
Reply to RC1 

Note: the comments and authors’ replies are in black and blue font, respectively. All 

changes in the revised manuscript are highlighted in yellow. 

 

This manuscript had two major goals. First to create an improved algorithm for extracting breakup and 

freeze-up dates using microwave-based temperature brightness data from satellites on a shallow, and 

vegetated lake. And second, to re-construct a long ice phenology timeseries extending back in time before 

the availability of satellite-based estimates. The novelty of the study appeared to be the development of 

the DMTT algorithm to extract freeze-up and break-up dates. The DMTT algorithm appears to be better 

suited for mixed pixels more commonly associated with lakes with vegetated cover or complex shorelines. 

 

The authors could use more clarity in their introduction and methods sections, specifically to both 

highlight the novelty of the study, summarize what has been done in the past, and differentiate better the 

different types of data. Regarding novelty, I think the authors should spend more time comparing the 

DMTT and MTT (e.g. expanding more on the improvements made). I believe this will help readers 

understand which algorithm to use given their own lake data. Further, the authors state that their goal was 

to understand shallow lakes with complex shorelines and mixed pixels, however they chose 5 pixels from 

the CETB dataset which only contains pixels that are mostly water. Also, the pixels are not fine resolution 

enough to capture the complex shoreline. The authors could spend more time justifying the use of this 

type of data for ice phenology research, especially on shallow lakes with complex shorelines/vegetation, 

or de-emphasize the mixed pixels and focus more on the shallow lake aspect. In the same vein, I suggest 

the authors spend some time in their introduction qualifying why microwave-based methods are more 

accurate or better than optical based methods. One suggestion would be to discuss if microwave data can 

improve upon the errors associated with missing the freeze-up or break-up dates due to cloudy pixels, 

which is ~5 days for the MODIS method (Zhang and Pavelsky, 2019) or whether microwave data better 

corresponds to in-situ data, if available. Finally, the authors could more clearly differentiate what data 

were used and where they came from. I liked the idea of Figure 2, but I found it hard to follow. I would 

suggest starting with raw data on the left and moving to more derived products on the right (or the same 

suggestion but top to bottom). All external validation data should be clearly marked versus the data use 

for testing and training in the RF model. I put more detailed comments about clarity throughout the 



methods section. 

Reply: Thank you very much for your constructive comments on our manuscript. We have addressed each 

of your concerns and please see our response to the point of view listed above: 

(1) We have thoroughly restructured the Introduction (lines 23-57) to better articulate the importance of 

studying ice phenology in shallow, vegetated lakes and to emphasize the advantages of passive microwave 

remote sensing over other methods. 

(2) The data description (Section 3.1) and methodological details (Section 3.2) have been revised for 

clarity. Each dataset's purpose and application within our study are now explicitly defined, underscoring 

the rationale behind our choices and their relevance to the study objectives. We have also introduced a 

new section (4.1 Algorithm evaluation) that not only compares our results with optical remote sensing 

outcomes but also with MTT algorithm outputs and in-situ observations, demonstrating the robustness 

and superiority of the DMTT algorithm. 

(3) We provide comprehensive justifications for selecting predominantly water pixels, highlighting their 

relevance in capturing valuable ice phenology insights even in mixed pixels (detailed response in specific 

comments 20-23). This selection is crucial given the complex shorelines and vegetated cover of Lake 

Ulansu, demonstrating why the DMTT algorithm is particularly suitable for our study conditions. 

Furthermore, in Appendix F, we have included examples of similar "Ω"-type brightness temperature series 

from other lakes to illustrate the broader applicability and current research gaps in lake ice phenology 

under algorithm constraints. 

(4) We have clarified the advantages of using passive microwave remote sensing over optical methods in 

our study. The passive microwave data, which cover a more extended period and offer daily revisit 

capabilities, were instrumental in reconstructing the ice phenology from 1979 to 2023. This long-term 

dataset was compared against the shorter-term optical remote sensing data from MODIS, Landsat and 

Sentinel-2 from 2000 to validate our findings, as detailed in the revised Section 3.1.2 Optical satellite 

data. 

(5) Figure 2 has been redesigned for improved clarity. It now presents a logical progression from raw data 

to processed outputs in a top-to-bottom format, making it easier for readers to understand the data 

workflow used in our study. This figure effectively delineates the types of data used for training and 

testing in the random forest model versus those used for external validation. 

 



 

Figure 2: Reconstruction of the ice phenology of Lake Ulansu (1941–2023) based on ERA5, CETB, and optical satellite 

data via the double-threshold moving t test algorithm and random forest model. 

