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Abstract. Land surface temperature (LST) gained increased attention in cryospheric research. While various global satellite

LST products are available, none of them is specially designed for the Pan-Arctic region. Based on the recently published

EUMETSAT Advanced Very High Resolution Radiometer (AVHRR) fundamental data record (FDR), a new LST product

(1981-2021) with daily resolution is developed for the Pan-Arctic region. Validation shows good accuracy with an average

mean absolute error (MAE) of 1.71 K and a MAE range of 0.62–3.07 K against in situ LST data from the Surface Radiation5

Budget Network (SURFRAD) and Karlsruhe Institute of Technology (KIT) sites. Long-term stability, a strong requirement for

trend analysis, is assessed by comparing LST with air temperatures from ERA5-Land (T2M) and air temperature data from the

EUSTACE (www.eustaceproject.org) global station dataset. Long-term stability might not be fulfilled mainly due to the orbit

drift of the NOAA satellites. Therefore, the analysis is split into two periods: the arctic winter months, which are unaffected by

solar illumination and, therefore, orbital drift, and the summer months. The analysis for the winter months results in correlation10

values (r) of 0.44-0.83, whereas for the summer months (r) ranges between 0.37-0.84. Analysis of anomaly differences revealed

instabilities for the summer months at a few stations. The same stability analysis for the winter months revealed only one station

with instabilities in comparison to station air temperature. Discrepancies between the temperature anomalies recorded at the

stations and ERA5-Land T2M were also found. This highlights the limited influence of orbital drift on the LST product, with

the winter months presenting good stability across all stations, which makes these data a valuable source for studying LST15

changes in the Pan-Arctic region over the last 40 years. This study concludes by presenting LST trend maps (1981-2021) for

the entire region, revealing distinct warming and cooling patterns.

Copyright statement. TEXT

1 Introduction

In recent decades, the warming in the Arctic has been much faster than in the rest of the world. Studies (Chylek et al., 2022;20

Rantanen et al., 2022) indicate a warming up to four times faster since 1979. This phenomenon, known as Arctic amplification,

is visible in both instrumental records and model simulation (Dada et al., 2022). The Arctic Monitoring & Assessment Pro-
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gramme (AMAP) highlights diminishing long cold spells and increasing high extreme temperatures, leading to rapid changes

in the cryosphere (AMAP, 2021). These episodes affect the sensitive arctic ecosystem, vegetation dynamics, large-scale circu-

lation patterns and the distribution of snow, ice and permafrost (Maturilli et al., 2019). Permafrost, a crucial component of arctic25

ecosystems, is particularly sensitive to increasing air temperatures and changes in the snow regime. Thawing permafrost af-

fects the stability of the bedrock, damages infrastructures, and releases massive quantities of organic carbon (Christensen et al.,

2004; Miner et al., 2022). These potential threats highlight the importance of monitoring climate variables such as temperature

in the arctic regions (Hachem et al., 2012; Urban et al., 2013). Rapid changes in land surface temperature (LST) patterns have

been observed in the Arctic region (Reiners et al., 2021). LST can be used as an indicator of the thermal state of the ground30

and has, in the last decade, been increasingly used in arctic research and permafrost modelling (Westermann et al., 2009; Obu

et al., 2019; Batbaatar et al., 2020; Nielsen-Englyst et al., 2021). LST observations are available from in situ stations or climate

models. However, these sources are insufficient to spatially resolve land surface characteristics and their response to climate

change at a hemispheric scale (Nitze et al., 2018; Bartsch et al., 2023).

In contrast, satellite data can derive spatially comprehensive information on LST dynamics (Li et al., 2013, 2023b). LST is35

mainly derived from thermal infrared (TIR) radiation measured by satellites with algorithms based on radiative transfer (RT)

equations (Li et al., 2013). Passive microwave (MW) are another source for LST data. MW measurements are less affected

by clouds than TIR data, but emissivity is challenging to derive for these wavelengths, especially over snow-covered ground

(Jiménez et al., 2017; Ermida et al., 2017). LST is a critical parameter in Earth’s surface and water energy balance and is widely

exploited across different research fields: cryosphere, geology, vegetation monitoring, hydrology, and urban management (Li40

et al., 2013; Guillevic et al., 2018). From a climate perspective, LST is needed to evaluate land surface and land-atmosphere

exchange processes, constrain surface energy budgets and model parameters, and provide observations of surface temperature

change globally and in key regions (Guillevic et al., 2018). LST is defined as an essential climate variable (ECV) by the the

Global Climate Observing System (GCOS). To retrieve statistically significant changes in ECVs, a time series of at least 30

years is needed (WMO, 2010). Typical LST products include the Pathfinder, GLASS, MODIS, ASTER, and Landsat products45

(Good et al., 2022; Reiners et al., 2023; Li et al., 2023a), as well as the Spinning Enhanced Visible and Infrared Imager

(SEVIRI) LST product produced within the framework of the European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) Satellite Application Facility on Land Surface Analysis (LSA-SAF) (Freitas et al., 2010; Trigo et al.,

2011).

Although many satellite LST datasets with different temporal and spatial resolutions exist, only the Advanced Very High50

Resolution Radiometer (AVHRR) onboard the NOAA and MetOp satellites series covers over four decades. EUMETSAT

published a new AVHRR fundamental data record (FDR) in May 2023 (https://navigator.eumetsat.int/product/EO:EUM:DAT:

0862). This dataset was homogeneously produced and consists of reflectance and brightness temperatures covering 1978 –

2021. It is based on reprocessed Near Real Time (NRT) observations from 17 AVHRR instruments on board NOAA satellites

TIROS-N to NOAA-19, as well as EUMETSAT satellites MetOp-A, -B, and -C (EUMETSAT, 2023a). The dataset is provided55

in the Global Area Coverage (GAC) resolution. Quality control of AVHRR GAC radiances and updates in the retrieval methods
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offer more accurate results and better uncertainty estimates (Karlsson et al., 2023b). Notably, CLARA-A3, the third edition of

the existing cloud albedo and radiation (CLARA) data record, has been produced from this FDR (Karlsson et al., 2023a).

Previous LST datasets exist that have a global coverage (Ma et al., 2020; Li et al., 2023b) or were developed for continental

(Reiners et al., 2021) or local usage. However, none of them were specifically derived for the Pan-Arctic region. The GLASS60

product, for example, presents data gaps above 45° latitude due to its LST retrieval process that relies on visible channels,

which are not available during polar night. Furthermore, the performance of the LST algorithms is strongly tied to the sam-

pling of atmospheric profiles and surface properties used to calibrate the RT models. Different methodologies and data sources

have been used in the past, but most LST products rely (entirely or partially) on the SeeBor database, which is built from the

Thermodynamic Initial Guess Retrieval database (TIGR)-3, ERA-40 and radiosondes datasets (Borbas et al., 2005). Taking ad-65

vantage of the most recent ECMWF version-5 reanalysis (ERA5), Ermida and Trigo (2022) developed a new clear-sky database

for the development of LST algorithms. The synthetic database is constructed from ERA5 data chosen with a dissimilarity cri-

terion to ensure a uniform distribution of atmospheric conditions. The clear-sky database shows a significantly wider range of

conditions, and thus a wider range of brightness temperatures, than in the SeeBor database specifically. The Pan-Arctic region

shows a wide range of temperatures and conditions that are not necessarily common, so it is particularly important to base the70

RT modelling on a robust and representative database for that region. A new daily LST dataset, presented here for the northern

high latitudes (> 50° N), is produced based on the EUMETSAT FDR and the clear-sky database (Ermida and Trigo, 2022).

The new LST dataset represents a valuable source for studying LST dynamics and its impacts on regional climates surface

energy balance (Hall et al., 2012; Key et al., 2016), vegetation phenology (Li et al., 2021), temperature hot spots (Mildrexler

et al., 2018) and characterizing land use/land cover dynamics. However, to perform climatological analyses, it is crucial that75

the satellite LST observations are stable and robust (Waring et al., 2023).

The objectives of this paper are first the description of the LST retrieval and validation methods and second, to assess the

stability of the new Pan-Arctic LST dataset. Relationships and trends with respect to the following datasets are compared: (i) in

situ air temperature (Tair) measurements provided by the EUSTACE database, (ii) two-meter air temperature (T2M) data from

ERA5-Land for the overlapping period (1981-2020). The comparisons are made for selected sites in the Pan-Arctic region. The80

presence of trends in T2M is well established and is considered one of the major indicators of anthropogenic climate change

(IPCC, 2021). Previous studies (Mildrexler et al., 2011; Hachem et al., 2012; Urban et al., 2013; Good et al., 2022) obtained

a good correlation between LST and T2M/Tair, although these parameters have different physical meanings and are measured

or modelled with different procedures. Hachem et al. (2012) found that LST derived from MODIS and daily near-surface air

temperatures are comparable. Good (2016) noted that LST and T2M are very similar when solar heating is low or absent. The85

NOAA satellites don’t have a stable orbit (Ignatov et al., 2004; Latifovic et al., 2012), meaning that over the course of their

operating years, their equator crossing time is shifting (Price, 1984). In the case of LST, drifting orbits could lead to artificial

trends in long-time records if only one platform is considered. In the present case, the LST from the different platforms is

combined (morning and afternoon overpasses), and the final product is generated over multiple satellites. However, this also

means that observed trends are more complex to interpret (Lieberherr and Wunderle, 2018). Orbital drift has a more substantial90

impact in the southern hemisphere and on bare soil (Sobrino et al., 2002; Gleason et al., 2002) than in the northern hemisphere.
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For example, this effect has been neglected in previous studies focusing on the Arctic region (Urban et al., 2013) or lakes

(Riffler et al., 2015).

In this study, the analysis is carried out for two cases: (a) polar winter, defined here as December and January, and (b) polar

summer, defined here as June and July. Incident solar radiation is zero during polar winter (Lund et al., 2017; Wang and Zeng,95

2014); therefore, it is expected that a trend analysis for case (a) should not be affected by orbital drift. This paper is structured

as follows: The data used to produce the LST are presented in Sect. 2, and the methodology is described in Sect. 3. Validation

results for the LST product are presented in 4.1. Comparisons with air temperature datasets and trend analysis are presented in

4.2, 4.3 and 4.4. Finally, Discussions and Conclusions are presented in Sect. 5 and 6.

2 Data100

This study uses the newly generated EUMETSAT AVHRR FDR satellite dataset, one reanalysis dataset and several weather

station datasets. Snow cover information is based on the snow water equivalent (SWE) dataset and snow cover fraction (SCF)

from the ESA CCI+ Snow project.

2.1 EUMETSAT AVHRR FDR

The FDR contains AVHRR reflectance and brightness temperatures for each available orbit and channel. The daily AVHRR105

data from one satellite provides nearly complete coverage of the globe. AVHRR GAC measurements have been processed

using the PyGAC software –a Python software package to read and transform AVHRR data in GAC format- (https://pygac.

readthedocs.io/en/latest/#), including the conversion from counts to reflectance or brightness temperature and cross-calibration

of the visible channels of the AVHRR sensor. The two thermal channels are calibrated following the Platinum Resistance Ther-

mometer (PRT), space, and Internal Calibration Target (ICT) counts procedure (Kidwell, 1995; Walton et al., 1998). Detailed110

information is available in the PyGAC FDR ATBD (EUMETSAT, 2023b). The data are accompanied by additional metadata

(such as orbit overlap and equator crossing time) and basic quality indicators (EUMETSAT, 2023c). Only satellites carrying

the newer versions (AVHRR/2 and AVHRR/3) of the AVHRR are considered in this study. The second version (AVHRR/2)

has five spectral channels, and the third version (AVHRR/3) has six but transmits only the data from five channels. Brightness

temperature channel four is centred at 10.8 µm and brightness temperature channel five at 12 µm. The IR calibration procedure115

is satellite-specific, with no cross-calibration between satellites for IR channels (EUMETSAT, 2023d). The PyGAC AVHRR

FDR from EUMETSAT (2023) is available in the Network Common Data Form (NetCDF) format and covers the entire globe

(- 180°, 90°, 180°, -90°). For each satellite, the orbit files are composited by choosing for each pixel only the observation

closest to nadir. The composited files have a spatial resolution of 0.05° x 0.05° pixel size and are available for each satellite

twice a day (at daytime and nighttime). This study focuses on the pan-Arctic region, therefore only data above 50° N have been120

processed.
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2.1.1 Cloud mask

Cloud cover information is obtained from the CM SAF CLARA-A3 dataset ((Karlsson et al., 2023b), which is also based on

EUMETSAT AVHRR FDR (EUMETSAT, 2023). The probabilistic cloud mask (CMAPROB), included in the level-2b product,

and quality flags are used. Cloud probabilities range from 0 to 100 % (EUMETSAT Satellite Application Facility on Climate125

Monitoring (CM SAF), 2023). The cloud probabilistic detection is based on the Naïve Bayesian theory and offers substantial

improvement to previous CLARA-A2 data records (Devasthale and Karlsson, 2023).

2.1.2 Snow cover data

Snow cover fraction (SCF) from optical satellite data and snow water equivalent (SWE) products from passive microwave

satellite data from the ESA CCI snow project (https://climate.esa.int/en/projects/snow/) are used to obtain information on snow130

extent (Luojus et al., 2022). The SCF ‘viewable snow’ (SCFV) product is derived from the EUMETSAT AVHRR FDR and

applied for this study. A value equal to zero means that the pixel is snow-free, and 100 means that the pixel is fully covered

by snow. The SWE variable is indicated in mm. Both snow products are combined to get a snow mask independent of the

availability of the visible channels during polar night.

