
Author’s response 

We thank the Referees and Editor for their respective feedback. In addition to the point-by-
point answers, we adapted the ‘Data availability’ statement accordingly.  

Point-by-point Answers 

We thank Referee #1 for the useful and detailed comments. We have followed the 
suggestions and modified our manuscript as described in the line-by-line answers below. 
Note that the reviewer’s comments are in black text, our answers in red and the changes in 
the manuscript are indicated in red italic. 

Specific comments 

1. In [Page 7, Table1], the unit of latitude, longitude, and elevation in the table head should 
be indicated 

The units were added to the table head. 

2. The 2m-air temperature is derived from the ERA5-Land product, but skin temperature 
and total column water vapor are derived from MERRA-2. I would like to know why different 
reanalysis data are used, as ERA5 seems to provide these parameters as well, with a 
higher spatial resolution. 

Two datasets were chosen for this study: MERRA-2 and ERA5-Land. 

MERRA-2 assimilates space-based observations of aerosols and accounts for ice sheets, 
ensuring accurate data for regions like Greenland. The GLASS product (Ma et al., 2020) has 
been generated with MERRA-2 products: using MERRA-2 for our study simplifies 
comparisons between the GLASS and our product. Our study uses skin temperature and 
total column water vapor from MERRA-2 to determine the atmospheric conditions at each 
pixel and to select the split-window (SW) coefficients from the look-up table. 

In contrast, air temperature data from ERA5-Land are used for the correlation and stability 
analysis. Using separate sources of reanalysis data helps keeping the stability analysis 
independent from the SW coefficient assignment process. Furthermore, ERA5-Land has 
been fully validated in the Arctic region in a previous study on climate indices for the 
northern high-latitudes regions (Rantanen et al., 2023). Finally, in the stability analysis we 
compared point data (weather station data), satellite data and a reanalysis product: in order 
to optimize the spatial representativeness in the point-to-pixel comparisons, the reanalysis 
product with the highest spatial resolution has been chosen. 

The above choices are now explained in a corresponding paragraph added to subsection 
#2.4 Auxiliary data.  



2.4 Auxiliary data 

Skin temperature (Tskin) and Total Column Water Vapor (TCWV) from the MERRA-2 
reanalysis dataset (M2T1NXSLV, variables are labelled TS and TQV). The data come at hourly 
temporal resolution with a spatial resolution of 0.5° x 0.625°. Nearest neighbour resampling 
was performed to match the AVHRR spatial resolution and scanline time, i.e. as in the work 
of Ma et al. (2020). MERRA-2 is preferred over other reanalysis products with finer spatial 
resolution to allow comparison with the GLASS product (Ma et al. 2020) and to keep the LST 
retrieval independent from ERA5-Land, which will be used for the stability analysis. 

 

3. The accuracy validation of LST estimations is conducted over SURFRAD and KIT sites, 
while the application and analysis focus on the Pan-Arctic region. If there are available 
sites in the Arctic region to provide a more intuitive validation? 

Data from the Atmospheric Radiation Measurement Climate Research Facility US 
Department of Energy (ARM) site at the North Slope of Alaska (NSA) are available from 2007 
to 2012. These data have previously been used in the ESA GlobTemperature project and 
have undergone quality control procedures. The data from the NSA site in northern Alaska 
has been integrated into our validation, and the corresponding figure (Fig. 4) and table (Table 
2) have been updated accordingly. Subsection #4.1.2 Validation with in situ LST is modified 
accordingly. The surface is very heterogeneous at the NSA site, the station being close to 
lagoons (North Salt Lagoon and Imikpuk Lake), and very close to the coast. This explains why 
the performances are much worse during summertime than during wintertime, when the 
entire area is covered by snow and ice. 
In our work, we rely exclusively on data that have been quality controlled and previously 
used to validate global operational LST datasets, e.g., the ESA GlobTemperature and 
LST_CCI datasets.  



Figure 4. AVHRR LST versus in situ LST at (a) Bondville (BND), (b) Desert Rock (DRA), (c) Fort 
Peck (FPK), (d) Goodwin Creek (GCM),(e) Penn. State Univ (PSU), (f) Sioux Falls (SFA), (g) 
Southern Great Plains (SGP), (h) Table Mountain (TBL), (i) Evora (EVO), (j) Lake Constance 
(BOD), (k) North Slope of Alaska (NSA). Red represents daytime measurements and blue 
represents nighttime measurements. Match-up periods are provided in the text. 