 

Specific comments: 

1. Line 10 is this multi-source? Can you be more specific? Is this ERA5 data or other types of data? 

Reply: We utilized Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness 

Temperature (CETB) data. These data were sourced from the SMMR on the Nimbus 7 satellite; the SSM/I 

on the DMSP-F08, -F10, -F11, -F13, and -F14 satellites; and the SSMIS on the DMSP-F16 satellite. 

Meteorological data were obtained from ERA5. To clarify the abstract, it has been revised to "To address 

this challenge, a new double-threshold moving t test (DMTT) algorithm, which uses SMMR and SSM/I-

SSMIS sensor-derived brightness temperature data at a 3.125-km resolution and long-term ERA5 data, 

was applied to capture the ice phenology of Lake Ulansu from 1979 to 2023." 

 

2. Lane 23 consider “global lake ice loss is a prominent feature associated with climate change” or 

simplifying this beginning sentence so it is in more active voice. 

Reply: Revised accordingly. 

 

3. Line 25 what do you mean by ecological balance? 

Reply: We have revised the sentence: "Lake ice regulates water temperature, light availability, and 

nutrient circulation, which are crucial for the ecological environment (Latifovic and Pouliot, 2007; Wu 

et al., 2022)." 

 

4. Line 26 can you elaborate on how ice cover impacts the momentum and mass exchange between the 

atmosphere and water? 

Reply: Ice cover in lakes plays a crucial role in regulating the exchange of momentum and mass between 



the atmosphere and the water body. The following is an elaboration of this process: 

(1) Momentum exchange: The presence of ice on the lake surface acts as a barrier, altering momentum 

exchange by reducing the direct transfer of wind energy to the water. This results in lower surface 

stress and reduced mixing within the water column. The momentum from the wind is partially 

transferred to the ice, causing it to drift, but the movement and mixing of the water below the ice are 

minimal compared with those in ice-free conditions. In the absence of ice, the wind directly impacts 

the water surface, creating waves and turbulence, which enhances the mixing of the water column. 

This mixing is critical for the distribution of heat, nutrients, and other materials throughout the water 

body (Kirillin et al., 2012; Leppäranta et al., 2023). 

(2) Mass exchange: Ice cover reduces evaporation rates, limiting the transfer of water vapor from the lake 

to the atmosphere. This affects local humidity levels and can influence weather patterns. Additionally, 

ice can trap gases such as methane and carbon dioxide beneath it, altering gas exchange dynamics and 

impacting the lake’s biogeochemical cycles (Zhao et al., 2022; Li and Xue, 2021). 

We appreciate this opportunity to elaborate on these processes, enhancing our understanding of the 

broader environmental impacts of lake ice cover. Given the extensive revisions made to the Introduction 

of our manuscript to enhance clarity and focus, this detailed discussion of ice cover impacts on momentum 

and mass exchange was not included in the main text to maintain coherence and relevance to the primary 

research aims. 

 

5. Line 28 see also Sharma et al. 2019, consider wording similar to: Many studies have evaluated lake ice 

phenology trends in the northern hemisphere, but shallow and vegetated lakes remain largely unexplored 

due to their lack of observational data 

Sharma, Sapna, Kevin Blagrave, John J. Magnuson, Catherine M. O’Reilly, Samantha Oliver, Ryan D. 

Batt, Madeline R. Magee, et al. 2019. “Widespread Loss of Lake Ice around the Northern Hemisphere in 

a Warming World.” Nature Climate Change 9 (3): 227–31. https://doi.org/10.1038/s41558-018-0393-5. 

Reply: We rephrased this sentence to "Many studies have evaluated lake ice phenology trends in the 

Northern Hemisphere (Mishra et al., 2011; Sharma et al., 2019; Woolway et al., 2020), but shallow and 

vegetated lakes remain largely unexplored owing to their lack of long-term observational data." 

 

6. Line 32 The sentence “shallow lakes are more sensitive to climate change then deep lakes because 

of …., because of their potential ecological effects on algal blooms” does not seem like a complete 

sentence. Are you trying to say that the fact that these lakes get algal blooms mean that they are more 



sensitive to climate change. Lake ice and ice formation seem to clearly stem from climate change 

sensitivity, but I feel that algal bloom formation is related to several factors including temperature, ice, 

nutrients, etc. 

Reply: Here, the revised version addresses your concerns: "These lakes are more sensitive to climate 

change than deep lakes are because of their low heat capacity (Ambrosetti and Barbanti, 1999), which 

makes them more responsive to temperature fluctuations. A shortened ice-covered season leads to a longer 

period of open water, enhancing conditions for algal bloom growth and potentially causing ecological 

imbalances (Duan et al., 2012)." 

