observations from a 184 

point-scale measurement from the AWS’s, and the grid-scale estimates from S1 (Lievens et al., 2022). For this purpose, we 185 

compared the snow depth estimates from S1 to average snow depth measured (Figure S3) along the snow courses at 6 locations 186 

(Figure 1) available for the region. Overall, we observed underestimations in the snow depth estimates (Figure 2 and S3). 187 

Theoretically, the underestimation is possibly due to the water content in the snowpack, reflecting and absorbing the 188 

backscatter signal, as the ground temperature in the accumulation period remains approximately the same, insulated by the 189 

https://www.zotero.org/google-docs/?i68McA
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snow (Lievens et al., 2019; Marin et al., 2020). The mean snow depths from S1 estimates are ~20.0 cm, ~10.1 cm, and ~13.4 190 

cm, for Inari Nellim, Inari Kaamanen, and Inari Angeli L. locations respectively (Table 1). In contrast, the mean snow depth 191 

measured by the automatic weather stations IN, IK and IA are, respectively, ~37.1 cm, ~46.9 cm, and ~44.9 cm (Table 1). We 192 

notice from Figure S1, presenting the bias evolution of the snow depth as a function of the days of the year, that the snow 193 

season onset is well estimated by the method, despite the rapid bias increase as the snow season progresses. 194 

 195 

The maps in Figures 3 present the average snow depth along the years. Overall, we find higher mean snow depth estimates in 196 

2019–2020 (Figure 3a), following the AWS’s measurements from the time series in Figure 2 during the same year. 197 

Furthermore, we noticed higher mean snow thickness over water bodies regions, reaching values over 50 cm for all the 198 

estimates along the years (Figure 3). In order to compare the snow thickness estimates from S1, we plotted the snow depth 199 

measured in snow pits (sp1-4 in Figure 1) during a field campaign around the Inari Lake region from the 3 rd to 7th of April 200 

2022 against the estimates 6th of April 2022 from S1 (Figure S2), as this is the closest estimate to the field measurements. We 201 

observe that, in comparison with the snow pits measurements on the lake region, all the snow depth derived from S1 are 202 

overestimated (Figure S1). Moreover, visually comparing the backscatter signal from the co- and cross- polarizations, VV and 203 

VH respectively, from S1 (Figures S4 and S5), we can observe that the VV component demonstrates to be more sensitive when 204 

the lake starts freezing, around 11th November. The backscatter signal increases (Figures S4 and S5), leading to an increase 205 

in the snow depth values. 206 

 207 

Forest areas attenuate the radar waves, scattering the emitted and the received signal from the satellite to the snow cover on 208 

the ground, and vice-versa, leading to an underestimation of the results (Lievens et. al, 2019; Tsang et al., 2022). In order to 209 

investigate the influence of the forest cover, we divided the canopy density map (Figure 4a), from Multi-source National Forest 210 

Inventory Raster Maps of 2021, into forest cover density intervals and calculated the mean snow depth for each interval yearly 211 

(Figure 4b). We observe for all the years, and overall mean, thicker snow depth values over dense vegetation (50-100% of 212 

canopy coverage) and water bodies areas (Figure 4b). The mean snow depth from the year 2021-2022 (red bars in Figure 4) 213 

presents a slight snow depth decrease where the canopy density is above 40. For the  2019-2020 and 2020-2021 years, we 214 

found thicker snow layers over denser canopy regions (orange and green bars in Figure 4b, respectively). Despite the aligned 215 

increase of snow thickness and canopy density, the estimated snow depth over the forested areas are underestimated if 216 

compared to the automatic weather stations (Figure 2). Figure 4b shows a maximum snow depth of ~57 cm (canopy density 217 

over 20%) in 2019-2020, and a maximum snow depth of ~37 cm for the remaining years. Similar results were found using L-218 

band SAR images, showing that the snow depth variations over the forested areas are also underestimated compared to 219 

vegetation free regions (Ruiz et al., 2022). It is important to comment that we also utilised the same approach described before 220 