 

4. In [Page 8], the authors mention that “The Copernicus digital elevation model (DEM) 
GLO-90 upscaled to 0.05° spatial resolution is used for the RT modelling”. The geopotential 



height has been included in the used atmospheric profile dataset which can be used to 
calculate elevation, why still using additional data sources? 

Geopotential height was used for the generation of the database (Ermida et al., 2022) but 
was not saved in the final disseminated product (personal communication from Dr. Ermida). 

5. In [Page 12], the authors mention that “Pixels that have a cloud fraction higher than 0.1 
are removed, and the average of the remaining pixels is computed”. As far as I am 
concerned, in order to eliminate potential cloud contamination, LST averaging should be 
performed only when all pixels within the window are clear. 

Thank you for pointing this out. Our work uses a probabilistic cloud mask (named 
CMAPROB), part of the level-2b product of CLARA-A3 (CM-SAF, CLARA-A3 Product User 
Guide, 2023)., i.e., not a cloud fraction layer. This was a misrepresentation in the manuscript 
and has been corrected accordingly. Pixels with a cloud probability below 0.1 are 
considered clear. This is a compromise between data availability and avoiding cloud 
contamination, particularly over snow and ice surfaces; this is a reasonable assumption. 
One sentence explaining the above has been added to subsection #3.4 LST AVHRR time 
series generation. 

3.4 LST AVHRR time series generation 

Depending on the heterogeneity of the land cover, between four and nine AVHRR LST GAC 
pixels are extracted around each station. Pixels that have a cloud probability higher than 0.1 
are removed, and the average of the remaining pixels is computed. Pixels with a cloud 
probability of 0.1 or lower are considered cloud-free. This cloud probability threshold is a 
compromise between data availability and avoiding cloud contamination. 

 

6. In [Page 13, line 265], the explanations of symbols in equation (4) to (6) are missed. 

Symbol explanations were added to equations (4) to (6) on [Page 13]. 

7. In [Page 14, line 295], only nighttime observations from EVO site are used to bypass the 
directional effects. While for several SURFRAD sites covered by vegetation, possible 
directional effects may also exist, but why both daytime and nighttime data are used? 

The main end-members at Evora LST validation site are evergreen trees (mainly cork oak 
trees) and grass. A tree crown cover (TCC) of 33% was determined from satellite data 
(Guillevic et al., 2013; Ermida et al., 2014). Structured canopies such as the ones in EVORA 
can show pronounced directional effects which influence LST estimates. These effects 
depend on illumination and viewing geometries (Rasmusen et al. 2011). At daytime, the EVO 



site shows a high level of thermal anisotropy, with temperature differences between the tree 
crowns and the (dry) grass frequently exceeding 20K.  

The SURFRAD station at DRA (desert Rock, Nevada) also exhibits an arid soil with small 
bushes leading to anisotropy, although not as pronounced as EVORA. The validation plot 
(Fig. 4, see comment #3) has been modified and now separates day and night information. 

More details about EVO station and on anisotropy effects have been added to subsection   
to subsection #4.1.2 Validation with in situ LST. 

4.1.2 Validation with in situ LST 

EVO is located in an evergreen oak woodland with approximately 33% of tree crown cover, 
which can affect the satellite-retrieved LST due to directional effects (Rasmussen et al. 
2011; Guillevic et al., 2013; Ermida et al., 2014). Due to this anisotropy, the surface in EVO 
presents high temperature differences between trees and ground. The nighttime in situ 
measurements in EVO are therefore more suited than daytime observations [removed 
sentence] 

 

8. It seems that only the overall performance is shown in Figure 4. It is recommended to 
add accuracy metrics for daytime and nighttime, respectively, to provide a better 
comparison. 

Please see our answer to comment #3 and #7; plots showing the day/night validation results 
separately were added to Figure 4 and subsection #4.1.2 Validation with in situ LST has been 
modified accordingly. 