 

7. Line 34 what do you mean by microlevel, microscopic, lake-specific, etc.? 

Reply: In the context of our manuscript, "microlevel" interactions refer to small-scale, detailed 

interactions within lake ecosystems that encompass physical and biological processes. 

To make the text clearer, we revised it to "Ice phenology data from such shallow lakes are crucial for 

understanding how temperature fluctuations influence water stratification, nutrient availability, and the 

biological rhythms of aquatic organisms (Sharma et al., 2021; Smits et al., 2021)." 

 

8. Line 37 Consider Hampton et al. 2017 (or citations within) if you want to make a broad statement of 

the need more lake ice research irrespective of shallow lakes, otherwise make this statement more 

explicitly about shallow lakes 

Hampton, Stephanie E., Aaron W. E. Galloway, Stephen M. Powers, Ted Ozersky, Kara H. Woo, Ryan D. 

Batt, Stephanie G. Labou, et al. 2017. “Ecology under Lake Ice.” Edited by James Grover. Ecology Letters 

20 (1): 98–111. https://doi.org/10.1111/ele.12699. 

Reply: Revised accordingly. 

 

9. Line 47 what is the temporal resolution? 

Reply: We added this information to the Introduction: "Active microwave remote sensing is utilized 

primarily for extracting ice phenology data from large water bodies because of its relatively low (> 10 

days) temporal resolution (Antonova et al., 2016; Howell et al., 2009)." 

 

10. Line 57 consider rewording the sentence that starts with “in addition…” This sentence marks an 

important transition from your text about creating phenology records using satellite data and creating a 

forecasting/back casting model using meteorological data. Here maybe you could emphasize past work 



using satellite (optical/microwave) as training data to create longer term time series 

Reply: To make the text clearer, change it to "In addition, if long-term lake ice phenology records are 

desired, satellite remote sensing can also provide training datasets for machine learning (Wu et al., 2021; 

Xu et al., 2024). For example, Ruan et al. (2020) presented a practical machine learning application in 

which a random forest model was used to forecast the ice phenology of lakes on the Tibetan Plateau until 

2099. The ice phenology history derived from passive microwave remote sensing and CMIP6 

meteorological data was employed here as inputs. The success of this application largely depends on the 

quality of the training data, which requires not only accuracy but also a long temporal record that 

captures the variability of environmental conditions. To ensure the robustness of the model, it is critical 

to integrate diverse meteorological factors, such as air temperature, wind speed, and precipitation, along 

with ice phenology data, as these factors significantly influence lake ice. Furthermore, developing 

effective machine learning models that can address the complexities of lakes with various surface 

characteristics is essential." 

 

11. Line 68 using which data? 

Reply: The original text has been modified to "A new algorithm was developed to classify the ice and 

water states on the lake surface in brightness temperature data from the SMMR and SSM/I-SSMIS sensors 

for the period 1979–2023." 

 

12. Line 70 using the created data in step one as training data? 

Reply: Yes. To make the text clearer, change it to "(2) A random forest model was trained using the results 

in step (1) to reconstruct the ice phenology from 1941 to 1978." 

 

13. Line 80 Is there a citation associated with the evaporation and precipitation data? 

Reply: Two corresponding citations have been added. See details on lines 84-86. 

 

14. Line 100 Am I correct that the phenology record using CETB was not used in the training of the 

random forest model, only the phenology record derived from optical satellite data? 

Reply: Ice phenology data from 1979 to 2023, derived from CETB data, were used to train the random 

forest model. The ice phenology data obtained from optical satellite data (2000 to 2023) were used to 

validate the results derived from the brightness temperature data (1979 to 2023) but were not used for 

training the random forest model. We have made the necessary changes in the manuscript to reflect this 



clarification. See details on line 106. 

 

15. Line 100 meteorological data from ERA5? 

Reply: Yes, meteorological data from ERA5 for the period of 1979 to 2023 were used to train the random 

forest model. Additionally, ERA5 data for the period from 1941 to 1978 were used to calculate historical 

ice phenology data. We have clarified this in the manuscript to avoid any confusion. See details on lines 

107-109. 

 

16. Line 113 What is the spatial resolution 

Reply: We added spatial resolution information in Section 3.3.1, "The CETB data were obtained from 

various satellite sensors with coarse spatial resolutions (~25 km), including SMMR on Nimbus 7, SSM/I 

and SSMIS on the DMSP satellite series, and AMSR-E on Aqua (Brodzik et al., 2016)." 