2.2 ERA5-Land 2m-air temperature135

ERA5-Land (Muñoz Sabater et al., 2021), provided by the European Centre for Medium-Range Weather Forecasts (ECMWF),

is a downscaled version of the land component of global ERA5 reanalysis. Compared to ERA5, ERA5-Land shows better

stability but reduced accuracy (Urraca and Gobron, 2023). However, the accuracy suffices to capture inter-annual variations

(Rantanen et al., 2023). ERA5-Land monthly averaged air temperature 2 m above the surface data are compared to the LST

data set.140

2.3 In situ 2m-air temperature

In situ air temperature observations from the EU Surface Temperature for All Corners of Earth (EUSTACE) land station data

set (Brugnara et al., 2019; Rantanen et al., 2023) are used for comparison. This database stores daily minimum (Tmin) and

maximum (Tmax) temperature values recorded at weather stations ∼2 m above the surface. The station data set has undergone

quality controls, was homogenised and covers the period from 1850 until 2015. Weather stations from the EUSTACE database145

were selected according to the following criteria:

– The station lies above 50 degrees latitude;

– The underlying ground is composed of permafrost;

– Different latitudes are represented;

– The surrounding area at a station, corresponding to at least one GAC pixel, must be homogeneous;150
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– The time series should cover at least 30 years.

Based on these criteria, 12 stations have been selected (Fig. 1 and Table 1)

Permafrost modelled zones
Continuous

Discontinuous

Isolated patches

Sporadic

Stations

Permanent snow and ice

Figure 1. Selected EUSTACE stations with their ID (Table 1). Permafrost zonation map adapted from Obu et al. (2018).
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Table 1. Selected EUSTACE meteorological stations with WMO code, geolocation, elevation and available period.

Station ID Station code Station name Latitude [°] Longitude [°] Elevation [m] Available period

1 CA002300500 BAKER LAKE A 64.30 -96.08 19 1946 - 2015

2 CA002401030 DEWAR LAKES 68.65 -71.17 527 1958 - 2015

3 TX_SOUID148829 ILIRNEJ 67.25 168.97 352 1944 - 2013

4 TX_SOUID147048 KANGERLUSSUAQ 67.02 -50.70 50 1975 - 2015

5 TX_SOUID137416 LAINIO 67.76 22.35 315 1965 - 2015

6 TX_SOUID148484 NADYM 65.47 72.67 14 1959 - 2013

7 GLW00016504 SONDRESTROM 67.02 -50.80 50 1947 - 2015

8 TX_SOUID148639 SUHANA 68.62 118.33 78 1938 - 2013

9 TX_SOUID111376 SVEAGRUVA 77.88 16.72 9 1978 - 2015

10 TX_SOUID150449 SVETLOLOBOVO 55.10 90.80 326 1958 - 2013

11 USC00509869 WISEMAN 67.42 -150.11 349 1918 - 2015

12 CA002204000 WRIGLEY A 63.22 -123.43 150 1943 - 2013

2.4 Auxiliary data

The generation of LST data requires auxiliary datasets:

– Skin temperature (Tskin) and Total Column Water Vapor (TCWV) from the MERRA-2 reanalysis dataset (M2T1NXSLV,155

variables are labelled TS and TQV). The data come at hourly temporal resolution with a spatial resolution of 0.5° x

0.625°. Nearest neighbour resampling was performed to match the AVHRR spatial resolution and scanline time, i.e. as

in the work of Ma et al. (2020). MERRA-2 is preferred over other reanalysis products with finer spatial resolution to

allow comparison with the GLASS product (Ma et al., 2020) and to keep the LST retrieval independent from ERA5-

Land, which will be used for the stability analysis.160

– ESA CCI Land Cover 1992-2015 and Copernicus ICDR Land Cover 2016-2020 datasets are used. Both datasets are

consistent with each other. Their spatial resolution was decreased to match AVHRR GAC spatial resolution. The class

labels follow the Land Cover Classification System (LCCS) developed by the United Nations (UN) Food and Agriculture

Organization (FAO) (Copernicus Climate Change Service, Climate Data Store, (2019)).

– Atmospheric profiles from the Clear-Sky Database developed at LSA-SAF (Ermida and Trigo, 2022) are used for the RT165

modelling (RTM). This database contains atmospheric profiles such as temperature, specific humidity and ozone on 137

model levels (full vertical resolution), sampled from ERA5 for the 2009-2019 period. The sampling technique follows the

method from Chevallier et al. (2000). Surface variables like T2M, surface pressure, Tskin and emissivity are obtained

from the combination of ERA5 and satellite data to ensure the best possible representation of the surface conditions.
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Column variables, such as TCWV and total cloud cover (TCC) are also present in the database. The atmospheric profiles170

are classified on TCWV varying from 0 to 60 mm and TS ranging from 190 to 340 K.

– In situ LST measurements from the Surface Radiation Budget (SURFRAD) network, the Karlsruhe Institute of Tech-

nology (KIT) network (Göttsche et al., 2016; Martin et al., 2019), the Atmospheric Radiation Measurement Climate

Research Facility US Department of Energy (ARM) site at the North Slope of Alaska (NSA) and radiation data from the

Baseline Surface Radation Network (BSRN) (Maturilli, 2020; Cox and Halliwell, 2021; Kustov, 2018, 2023) are used for175

validation. Table 2 lists the stations. The KIT stations, which are part of LSA SAF’s validation effort and supported by

EUMETSAT, are located in different climate zones (Göttsche et al., 2016). In situ LST is computed from their radiation

components as in Martin et al. (2019) . The broadband emissivity (BBE) is obtained from channel effective emissivity

data provided in the ASTER GED (Hulley et al., 2015) with the linear equation described in Cheng et al. (2013).

– The Copernicus digital elevation model (DEM) GLO-90 upscaled to 0.05° spatial resolution is used (https://doi.org/10.180

5270/ESA-c5d3d65) for the RT modelling. This dataset represents the surface of the Earth and is based on radar satellite

data obtained from the TanDem-X Mission.
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Table 2. Description of the stations used for LST validation. Station name and ID, the network the station belongs to, latitude, longitude,

elevation and the dominant land cover type are listed.

Station name (ID) Network Latitude [°] Longitude [°] Elevation [m] LCCS

Bondville, Illinois (BND) SURFRAD 40.0519 -88.3731 230 Cropland

Desert Rock, Nevada (DRA) SURFRAD 36.6237 -116.0195 1007 Open Shrubland

Fort Peck, Montana (FPK) SURFRAD 48.3078 -105.1017 634 Grassland

Goodwin Creek, Mississippi

(GCM)

SURFRAD 34.2547 -89.8729 98 Wooded Grassland

Penn. State Univ., Pennsylvania

(PSU)

SURFRAD 40.7201 -77.9309 376 Deciduous Broadleaf

Forest

Sioux Falls, South Dakota

(SFA)

SURFRAD 43.73403 -96.62328 1689 Cropland

ARM Southern Great Plains,

Oklahoma (SGP)

SURFRAD 36.60406 -97.48525 314 Cropland

Table Mountain, Boulder, Col-

orado (TBL)

SURFRAD 40.1250 -105.2368 1689 Cropland

Lake Constance, Germany

(BOD)

KIT 47.58 9.57 396 Water

Evora, Portugal (EVO) KIT 38.54 -8.003 300 Mosaic Tree and

Shrubs

North Slope of Alaska, USA

(NSA)

ARM 71.323 -156.609 8 Lichens and Mosses

Alert, Canada (ALE) BSRN 82.49 -62.42 127 Bare Soil

Ny-Ålesund, Norway (NYA) BSRN 78.9227 11.9273 11 Bare soil

Tiksi, Russia (TIK) BSRN 71.5862 128.9188 48 Shrubland

3 Methods

LST can be retrieved from thermal infrared data with the well-established split window (SW) method (Ma et al., 2020; Yang

et al., 2020; Reiners et al., 2021). Since 1983 (Price, 1984; Prata, 1994) different algorithms have been developed to obtain LST185

as a function of the satellite-recorded brightness temperature (BT). The split-window approach takes advantage of the different

water vapour absorption characteristics of two adjacent channels (Lieberherr et al., 2017; Ma et al., 2020). LST is affected by

many factors, which requires additional terms to model the effects of land cover type, viewing angle and topography (Trigo

et al., 2017).
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3.1 Generalised Split Window algorithm190

For this study the Generalized Split Window (GSW) algorithm, developed by Wan and Dozier (1996) (Eq. 1) and used within

the framework of LSA-SAF (Trigo et al., 2008b; Ermida and Trigo, 2022) is selected. The GSW performs well on a global

scale and has the highest relative accuracy among a selection of SW algorithms investigated in the work of Yang et al. (2020).

The GSW depends on channel-effective emissivity and sensor-specific coefficients that must be determined for the expected

atmospheric and surface conditions.195

Ts = (A1 +A2
1− ϵ

ϵ
+A3

∆ϵ

ϵ2
)(T11 +T12)+ (B1 +B2

1− ϵ

ϵ
+B3

∆ϵ

ϵ2
)(T11 −T12)+C (1)

where T11 and T12 denote BT of channels centred at approximately 11 and 12 µm, ϵ = (ϵ11 +ϵ12)/2, ∆ϵ = (ϵ11− ϵ12), Ai, Bi

and C are split window coefficients (SWC).

Figure 2. LST retrieval from AVHRR data. Input data are shown at the top. The leftmost box refers to the SW coefficient determination; the

next box on the right displays the look-up-table storing coefficients for different atmospheric and surface conditions. The second box from

the right presents the cloud mask application to the thermal channels and the rightmost panel the process to generate Land Surface Emissivity

(LSE) based on land cover and NDVI information.
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The split-window coefficients in Eq.1 are obtained by applying multi-linear regression on a set of simulated BTs against

a calibration database. Simulated BTs are obtained by performing RTM with version 13 of the Radiative Transfer for TOVS200

(RTTOV) developed at NWC SAF (Saunders et al., 2018). The python wrapper was used in this study (Hocking et al., 2021).

Atmospheric profiles, surface and column variables from the clear-sky profile database developed by Ermida and Trigo (2022)

complemented with elevation information and satellite viewing angles, are ingested by RTTOV. The clear-sky profile database

contains 97 files, each file containing approximately 1000 atmospheric profiles corresponding to a different class of TCWV

and Tskin. In total, the database contains 82’793 profiles, and each profile possesses six different TS values and 25 pairs of205

emissivity at 11 µm and 12 µm. More details can be found in Ermida and Trigo (2022). Convolving the TOA radiances produced

by RTTOV with the specific AVHRR response functions yields BTs as seen by the different sensors for different atmospheric

and viewing conditions. RT modelling was performed on the calibration dataset for each satellite and 15 different satellite

view zenith angles (VZA) ranging from 0 to 70°. Table 3 summarises the construction of the simulation dataset. Finally, the

calibration was performed independently for each class, and for each class, the samples were split into a training (70%) and210

test (30%) set, and multilinear regression was performed on the resulting BTs. Based on the test sets, look-up tables (LUT)

with coefficients are created for each satellite. The LUTs are organized into classes of TCWV and Tskin, allowing to allocate

the right SWC to the encountered atmospheric conditions. Mean absolute error (MAE), the coefficient of determination (R2)

and root mean square error (RMSE) are computed for all coefficients to keep track of the general performance of the RTM.

Table 3. Summary of the simulation dataset: the number of profiles used and the number of instances of view zenith angles (VZA), TS and

LSE are shown.

Source Number of profiles # VZA # TS # LSE Sample size

LSA SAF (Ermida and Trigo, 2022) 82,793 15 6 25 186,284,250

3.1.1 Land surface emissivity retrieval215

Land surface emissivity (LSE) is retrieved by combining the simplified Normalized Difference Vegetation Index (NDVI)

Threshold Method (SNDV ITHM ) (Sobrino et al., 2008) based on (Sobrino and Raissouni, 2000) with channel emissivity

data from spectral libraries and static land cover classifications.

First, 10-day NDVI maximum value composites (MVC) are generated from the AVHRR channels 1 and 2. NDVI thresholds

that determine if a pixel is considered fully vegetated or entirely bare soil are set. In the present case, NDV Isoil is set to 0.2,220

and NDV Iveg is set to 0.5 (Sobrino et al., 2001). All pixels that have 0.2 < NDVI < 0.5 are considered mixed pixels and

the corresponding emissivity is obtained by using the proportion of vegetation (Pv) method (Sobrino et al., 2008) (Eq. 2) that

weighs the emissivity of bare soil (ϵsi) and vegetation (ϵvi) for AVHRR channel i (i=4 or 5).

ϵi = ϵviPv + ϵsi(1−Pv) (2)
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ϵsi and ϵvi are taken from a LUT based on information from spectral libraries (Trigo et al., 2008a; Peres and DaCamara,225

2005). The emissivity of pixels with NDVI < 0.2 or NDVI > 0.5 is set to ϵsi and ϵvi, respectively. Here, the channel emissivities

from Trigo (2008b, Table I) are used. The IGBP classes (Sulla-Menashe and Friedl, 2018) are converted to land cover classes

of the ESA CCI project with plant functional types look-up tables (Wang et al. 2023). From 1992 to 2020, the ESA CCI land

cover at the 12 selected stations changed very little. Therefore, to reduce emissivity uncertainties due to unknown land cover

information before 1992, a static land cover from 2000 is used throughout the project (Freitas et al., 2010). The land cover was230

previously upscaled to the resolution of the AVHRR dataset. Pv is obtained from NDVI with Eq. 3 (Carlson and Ripley, 1997).

Pv =

(
NDV I −NDV Isoil

NDV Iveg −NDV Isoil

)2

(3)

Pixels with low NDVI values (NDVI < 0.2) are defined as bare soil. Such NDVI values can also indicate the presence of

snow or cloud cover. Snow cover extent information is retrieved from two data products from the ESA CCI+ Snow project and

cloudy pixels are masked out in the final LST product. A threshold of 70 % of SCFV or 4 mm for SWE is used to categorise the235

pixel as fully snow-covered. Snow covered pixels are assigned to laboratory emissivity spectra values of medium snow (Fig. 5

of Hulley et al. (2014)). Water pixels and permanent snow and ice areas are retrieved based on land cover information from the

ESA Landcover CCI for the year 2000 and are assigned to channel effective emissivity values from Hulley et al. (2014).