 

9. The trend analysis is conducted based on monthly averaged LST of each pixel (There are 
fewer descriptions about this in the manuscript, thus I guess maybe all clear-sky daytime 
and nighttime observations of the pixel are used to calculate). However, the averaged LSTs 
may be seriously affected by the frequency of cloud cover. For example, for pixel A, 
daytime observations account for 50% proportion, whereas in pixel B, they constitute 70%. 
Since daytime LST tend to be larger than nighttime LST, the averaged LST of pixel B tend to 
be larger than A, but that may not be the true situation. Therefore, the cloud cover may lead 
to the incomparability between pixels. Even for the same pixel, changes in cloud cover 
frequency between different months may also result in temporal incomparability. 
Therefore, is it possible to reduce these incomparable effects, such as ensuring a 



balanced distribution between day and night LSTs to calculate averaged LST? Besides, this 
restriction should be briefly explained in the discussion section. 

The analysis was limited to daytime data: this has now been clarified in the manuscript. Only 
data with a cloud probability (not fraction – see our answer to comment #5) of less than 0.1 
were used, thereby strongly reducing potential cloud contamination. Subsection #3.4 LST 
AVHRR time series generation of the manuscript has been modified accordingly and now 
provides the correct details of the cloud filtering and which data entered the time series 
generation. The stability of global cloud cover products has been investigated by Abhay 
Devasthale et al. (2023). Eastman and Warren (2010) compared surface observed cloud 
cover with satellite data. Both studies found that over land in the pan-Arctic, the trend of the 
total cloud amount is statistically not significant. 

3.4 LST AVHRR time series generation 

Depending on the heterogeneity of the land cover, between four and nine AVHRR LST GAC 
pixels are extracted around each station. Pixels that have a cloud probability higher than 0.1 
are removed, and the average of the remaining pixels is computed. Daytime data from 
NOAA-7, 9, 11, 14, 16, 18 and 19 (satellites with ascending (northbound) equator crossing 
times), as well as the entire MetOp series (satellites with descending (southbound) equator 
crossing times), are considered for constructing the time series. The considered period for 
each satellite is chosen to minimise orbital drift and avoid the outage periods (EUMETSAT, 
2023d). The retained periods are listed in Table 4. 

Once the relevant periods are extracted, outlier detection is performed based on a 10-day 
rolling window analysis and detected outliers are removed. Daily temperature variability is 
very high (Mildrexler et al., 2011), and AVHRR-derived LST time series are subject to noise, 
therefore, monthly means are computed from the concatenated day time series for further 
analysis. 
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We thank the Referee for constructive criticism and comments which significantly improved 
our manuscript. In the following, we provide point-by-point replies to all issues raised. Note 
that the reviewer’s comments are in black text, our answers in red and the changes in the 
manuscript are indicated in red italic. 

 

1. It is not completely clear what is the added value of having this specific dataset derived 
for the artic region if the authors are simply averaging all observations within a day. There 
are already datasets available based on AVHRR that provide daily composites (e.g. GLASS, 
LSA-SAF). In my opinion, it would have been more beneficial to explore the multiple 
passages of the different AVHRR to try to reconstruct the diurnal cycle. That would have 
made the dataset more unique and more useful. Having averages of whatever observations 
exist in a day can create high instabilities in day-to-day variability, depending on what 
sensors are available and cloud coverage. 

We agree with the reviewer and apologize for not making this sufficiently clear in the 
manuscript. The presented pan-Arctic AVHRR LST dataset does not simply average all 
provided LST observations within one day, which are typically two for an individual satellite. 
In order to generate time series from the LST observations of the different NOAA satellites, 
these are selected based on their overpass time (i.e., not averaged); the details are 
presented in Table 4. In contrast, for the EUMETSAT Polar System (EPS) series (MetOp-1, -2, 
-3), which has highly stable overpass times, the observations are averaged (see Table 4). 
Only the stability analysis and trend analysis are performed on monthly mean values, i.e., 
for each individual satellite a time series of monthly mean composites is created. 
Subsection #3.4 Time series generation now explains and clarifies the above points and the 
data description in subsection #2.1 EUMETSAT AVHRR FDR has been expanded. 