 

17. Line 125 the ice phenology data originated from the cloud bitmask in the state_1km product of 

MODIS? How does that reduce the influence of clouds? 

Reply: Huo et al. (2022) calculated the ice phenology data for Lake Ulansu after 2000 via optical satellite 

data, specifically the red band reflectances from the MOD09GQ and MYD09GQ datasets, cloud 

information from the state_1 km_1 parameter in the MOD09GA and MYD09GA datasets, and the Landsat 

and Sentinel-2 datasets. The temporal resolution of both MOD and MYD is one day, with images taken 

at 10:30 AM and 1:30 PM local time, respectively. To fill real pixels under clouds, the higher temporal 

resolution of the MODIS products was utilized by merging MOD09GQ from the Terra satellite with 

MYD09GQ from the Aqua satellite. The details are as follows: 

The first step to fill the cloud-covered pixels is shown in Equation (R1), where P denotes the pixels and 

the output is the pixel type (water/ice) of the output satellite. It is divided into two cases: (1) if Aqua data 

are identified as water (ice) at pixel A, a pixel is defined as water (ice); (2) if Aqua data are identified as 

clouds at pixel A and the Terra satellite is identified as water (ice) at pixel A, a pixel is defined as water 

(ice). 
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The second step uses the temporal continuity principle to associate the type of A pixel on day t with the 

same pixel on days t − 1 and t + 1 (Equation R2). The detail is that if the A pixel on day t is a cloud pixel 



and is discriminated as water (ice) on days t − 1 and t + 1, then the pixel on day t is defined as water (ice). 

The formula is as follows: 

( , ) ( , 1) ( , 1)water/ice,       if = water/iceA t A t A tP P P− += =             (R2) 

Some cloud pixels that exist after Equation (R2) is applied are further calculated on the basis of the five 

days of temporal continuity. As shown in Equation (R3), there are two cases: (1) if the A pixel is a cloud 

on days t − 1 and t and is water (ice) on days t − 2 and t + 1, then the A pixel is defined as water (ice) on 

days t − 1 and t; (2) if the A pixel is a cloud on days t and t + 1 and is water (ice) on days t − 1 and t + 2, 

then the A pixel is defined as water (ice) on days t and t + 1. 
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Based on the above three steps, Huo et al. (2022) reduced the average cloud coverage from over 30% to 

6.4%. This study uses the ice phenology data for Lake Ulansu calculated by Huo et al. (2022) to validate 

the passive microwave remote sensing results. Therefore, the detailed cloud removal process is not 

extensively explained in the manuscript. To ensure logical consistency in Section 3.1.2, "These optical 

satellite data include red band reflectances from the MOD09GQ and MYD09GQ datasets, cloud 

information from the state_1 km_1 parameter of the MOD09GA and MYD09GA datasets, and the Landsat 

and Sentinel-2 datasets. The single-band threshold method classifies red band reflectances into water and 

ice pixels. Compared with higher spatial resolution Landsat and Sentinel-2 datasets, the dynamic 

threshold method aims to determine the optimal threshold for distinguishing ice and water pixels (Zhang 

and Pavelsky, 2019). Additionally, the spatiotemporal continuity of MODIS datasets is used to fill in real 

pixels under clouds, resulting in more accurate pixel classification. 

 

18. Line 131 Which part of Sentinel-2 and Landsat did you use to create your threshold? Can you elaborate 

more on the specifics of this method (e.g. Fmask on Landsat, and a threshold of X in the MODIS red band 

reflectance from the 250 m product) 

Reply: The red band reflectances from MOD09GQ and MYD09GQ were used to differentiate between 

ice and water pixels (Zhang and Pavelsky, 2019), specifically via Equation R4: 
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where Band 1 represents the reflectance of the red band and a represents the threshold to distinguish 

between water and ice. 

Then, the Normalized Difference Snow Index (NDSI) formula was subsequently applied to Landsat and 

Sentinel-2 images to distinguish between ice and water pixels: 

Band 2 Band 5

Band 2 Band 5
NDSI

−
=

+
                 (R5) 

where Band 2 and Band 5 represent the reflectances of the green and shortwave infrared bands, 

respectively, in the Landsat and Sentinel-2 products. NDSI = 0.4 was selected as the threshold (Cai et al., 

2019). The vector boundary of water/ice was extracted via manual visual judgment, and the water/ice 

coverage in the Landsat/Sentinel-2 images was calculated. 

Finally, the dynamic threshold method was employed to constantly modify the threshold a to change the 

water/ice classification results of the MOD09GQ/MYD09GQ dataset and compared with the water/ice 

coverage areas of the Landsat and Sentinel-2 products with high spatial resolutions to find the optimal 

threshold a. 