3.2 LST Retrieval

LST is retrieved as follows: (i) all necessary data (BTs, cloud mask, emissivity and atmospheric data) are read, (ii) atmospheric240

data from MERRA-2 (TS and TQV) are downscaled to GAC spatial resolution, the corresponding timestamp is matched

with the scanline time for each pixel, (iii) based on satellite identification number, satellite viewing angle, total column water

vapour (TQV) and skin temperature (TS) and the corresponding SWC from the LUT are assigned to each pixel and (iv) LST is

computed from channel BTs, emissivities and the assigned SWC (Eq. 1). Pixels with a satellite view zenith angle greater than

40° and the MAE of the test set in the RTM simulations greater than 0.5 K are masked out.245

3.3 Validation Procedure

The AVHRR LST dataset is validated against in situ data from different sites (Table 2). In situ LST and AVHRR LST datasets

are joint based on acquisition time and geolocation. The closest pixel to the station is taken, and a time difference of up to 5

minutes between the satellite overpass and the in situ measurement is considered. For Lake Constance, a time difference of up

to 30 minutes is allowed. Similarly, as in Ma et al. (2020), three-sigma filtering was performed to remove outliers (Pearson,250

2002). The most accurate surface temperatures can be obtained over large water bodies, such as lakes and reservoirs. Densely

vegetated surfaces are also particularly suitable for LST validation (Coll et al., 2009).
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3.4 LST AVHRR time series generation

Depending on the heterogeneity of the land cover, between four and nine AVHRR LST GAC pixels are extracted around

each station (Table 1). Pixels that have a cloud probability higher than 0.1 are removed, and the average of the remaining255

pixels is computed. Pixels with a cloud probability of 0.1 or lower are considered cloud-free (Karlsson et al., 2023b). This

cloud probability threshold is a compromise between data availability and avoiding cloud contamination. Daytime data from

NOAA-7, 9, 11, 14, 16, 18 and 19 (satellites with ascending (northbound) equator crossing times), as well as the entire MetOp

series (satellites with descending (southbound) equator crossing times), are considered for constructing the time series. The

considered period for each satellite is chosen to minimise orbital drift and avoid the outage periods (EUMETSAT, 2023d). The260

retained periods are listed in Table 4.

Table 4. Considered time period for each satellite and sensor that it carries.

Satellite Platform Valid Period

NOAA-07 AVHRR-2 24 November 1981 — 01 February 1985

NOAA-09 AVHRR-2 25 February 1985 — 07 November 1988

NOAA-11 AVHRR-2 08 November 1988 — 16 October 1994

NOAA-14 AVHRR-2 20 January 1995 – 31 December 2000

NOAA-16 AVHRR-3 01 January 2001 – 30 June 2005

NOAA-18 AVHRR-3 01 July 2005 – 28 February 2009

NOAA-19 AVHRR-3 01 March 2009 – 31 December 2015

METOP-A AVHRR-3 01 January 2016 – 31 December 2018

METOP-B AVHRR-3 01 January 2016 – 31 December 2020

METOP-C AVHRR-3 03 July 2019 — 31 December 2020

Once the relevant periods are extracted, outlier detection is performed based on a 10-day rolling window analysis and

detected outliers are removed. Daily temperature variability is very high (Mildrexler et al., 2011), and AVHRR-derived LST

time series are subject to noise, therefore, monthly means are computed from concatenated daytime time series for further

analysis.265

3.5 Time series analysis

The AVHRR LST monthly means time series is compared with two independent data sets: ERA5-Land and EUSTACE Tair.

ERA5-Land pixels collocated to each weather station are selected, and values of T2M for the same position are extracted. The

EUSTACE Tair data are filtered to keep only data that passed all quality assurance checks (Menne et al., 2012), and monthly

means are computed. This yields time series of LST, ERA5-Land T2M (hereafter referred to as ’T2M’) and EUSTACE Tair270

(hereafter referred to as ’Tair’) for each station. Before performing the actual stability analysis and starting with trend analysis,

the overall relationship between the datasets is assessed by computing statistical parameters such as the Pearson correlation
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coefficient (r), the MAE and the RMSE. Previous studies (Mildrexler et al., 2011; Hachem et al., 2012; Westermann et al.,

2012; Urban et al., 2013) found variability in the LST-Tair correlation depending on the season and the land cover.

Then, anomalies of the monthly mean time series are computed for the LST, T2M and Tair time series at all stations to remove275

the strong seasonal cycle inherent to temperature data (Good et al., 2022). A temperature anomaly describes the difference from

a baseline climatology. In the present study, the anomalies are computed by subtracting the mean temperature for the entire

time series from the monthly values. The LST, T2M and Tair anomalies are compared by computing the Pearson correlation

coefficient (r). Three different periods are considered for the anomaly analysis: a) the entire year, b) polar winter (December,

January) and c) polar summer (June and July). June and July are chosen as summer months to respect the symmetry of the280

winter period. First, the relationship between the anomalies of the different datasets is evaluated with the Pearson correlation

coefficient (r) and the general stability of the LST dataset is assessed by computing the trends of the anomaly differences.

Three sets of differences are computed as:

∆TanomLST−T2M = LSTanom −T2Manom (4)

∆TanomLST−Tair = LSTanom −Tairanom (5)285

∆TanomTair−T2M = Tairanom −T2Manom (6)

where LSTanom are the LST anomalies and T2Manom and Tairanom represent the ERA5-Land air temperature anomalies

and EUSTACE air temperature anomalies respectively. The anomaly differences are represented with ∆Tanom. The stability

analysis is performed separately on the summer and winter periods. Non-parametric trend analysis is performed on the anomaly

differences using the Thiel-Sen slope to quantify the trend and the Mann-Kendall test to determine its significance. The Python290

implementation of the Mann-Kendall Trend Test (Hussain and Mahmud, 2019) was used in this work. Finally, trends are

computed at each station for the entire year for all three datasets, and summer and winter trends are computed for the whole

Pan-Arctic region.

4 Results

In the first parts of the Results section (Sect. 4.1.1 and 4.1.2) the performances of the GSW algorithm and the validation results295

are presented. The remaining sub-sections present the relationships of the different datasets as well as the stability analysis and

trend computation.
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4.1 LST validation results

4.1.1 Performance of the split window algorithm

Multi-linear regression was used to fit Eq. 1 to the RTM results for each class of TCWV and Tskin in a training set that300

consisted of 70 % of the samples, thereby retrieving the corresponding SWCs. The performance of the regression model was

evaluated with the remaining independent samples (test set). The performance of the model is assessed by using the MAE

and the coefficient of determination (R2). The values shown in Fig. 3 are mean values across all satellites: the MAE of the

predictions are below 0.5 kelvin for dry conditions (TCWV< 30) and low satellite viewing angle (VZA < 40). In cases with

very moist atmospheres and high VZA (VZA> 50), the MAE increases substantially, and R2 is considerably lower ( R2< 0.92).305

Higher temperatures and higher VZA also lead to an increased error. The overall MAE is always below two K for water vapour

below 50 mm TCWV. MAE values above 2 K are reached for high TCWV (TCWV > 50 mm) and high VZA values (VZA >

50 °). Overall, the amount of water vapour in the Arctic atmosphere is low, which indicates that the model is well suited for the

present use case.
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Figure 3. SWA performances: (a) distribution of the mean absolute error (MAE) and (b) coefficient of determination as a function of the

view zenith angle (VZA) and total column water vapour (TCWV). (c) and (d) show the corresponding distributions in dependence of VZA

and Tskin.
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4.1.2 Validation with in situ LST310

Fig. 4 and 5 show the validation results for NOAA-14, 16, 17, 18 and 19, and MetOP-A, B and C against in situ LST from the

validation sites in Table 2. The validation is separated for day (represented in red) and nighttime (blue). For each validation

site, the MAE, RMSE and mean bias error (MBE) are shown. The match-up with the SURFRARD stations covers the period

from 1985 to 2020, the match-up period for the KIT station in EVORA (EVO) starts in 2009 and ends in 2020, the match-up

period for Lake Constance starts in 2016 and ends in 2020, and finally, the match-up period for the ARM site at the North315

Slope of Alaska (NSA) starts in 2007 and ends in 2012. Regarding the BSRN data, for the station in Alert (ALE) the match-

up period starts in 2004 and ends in 2014, for Ny-Ålesund (NYA) it starts in 2006 and ends in 2020 and for Tiksi (TIK), it

starts in 2010 and ends in 2018. EVO is located in an evergreen oak woodland with approximately 33% of tree crown cover,

which can affect the satellite-retrieved LST due to directional effects (Rasmussen et al., 2011; Guillevic et al., 2013; Ermida

et al., 2014). Due to this anisotropy, the surface in EVO presents high temperature differences between trees and ground. The320

nighttime in situ measurements in EVO are therefore more suited than daytime observations. The surface is very heterogeneous

at the NSA site, the station being close to lagoons (North Salt Lagoon and Imikpuk Lake), and very close to the coast. This

explains why the performances are much worse during summertime than during wintertime when the entire area is snow and ice

covered. Similarly, the BSRN stations are all located near the coast. In addition, the terrain around NYA station is mountainous

and heterogeneous, leading to worse validation results. The in situ data for Lake Constance (BOD) are collected during the325

operating hours of the ferry and are thus only available during daytime. Both daytime and nighttime data are considered at

the SURFRAD sites. BOD has the fewest available points due to the shorter match-up period. The overall RMSE range for

the ten stations is 0.80-3.43 K. The highest performance is reached at BOD. LST are more stable over water bodies, and

water emissivity is less prone to induce significant uncertainties (Masuda et al., 1988; Niclòs et al., 2005). On land, during

the daytime, the highest agreement was obtained for the Desert Rock (DRA) and Goodwin Creek (GCM) sites. The lowest330

agreement was found at Fort Peck (FPK). During nighttime, the highest agreement was obtained at Sioux Falls (SFA), and

the worst nighttime agreements were obtained at Desert Rock (DRA) and Fort Peck (FPK). Compared to previous studies on

AVHRR LST (Ma et al., 2020; Reiners et al., 2021; Li et al., 2023a), the present dataset shows a similar accuracy and precision.
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Figure 4. AVHRR LST versus in situ LST at (a) Bondville (BND), (b) Desert Rock (DRA), (c) Fort Peck (FPK), (d) Goodwin Creek (GCM),

(e) Penn. State Univ (PSU), (f) Sioux Falls (SFA), (g) Southern Great Plains (SGP), (h) Table Mountain (TBL), (i) Evora (EVO), (j) Lake

Constance (BOD) and (k) North Slope of Alaska (NSA). Red represents daytime measurements and blue represents nighttime measurements.

Match-up periods are provided in the text. 17
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Figure 5. AVHRR LST versus in situ LST at BSRN stations (a) Alert, Lincoln Sea (ALE), (b) Ny-Ålesund, Svalbard (NYA) and (c) Tiksi,

Russia (TIK). Red represents the daytime measurements, and blue represents the nighttime measurements. Match-up periods are provided in

the text.
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4.1.3 Comparison with the GLASS dataset

The pan-Arctic AVHRR LST dataset is compared against the well-established GLASS product (Zhou et al., 2019; Ma et al.,335

2020) that provides twice daily LST observation for the whole globe for the 1980-2000 period. Figures 6 and 7 present a

comparison of monthly means at two stations located in the Arctic (BAKER LAKE A and SVEAGRUVA). The classical

GLASS LST, the orbital drift corrected (ODC) GLASS LST and the pan-Arctic AVHRR LST are compared at the pixel

closest to the station. In the high northern latitudes, the GLASS product is only available during the summer months. This is

particularly visible for the SVEAGRUVA site (located on Svalbard), where very few GLASS observations are available. Also340

at BAKER LAKE A our product presents considerably more and slightly higher values, which can be explained by the different

cloud masking and emissivity computation.
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Figure 6. Monthly means LST product comparisons at BAKER LAKE A.
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Figure 7. Monthly means LST product comparisons at SVEGRUVA.

4.2 Relationships between the temperature datasets

The relationship between AVHRR LST and station EUSTACE Tair, and AVHRR LST and ERA5-Land T2M at each EUSTACE

station is first assessed by computing the Pearson correlation coefficient (r), the MAE and RMSE of the monthly mean temper-345

ature data (see Sect. 3.5). Comparisons against Tairmin show, in general, higher RMSE and MAE values than comparisons

against Tairmax and T2M (Table 5). For the stations in Table 5, the mean MAE values are 8.47, 5.56 and 5.92 K for LST

versus -Tairmin, -Tairmax and -T2M respectively. Stations WRIGLEY A, WISEMAN and SVEGRUVA exhibit lower MAE

and RMSE values than the other stations. WISEMAN and SVEGRUVA have slightly fewer comparison samples (N<230).

SVEAGRUVA, located in Svalbard, is the northernmost station and experiences persistent cloud cover, leading to fewer usable350

satellite observations. The EUSTACE time series at WISEMAN is shorter due to missing data. WRIGLEY A exhibits low

MAE and RMSE values when compared to Tairmax but presents similar values to other stations when compared to Tairmin.

As to be expected, the analysis reveals a high degree of correlation between monthly LST, Tair and T2M with correlation

coefficients all above 0.9 (r) (Table 5). In line with higher RMSE and MAE, Tairmin has slightly lower (r) values when

compared to LST. The better performance of Tairmax can be attributed to the closer daytime overpass of the NOAA/METOP355

satellites (Good et al., 2022). In opposition, Tairmin is generally recorded during night.
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Table 5. MAE, RMSE, and Pearson Coefficient (r) at the selected EUSTACE stations for monthly mean comparisons. N is the number of

samples.