The GLASS product (Zhou et al.2019; Ma et al. 2020) is based on the Long-Term Dataset 
Records (LTDR) (Pedelty et al., 2007) and is built on the SeeBor V5.0 (Borbas et al. 2005) data 
and TIGR2000 V1.2. Compared to these two profile databases, the novel calibration 
database from Ermida et al. (2022) is based on the recent ERA5 reanalysis and therefore 
exhibits high temporal and spatial coverage as well as improved good vertical resolution 
(137 levels). In addition, the profiles were selected with a dissimilarity criterion, ensuring 
that less common atmospheric conditions are also included. Furthermore, the GLASS 
product has considerable data gaps above 45° latitude, which can be attributed to cloud 
masking (see Fig. 11 from Ma et al., 2020), and to its emissivity computation relying on visible 
channels, which are unavailable during the polar night. Our pan-Arctic AVHRR LST dataset 
utilizes a probabilistic cloud mask provided in the CLARA-A3 dataset (Karlsson et al., 2023). 
In addition, in our workflow, emissivity retrieval for the snow- and ice-covered areas is based 



on snow water equivalent (SWE) data retrieved from passive microwave radiometer (PMR), 
which are also available during polar night (Solberg et al. 2021). 

 

 

In order to illustrate the better availability of our pan-Arctic AVHRR LST dataset compared to 
the GLASS product, in section #4.1 LST validation results a subsection has been added that 
showcases the differences between the two products. Both plots below show the 
differences between our pan-Arctic AVHRR LST dataset (black), the GLASS product (red) and 
the ODC corrected GLASS product (blue). In the high northern latitudes, the GLASS product 
is only available during summer months. This is particularly visible for the SVEAGRUVA site 
(SVALBARD), where very few GLASS observations are available. Also at BAKER LAKE A our 
product presents considerably more and slightly higher values, which can be explained by 
the different cloud masking and emissivity computation. 



 

 

 

 

Concerning the LSA SAF LST products mentioned by the Referee: the EDLST dataset from 
LSA-SAF is based on AVHRR-MetOp, provides uncertainty estimates and has been 
intensively validated. However, the EDLST time series starts with the first MetOp satellite in 
2015 (https://lsa-saf.eumetsat.int/en/data/products/land-surface-temperature-and-
emissivity/), while our dataset covers a 40-year period of AVHRR instruments. The other 
LSA-SAF LST products are based on MSG/SEVIRI data, i.e., they do not cover the high 
latitudes. 

The introduction of the manuscript has been modified to emphasize these differences and 
the benefits of our Pan-Arctic AVHRR LST dataset compared to already existing datasets. 

https://lsa-saf.eumetsat.int/en/data/products/land-surface-temperature-and-emissivity/
https://lsa-saf.eumetsat.int/en/data/products/land-surface-temperature-and-emissivity/


2.1 EUMETSAT AVHRR FDR 

The FDR contains AVHRR reflectance and brightness temperatures for each available orbit 
and channel. The daily AVHRR data from one satellite provides nearly complete coverage of 
the globe. The dataset provides for each satellite twice-daily composites (one daytime 
overpass and one nighttime overpass). AVHRR GAC measurements have been processed 
using the PyGAC software –a Python software package to read and transform AVHRR data in 
GAC format- (https://pygac.readthedocs.io/en/latest/#), including the conversion from 
counts to reflectance or brightness temperature and cross-calibration of the visible 
channels of the AVHRR sensor.  

3.4 LST AVHRR time series generation 

Depending on the heterogeneity of the land cover, between four and nine AVHRR LST GAC 
pixels are extracted around each station. Pixels that have a cloud probability higher than 0.1 
are removed, and the average of the remaining pixels is computed. Daytime data from 
NOAA-7, 9, 11, 14, 16, 18 and 19 (satellites with ascending (northbound) equator crossing 
times), as well as the entire MetOp series (satellites with descending (southbound) equator 
crossing times), are considered for constructing the time series. The considered period for 
each satellite is chosen to minimise orbital drift and avoid the outage periods (EUMETSAT, 
2023d). The retained periods are listed in Table 4. 

Once the relevant periods are extracted, outlier detection is performed based on a 10-day 
rolling window analysis and detected outliers are removed. Daily temperature variability is 
very high (Mildrexler et al., 2011), and AVHRR-derived LST time series are subject to noise, 
therefore, monthly means are computed from the concatenated day time series for further 
analysis. 