(Figure 4) to correlate our snow depth estimates with terrain elevation intervals. We divided the digital elevation model in 221 

intervals every 100 m, going up to its maximum (~500 m). However, we have not found any significant correlation to include 222 

in this manuscript. 223 

https://www.zotero.org/google-docs/?Fa0Tf5
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 224 

In order to compare the S1 estimates and the AWS’s measurements, we calculated the temporal correlation coefficients in two 225 

different scenarios (Figs. 5 and 6). In the first scenario (Sc1) we considered all the measurements at once, as well as separated 226 

AWS’s locations (Figure 5). In the second scenario (Sc2), we looked at individual years separately (Figure 6). Figure 5 displays 227 

the overall correlation, Sc1, using all the 174 measurements for all the years and from the three sites. It presented a low 228 

correlation of 0.41 and a mean absolute error of ~26.1 cm (Table 2). The estimates at the Inari Nellim weather station had a 229 

high correlation of 0.81, when compared with the other locations with R=0.09 and R=0.55 for Inari Kaamanen and Inari Angeli 230 

locations, respectively (Figure 5). Figure 6 presents all the 174 measurements separated yearly. We observe that the year 2020–231 

2021 had the higher correlation factor, R = 0.52, as well as the smaller mean absolute error (~15 cm; Table 2). The years 2019–232 

2020 and 2021–2022 presented correlation factors of 0.29 for both years (Figure 6), and mean absolute errors of ~38.9 cm and 233 

~25.5 cm, respectively (Table 2). 234 

 235 

The uncertainty in the AWS snow depth observations (~1 cm) is considerably smaller than the uncertainty of the SAR-based 236 

estimates due to radiometric noise in the SAR imagery. At the Nellim site, a considerable part of the bias between the SAR-237 

based estimate and ground truth could be explained by the estimation uncertainty, yet the same does not hold for either 238 

Kaamanen or Angeli. We thus conclude that the observed underestimation should be considered significant in relation to the 239 

uncertainty of the estimation method. 240 

 241 

The backscatter signal from co-polarised images in the C-band on dry snow conditions is strongly influenced by the ground 242 

underneath, and by the water content in the snowpack (Sun et al., 2015; Marin et al., 2020; Feng et al., 2021; Lievens et al. , 243 

2022). ERS and Radarsat, both in the C-band, demonstrated an increase in the co-polarised backscatter signal during the snow 244 

accumulation periods (Bernier and Fortin, 1998) and a decrease over shallow areas (Rott and Nagler, 1993). Following the 245 

same empirical hypothesis demonstrated by Lievens et al. (2019) and Lievens et al. (2022), the cross-polarised backscatter 246 

signals at C-band are more responsive to dry snow accumulation, in comparison to the backscatter influence from the ground. 247 

Lievens et al. (2019) suggest that dry snow is represented by layers of large clusters of irregular ice crystals, scattering on the 248 

snow layer interfaces. Therefore, for deep snow locations, it is expected that layered snow enhances and dominates the 249 

backscatter signal, from cross-polarised observations (Lievens, et al., 2019). 250 

 251 

Given the considerable underestimation of snow depth over land, and conversely considerable overestimation of snow depth 252 

over lake ice, our results reinforce the idea that the EM properties of the surface underlying the shallow seasonal snowpack 253 

likely play a major role in the observable SAR backscatter. There is a clear need for dedicated studies to improve radiative 254 

transfer modelling of volume scattering of snow in order to better explain the observed behaviour, as pointed out by Lievens 255 

et al. (2019). Finally, it is worth pointing out that the backscatter ratios are converted into snow depth through empirical 256 

coefficients. While the calibration coefficients are based on a large number of data (Lievens et al., 2019), they are based on 257 
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relationships observed for mountainous snow packs, and thus not necessarily valid for shallow snow packs elsewhere. 258 

Recalibration of the coefficients is not considered here due to the limited number of reference snow depth observation sites in 259 

our study area. We also point out that at Kaamanen in particular, the temporal evolution of the backscatter ratios would not 260 

have tracked the snow depth evolution even if other linear calibrations were attempted. This further points to a need for rigorous 261 

radiative transfer studies to better understand the composition of C-band SAR backscatter over seasonal shallow snowpacks. 262 