Relationship (MAE, RMSE, and (r)) of monthly means

Station name
LST versus Tair min LST versus Tair max LST versus T2M N

RMSE MAE r RMSE MAE r RMSE MAE r

BAKER LAKE A 9.56 8.07 0.97 5.27 4.26 0.98 6.40 4.89 0.98 298

DEWAR LAKES 10.62 8.37 0.95 9.92 8.46 0.96 8.17 6.18 0.97 330

ILIRNEJ 10.06 8.58 0.97 5.92 4.98 0.98 7.65 6.2 0.98 316

KANGERLUSSUAQ 10.80 8.65 0.95 8.69 7.28 0.96 8.38 6.91 0.97 357

LAINIO 7.78 6.61 0.96 5.34 4.18 0.97 5.63 4.59 0.97 290

NADYM 9.52 8.05 0.97 6.71 5.33 0.98 7.41 6.06 0.98 282

SONDRESTROM 12.15 9.91 0.95 8.11 6.93 0.96 9.39 7.76 0.97 329

SUHANA 9.82 8.70 0.98 5.76 4.62 0.98 6.37 5.20 0.98 339

SVEAGRUVA 5.03 3.66 0.93 7.17 5.82 0.94 5.65 4.22 0.94 228

SVETLOLOBOVO 15.30 13.08 0.96 7.31 6.06 0.97 10.72 8.94 0.97 343

WISEMAN 9.42 7.98 0.96 6.79 5.54 0.98 6.43 5.20 0.98 176

WRIGLEY A 10.79 9.97 0.97 4.39 3.31 0.98 5.75 4.91 0.98 279

The relationship between the monthly AVHRR LST anomalies versus EUSTACE Tair anomalies and ERA5-Land T2M

anomalies is assessed with the Pearson correlation coefficient (r) (Table 6). All stations except SUHANA (Siberia) and SVEA-

GRUVA (Svalbard) display strong positive correlations (r > 0.5) between LST and both air temperature datasets (Tair and

T2M). Correlations are consistent for both air temperature datasets; only minor differences are visible. The (r) values for360

comparing Tair with T2M are higher than those in the corresponding comparison with LST. Correlations of LST versus T2M

anomalies vary between 0.46 (r) and 0.71 (r). For Tairmax versus LST, the (r) values are between 0.40 and 0.71, whereas for

Tairmin (r) has a range of 0.35-0.70. In general, slightly higher (r) values are obtained for the comparison against T2M than

Tair. Comparison values of Tair versus T2M have values (r) between 0.69 and 0.97. Similarly than in Table 5, lower (r) values

are found for the comparison with Tairmin than for Tairmax. The lowest correlation value between T2M and Tair is obtained365

at WISEMAN (Alaska). NADYM (Russia) shows consistently high correlations (r ≈ 0.7) across all comparisons and has the

highest correlation value for the Tair versus T2M evaluation. Previous studies have also found high correlations between station

Tair and LST data for other LST datasets (Urban et al., 2013; Good et al., 2022), e.g. from the ESA CCI project (Ghent et al.,

2023). The differences of (r) between Table 5 and Table 6 can be attributed to a phase shift between the anomalies and to a

strong seasonal signal present in the time series on monthly means.370
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Table 6. Correlation Coefficient (r) from all stations for the comparison between the LST monthly mean anomalies versus the T2M and Tair

monthly mean anomalies.

Station name
Pearson correlation coefficient (r) of the monthly mean anomalies

LST vs Tair min LST vs Tair max LST vs T2M T2M vs Tair min T2M vs Tair max

BAKER LAKE A 0.53 0.56 0.57 0.91 0.92

DEWAR LAKES 0.59 0.58 0.63 0.88 0.89

ILIRNEJ 0.56 0.61 0.61 0.86 0.91

KANGERLUSSUAQ 0.66 0.68 0.70 0.93 0.96

LAINIO 0.61 0.65 0.64 0.93 0.94

NADYM 0.70 0.71 0.71 0.97 0.97

SONDRESTROM 0.67 0.70 0.69 0.93 0.96

SUHANA 0.43 0.48 0.51 0.88 0.94

SVEAGRUVA 0.35 0.40 0.46 0.92 0.95

SVETLOLOBOVO 0.59 0.70 0.68 0.91 0.95

WISEMAN 0.47 0.61 0.65 0.69 0.75

WRIGLEY A 0.57 0.57 0.62 0.85 0.87

To assess the general stability of the LST dataset, the differences between the monthly anomalies of the datasets (Eq. 4, Eq. 5

and Eq. 6) and the trends of these differences are calculated. Since high correlation values were obtained for T2M and Tairmax,

these two datasets are considered for the LST stability analysis. The confidence interval is set to 95%, meaning that trends with

p-values below 0.05 present a significant trend. Ideally, the trend of the difference should be zero or very close to zero. The

results are shown in Table 7: ten of the 24 trends of the anomaly differences involving LST present statistically significant375

trends. This indicates that for these datasets, the difference between the anomalies increases or decreases over time and, thus, is

not stable. Four stations (DEWAR LAKES, SVEAGRUVA, SVETLOLOBOVO and WISEMAN) show statistically significant

trends when comparing T2M and Tairmax anomalies, e.g. see SVEAGRUVA in Fig. 8. However, these stations present stable

trends for the comparison with LST anomalies. For example, the comparison of LST versus T2M at SEVAGRUVA is very

stable (0.10 K/decade) (see Fig. 8). The same observation can be made at DEWAR LAKES. SVEAGRUVA is a special case as380

the data are very sparse. Overall, the LST - Tairmax trend and LST - T2M trends shown in Table 7 are not consitent accross

datasets. For example, Fig. 9 shows the trends of the anomalies at KANGERLUSSUAQ. All trends are stable (statistically non-

significant), but differences are visible in the trend values for both LST comparisons. Plots of the trends of the other stations

are shown in Appendix A1. Several reasons, such as orbit drift, missing data or corrupt station data, could explain the observed

discrepancies. Instabilities are also visible in the Tair versus T2M comparisons. The significant trend for the comparison385

of Tair versus T2M can be explained by missing station data (appendix A1). Six of the 12 LST versus T2M experiments

are statistically non-significant, suggesting no detectable trends for the anomaly differences at these stations. Regarding the
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Tairmax anomalies minus LST anomalies trends, four out of 12 stations show a significant trend. The stations located at

DEWAR LAKES, KANGERLUSSUAQ, LAINIO, SUHANA, SVEAGRUVA and WRIGLEY A do not show a significant

trend in the comparisons to LST (see Table 7).390

Table 7. Trend of the anomaly differences for the three pairs of differences. Trends in italic are significant (p-value < 0.05) and associated

p-values are marked in bold.

Station name
LST-T2M LST-Tair max Tair max-T2M

Trend [K/dec.] P-value Trend [K/dec.] P-value Trend [K/dec.] P-value

BAKER LAKE A 0.52 0.0005 0.63 0.0003 -0.07 0.13

DEWAR LAKES 0.04 0.81 0.22 0.22 -0.11 0.03

ILIRNEJ 0.35 0.005 0.21 0.21 0.03 0.72

KANGERLUSSUAQ -0.23 0.13 -0.10 0.62 -0.04 0.42

LAINIO 0.25 0.054 0.10 0.50 0.06 0.08

NADYM -0.57 0.003 -0.59 0.01 -0.00 0.96

SONDRESTROM 0.37 0.04 0.55 0.008 -0.05 0.35

SUHANA -0.16 0.27 -0.33 0.06 -0.01 0.80

SVEAGRUVA 0.10 0.63 0.35 0.10 -0.13 0.000

SVETLOLOBOVO -0.52 0.002 -0.36 0.04 -0.17 0.005

WISEMAN 0.27 0.02 0.05 0.88 -0.56 0.006

WRIGLEY A 0.11 0.32 0.21 0.31 -0.04 0.65
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Figure 8. Monthly differences of the anomalies at SVEAGRUVA (Svalbard) between 1981 and 2015
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Figure 9. Monthly differences of the anomalies at KANGERKUSSUAQ (Greenland) between 1981 and 2015.
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Table 8. Trends in monthly mean anomalies (K/decade) for selected stations. Values in italic are significant (p-value < 0.05) and associated

p-values are marked in bold.

Station name
LST EUSTACE Tair ERA5-Land T2M

Trend [K/dec.] p-value Trend [K/dec.] p-value Trend [K/dec.] p-value

DEWAR LAKES 0.61 0.005 0.21 0.11 0.39 0.002

KANGERLUSSUAQ 0.50 0.025 0.52 0.0008 0.55 0.0001

LAINIO 0.64 0.0004 0.64 0.0001 0.50 0.0001

SUHANA 0.26 0.18 0.47 0.007 0.54 0.0001

WRIGLEY A 0.47 0.009 0.34 0.1 0.32 0.005

LST and air temperature trends of stable stations (DEWAR LAKES, KANGERLUSSUAQ, LAINIO, SUHANA, SVEA-

GRUVA and WRIGLEY A) have the same order of magnitude (Table 8) and all stations present a warming trend. DEWAR

LAKES, located in east of Nunavut (Canada), shows a more pronounced trend for LST than for the air temperature (Tair and

T2M). Tair captured at the weather station does not present a significant trend. KANGERLUSSUAQ in Greenland shows sim-

ilar trends in LST as in air temperature. LAINIO, located in a forested area in Northern Scandinavia, presents similar trends to395

LST and Tair, while the corresponding T2M trend is lower. The LST trend in SUHANA (Siberia) does not show a significant

trend for LST, but both air temperature datasets show a consistent trend. WRIGLEY A, located in the Northwest Territories in

a forested area, shows a higher LST trend than T2M trend.

4.3 Analysis of Summer and Winter periods

To further investigate if the orbital drift of the NOAA satellites influences the stability analysis and determined trends, the400

previous analysis is now performed separately for polar winter and polar summer (see Sect. 3.5). Correlation coefficients (r),

trends (slopes) and p-values of the differences between LST anomalies minus Tairmax anomalies and LST anomalies minus

T2M anomalies are calculated.

Correlation coefficients (r) (Table 9) for summer and winter for the analysis against LST lie in the range 0.4-0.8. Correlation

results are, on average, slightly higher for LST versus T2M than LST versus Tairmax, for winter and summer. SVEAGURVA405

had insufficient data points in winter, and the trends for summer were not significant. Therefore, this station was removed

from the analysis. Winter shows only slightly higher correlation values than summer. At BAKER LAKE A, ILIRNEJ, SON-

DRESTROM and WISEMAN, (r) values in summer are higher than in winter. Correlation values are slightly higher for the

separate seasons (Table 9) than for the general analysis (Table 6). Correlation results for the Tairmax versus T2M experiment

range between 0.57 and 0.96. The lowest correlation values are obtained at WISEMAN and WRIGLEY A. All of the stations410

except SVETLOLBOVO exhibit (r) values in a similar range in summer and winter. The air temperature correlation value at

SVETLOLBOVO is considerably lower in summer than in winter. SVETLOLOBOVO is the station located the most in the

south at 55° latitude. At WRIGLEY A, (r) values are similar for all significant results.
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The results in the previous section show that some instabilities could be detected from the trends of the anomaly differences.

The same analysis is now performed separately for summer and winter (Table 10). Five out of 12 stations do not show any415

significant trend either in summer or winter. Except for SUHANA, the remaining stations only show a significant trend during

summer. For example, KANGERLUSSUAQ (Table 10 and Fig. 10) presents a significant positive trend during summer but no

significant trend in winter. SUHANA experiences a significant positive trend in winter for the LST anomaly minus Tairmax

anomaly difference, but this trend is not observed in the comparison to T2M (Table 10 and Fig. 11). From Fig. 11, it can

also be noticed that the differences between Tairmax and T2M increase over time in winter and summer, which suggests420

discrepancies between air temperature measured at the station and from ERA5-Land. The magnitude of the LST anomalies is

also generally higher than Tair and T2M magnitude (Fig. 10 and Fig. 11), which can be explained by the higher amplitude of

the LST diurnal cycle pattern compared to air temperature (Good, 2016; Sharifnezhadazizi et al., 2019). SVETLOLOBOVO

and KANGERLUSSUAQ present poor correlation results in summer (see Table 9) and also exhibit strong significant summer

trends for the anomaly difference, contrary to winter trends that remain stable (Table 10).425
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Table 9. Pearson correlation coefficient (r) of the monthly anomalies for the summer and winter period.

Station LST versus Tair max (r) LST versus T2M (r) Tair max versus T2M (r)

BAKER LAKE A
Summer 0.65 0.66 0.88

Winter 0.46 0.47 0.90

DEWAR LAKES
Summer 0.60 0.72 0.91

Winter 0.62 0.83 0.85

ILIRNEJ
Summer 0.73 0.76 0.91

Winter 0.44 0.46 0.88

KANGERLUSSUAQ
Summer 0.37 0.38 0.90

Winter 0.59 0.63 0.96

LAINIO
Summer 0.62 0.75 0.95

Winter Not significant Not significant 0.95

NADYM
Summer 0.46 0.57 0.93

Winter 0.74 0.67 0.90

SONDRESTROM
Summer 0.70 0.72 0.90

Winter 0.60 0.63 0.96

SUHANA
Summer 0.84 0.77 0.93

Winter Not significant Not significant 0.83

SVETLOLBOVO
Summer 0.47 0.37 0.79

Winter 0.67 0.75 0.92

WISEMAN
Summer 0.60 0.64 0.75

Winter 0.55 0.59 0.64

WRIGLEY A
Summer Not significant 0.55 0.57

Winter Not significant Not significant 0.58
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Table 10. Trends of the anomaly differences for winter and summer. Trends in bold-italic are statistically significant.

Station Trend [K/dec.] LST - Tair max (p-value) Trend [K/dec.] LST- T2M (p-value)

BAKER LAKE A
Summer -0.57 (0.30) -0.80 (0.043)

Winter -2.04 (0.10) -1.61 (0.28)

DEWAR LAKES
Summer 0.96 (0.23) 0.81 (0.22)

Winter -0.00 (1.0) 0.39 (0.45)

ILIRNEJ
Summer 0.06 (0.71) 0.21 (0.44)

Winter -0.43 (0.75) -0.33 (0.54)

KANGERLUSSUAQ
Summer 0.83 (0.008) 1.06 (0.001)

Winter -0.05 (0.93) 0.17 (0.85)

LAINIO
Summer 0.58 (0.08) 0.51 (0.10)

Winter - -

NADYM
Summer 1.56 (0.002) 1.41 (0.001)

Winter -0.97 (0.59) -0.89 (0.53)

SONDRESTROM
Summer -0.57 (0.11) -0.46 (0.21)

Winter -1.13 (0.19) -1.22 (0.16)

SUHANA
Summer 0.47 (0.028) 0.71 (0.0001)

Winter 1.43 (0.01) 0.80 (0.10)

SVEAGRUVA
Summer -0.53 (0.45) -0.42 (0.40)

Winter - -

SVETLOLBOVO
Summer 1.22 (0.009) 1.14 (0.01)

Winter 0.43 (0.41) 0.38 (0.55)

WISEMAN
Summer 0.34 (0.62) 0.34 (0.18)

Winter -1.39 (0.44) -0.71 (0.08)

WRIGLEY A
Summer 0.54 (0.23) 0.17 (0.29)

Winter -1.33 (0.39) -0.81 (0.46)
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(c) Difference Winter Anomalies
Station vs LST, Sen slope: -0.05 [°C/dec], P: 0.93538
ERA5 vs LST, Sen slope: -0.17 [°C/dec], P: 0.85842
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(d) Difference Summer Anomalies
Station vs LST, Sen slope: 0.83 [°C/dec], P: 0.00801
ERA5 vs LST, Sen slope: 1.06 [°C/dec], P: 0.00151

KANGERLUSSUAQ

Figure 10. Winter and summer anomalies and the difference between anomalies of LST, T2M and Tair time series for KANGERLUSSUAQ

(Greenland).
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(c) Difference Winter Anomalies
Station vs LST, Sen slope: 1.43 [°C/dec], P: 0.01525
ERA5 vs LST, Sen slope: 0.80 [°C/dec], P: 0.10145
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(d) Difference Summer Anomalies
Station vs LST, Sen slope: 0.47 [°C/dec], P: 0.02819
ERA5 vs LST, Sen slope: 0.71 [°C/dec], P: 0.00013

SUHANA

Figure 11. Winter and summer anomalies and the difference between anomalies of LST, T2M and Tair time series for SUHANA (Siberia).