Given that this section is not the core focus of our study, these formulas are not presented in Section 3.1.2. 

 

19. Line 135 Did you use the phenology record directly from Huo et al. 2022? If so, then I would put that 

citation further up 

Reply: This study directly uses the results of Huo et al. (2022) to validate the ice phenology results derived 

from brightness temperature (Tb) data. To make the purpose of Section 3.1.2 clearer, it is now stated in 

the first sentence of the section "In this study, we use ice phenology data for Lake Ulansu from 2000 to 

2023 obtained from optical satellites by Huo et al. (2022) to validate the ice phenology results derived 

from Tb data." 

 

20. Line 179: Did you mean “we could not use the omega-shaped analysis for this study because the “w” 

shape violates that method”? The sentence as it currently reads is a little vague as to why the omega series 

are not available 

Reply: The primary issue is the W-shaped variation in the brightness temperature (Tb) series at Lake 

Ulansu, which is significantly influenced by mixed pixels, unlike the pure water pixels observed in larger 

lakes such as Great Bear Lake and Qinghai Lake, which display a clear Ω-shaped Tb series (Fig. R1). 

 



 
Figure R1: Example of an Ω-shaped Tb series in a large lake. (a): Great Bear Lake (Cai et al., 2022). (b): Qinghai Lake 

(Su et al., 2021). 

 

The specific challenges presented by Lake Ulansu’s Tb series are as follows: 

(1) Land influence: Land areas, with their lower heat capacity than water does, respond more quickly to 

air temperature fluctuations. This rapid response causes significant changes in surface temperature, 

leading to greater fluctuations in the Tb series (Munn and Richards, 1963; Wilheit et al., 1972). 

(2) Reduced Tb changes: At the critical moments of freezing and melting, the Tb changes in mixed pixels 

are less pronounced (< 20K) than those in pure pixels (> 50K, Fig. R1), necessitating more precise 

threshold settings for correct classification. 

(3) Increased abrupt change points: The variability in Tb due to the land response to air temperature 

increases the number of abrupt change points (ACPs) detected by the moving t test (MTT) algorithm, 

leading to potential misclassification of ice and water. 

(4) Necessity for dual thresholds: Pure water pixels exhibit stable changes in Tb, allowing the use of a 

single threshold to calculate freeze-up start and break-up end dates. In contrast, the varying surface 

temperature and emissivity in mixed pixels require separate thresholds for accurate classification. 

Owing to these complexities, the Ω-shaped analysis method is not applicable. To address this, we 



developed a double-threshold moving t test (DMTT) algorithm to extract ice phenology from the W-

shaped Tb series, accommodating the mixed pixel conditions of Lake Ulansu. 

Revised manuscript text "In this study, the ice phenology from 1979 to 2023 was determined by the 

brightness temperature (Tb) of the lake surface because Tb changes considerably when a phase change 

occurs on the lake water surface (Su et al., 2021), providing a clear reference for determining the onset 

and end of the ice period. However, owing to the complex shape of the Lake Ulansu shoreline, which is 

characterized by its narrow form, pixels encompass not only water but also aquatic vegetation and land. 

As a result, five Tb grids with a proportion of lake water greater than 0.70 were selected to represent the 

status of the lake surface (Fig. 1b). Figure 3a shows the annual variation in Tb for each grid of each year 

as blue dashed lines, with the blue solid line showing the average for all grids during 1979–2023 and the 

solid red line depicting the average air temperature. The annual variation in the Tb of Lake Ulansu 

exhibited a typical 'W' shape (Fig. 3a). This is different from what is observed for large lakes with only 

water surfaces where Tb is typically a pure pixel, resulting in a line with an 'Ω' shape (Cai et al., 2022; 

Su et al., 2021). Compared with those of pure pixels, the mixed pixels of Lake Ulansu lead to inconsistent 

changes in surface temperature and emissivity, complicating the Tb series. To accurately determine the 

ice phenology, it is necessary to precisely establish different thresholds for the transition between water 

and ice. Thus, previous methods to address the Ω-shaped Tb series are not available in this study, and a 

double-threshold moving t test (DMTT) algorithm was developed to extract the ice phenology from the 

W-shaped Tb series." 

 

21. Line 180: Can you use this algorithm from all W-shaped series? How common is W-shaped series? 

Reply: In this study, we focused exclusively on Lake Ulansu, which exhibited mixed pixels and a W-

shaped Tb series due to its complex shoreline and seasonal freeze‒thaw patterns. This W-shape is 

characteristic of lakes with significant seasonal dynamics and mixed land‒water elements within the 

observed pixels. 