#4.1.3 Comparison with the GLASS dataset 

The pan-Arctic AVHRR LST dataset is compared against the well-established GLASS product 
(Zhou et al. 2019, Ma et al. 2020), that provides twice daily LST observation for the whole 
globe for the 1980-2000 period. Figures 5 and 6 present a comparison of monthly means at 
two stations located in the Arctic (BAKER LAKE A and SVEAGRUVA). The classical GLASS LST, 
the orbital drift corrected (ODC) GLASS LST and the pan-Arctic AVHRR LST are compared at 
the pixel closest to the station.  In the high northern latitudes, the GLASS product is only 
available during summer months. This is particularly visible for the SVEAGRUVA site 
(SVALBARD), where very few GLASS observations are available. Also, at BAKER LAKE A, our 
product presents considerably more and slightly higher values, which can be explained by 
the different cloud masking and emissivity computation. 



 

Figure 5. Monthly means LST product comparisons at BAKER LAKE A. 

 

Figure 6. Monthly means LST product comparisons at SVEGRUVA. 

 

2. For the same reason, I’m not convinced the dataset is appropriate for trend, and specially 
not for anomaly analysis. If the time of observation that goes into the average keeps 
changing, then there is just too much instability in the series. 

Again, we agree and apologize for not describing our approach to AVHRR LST time series 
generation clearly enough; please refer to our in-depth answer to point #1. 

Subsection #3.4 Time series generation has been modified and expanded to clarify the 
differences in generating LST time series for the NOAA and MetOp satellites. For each 



individual satellite the selected time period (Table 4) has been chosen to minimize the effect 
of orbit drift. Furthermore, winter data (December and January) are analyzed separately from 
the summer data to investigate the influence of the orbital drift on the trend analysis. 

 

3. Also, in terms of algorithm calibration, here there was a unique opportunity to explore an 
algorithm more suited for the specific conditions of the Artic. That maybe would allow 
using a higher range of view angles, resulting in an even larger sampling of observations 
through the day. The same in terms of the calibration database, why not tailor the database 
to the more specific conditions of the Artic? Using a generic algorithm and database that 
are valid over the whole globe is something that is already available in other products. 

The Generalized Split Window (GSW) algorithm we have employed (Wan & Dozier, 1996) is 
well-established and used for operational LST products (e.g., LST products from LSA-SAF). 
This algorithm is optimal for sensors with two TIR channels centered at 11 and 12 µm, which 
is the case of AVHRR. The GSW algorithm was compared against other retrieval algorithms: 
for LST retrievals from Sentinel-3/SLSTR by Yang et al. (2020), where it presented the highest 
accuracy overall, in line with similar studies performed for other sensors. The GSW can be 
tailored and adapted for every region with the appropriate split-window coefficients. 

Our area of interest starts at 50° latitude and encompasses the whole pan-Arctic region. The 
climate zones in this area differ strongly from each other, e.g., the Siberian tundra from the 
high mountains in Alaska or the great plains in southern Canada. The clear-sky database 
created by Ermida et al. (2022) is built on ERA5 data resampled with a dissimilarity criterion 
and includes satellite observation to determine realistic surface conditions, as opposed to 
the SeeBor database (Borbas et al. 2005), built from ERA-40 data. Currently most LST 
products (including the GLASS product) rely on the SeeBor database. The recent ERA5 
exhibits significant improvement in the lower layers of the atmosphere, which improves the 
simulation of satellite observations performed in wavelengths more sensitive to the surface. 
The GSW is trained independently for each class of total column water vapor and surface 
temperatures. Only profiles suitable for our area of interest have been chosen in the training 
and testing phase. 

The above points have been clarified and a more detailed description of the calibration 
database as well as the criteria for selecting atmospheric profiles for an LST retrieval 
algorithm optimized for the pan-Artic region has been included in the manuscript. 

It is true that satellites have a higher coverage nearer the poles. This allows to choose 
scenes with viewing angles closer to nadir, which have the advantage of providing smaller 
footprints and higher quality data, e.g., in terms of cloud contamination and surface 



anisotropy. This is independent of the chosen LST algorithm. The split-window coefficients 
(SWC) were computed for angles up to 70°, but in the final product, all pixels with a satellite 
viewing angle higher than 40° were masked out to keep only the best quality data. 