29



4.4 LST analysis for the Pan-Arctic region

The previous sections identified a few stability issues in the current LST dataset, particularly during summer months (Table 7

and Table 10). However, these limitations are not unique to LST, as analyses of the difference between both air temperature

datasets also revealed instabilities (Table 7). While this highlights the stability and accuracy of the LST dataset, trend analysis

should be interpreted with care. The summer months are more prone to instability in the analysis than the winter months.430

Therefore, the trends of the winter and summer months are computed separately for the entire Pan-Arctic region (Fig. 12). This

allows us to compare and analyze temperature changes across different seasons. Additionally, mean LST values for summer

and winter for the Pan-Arctic are calculated (Fig. 13) to further understand temperature distributions during different seasons.

Cold glaciers and mountain zones in West Canada and Alaska are well captured in the summer mean temperatures (Fig. 13).

These regions also exhibit a pronounced warming during summer and winter (Fig. 12). Warmer mean winter temperatures are435

present along the Lena River in Siberia, which is also visible in the Mean Annual Ground Temperature (MAGT) map from

Obu et al. (2019). Generally, summer and winter mean LST values follow the temperature pattern shown in the MAGT map,

e.g. valleys in Russia present in the MAGT map are also visible in the mean LST values (Obu et al., 2019). The mountain range

of Yakutiya (far northeastern Russia) presents a pronounced winter warming trend. During summer that area does not show a

significant temperature trend.440

During the winter period, pronounced warming can also be observed in the south of Greenland as well as in eastern Canada

(Fig. 12c). Vandecrux et al. (2024) analysed firn and ice temperature at 10m below the surface (T10m) across the Greenland ice

sheet and found a general warming trend across the ice sheet. Parts of south Siberia show negative winter and summer trends.

Similar cooling trends for winter are also visible in the AVHRR Polar Pathfinder product over Siberia, as well as warming

trends along the Siberian north coast during winter (Key et al., 2016). Large areas at latitudes > 70° suffer from persistent445

cloud cover and are not covered by satellite LST data. Summer LST trends reveal warming in the north Siberian lowlands and

the Lena Delta area. Northern Canada and most of Greenland also show warming. Cooling trends are visible in the summer

period in the south of Siberia and southern Canada.
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Figure 12. (a) and (b) show the trends for the winter period and (c) and (d) the trends for the summer period. The left panels ((a) and (c)),

show the trends independent of their significance. The right panels (b) and (d) show only the significant trends, i.e. areas with statistically

insignificant trends (p>0.1) are masked out. 31



Figure 13. Mean LST (1981-2020) for (a) winter and (b) summer.

5 Discussion

5.1 Datasets450

5.1.1 EUMETSAT AVHRR FDR

The AVHRR data used in this study are not considered a fundamental climate data record (FCDR) because the calibration for

the thermal channels is satellite-specific, and uncertainty quantification is missing. The absence of thermal inter-calibration

of the IR sensors onboard AVHRR might introduce sensor discontinuities in the dataset (EUMETSAT, 2023c). Therefore, the

stability of this dataset needs to be thoroughly assessed before using it for climatological analyses. Solutions to fix this issue455

might be implemented in the next release of the FDR. However, in the present study, sensor discontinuities were not detected.

AVHRR data are affected by orbital drift and, although this effect is negligible for the northern hemisphere and monthly means,

this still might introduce artificial trends. Different solutions to correct for orbital drift exist (Ma et al., 2020; Julien and Sobrino,

2022). However, for the moment, none of the existing LST datasets applies such a correction to the entire AVHRR time period.
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The present study revealed artificial trends during summer months for a few stations when compared to ERA5-Land T2M and460

in situ air temperature.

5.1.2 ERA5-Land T2M

T2M data from reanalyses have the advantage that they are continuous and free of data gaps. However, the coarse resolution

of ERA5-Land (9 km), represents a challenge when compared with variables such as LST, which have high spatial variability

and are linked to intrinsic properties of the surface such as roughness and moisture (Hulley et al., 2014). Some discrepancies465

between ERA5-Land T2M and the EUSTACE station Tair data are visible in the anomaly analysis (Fig. 10 and Fig. 11).

Previous work performed for the Chinese Qilian Mountains (Zhao and He, 2022) found an average RMSE of 2.2 °C between

ERA5-Land and air temperature measurements from weather stations, which was mainly attributed to elevation differences

between both data sources. However, ERA5-Land performed well in estimating trends. Another study from the northeast of

Brazil (Araújo et al., 2022), which also compares air temperature data from stations to ERA5-Land, indicates that ERA5-Land470

generally underestimated average air temperature values.

5.1.3 EUSTACE Tair

EUSTACE air temperature data are homogenised and have undergone break detection and quality checks (Brugnara et al.,

2019). Large parts of East Siberia, northern Canada and Alaska only have a few EUSTACE weather stations on their territory

(Rayner et al., 2020). In general, stations are placed close to settlements and road access, meaning it is difficult to obtain quality475

weather station data from remote places. Satellite imagery represents, therefore, a valuable source for obtaining temperature

data from remote places. In the current study, many stations were discarded due to their proximity to large water bodies or

the coast, which would impact the comparison with remote sensing data. In Greenland, two EUSTACE stations are located

in close vicinity from each other (KANGERLUSSUAQ and SONDRESTROM). However, they present very different results

when compared to ERA5-Land data and satellite data (see Tables 7 and 9). Both stations are assigned to different ERA5-Land480

and satellite pixels. This area in Greenland is composed of deep fjords with steep hillslopes, which might not be captured well

by the spatially coarse model data and satellite data.

5.1.4 Pan-Arctic AVHRR LST

The AVHRR LST dataset developed in this study covers 40 years and represents a valuable data source, complementing data

from models and weather stations for obtaining temperature information at a hemispheric scale. A dynamic snow and vegetation485

cover mask is integrated into the LST algorithm to assign correct emissivities to snow-covered pixels. This is particularly

important for cryospheric research at high latitudes. Most of the existing LST datasets do not use a dynamic snow mask and

assign snow emissivity based on a static LSE map (Ma et al., 2020). Snow cover onset and snow melt onset are events that can

be captured by satellite thermal imagery and are of particular interest for the thermal regime of the ground (Grünberg et al.,

2020; Hammar et al., 2023). Westermann et al. (2012) highlighted the importance of using an accurate cloud mask when using490
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LST data for permafrost modelling, as this can lead to high uncertainties and a lack of accuracy. The Pan-Arctic AVHRR LST

dataset incorporates the latest cloud mask from the CLARA-A3 database (Karlsson et al., 2023b) and a low cloud probability

threshold (see Sect. 3) was used to avoid cloud contamination.

LST trends computed at different stations (Table 8) are positive and lie in the same ranges as trends computed for Tair and

T2M. Furthermore, LST temperature trend maps (Fig. 12) highlight areas that are particularly sensitive to arctic amplification495

and present pronounced warming trends. LST trends computed for the summer and winter periods at a hemispheric scale reveal

distinct warming areas but also some regions with cooling trends. Maturilli et al. (2019) determined air temperature trends from

weather station data in Ny-Ålesund (Svalbard) from 1993 to 2017 and found that the strongest warming trend occurred during

the winter season. They found a summer warming trend of +0.6K/decade, which corresponds to the LST warming trend for

Svalbard shown in Fig. 12. Compared to air temperature trends, satellite-derived LST trends can present a cold bias as only500

clear-sky days are considered in the LST generation (Westermann et al., 2017). Therefore, the all-sky LST trends might be

even higher. All-weather LST datasets have been generated in the past by combining energy balance modelling or reanalysis

LST data with LST TIR data (Martins et al., 2019; Zhang et al., 2021).

5.2 Point to pixel comparison

The landscape in the Pan-Arctic region is very heterogeneous, and e.g. complex wetland systems are difficult to map from505

satellite imagery (Olefeldt et al., 2021; Palmtag et al., 2022). Land cover data such as from the CCI project are thus prone to

high uncertainties in the high northern latitudes (Bartsch et al., 2024). The nominal spatial resolution of AVHRR GAC pixel

is 4 km. Air temperature measured at a nearby location might differ considerably from the corresponding AVHRR LST and

depends on vegetation type and water content of the ground.

5.3 Comparison of LST, Tair and T2M510

Day length and, consequently, solar irradiance cover a wide range in the Arctic. During winter, there is constant night, and Tair

is in close agreement with LST (Hachem et al., 2012; Urban et al., 2013). Furthermore, during winter, most of the Pan-Arctic

region is covered by snow. Snow cover variations directly influence LST (Thiebault and Young, 2020). LST and air temperature

anomalies exhibit a strong correlation (mean (r) > 0.6), and LST anomalies show a similar pattern to air temperature anomalies

(Fig. 10 and 11). LST anomalies present a greater magnitude, which can be explained by a greater amplitude in the LST diurnal515

cycle than in the air temperature diurnal cycle. Differences in winter anomalies are more pronounced than summer anomalies.

This can be explained by the clear-sky bias that occurs in satellite LST data (Westermann et al., 2012): cloud cover affects

the winter period more than the summer period. Such a cooling bias was also observed over the Greenland Ice sheet over

ice surface temperature (Hall et al., 2012). Regarding monthly means, the air temperature mean is higher than the LST mean

value, which only considers clear sky days. Under cloudy skies, air and surface temperature are in close agreement (Obu et al.,520

2019). A few missing data occurred in the EUSTACE, which made the ERA5-Land data more reliable for such an analysis.

However, EUSTACE records two temperatures per day, Tmax and Tmin. Therefore, for analysis at daily frequency, EUSTACE

might be more suitable, especially for satellites having an overpass time close to noon. Winter data proved to be stable over all
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investigated stations. This makes this dataset particularly interesting for studying the winter months in the high latitudes. The

winter period is a particularly active time for the ecosystem in the Arctic (Berge et al., 2015), but it tends to be understudied.525

Finally, trends for the three different datasets computed at stations with good temporal stability (Table 8) showed good

agreement, with LST trends generally exhibiting stronger positive trends than air temperature. In addition, LST winter trends

for mid-Siberia (Fig. 12) showed similar values as in Waring et al. (2023). Strong summer warming in the mid-Northern

Russian region (Krasnojarsk) and northern Nunavut (Canada) (visible in Fig. 12 (d)) is also visible in ERA5-Land temperature

data for the period 1984-2022 in the work of Larroca et al. (2024). The regions showing positive trends in LST are generally530

associated with lichens, moss and herbaceous land cover, whereas regions with negative trends are mostly located in forested

areas. Mildrexler et al. (2011) revealed the cooling effect of forests on LST, which might slow the general temperature increase

in the Arctic. The presence of thermokarst lakes and wetlands as depicted in Olefeldt et al. (2021) might also slow the warming

trends slightly. The Yamal peninsula, for example, contains many water bodies and thermokarst lakes and shows a slower

warming trend than an area with a majority of barren soil. Hemispheric LST data can also be used to highlight fast-warming535

areas that might lead to abrupt permafrost thaw, which in turn influences carbon fluxes (Treat et al., 2024). LST also has the

advantage over air temperature to be more sensitive to changes in vegetation density (Mildrexler et al., 2011), which makes

LST a particularly interesting variable for cryospheric research.

6 Conclusions

This study presents the workflow to derive a Pan-Arctic LST dataset from the EUMETSAT AVHRR GAC FDR and validates540

the new LST product against in situ LST. AVHRR LST is derived with the generalized split-window algorithm (Wan and

Dozier, 1996) and the corresponding RTM is performed with RTTOV v.13, based on a new calibration database (Ermida and

Trigo, 2022). This ensures an optimal representation of atmospheric conditions in the Pan-Arctic region. This LST dataset

utilises a recent cloud mask with notable improvements compared to previous cloud products (Karlsson et al., 2023b), which

is of particular importance for LST retrieval. The Pan-Arctic AVHRR LST product showed good performance, and validation545

results lie in the range of similar products. The new LST product is assessed for stability in the Pan-Arctic region by comparing

it to air temperature data from weather stations and T2M data from ERA5-Land. Twelve weather stations belonging to the

EUSATCE global station dataset are chosen based on several criteria: latitude > 50°N, a minimum of 30 years of overlapping

data, and homogeneous land cover over at least one GAC pixel. LST trends and variability are compared to ERA5-Land T2M

and EUSTACE Tair max data. The correlation coefficients between the datasets indicate good agreement, (r) > 0.9 for the550

monthly mean correlation and ∼0.5 to ∼0.8 for the anomaly analysis. The analysis of the differences in anomalies showed

slightly significant trends for the summer months but no artificial trends in the data during the winter months when solar

irradiance is absent. LST trends for the winter and summer periods were computed for the entire Pan-Arctic region and revealed

spatially varying trends. In winter positive trends in the south of Greenland, Siberia and eastern Canada were revealed. Summer

temperature trends highlight the fast warming of the Greenland Ice sheet and a large region in the vicinity of the Lena Delta. Its555

good accuracy and emissivity retrieval based on dynamical vegetation and snow masks make this product suitable for a wide
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range of research applications in the Pan-Arctic region. However, future research investigate a possible spatial upsampling of

the dataset, e.g. to 1 km spatial resolution. Orbital drift correction with a robust method would allow to extend the study to

lower latitudes.