 263 

 264 

4 Conclusions 265 

 266 

We investigated the use of co- and cross-polarised backscatter from Sentinel-1 SAR C-band images to estimate snow depth 267 

variations over the northern region of Finland from 2019 to 2022. We presented a high temporal resolution comparison between 268 

snow depth estimated from S1 images and measurements from automatic weather stations, and correlated with canopy cover 269 

provided by Luonnonvarakeskus (Natural Resources Institute of Finland). The use of the C-band SAR to estimate snow depth 270 

over shallow snow regions presented limitations. In general, we found underestimation for all the years and locations. It is 271 

important to highlight the snow depth estimates at the Inari Nellim location, which demonstrated the best results (R=0.81), 272 

when compared to the automatic weather station measurements at the same location. Looking throughout the years, the year 273 

2020–2021 presented better results (R=0.52), when compared to the previous years.  274 

 275 

We also investigated the correlation between the canopy coverage and the snow depth estimations, and we observed thicker 276 

snow depth values over dense vegetation and water bodies regions. These findings are possibly due to the high sensitivity of 277 

the VV component over freshly frozen water, increasing the backscatter significantly. We recognize that deriving shallow 278 

snow depths using C-band SAR images is still a challenge and further investigation is necessary to better understand the 279 

observed underestimation. Thanks to the effort of international space agencies, we have available currently, and will have in 280 

the near future, global coverage at high-temporal and -spatial resolution of SAR imagery. Combined with installed automatic 281 

weather stations, this opens the possibility of a wide spatial monitoring of snow variations independent of weather or solar 282 

illumination conditions. However, given the present under- and overestimations observed against reference snow depth data, 283 

we emphasise the first-order need for rigorous radiative transfer model-based studies to comprehensively understand the 284 

drivers of SAR backscatter from snowpacks. 285 

 286 

 287 

Data availability. The Sentinel-1 data are freely available at https:// https://browser.dataspace.copernicus.eu/ (last access: 09 288 

July 2025). The automatic weather station datasets, provided by the Finnish Meteorological Institute, are available at 289 

https://hav.fmi.fi/ (last access: 02 February 2023). The National Forest Inventory Raster Maps of 2021, provided by the 290 

Luonnonvarakeskus (Natural Resources Institute of Finland), is available at https://kartta.luke.fi/ (last access: 09 July 2025). 291 

https://browser.dataspace.copernicus.eu/
https://hav.fmi.fi/
https://kartta.luke.fi/
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The snow courses measurements, provided by Suomen ympäristökeskus (Finnish Environmental Institute), are available on 292 

request (details in http://litdb.fmi.fi/manual_measurements.php). The processed data is available on request to the 293 

corresponding authors and will be available on the METIS - Finnish Meteorological Institute Research Data repository, 294 

10.57707/fmi-b2share.4de929068a064dfab78e5b9eeef79ce9. 295 
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 372 

Figures 373 

 374 

Figure 1: Average snow depth estimated from S1 between 2019–2022 (between October and March). Black triangles indicate 375 

the automatic weather stations’ locations; Inari Nellim (IN), Kaamanen (IK), and Angeli Lintupuoliselkä (IA), respectively. 376 

The red dots are representing the snow pits measurements (sp1–sp4). Yellow circles are the snow course locations; Inari Angeli 377 

Lintupuoliselkä (IA), Inari Kaamasmukka (IKa), Inari Laanioja (IL), Inari Mutusjärvi (IM), Inari Nellim (IN), and Inari 378 

Repojoki (IR). The inset figure shows the study region in Finland. 379 

 380 

 381 

 382 
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Figure 2: Snow depth variation between 2019 and 2022. The blue dots represent the snow depth variation estimated from the 384 