2.4 Auxiliary data 

Atmospheric profiles from the Clear-Sky Database developed at LSA-SAF (Ermida and Trigo, 
2022) are used for the RT modelling (RTM). This database contains atmospheric profiles such 
as temperature, specific humidity and ozone on 137 model levels (full vertical resolution), 
sampled from ERA5 for the 2009-2019 period. The sampling technique follows 
the method from Chevallier et al. (2000). Surface variables like T2M, surface pressure, Tskin 
and emissivity are obtained from the combination of ERA5 and satellite data to ensure the 
best possible representation of the surface conditions. Column variables, such as TCWV 
and total cloud cover (TCC) are also present in the database. The atmospheric profiles are 
classified on TCWV varying from 0 to 60 mm and TS ranging from 190 to 340 K. The profiles 
belonging to our area of interest are selected. 
 

3.1 Generalised Split Window algorithm 

Based on the test sets, look-up tables (LUT) with coefficients are created for each satellite. 
The LUTs are organized into classes of TCWV and Tskin, allowing to allocate the right SWC 
to the encountered atmospheric conditions. Mean absolute error (MAE), the coefficient of 
determination (R2) and root mean square error (RMSE) are computed for all coefficients to 
keep track of the general performance of the RTM 

 

 
4. With respect to the LST validation, the authors only used KIT and SURFRAD stations. 
None of the stations is within the study area and therefore are not representative of the 
presented LST dataset. This is very clear when looking at figures 4 and 10. These stations’ 
LSTs lowest values are around 260K, while most of the Artic is well bellow this value. There 
is a very with range of surface flux stations within the considered area (AmeriFlux, Fluxnet, 
BSRN) or even in Antarctica, which has much more similar conditions. The authors should 
have tried to use more stations that encompass the specifics of the polar climate. It’s true 
that these stations tend to be more heterogeneous, but the SURFRAD stations are also 
very heterogeneous. 

We agree that for a broader validation that is more representative of the low temperatures, 
high-latitude sites would be highly desirable. However, high quality in situ data from 



dedicated LST validation sites are rare and most of the existing stations (SURFRAD, BSRN, 
…), as mentioned by the reviewer, have spatial representativeness issues.  

In our study, we decided to only use top-tier in situ LST validation data. Therefore, we only 
consider stations that have been investigated within the ESA GlobTemperature and the LST 
CCI projects in terms of their suitability for validating satellite LST and undergone quality 
controls. Following recommended validation protocols, in situ measurements need to have 
a high temporal frequency (sampling rate ranging from 1 to 3 min, according to Guillevic 
(2018)) to avoid additional uncertainty due to temporal mismatch / interpolation. BSRN and 
FluxNet only provide data averaged over a 30 min or one hour period. Furthermore, accurate 
emissivity information needs to be available to convert measurements of brightness 
temperature into in situ LST observations.  

Data from the Atmospheric Radiation Measurement Climate Research Facility US 
Department of Energy (ARM) site at the North Slope of Alaska (NSA) are available from 2007 
to 2012, have undergone quality control procedures and previously been used in the ESA 
GlobTemperature project, i.e., they meet the above stated criteria. Therefore, we integrated 
the in situ LST data from the NSA site into our validation and updated the corresponding 
figure (Fig. 4) and table (Table 2) accordingly.  The surface is very heterogeneous at the NSA 
site, the station being close to lagoons (North Salt Lagoon and Imikpuk Lake), and very close 
to the coast. This explains why the performances are much worse during summertime than 
during winter when the entire area is snow and ice covered. 



Figure 4. AVHRR LST versus in situ LST at (a) Bondville (BND), (b) Desert Rock (DRA), (c) Fort 
Peck (FPK), (d) Goodwin Creek (GCM),(e) Penn. State Univ (PSU), (f) Sioux Falls (SFA), (g) 
Southern Great Plains (SGP), (h) Table Mountain (TBL), (i) Evora (EVO), (j) Lake Constance 
(BOD), (k) North Slope of Alaska (NSA). Red represents daytime measurements and blue 
represents nighttime measurements. Match-up periods are provided in the text. 