Data availability. The EUMETSAT AVHRR FDR, the basis for this study, is available through the EUMETSAT Data Portal: http://doi.560
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Appendix A: Anomaly differences
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Figure A1. Differences of the anomalies at BAKER LAKE A (Canada) as a time series.
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Figure A2. Differences of the anomalies at DEWAR LAKES (Canada) as a time series.
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Figure A3. Differences of the anomalies at ILIRNEJ (East Siberia) as a time series.
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Figure A4. Differences of the anomalies at LAINIO (Norway) as a time series.
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Figure A5. Differences of the anomalies at NADYM (Siberia) as a time series.
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Figure A6. Differences of the anomalies at SONDRESTROM (Greenland) as a time series.
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Figure A7. Differences of the anomalies at SUHANA (Siberia) as a time series.
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Figure A8. Differences of the anomalies at SVETLOLBOVO (Siberia) as a time series.
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Figure A9. Differences of the anomalies at WISEMAN (Canada) as a time series.
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Figure A10. Differences of the anomalies at WRIGLEY A (Alaska) as a time series.
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Kukliński, P., Legeżyńska, J., Nikishina, D., Cusa, M., Kędra, M., Włodarska-Kowalczuk, M., Vogedes, D., Camus, L., Tran, D., Michaud,595

E., Gabrielsen, T. M., Granovitch, A., Gonchar, A., Krapp, R., and Callesen, T. A.: Unexpected levels of biological activity during the

polar night offer new perspectives on a warming arctic, Curr. Biol., 25, 2555–2561, https://doi.org/10.1016/j.cub.2015.08.024, 2015.

Borbas, E., Seemann, S. W., Huang, H.-L., Li, J. Y., and Menzel, W. P.: Global profile training database for satellite regression retrievals with

estimates of skin temperature and emissivity, in: In Proceedings of the International TOVS Study Conference-XIV, Beijing, China, 25–31

May 2005, https://api.semanticscholar.org/CorpusID:39950156, 2005.600

Brugnara, Y., Good, E., Squintu, A. A., van der Schrier, G., and Brönnimann, S.: The EUSTACE global land station daily air temperature

dataset, Geosci. Data J., 6, 189–204, https://doi.org/10.1002/gdj3.81, 2019.

Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sens. Environ., 62,

241–252, https://doi.org/10.1016/S0034-4257(97)00104-1, 1997.

Cheng, J., Liang, S., Yao, Y., and Zhang, X.: Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave605

Net Radiation, IEEE Geosci. Remote Sens. Lett., 10, 401–405, https://doi.org/10.1109/LGRS.2012.2206367, 2013.

Chevallier, F., Chédin, A., Cheruy, F., and Morcrette, J.-J.: TIGR-like atmospheric-profile databases for accurate radiative-flux computation,

Q. J. R. Meteorol. Soc., 126, 777–785, https://doi.org/10.1002/qj.49712656319, 2000.

Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M., Malmer, N., Friborg, T., Crill, P., and Svensson, B. H.: Thawing sub-

arctic permafrost: Effects on vegetation and methane emissions, Geophys. Res. Lett., 31, L04 501, https://doi.org/10.1029/2003GL018680,610

2004.

Chylek, P., Folland, C., Klett, J. D., Wang, M., Hengartner, N., Lesins, G., and Dubey, M. K.: Annual Mean Arctic Amplification 1970–2020:

Observed and Simulated by CMIP6 Climate Models, Geophys. Res. Lett., 49, e2022GL099 371, https://doi.org/10.1029/2022GL099371,

2022.

42

https://doi.org/10.1007/s10661-022-10047-2
https://arm.gov/capabilities/observatories/nsa
https://doi.org/10.1007/s10712-023-09770-3
https://doi.org/10.1007/s10712-023-09770-3
https://doi.org/10.1007/s10712-023-09770-3
https://doi.org/10.5194/hess-28-2421-2024
https://doi.org/10.5194/hess-28-2421-2024
https://doi.org/10.5194/hess-28-2421-2024
https://doi.org/10.3390/rs12040695
https://doi.org/10.1016/j.cub.2015.08.024
https://api.semanticscholar.org/CorpusID:39950156
https://doi.org/10.1002/gdj3.81
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1109/LGRS.2012.2206367
https://doi.org/10.1002/qj.49712656319
https://doi.org/10.1029/2003GL018680
https://doi.org/10.1029/2022GL099371


Coll, C., Hook, S. J., and Galve, J. M.: Land surface temperature from the advanced along-track scanning radiometer: Validation over inland615

waters and vegetated surfaces, IEEE T. Geosci. Remote, 47, 350–360, https://doi.org/10.1109/TGRS.2008.2002912, 2009.

Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from

satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.006f2c9a, last

access: 01 March 2024.

Copernicus digital elevation model (DEM) GLO-90: https://doi.org/10.5270/ESA-c5d3d65, last access: 01 March 2024.620

Cox, C. J. and Halliwell, D.: Basic measurements of radiation at station Alert (2004-08 - 2014-06),

https://doi.org/10.1594/PANGAEA.932867, 2021.

Dada, L., Angot, H., Beck, I., et al.: A central arctic extreme aerosol event triggered by a warm air-mass intrusion, Nat. Commun., 13, 5290,

https://doi.org/10.1038/s41467-022-32872-2, 2022.

Devasthale, A. and Karlsson, K.-G.: Decadal Stability and Trends in the Global Cloud Amount and Cloud Top Temperature in the Satellite-625

Based Climate Data Records, Remote Sens., 15, 3819, https://doi.org/10.3390/rs15153819, 2023.

Ermida, S. and Trigo, I.: A Comprehensive Clear-Sky Database for the Development of Land Surface Temperature Algorithms, Remote

Sens., 14, 2329, https://doi.org/10.3390/rs14102329, 2022.

Ermida, S. L., Trigo, I. F., DaCamara, C. C., Göttsche, F. M., Olesen, F. S., and Hulley, G.: Validation of remotely sensed surface tem-

perature over an oak woodland landscape - The problem of viewing and illumination geometries, Remote Sens. Environ., 148, 16–27,630

https://doi.org/10.1016/j.rse.2014.03.016, 2014.

Ermida, S. L., Jiménez, C., Prigent, C., Trigo, I. F., and DaCamara, C. C.: Inversion of AMSR-E observations for land sur-

face temperature estimation: 2. Global comparison with infrared satellite temperature, J. Geophys. Res., 122, 3348–3360,

https://doi.org/10.1002/2016JD026148, 2017.

ESA Snow CCI+: https://climate.esa.int/en/projects/snow/, last access: 01 March 2024.635

EUMETSAT: AVHRR Fundamental Data Record - Release 1 - Multimission, EUMETSAT [data set],

https://doi.org/10.15770/EUM_SEC_CLM_0060, 2023a.

EUMETSAT: PyGAC FDR ATBD, Tech. rep., EUMETSAT, ISBN 4961518077, https://doi.org/10.15770/EUM_SEC_CLM_0060, 2023b.

EUMETSAT: PyGAC AVHRR FDR Release 1 Product Users Guide, Tech. rep., EUMETSAT,

https://doi.org/10.15770/EUM_SEC_CLM_0060, 2023c.640

EUMETSAT: PyGAC AVHRR FDR Release 1 Validation Report, Tech. rep., EUMETSAT, https://doi.org/10.15770/EUM_SEC_CLM_0060,

2023d.

EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF): Product User Manual CM SAF Cloud,

Albedo, Radiation data record, AVHRR-based, Edition 3 (CLARA-A3) Cloud Products, Tech. rep., EUMETSAT CM SAF,

https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003, 2023.645

Freitas, S. C., Trigo, I. F., Bioucas-Dias, J. M., and Göttsche, F. M.: Quantifying the uncertainty of land surface temperature retrievals from

SEVIRI/Meteosat, IEEE T. Geosci. Remote, 48, 523–534, https://doi.org/10.1109/TGRS.2009.2027697, 2010.

Ghent, D., Dodd, E., Veal, K., Perry, M., Jimenez, C., and Ermida, S.: Algorithm Theoretical Basis Document: WP2.1 – DEL-LST-CCI-D2.2-

ATBD, Tech. rep., LST_CCI, https://admin.climate.esa.int/media/documents/LST-CCI-D2.2-ATBD_-_i4r0_-_Algorithm_Theoretical_

Basis_Document.pdf, 2023.650

Gleason, A. C., Prince, S. D., Goetz, S. J., and Small, J.: Effects of orbital drift on land surface temperature measured by AVHRR thermal

sensors, Remote Sens. Environ., 79, 147–165, https://doi.org/https://doi.org/10.1016/S0034-4257(01)00269-3, 2002.

43

https://doi.org/10.1109/TGRS.2008.2002912
https://doi.org/10.24381/cds.006f2c9a
https://doi.org/10. 5270/ESA-c5d3d65
https://doi.org/10.1594/PANGAEA.932867
https://doi.org/10.1038/s41467-022-32872-2
https://doi.org/10.3390/rs15153819
https://doi.org/10.3390/rs14102329
https://doi.org/10.1016/j.rse.2014.03.016
https://doi.org/10.1002/2016JD026148
https://climate.esa.int/en/projects/snow/
https://doi.org/10.15770/EUM_SEC_CLM_0060
https://doi.org/10.15770/EUM_SEC_CLM_0060
https://doi.org/10.15770/EUM_SEC_CLM_0060
https://doi.org/10.15770/EUM_SEC_CLM_0060
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003
https://doi.org/10.1109/TGRS.2009.2027697
https://admin.climate.esa.int/media/documents/LST-CCI-D2.2-ATBD_-_i4r0_-_Algorithm_Theoretical_Basis_Document.pdf
https://admin.climate.esa.int/media/documents/LST-CCI-D2.2-ATBD_-_i4r0_-_Algorithm_Theoretical_Basis_Document.pdf
https://admin.climate.esa.int/media/documents/LST-CCI-D2.2-ATBD_-_i4r0_-_Algorithm_Theoretical_Basis_Document.pdf
https://doi.org/https://doi.org/10.1016/S0034-4257(01)00269-3


Good, E. J.: An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures, Journal of Geophys-

ical Research, 121, 8801–8819, https://doi.org/10.1002/2016JD025318, 2016.

Good, E. J., Aldred, F. M., Ghent, D. J., Veal, K. L., and Jimenez, C.: An analysis of the stability and trends in the LST_cci Land Surface655

Temperature datasets over Europe, Earth Space Sci., 9, e2022EA002 317, https://doi.org/10.1029/2022EA002317, 2022.

Grünberg, I., Wilcox, E. J., Zwieback, S., Marsh, P., and Boike, J.: Linking tundra vegetation, snow, soil temperature, and permafrost,

Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, 2020.

Guillevic, P., Bork-Unkelbach, A., Gottsche, F. M., Hulley, G., Gastellu-Etchegorry, J. P., Olesen, F. S., and Privette, J. L.: Directional viewing

effects on satellite land surface temperature products over sparse vegetation canopies-a multisensor analysis, IEEE Geosci. Remote S., 10,660

1464–1468, https://doi.org/10.1109/LGRS.2013.2260319, 2013.

Guillevic, P., Göttsche, F., Nickeson, J., Hulley, G., Ghent, D., Yu, Y., Trigo, I., Hook, S., Sobrino, J. A., Remedios, J.,

Román, M., and Camacho, F.: Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1, Tech. rep.,

Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation Subgroup,

https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001, 2018.665

Göttsche, F., Olesen, F., Trigo, I., Bork-Unkelbach, A., and Martin, M.: Long Term Validation of Land Surface Temperature Retrieved from

MSG/SEVIRI with Continuous in-Situ Measurements in Africa, Remote Sens., 8, 410, https://doi.org/10.3390/rs8050410, 2016.

Hachem, S., Duguay, C. R., and Allard, M.: Comparison of MODIS-derived land surface temperatures with ground surface and air tempera-

ture measurements in continuous permafrost terrain, Cryosphere, 6, 51–69, https://doi.org/10.5194/tc-6-51-2012, 2012.

Hall, D. K., Comiso, J. C., Digirolamo, N. E., Shuman, C. A., Key, J. R., and Koenig, L. S.: A satellite-derived climate-quality data record670

of the clear-sky surface temperature of the greenland ice sheet, J. Climate, 25, 4785–4798, https://doi.org/10.1175/JCLI-D-11-00365.1,

2012.

Hammar, J., Grünberg, I., Kokelj, S. V., Sluijs, J. V. D., and Boike, J.: Snow accumulation, albedo and melt patterns following road construc-

tion on permafrost, Inuvik-Tuktoyaktuk Highway, Canada, Cryosphere, 17, 5357–5372, https://doi.org/10.5194/tc-17-5357-2023, 2023.

Hocking, J., Roquet, P., and Brunel, P.: Python/C/C++ wrapper for RTTOV v13, 2021.675

Hulley, G., Veraverbeke, S., and Hook, S.: Thermal-based techniques for land cover change detection using a new dynamic MODIS multi-

spectral emissivity product (MOD21), Remote Sens. Environ., 140, 755–765, https://doi.org/10.1016/j.rse.2013.10.014, 2014.

Hulley, G. C., Hook, S. J., Abbott, E., Malakar, N., Islam, T., and Abrams, M.: The ASTER Global Emissivity

Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale, Geophys. Res. Lett., 42, 7966–7976,

https://doi.org/https://doi.org/10.1002/2015GL065564, 2015.680

Hussain, M. and Mahmud, I.: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests., Journal of Open

Source Software, 4, 1556, https://doi.org/10.21105/joss.01556, 2019.

Ignatov, A., Laszlo, I., Harrod, E. D., Kidwell, K. B., and Goodrum, G. P.: Equator crossing times for NOAA, ERS and EOS sun-synchronous

satellites, Int. J. Remote Sens., 25, 5255–5266, https://doi.org/10.1080/01431160410001712981, 2004.