To further validate our findings and the universality of the W-shaped Tb series beyond Lake Ulansu, we 

recently processed four additional lakes that exhibited similar seasonal characteristics (Fig. R2). These 

lakes, such as Lake Ulansu, feature mixed pixels where the Tb series is influenced by both water bodies 

and surrounding land. These additional studies underscore that W-shaped Tb series are indeed common in 

seasonally freezing lakes characterized by mixed pixels. Moving forward, we plan to enhance the DMTT 

algorithm further, aiming to expand its utility to a broader range of small- and medium-sized lakes globally. 

This advancement will provide deeper insights into the ice phenology of lakes under the influence of 



climate change, particularly for periods and regions where high-resolution optical satellite data are not 

available. Figure R2 has been added to Appendix F of our manuscript, and future research directions are 

detailed on lines 472-475. 

 

 
Figure R2: (a-d) Landsat 8 images of Lake A, Lake B, Lake C, and Lake D, areas within red rectangles where mixed 

brightness temperature pixels were analyzed. (e) Brightness temperature time series from August 1, 2019, to August 1, 

2020, for each lake. 

 

22. Line 190: I would add more information here about how your algorithm is different from the MTT 

since I feel like this is where the novelty of the study lies. Much of that information is in the appendices, 

and I would move that information into the main manuscript. 

Reply: We have relocated the detailed comparison, previously found in the appendices, into the main body 

of the manuscript (Section 4.1 Algorithm evaluation). This adjustment ensures that the enhancements 

introduced by the DMTT are immediately apparent. 

 



23. Line 193: How complex are the mixed pixels? The five that you show were mostly water and not near 

the edge. Do you still expect these pixels to be mixed? 

Reply: Despite the selection of five pixels with a high proportion of water area, these pixels are still 

considered mixed because there are no pure water pixels within Lake Ulansu. The primary reason for 

selecting pixels with larger water areas is to minimize the influence of the land surface brightness 

temperature (Tb) and achieve more accurate ice phenology results for Lake Ulansu. These five pixels are 

located primarily in the central area of the lake where the water depth is relatively consistent, thus 

reducing the effects of uneven ice formation due to depth variation. 

In previous studies that utilized satellite data to analyze lakes, a buffer zone was often established along 

the lake edge to avoid pixel contamination and ensure the quality of pure pixels (Cai et al., 2022; Giroux-

Bougard et al., 2023; Heinilä et al., 2021; Korver et al., 2024; Kuluwan et al., 2023). However, Lake 

Ulansu has an elongated shoreline, and despite some pixels having a high proportion of water area, all 

pixels within the lake are subject to contamination by aquatic vegetation or land surfaces. 

In this study, we used Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 

Brightness Temperature (CETB) data at 37 GHz H-polarization with a high spatial resolution of 3.125 

km. The CETB data were obtained from various satellite sensors with coarse spatial resolutions (~25 km), 

including SMMR on Nimbus 7, SSM/I and SSMIS on the DMSP satellite series, and AMSR-E on Aqua. 

Although the CETB data boast a higher spatial resolution than the original coarse-resolution pixels do, 

they are still derived from coarse-resolution data via the radiometer version of the scatterometer image 

reconstruction (rSIR) algorithm. This enhancement results in Tb data with resolutions ranging from 3.125 

km to 12.5 km. Therefore, even with enhanced resolution, the pixels remain mixed to some extent due to 

the averaging and enhancement process (Section 3.1.1). 

 

24. Line 199: How does including rules like “above 0 degrees” and “below 0 degrees” make mixed pixel 

classification better? I think I understand your logic, but I would like it spelled out in the manuscript 

Reply: The decision to utilize specific temperature thresholds of "above 0 degrees" and "below 0 degrees" 

in our analysis is crucial for enhancing the accuracy of mixed pixel classification, particularly in the 

complex environment of Lake Ulansu. These thresholds are based on the fundamental physical properties 

of water and ice, where 0 ℃ marks the freezing point under atmospheric pressure, serving as a natural 

demarcation between the liquid and solid-states. This becomes particularly important in the context of 

Lake Ulansu, where mixed pixels often exhibit numerous abrupt change points (ACPs) in the brightness 

temperature (Tb) time series. 