 

5. There is a long discussion on whether the problems in stability seen when comparing 
Tair with T2M and LST being related to day/night problems. It’s not clear to me why the 
authors did not separate daytime from nighttime observations. This would make 



comparing with Tair_max and Tair_min more easy to interpret. For T2M, it’s not clear from 
the text but it seems the authors are averaging all hours of the day? The ERA5-land 
provides a seamless diurnal cycle with hourly frequency, why not compute the daily max 
and min to obtain variables comparable to Tair? 

Thank you for pointing this out. We agree with the Referee: our description of the use of LST 
daytime data only was not clear. We now describe the time series generation more clearly. 
The goal was to prove the overall stability of our product based on 10 different satellites, 
using the ERA5-Land product. In that respect, we based our analysis on monthly mean T2M 
data from ERA5-Land. 

6. Why do you use ERA5 in some cases and MERRA-2 in other? ERA5 has better spatial and 
temporal resolution. 

Two datasets were chosen for this study: MERRA-2 and ERA5-Land. 

MERRA-2 assimilates space-based observations of aerosols and accounts for ice sheets, 
ensuring accurate data for regions like Greenland and Antarctica. The GLASS product (Ma, 
2020) has been generated with MERRA-2 products: using MERRA-2 for our study simplifies 
comparisons between the GLASS and our product. Our study uses skin temperature and 
total column water vapor from MERRA-2 to determine the atmospheric conditions at each 
pixel and to select the SW coefficients from the look up table. 

In contrast, air temperature data from ERA5-Land are used for the correlation and stability 
analysis. Using separate sources of reanalysis data helps keeping the stability analysis 
independent from the SW coefficient assignment process. Furthermore, ERA5-Land has 
been fully validated in the Arctic region in a previous study on trend analysis (Rantanen, 2023, 
ARCLIM atlas). Finally, in the stability analysis we compared point data (weather station 
data), satellite data and a reanalysis product: in order to optimize the spatial 
representativeness in the point-to-pixel comparisons, the reanalysis product with the 
highest spatial resolution has been chosen. 

The above choices are now explained in a corresponding paragraph added to subsection 
#2.4 Auxiliary data. 

 2.4 Auxiliary data 

Skin temperature (Tskin) and Total Column Water Vapor (TCWV) from the MERRA-2 
reanalysis dataset (M2T1NXSLV, variables are labelled TS and TQV). The data come at hourly 
temporal resolution with a spatial resolution of 0.5° x 0.625°. Nearest neighbour resampling 
was performed to match the AVHRR spatial resolution and scanline time, i.e. as in the work 
of Ma et al. (2020). MERRA-2 is preferred over other reanalysis products with finer spatial 



resolution to allow comparison with the GLASS product (Ma et al. 2020) and to keep the LST 
retrieval independent from ERA5-Land, which will be used for the stability analysis. 

 

7. Is/will this dataset be made available publicly? What is the format? What is the 
projection? More technical details about the dataset are needed. 

The monthly mean LST data for the Pan-Arctic that were used for the analysis in this paper 
are publicly available on Zenodo (https://doi.org/10.5281/zenodo.13361744). 

The PyGAC AVHRR FDR from EUMETSAT (2023) is available in the Network Common Data 
Form (NetCDF) format, and so is our Pan-Arctic LST product. We kept the same data 
structure as the original FDR. The spatial reference such as the coordinate reference system 
(CRS) and the WKT string are stored in each NetCDF (*.nc) file. The dataset covers the pan-
Arctic region (− 180°, 90°, 180°, 50°) at a spatial resolution of 0.05 × 0.05° pixel size. The 
dataset is available in the WGS 84 geographic coordinate system (EPSG:4326). Technical 
details about format and projection are added to the manuscript as well as details on the 
format of the EUMETSAT dataset. 

 

2.1 EUMETSAT AVHRR FDR 

The IR calibration procedure is satellite-specific, with no cross-calibration between 
satellites for IR channels (EUMETSAT, 2023d). The PyGAC AVHRR FDR from EUMETSAT 
(2023) is available as a gridded product in the Network Common Data Form (NetCDF) format 
and covers the entire globe (− 180°, 90°, 180°, -90°) at a spatial resolution of 0.05 × 0.05° pixel 
size. This study focuses on the pan-Arctic region, therefore only data above 50° N have been 
processed. 
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