IPCC: 2021, Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth685

Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,

Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock,

T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., pp. 3–32, Cambridge University Press, Cambridge, United Kingdom and New

York, NY, USA, https://doi.org/10.1017/9781009157896.001, 2021.

44

https://doi.org/10.1002/2016JD025318
https://doi.org/10.1029/2022EA002317
https://doi.org/10.5194/bg-17-4261-2020
https://doi.org/10.1109/LGRS.2013.2260319
https://doi.org/10.5067/doc/ceoswgcv/lpv/lst.001
https://doi.org/10.3390/rs8050410
https://doi.org/10.5194/tc-6-51-2012
https://doi.org/10.1175/JCLI-D-11-00365.1
https://doi.org/10.5194/tc-17-5357-2023
https://doi.org/10.1016/j.rse.2013.10.014
https://doi.org/https://doi.org/10.1002/2015GL065564
https://doi.org/10.21105/joss.01556
https://doi.org/10.1080/01431160410001712981
https://doi.org/10.1017/9781009157896.001


Jiménez, C., Prigent, C., Ermida, S. L., and Moncet, J. L.: Inversion of AMSR-E observations for land surface temperature estimation: 1.690

Methodology and evaluation with station temperature, J. Geophys. Res., 122, 3330–3347, https://doi.org/10.1002/2016JD026144, 2017.

Julien, Y. and Sobrino, J. A.: Toward a Reliable Correction of NOAA AVHRR Orbital Drift, Front. Remote Sens., 3,

https://doi.org/10.3389/frsen.2022.851933, 2022.

Karlsruhe Institute of Technology (KIT) network: https://www.imk-asf.kit.edu/english/skl_surfacetemperature.php, last access: 01 March

2024.695

Karlsson, K.-G., Riihelä, AkuandTrentmann, J., Stengel, Martin andSolodovnik, I., Meirink, J. F., Devasthale, A., Jääskeläi-

nen, E., Kallio-Myers, V., Eliasson, S., Benas, N., Johansson, E., Stein, D., Finkensieper, S., Håkansson, N., Akkermans,

T., Clerbaux, N., Selbach, N., Schröder, M., and Hollmann, R.: CLARA-A3: CM SAF cLoud, Albedo and surface RAdi-

ation dataset from AVHRR data - Edition 3, Satellite Application Facility on Climate Monitoring (CM SAF), [data set],

https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003, 2023a.700

Karlsson, K. G., Stengel, M., Meirink, J. F., Riihelä, A., Trentmann, J., Akkermans, T., Stein, D., Devasthale, A., Eliasson, S., Johansson, E.,

Håkansson, N., Solodovnik, I., Benas, N., Clerbaux, N., Selbach, N., Schröder, M., and Hollmann, R.: CLARA-A3: The third edition of

the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023, Earth Sys. Sci.

Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, 2023b.

Key, J., Wang, X., Liu, Y., Dworak, R., and Letterly, A.: The AVHRR Polar Pathfinder Climate Data Records, Remote Sens., 8, 167,705

https://doi.org/10.3390/rs8030167, 2016.

Kidwell, K. B.: NOAA Polar Orbiter Data Users Guide, Tech. rep., National Climatic Data Center (U.S.). National Oceanic and Atmospheric

Administration, National Environmental Satellite, Data, and Information Service, National Climatic Data Center, Satellite Data Services

Division, https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.star.nesdis.noaa.gov/mirs/documents/

0.0_NOAA_KLM_Users_Guide.pdf, 1995.710

Kustov, V.: Basic and other measurements of radiation at station Cape Baranova (2016-09), https://doi.org/10.1594/PANGAEA.892295,

2018.

Kustov, V.: Basic and other measurements of radiation at station Tiksi (2010-06 et seq), https://doi.org/10.1594/PANGAEA.959213, 2023.

Larocca, L. J., Lea, J. M., Erb, M. P., McKay, N. P., Phillips, M., Lamantia, K. A., and Kaufman, D. S.: Arctic glacier snowline altitudes rise

150 m over the last 4 decades, Cryosphere, 18, 3591–3611, https://doi.org/10.5194/tc-18-3591-2024, 2024.715

Latifovic, R., Pouliot, D., and Dillabaugh, C.: Identification and correction of systematic error in NOAA AVHRR long-term satellite data

record, Remote Sens. Environ., 127, 84–97, https://doi.org/10.1016/j.rse.2012.08.032, 2012.

Li, J. H., Li, Z. L., Liu, X., and Duan, S. B.: A global historical twice-daily (daytime and nighttime) land surface temperature dataset

produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021, Earth Sys. Sci. Data, 15, 2189–2212,

https://doi.org/10.5194/essd-15-2189-2023, 2023a.720

Li, K., Guan, K., Jiang, C., Wang, S., Peng, B., and Cai, Y.: Evaluation of Four New Land Surface Temperature (LST)

Products in the U.S. Corn Belt: ECOSTRESS, GOES-R, Landsat, and Sentinel-3, IEEE J. Sel. Top. Appl., 14, 9931–9945,

https://doi.org/10.1109/JSTARS.2021.3114613, 2021.

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., and Sobrino, J. A.: Satellite-derived land surface temperature: Current

status and perspectives, Remote Sens. Environ., 131, 14–37, https://doi.org/https://doi.org/10.1016/j.rse.2012.12.008, 2013.725

Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., et al.: Satellite remote sensing of global land surface temperature: Definition,

methods, products, and applications, Rev. Geophys., 61, e2022RG000 777, https://doi.org/10.1029/2022RG000777, 2023b.

45

https://doi.org/10.1002/2016JD026144
https://doi.org/10.3389/frsen.2022.851933
https://www.imk-asf.kit.edu/english/skl_surfacetemperature.php
https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V003
https://doi.org/10.5194/essd-15-4901-2023
https://doi.org/10.3390/rs8030167
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.star.nesdis.noaa.gov/mirs/documents/0.0_NOAA_KLM_Users_Guide.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.star.nesdis.noaa.gov/mirs/documents/0.0_NOAA_KLM_Users_Guide.pdf
https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.star.nesdis.noaa.gov/mirs/documents/0.0_NOAA_KLM_Users_Guide.pdf
https://doi.org/10.1594/PANGAEA.892295
https://doi.org/10.1594/PANGAEA.959213
https://doi.org/10.5194/tc-18-3591-2024
https://doi.org/10.1016/j.rse.2012.08.032
https://doi.org/10.5194/essd-15-2189-2023
https://doi.org/10.1109/JSTARS.2021.3114613
https://doi.org/https://doi.org/10.1016/j.rse.2012.12.008
https://doi.org/10.1029/2022RG000777


Lieberherr, G. and Wunderle, S.: Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes,

Remote Sensing, 10, 990, https://doi.org/10.3390/rs10070990, 2018.

Lieberherr, G., Riffler, M., and Wunderle, S.: Performance Assessment of Tailored Split-Window Coefficients for the Retrieval of Lake730

Surface Water Temperature from AVHRR Satellite Data, Remote Sens., 9, 1334, https://doi.org/10.3390/rs9121334, 2017.

Lund, M., Stiegler, C., Abermann, J., Citterio, M., Hansen, B. U., and van As, D.: Spatiotemporal variability in surface energy balance across

tundra, snow and ice in Greenland, Ambio, 46, 81–93, https://doi.org/10.1007/s13280-016-0867-5, 2017.

Luojus, K.and Moisander, M., Pulliainen, J., Takala, M., Lemmetyinen, J., Derksen, C., Mortimer, C., Schwaizer, G., Nagler, T.,

and Venäläinen, P.: ESA Snow Climate Change Initiative (Snow_cci): Snow Water Equivalent (SWE) level 3C daily global cli-735

mate research data package (CRDP) (1979 – 2020), version 2.0, ESA Snow Climate Change Initiative (Snow_cci) [data set],

https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494, 2022.

Ma, J., Zhou, J., Gottsche, F. M., Liang, S., Wang, S., and Li, M.: A global long-term (1981-2000) land surface temperature product for

NOAA AVHRR, Earth Sys. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, 2020.

Martin, M. A., Ghent, D., Pires, A. C., Göttsche, F.-M., Cermak, J., and Remedios, J. J.: Comprehensive In Situ Validation of Five Satellite740

Land Surface Temperature Data Sets over Multiple Stations and Years, Remote Sens., 11, 479, https://doi.org/10.3390/rs11050479, 2019.

Martins, J. P. A., Trigo, I. F., Ghilain, N., Jimenez, C., Göttsche, F.-M., Ermida, S. L., Olesen, F.-S., Gellens-Meulenberghs, F., and

Arboleda, A.: An All-Weather Land Surface Temperature Product Based on MSG/SEVIRI Observations, Remote Sens., 11, 3044,

https://doi.org/10.3390/rs11243044, 2019.

Masuda, K., Takashima, T., and Takayama, Y.: Emissivity of pure and sea waters for the model sea surface in the infrared window regions,745

Remote Sens. Environ., 24, 313–329, https://doi.org/10.1016/0034-4257(88)90032-6, 1988.

Maturilli, M.: Basic and other measurements of radiation at station Ny-Ålesund (2006-05 et seq), https://doi.org/10.1594/PANGAEA.914927,

2020.

Maturilli, M., Hanssen-Bauer, I., Neuber, R., Rex, M., and Edvardsen, K.: The Atmosphere Above Ny-Ålesund: Climate and Global Warm-

ing, Ozone and Surface UV Radiation, pp. 23–46, Springer International Publishing, https://doi.org/10.1007/978-3-319-46425-1_2, 2019.750

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An overview of the global historical climatology network-daily

database, J. Atmos. Ocean. Tech., 29, 897–910, https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.

Mildrexler, D. J., Zhao, M., and Running, S. W.: A global comparison between station air temperatures and MODIS land surface temperatures

reveals the cooling role of forests, J. Geophys. Res., 116, G03 025, https://doi.org/10.1029/2010JG001486, 2011.

Mildrexler, D. J., Zhao, M., Cohen, W. B., Running, S. W., Song, X. P., and Jones, M. O.: Thermal anomalies detect critical global land755

surface changes, J Appl. Meteorol. Clim., 57, 391–411, https://doi.org/10.1175/JAMC-D-17-0093.1, 2018.

Miner, K. R., Turetsky, M. R., Malina, E., et al.: Permafrost carbon emissions in a changing Arctic, Nat. Rev. Earth Environ., 3, 55–67,

https://doi.org/10.1038/s43017-021-00230-3, 2022.

Muñoz Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach,

H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a760

state-of-the-art global reanalysis dataset for land applications, Earth Sys. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-

2021, 2021.

Niclòs, R., Valor, E., Caselles, V., Coll, C., and Sánchez, J. M.: In situ angular measurements of thermal infrared sea surface emissivity -

Validation of models, Remote Sens. Environ., 94, 83–93, https://doi.org/10.1016/j.rse.2004.09.002, 2005.

46

https://doi.org/10.3390/rs10070990
https://doi.org/10.3390/rs9121334
https://doi.org/10.1007/s13280-016-0867-5
https://doi.org/10.5285/4647cc9ad3c044439d6c643208d3c494
https://doi.org/10.5194/essd-12-3247-2020
https://doi.org/10.3390/rs11050479
https://doi.org/10.3390/rs11243044
https://doi.org/10.1016/0034-4257(88)90032-6
https://doi.org/10.1594/PANGAEA.914927
https://doi.org/10.1007/978-3-319-46425-1_2
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.1029/2010JG001486
https://doi.org/10.1175/JAMC-D-17-0093.1
https://doi.org/10.1038/s43017-021-00230-3
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1016/j.rse.2004.09.002


Nielsen-Englyst, P., Høyer, J. L., Madsen, K. S., Tonboe, R. T., Dybkjær, G., and Skarpalezos, S.: Deriving Arctic 2m air temperatures over765

snow and ice from satellite surface temperature measurements, Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021,

2021.

Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.: Remote sensing quantifies widespread abundance of permafrost region

disturbances across the Arctic and Subarctic, Nature Commun., 9, https://doi.org/10.1038/s41467-018-07663-3, 2018.

Obu, J., Westermann, S., Kääb, A., and Bartsch, A.: Ground Temperature Map, 2000-2016, Northern Hemisphere Permafrost, PANGAEA770

[data set], https://doi.org/10.1594/PANGAEA.888600, 2018.

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B.,

Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-

Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2

scale, Earth-Sci. Rev., 193, 299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.775

Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., Crill, P., Euskirchen, E. S., Finkelstein, S. A., Genet,

H., Grosse, G., Harris, L. I., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., Manies, K.,

McGuire, A. D., Natali, S. M., O’Donnell, J. A., Parmentier, F.-J. W., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S. E.,

Treat, C., Varner, R. K., Virtanen, T., Warren, R. K., and Watts, J. D.: The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth Sys.

Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, 2021.780

Palmtag, J., Obu, J., Kuhry, P., Richter, A., Siewert, M. B., Weiss, N., Westermann, S., and Hugelius, G.: A high spatial resolution soil carbon

and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling, Earth Sys. Sci. Data, 14, 4095–4110,

https://doi.org/10.5194/essd-14-4095-2022, 2022.

Pearson, R. K.: Outliers in process modeling and identification, IEEE T. Contr. Syst. T., 10, 55–63, https://doi.org/10.1109/87.974338, 2002.

Peres, L. F. and DaCamara, C. C.: Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI, IEEE T. Geosci. Remote, 43,785

1834–1844, https://doi.org/10.1109/TGRS.2005.851172, 2005.

Prata, A. J.: Land surface temperatures derived from the advanced very high resolution radiometer and the along-track scanning radiometer:

2. Experimental results and validation of AVHRR algorithms, J. Geophys. Res., 99, 13 025–13 058, https://doi.org/10.1029/94JD00409,

1994.

Price, J. C.: Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution790

Radiometer, Journal of Geophysical Research: Atmospheres, 89, 7231–7237, https://doi.org/10.1029/JD089iD05p07231, 1984.

PyGAC documentation: https://pygac.readthedocs.io/en/latest/, last access: 01 March 2024.