By implementing a rule that transitions from water to ice are recognized only at air temperatures below 

freezing point, we effectively reduce misclassification that might otherwise occur from transient Tb 

fluctuations or the influence of nonwater elements within the pixel, such as vegetation. Conversely, the 

rule that transitions from ice to water only occurs at air temperatures above freezing point helps accurately 

identify melting events, which is crucial for avoiding false interpretations of thawing during cold 

conditions. These air temperature-based rules simplify the classification process, providing clear and 

objective criteria that enhance our DMTT algorithm's ability to accurately calculate ice phenology in 

mixed pixels. 

Revised text in the manuscript "In addition to adhering to the ACP criteria outlined by Du et al. (2017), 

we tailor the DMTT algorithm to detect ACPs by accounting for seasonal variations and specific thermal 

conditions. We conducted separate ACP detection for Tb from August to December and from January to 

July. To ensure the accuracy of the ACP in indicating freezing transitions, ACPs detected from August to 

December were validated only if they were accompanied by air temperatures below the freezing point. 

Similarly, for ACPs from January to July, a prerequisite condition of air temperatures above the freezing 

point was applied to confirm melting transitions. The purpose of these two enhancements was to 

accommodate the variations in mixed pixels during the transitions between water and ice." 

 

25. Line 201: what does the bar symbol above Tb1 mean? What does b1 mean and b2 mean? 

Reply: In the process outlined, 𝑇b1̅̅ ̅̅  and 𝑇b2̅̅ ̅̅  represent the mean brightness temperature (Tb) calculated 

20 days before and after each detected abrupt change point (ACP), respectively. These averages are crucial 

for accurately determining the transitions between different states of water and ice. 

The notation 𝑇b1̅̅ ̅̅  specifically indicates the mean Tb calculated from the time series data before the ACP, 

providing a baseline against which changes due to freezing can be detected. Conversely, 𝑇𝑏2̅̅ ̅̅  represents 

the mean Tb after the ACP, which helps in identifying thawing events. By averaging the Tb values around 

each ACP, we minimize the influence of short-term fluctuations in Tb. 

The terms b1 and b2 mentioned in the algorithm pertain to the calculated thresholds for freezing and 

melting, respectively. The freezing threshold is derived as the mean of the minimum 𝑇b1̅̅ ̅̅   and its 

corresponding 𝑇b2̅̅ ̅̅   within the same group of ACPs, indicating the transition from water to ice. The 

melting threshold, on the other hand, is calculated as the mean of the minimum 𝑇b2̅̅ ̅̅  and its associated 

𝑇b1̅̅ ̅̅ , facilitating the accurate detection of ice-to-water transitions. 

 

26. Line 202: If means the average over 20 days, then how can there be a minimum? 



Reply: The term "minimum" in our analysis refers not to the minimum of the brightness temperature (Tb) 

within those 20 days but to the selection of the lowest 𝑇b1̅̅ ̅̅  and 𝑇b2̅̅ ̅̅  values from different groups of ACPs 

for further calculations. Essentially, after computing the averages for each 20-day period surrounding 

each ACP, we then examine these average values across multiple ACPs to identify the lowest averages: 

where 𝑇b1̅̅ ̅̅  for freezing transitions and 𝑇b2̅̅ ̅̅  for thawing transitions. 

This approach allows us to determine the most representative thresholds for freezing and melting by 

selecting the most stable and consistent average values, which reflect the most significant changes in the 

ice/water state. By using the minimum of these averages, we ensure that our thresholds for ice formation 

and melting are based on the most pronounced and reliable data points, thereby enhancing the accuracy 

of the DMTT algorithm in determining ice phenology. 

 

27. Line 214: Were the multisource Sentinel, Landsat, and MODIS? 

Reply: Thank you for highlighting the need for clarity regarding the multisource optical satellite data used 

to validate the DMTT algorithm. 

Revised text in manuscript "The results of the DMTT algorithm were validated through a comparison 

with ice phenology data obtained from multisource optical satellite data from 2000 to 2023 (Section 

3.1.2)." 

 

28. Lines 215 -220: I think some of this text belongs in the results section to test the validity of the DMTT 

model 

Reply: We have relocated the relevant text, which previously detailed the validation of the DMTT 

algorithm, from its initial location to the results section (Section 4.1). 

 

29. Line 235: which phenology datasets did you use? Which meteorological datasets did you use? 

Reply: The text in the manuscript "To train and validate the RF model, we randomly divided the dataset, 

which includes ERA5 meteorological factors and ice phenology derived from Tb data for the period 1979 

to 2023, into two subsets." 