S1 images before the correction done due the calibration and forest cover (FC) attenuation. Corrected values are represented 385 

by the red dots. The uncertainty ranges are represented by the light blue and red shading. On the left y-axis, the solid black 386 

line represents snow depth from the automatic weather stations and the blue dots are snow depth estimates derived by S1. On 387 

the right y-axis, the solid red lines represent surface temperature daily averaged respectively. 388 

 389 

 390 
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Figure 3: Average snow depth estimated from S1 during the years of 2019–2020 (a), 2020–2021 (b), and 2021–2022 (c), 392 

respectively. 393 

 394 

  395 



17 
 

Figure 4: Canopy density map represented from 2021 (a). Mean snow depth separated in different canopy density intervals 396 

(b). The bottom and top of the vertical boxes represent the 25th and 75th interquartile, respectively. The solid black line inside 397 

the boxes represents the median snow depth estimate for each interval. Values outside the whiskers’ extent are not shown and 398 

they are statistically considered outliers. 399 

 400 

 401 



18 
 

Figure 5: In situ measurements of snow depth compared to snow depth estimates derived from S1. Different colours represent 402 

the different automatic weather stations, and the solid lines represent linear regressions of the dataset. 403 

 404 
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Figure 6: In situ measurements of snow depth compared to snow depth estimates derived from S1. Different colours represent 406 

different years, and solid lines represent linear regression for each year. 407 

 408 
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Table 1: Mean snow depth values by the automatic weather stations (AWS), snow course measurements, and derived from the 410 

S1 images separated by years. 411 

 412 

IN 53.7 ± 1 22.1 ± 1 35.5 ± 1 37.1 ± 1 31 ± 16 13.7 ± 8 14.8 ± 8 20 ± 11

IK 70.9 ± 1 28.3 ± 1 41.6 ± 1 46.9 ± 1 8.5 ± 7 11.6 ± 6 10.2 ± 7 10.1 ± 7

IA 61.7 ± 1 28.1 ± 1 44.9 ± 1 44.9 ± 1 16.3 ± 12 8.8 ± 6 15.4 ± 9 13.4 ± 9

Overall 56.6 ± 1 22.4 ± 1 38 ± 1 39 ± 1 18.6 ± 12 11.3 ± 7 13.5 ± 8 14.5 ± 9

IN 57.3 ± 6 28.1 ± 3 45.0 ± 5 43.4 ± 5 45.8 ± 34 8.5 ± 9 5.7 ± 6 20.0 ± 16

IR 87.2 ± 10 52.5 ± 6 69.2 ± 8 69.6 ± 8 48.1 ± 25 16.8 ± 17 10.4 ± 10 25.1 ± 17

IL 91.8 ± 10 59.8 ± 7 68.7 ± 8 73.4 ± 8 24.6 ± 20 11.1 ± 11 16.0 ± 16 17.2 ± 16

IA 74.4 ± 8 39.6 ± 4 51.3 ± 6 55.1 ± 6 34.3 ± 56 23.9 ± 24 16.2 ± 16 24.8 ± 32

IM 67.1 ± 7 41.1 ± 5 38.0 ± 4 48.7 ± 5 47.6 ± 22 15.5 ± 15 11.3 ± 11 24.8 ± 16

IKa 93.3 ± 10 38.7 ± 4 49.4 ± 5 60.5 ± 7 9.8 ± 11 21.6 ± 22 18.6 ± 19 16.6 ± 17

Overall 78.5 ± 9 43.3 ± 5 53.6 ± 6 58.5 ± 6 35.0 ± 28.0 16.2 ± 16.2 13.0 ± 13.0 21.4 ± 19.1

Snow Courses (cm)

2021-2022 2019-2022

AWS mean (cm) Sentinel-1 mean (cm)

2019-2020 2020-2021 2021-2022 2019-2022 2019-2020 2020-2021

 413 

 414 
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Table 2: Mean absolute error (MAE) and root mean square error (RMSE) separated by years. 416 

 MAE (cm) RMSE (cm) 

2019-2020 38.9 48.6 

2020-2021 14.0 18.7 

2021-2022 25.5 32.7 

2019-2022 26.1 35.6 

 417 