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has

warmed nearly four times faster than the globe since 1979, Nat. Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-

00498-3, 2022.795

Rantanen, M., Kämäräinen, M., Niittynen, P., Phoenix, G. K., Lenoir, J., Maclean, I., Luoto, M., and Aalto, J.: Bioclimatic atlas of the

terrestrial Arctic, Nat. Sci. Data, 10, 40, https://doi.org/10.1038/s41597-023-01959-w, 2023.

Rasmussen, M. O., Gottsche, F.-M., Olesen, F.-S., and Sandholt, I.: Directional Effects on Land Surface Temperature Estimation

From Meteosat Second Generation for Savanna Landscapes, IEEE Transactions on Geoscience and Remote Sensing, 49, 4458–4468,

https://doi.org/10.1109/TGRS.2011.2144604, 2011.800

Rayner, N. A., Auchmann, R., Bessembinder, J., Brönnimann, S., Brugnara, Y., Capponi, F., Carrea, L., Dodd, E. M., Ghent, D., Good, E.,

Høyer, J. L., Kennedy, J. J., Kent, E. C., Killick, R. E., van der Linden, P., Lindgren, F., Madsen, K. S., Merchant, C. J., Mitchelson, J. R.,

47

https://doi.org/10.5194/tc-15-3035-2021
https://doi.org/10.1038/s41467-018-07663-3
https://doi.org/10.1594/PANGAEA.888600
https://doi.org/10.1016/j.earscirev.2019.04.023
https://doi.org/10.5194/essd-13-5127-2021
https://doi.org/10.5194/essd-14-4095-2022
https://doi.org/10.1109/87.974338
https://doi.org/10.1109/TGRS.2005.851172
https://doi.org/10.1029/94JD00409
https://doi.org/10.1029/JD089iD05p07231
https://pygac.readthedocs.io/en/latest/
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s41597-023-01959-w
https://doi.org/10.1109/TGRS.2011.2144604


Morice, C. P., Nielsen-Englyst, P., Ortiz, P. F., Remedios, J. J., van der Schrier, G., Squintu, A. A., Stephens, A., Thorne, P. W., Tonboe,

R. T., Trent, T., Veal, K. L., Waterfall, A. M., Winfield, K., Winn, J., and Woolway, R. I.: The EUSTACE project: Delivering global, daily

information on surface air temperature, B. Am. Meteorol. Soc., 101, E1924–E1947, https://doi.org/10.1175/BAMS-D-19-0095.1, 2020.805

Reiners, P., Asam, S., Frey, C., Holzwarth, S., Bachmann, M., Sobrino, J., Göttsche, F. M., Bendix, J., and Kuenzer, C.: Vali-

dation of avhrr land surface temperature with modis and in situ lst—a timeline thematic processor, Remote Sens., 13, 3473,

https://doi.org/10.3390/rs13173473, 2021.

Reiners, P., Sobrino, J., and Kuenzer, C.: Satellite-Derived Land Surface Temperature Dynamics in the Context of Global Change—A Review,

Remote Sens., 15, 1857, https://doi.org/10.3390/rs15071857, 2023.810

Riffler, M., Lieberherr, G., and Wunderle, S.: Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced

Very High Resolution Radiometer (AVHRR) 1 km data set, Earth Syst. Sci. Data, 7, 1–17, https://doi.org/10.7892/boris.63301, 2015.

Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N.,

and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737,

https://doi.org/10.5194/gmd-11-2717-2018, 2018.815

Sharifnezhadazizi, Z., Norouzi, H., Prakash, S., Beale, C., and Khanbilvardi, R.: A Global Analysis of Land Surface Temperature Diurnal

Cycle Using MODIS Observations, J. Appl. Meteor. Climatol., 58, 1279–1291, https://doi.org/10.1175/JAMC-D-18-0256.1, 2019.

Sobrino, J., Raissouni, N., and Li, Z.-L.: A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data, Remote Sens.

Environ., 75, 256–266, https://doi.org/https://doi.org/10.1016/S0034-4257(00)00171-1, 2001.

Sobrino, J. A. and Raissouni, N.: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco, Int. J. Remote820

Sens., 21, 353–366, https://doi.org/10.1080/014311600210876, 2000.

Sobrino, J. A., Jiménez-Muñoz, J. C., Labed-Nachbrand, J., and Nerry, F.: Surface emissivity retrieval from Digital Airborne Imaging

Spectrometer data, J. Geophys. Res., 107, ACL 24–1–ACL 24–13, https://doi.org/10.1029/2002JD002197, 2002.

Sobrino, J. A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and Martínez, P.: Land surface emissivity

retrieval from different VNIR and TIR sensors, IEEE T. Geosci. Remote, 46, 316–327, https://doi.org/10.1109/TGRS.2007.904834, 2008.825

Sulla-Menashe, D. and Friedl, M. A.: User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product, Tech. rep.,

USGS, https://doi.org/10.5067/MODIS/MCD12Q1, 2018.

Surface Radiation Budget (SURFRAD) network: https://gml.noaa.gov/grad/surfrad/, last access: 01 March 2024.

Thiebault, K. and Young, S.: Snow cover change and its relationship with land surface temperature and vegetation in northeastern North

America from 2000 to 2017, Int. J. Remote Sens., 41, 8453–8474, https://doi.org/10.1080/01431161.2020.1779379, 2020.830

Treat, C. C., Virkkala, A., Burke, E., Bruhwiler, L., Chatterjee, A., Fisher, J. B., Hashemi, J., Parmentier, F. W., Rogers, B. M., Westermann,

S., Watts, J. D., Blanc-Betes, E., Fuchs, M., Kruse, S., Malhotra, A., Miner, K., Strauss, J., Armstrong, A., Epstein, H. E., Gay, B.,

Goeckede, M., Kalhori, A., Kou, D., Miller, C. E., Natali, S. M., Oh, Y., Shakil, S., Sonnentag, O., Varner, R. K., Zolkos, S., Schuur, E. A.,

and Hugelius, G.: Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems, J. Geophys.

Res.-Biogeo., 129, e2023JG007 638, https://doi.org/10.1029/2023JG007638, 2024.835

Trigo, I., Monteiro, I. T., Olesen, F., and Kabsch, E.: An assessment of remotely sensed land surface temperature, J. Geophys. Res., 113,

D17 108, https://doi.org/10.1029/2008JD010035, 2008a.

Trigo, I., Peres, L. F., DaCamara, C. C., and Freitas, S. C.: Thermal land surface emissivity retrieved from SEVIRI/Meteosat, IEEE T. Geosci.

Remote, 46, 307–315, https://doi.org/10.1109/TGRS.2007.905197, 2008b.

48

https://doi.org/10.1175/BAMS-D-19-0095.1
https://doi.org/10.3390/rs13173473
https://doi.org/10.3390/rs15071857
https://doi.org/10.7892/boris.63301
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.1175/JAMC-D-18-0256.1
https://doi.org/https://doi.org/10.1016/S0034-4257(00)00171-1
https://doi.org/10.1080/014311600210876
https://doi.org/10.1029/2002JD002197
https://doi.org/10.1109/TGRS.2007.904834
https://doi.org/10.5067/MODIS/MCD12Q1
https://gml.noaa.gov/grad/surfrad/
https://doi.org/10.1080/01431161.2020.1779379
https://doi.org/10.1029/2023JG007638
https://doi.org/10.1029/2008JD010035
https://doi.org/10.1109/TGRS.2007.905197


Trigo, I., Dacamara, C. C., Viterbo, P., Roujean, J. L., Olesen, F., Barroso, C., Camacho-De-Coca, F., Carrer, D., Freitas, S. C., García-Haroj,840

J., Geiger, B., Gellens-Meulenberghs, F., Ghilain, N., Meliá, J., Pessanha, L., Siljamo, N., and Arboleda, A.: The satellite application

facility for land surface analysis, Int. J. Remote Sens., 32, 2725–2744, https://doi.org/10.1080/01431161003743199, 2011.

Trigo, I., Freitas, S., Bioucas-Dias, J., Barroso, C., Monteiro, I., Viterbo, P., and Martins, J. P.: Algorithm Theoretical Basis Document for

Land Surface Temperature (LST), PRODUCTS: LSA-002 (ELST), Tech. rep., EUMETSAT LSA SAF, https://nextcloud.lsasvcs.ipma.pt/

s/NsW275gpDAfekzc?dir=undefined&path=%2FATBD-Algorithm_Theoretial_Basis_Document&openfile=27090, 2017.845

Urban, M., Eberle, J., Hüttich, C., Schmullius, C., and Herold, M.: Comparison of satellite-derived land surface temperature and air temper-

ature from meteorological stations on the pan-arctic scale, Remote Sens., 5, 2348–2367, https://doi.org/10.3390/rs5052348, 2013.

Urraca, R. and Gobron, N.: Temporal stability of long-term satellite and reanalysis products to monitor snow cover trends, Cryosphere, 17,

1023–1052, https://doi.org/10.5194/tc-17-1023-2023, 2023.

Vandecrux, B., Fausto, R. S., Box, J. E., Covi, F., Hock, R., Åsa K. Rennermalm, Heilig, A., Abermann, J., van As, D., Bjerre, E., Fettweis,850

X., Smeets, P. C. J. P., Munneke, P. K., van den Broeke, M. R., Brils, M., Langen, P. L., Mottram, R., and Ahlstrøm, A. P.: Recent warming

trends of the Greenland ice sheet documented by historical firn and ice temperature observations and machine learning, Cryosphere, 18,

609–631, https://doi.org/10.5194/tc-18-609-2024, 2024.

Walton, C. C., Sullivan, J. T., Rao, C. R. N., and Weinreb, M. P.: Corrections for detector nonlinearities and calibration inconsistencies of the

infrared channels of the advanced very high resolution radiometer, J. Geophys. Res., 103, 3323–3337, https://doi.org/10.1029/97JC02018,855

1998.

Wan, Z. and Dozier, J.: A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE T. Geosci. Remote,

34, 892–905, https://doi.org/10.1109/36.508406, 1996.

Wang, A. and Zeng, X.: Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes, J. Geophys.

Res., 119, 5836–5844, https://doi.org/10.1002/2014JD021602, 2014.860

Wang, L., Arora, V. K., Bartlett, P., Chan, E., and Curasi, S. R.: Mapping of ESA’s Climate Change Initiative land cover data to plant

functional types for use in the CLASSIC land model, Biogeosciences, 20, 2265–2282, https://doi.org/10.5194/bg-20-2265-2023, 2023.

Waring, A. M., Ghent, D., Perry, M., Anand, J. S., Veal, K. L., and Remedios, J.: Regional climate trend analyses for Aqua MODIS land

surface temperatures, Int. J. Remote Sens., 44, 4989–5032, https://doi.org/10.1080/01431161.2023.2240522, 2023.

Westermann, S., Uers, J. L., Langer, M., Piel, K., and Boike, J.: The annual surface energy budget of a high-arctic permafrost site on Svalbard,865

Norway, Cryosphere, 3, 245–263, www.the-cryosphere.net/3/245/2009/, 2009.

Westermann, S., Langer, M., and Boike, J.: Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site

on Svalbard, Norway, Remote Sens. Environ., 118, 162–167, https://doi.org/https://doi.org/10.1016/j.rse.2011.10.025, 2012.

Westermann, S., Peter, M., Langer, M., Schwamborn, G., Schirrmeister, L., Etzelmüller, B., and Boike, J.: Transient modeling of the ground

thermal conditions using satellite data in the Lena River delta, Siberia, Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-870

2017, 2017.

World Meteorological Organization (WMO) : Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC,

Tech. Rep. GOOS-184, GTOS-76, WMO-TD/No. 1523, WMO, Geneva, Switzerland, 2010.

Yang, J., Zhou, J., Göttsche, F. M., Long, Z., Ma, J., and Luo, R.: Investigation and validation of algorithms for estimating land surface

temperature from Sentinel-3 SLSTR data, Int. J. Appl. Earth Obs., 91, 102 136, https://doi.org/10.1016/j.jag.2020.102136, 2020.875

49

https://doi.org/10.1080/01431161003743199
https://nextcloud.lsasvcs.ipma.pt/s/NsW275gpDAfekzc?dir=undefined&path=%2FATBD-Algorithm_Theoretial_Basis_Document&openfile=27090
https://nextcloud.lsasvcs.ipma.pt/s/NsW275gpDAfekzc?dir=undefined&path=%2FATBD-Algorithm_Theoretial_Basis_Document&openfile=27090
https://nextcloud.lsasvcs.ipma.pt/s/NsW275gpDAfekzc?dir=undefined&path=%2FATBD-Algorithm_Theoretial_Basis_Document&openfile=27090
https://doi.org/10.3390/rs5052348
https://doi.org/10.5194/tc-17-1023-2023
https://doi.org/10.5194/tc-18-609-2024
https://doi.org/10.1029/97JC02018
https://doi.org/10.1109/36.508406
https://doi.org/10.1002/2014JD021602
https://doi.org/10.5194/bg-20-2265-2023
https://doi.org/10.1080/01431161.2023.2240522
www.the-cryosphere.net/3/245/2009/
https://doi.org/https://doi.org/10.1016/j.rse.2011.10.025
https://doi.org/10.5194/tc-11-1441-2017
https://doi.org/10.5194/tc-11-1441-2017
https://doi.org/10.5194/tc-11-1441-2017
https://doi.org/10.1016/j.jag.2020.102136


Zhang, X., Zhou, J., Liang, S., and Wang, D.: A practical reanalysis data and thermal infrared remote sensing data merg-

ing (RTM) method for reconstruction of a 1-km all-weather land surface temperature, Remote Sens. Environ., 260, 112 437,

https://doi.org/10.1016/j.rse.2021.112437, 2021.

Zhao, P. and He, Z.: A First Evaluation of ERA5-Land Reanalysis Temperature Product Over the Chinese Qilian Mountains, Front. Earth

Sci., 10, https://doi.org/10.3389/feart.2022.907730, 2022.880

Zhou, J., Liang, S., Cheng, J., Wang, Y., and Ma, J.: The GLASS Land Surface Temperature Product, IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 12, 493–507, https://doi.org/10.1109/JSTARS.2018.2870130, 2019.

50

https://doi.org/10.1016/j.rse.2021.112437
https://doi.org/10.3389/feart.2022.907730
https://doi.org/10.1109/JSTARS.2018.2870130