 

30. Line 255: Did you validate or ground truth your model using in-situ data? 

Reply: In our study, we employed a robust validation approach. To ensure comprehensive coverage and 

unbiased validation across more than four decades, we randomly divided this dataset into two subsets: 

70% was used for training the model, and 30% was used for validation. This random stratification 



prevents any temporal biases that might arise from the use of distinct periods for training and validation 

(e.g., 1979–1990 for validation and 1991–2023 for training). Furthermore, for additional validation of the 

meteorological data, refer to Appendix A, where the performance of the ERA5 data is assessed. The ice 

phenology estimates derived from the brightness temperature calculations were cross-validated against 

corresponding results obtained from optical satellite data (Section 4.1). 

 

31. Figure 6: How did you choose 1982 as the threshold change? I would include significance values in 

the figure directly. For example, only drawing lines and indicating trends if the results are significant 

Reply: We chose 1982 as the threshold change based on the analysis of the 21-year moving averages (10 

years before and after) of the freeze-up start (FUS), break-up end (BUE), and ice cover duration (ICD) 

periods. As shown in Fig. R3 (included in Appendix D), after 1982, there was a noticeable trend where 

FUS was delayed and the ICD was shortened. This marked change in trends approximately 1982 led us 

to select it as the threshold point. 

To provide a more detailed depiction of this reversal, we divided the whole period into two subperiods 

(1941–1982 and 1983–2023) for further analysis. The corresponding statistical results are presented in 

Table 2 of the manuscript. Additionally, we have now included significance values (p values) directly in 

Figure 6 to indicate the statistical significance of the trends. 

Revised text in the manuscript "The results of the DMTT algorithm were validated through a comparison 

with ice phenology data obtained from multisource optical satellite data from 2000 to 2023 (Section 3.1.2). 

Figure 4 reveals a remarkably high correlation for the FUS dates (r = 0.92), with a minimal MAE of 2.00 

days and an RMSE of 2.56 days. The correlation for the BUE date is slightly lower (r = 0.87), with a 

somewhat greater MAE of 2.67 days and an RMSE of 3.25 days. However, the MAEs and RMSEs for the 

ICDs calculated based on the difference between the BUE and FUS dates remain within 5 days, indicating 

no systematic bias but random errors." 

 



 

Figure R3: 21-year moving averages of ice phenology for Lake Ulansu. (a): Freeze-up start dates. (b): Break-up end 

dates. (c): Ice cover duration. The pink vertical line indicates the year 1983. 

 

 

Figure 6: Ice phenology results for Lake Ulansu from 1941 to 2023. (a) Freeze-up start with trend lines. (b) Freeze-up 

start date distribution. (c) Break-up end with trend lines. (d) Break-up end date distribution. (e) Ice cover duration 

with trend lines. (f) Ice cover duration distribution. 

 

32. Line 284: Do you have a citation for the statement “ice phenology is primarily determined by local 

meteorological conditions”? 



Reply: We have added citations to support the statement that ice phenology is primarily determined by 

local meteorological conditions. See details on lines 291-292. 

 

33. Line 292: This comment about Lake Mendota feels more like a methods comment 

Reply: The text in the manuscript "The observed air temperature fluctuations echo broader climate 

changes and show similar trends to those observed in other lakes (Magee et al., 2016; Newton and 

Mullan., 2021)." 

 

34. Figure 7: I would recommend moving this to the supplementary text, I feel that the preceding text 

does a good job summarizing the information. 

Reply: Revised accordingly. 

 

35. Line 331: Is there evidence that the preceding 12 months weather data could impact ice formation? I 

am not sure that each monthly correlation is necessary. 

Reply: Thank you for your insightful question. We re-evaluated the monthly correlations and decided to 

focus on the months from September to March, which are more directly relevant to ice phenology and 

correspond to the months used in our random forest model calculations for ice phenology. We also 

modified the range of results in Figure 7. 

 

 

Figure 7: Correlation coefficients between meteorological factors and ice phenology in different months. Significance 



levels for correlation coefficients are denoted by * (p < 0.05) and ** (p < 0.01). 

 

36. Line 330: I am not sure that I followed the logic regarding solar radiation and algae and attenuation. 

I was wondering if the authors would consider expanding on this mechanism 

Reply: In eutrophic lakes, due to the high concentrations of algae and suspended particles, the absorption 

and penetration of solar radiation differ significantly from those in clear lakes. Eutrophic lakes are rich in 

nutrients (such as nitrogen and phosphorus), promoting the proliferation of algae and phytoplankton (Li 

et al., 2024). These algae and suspended particles absorb and scatter solar radiation, especially blue light 

(450–495 nm). After being absorbed, this light energy is converted into heat or used for photosynthesis 

(Lin et al., 2024). 

Because blue light is strongly absorbed, the penetration depth of light in water is significantly reduced. 

In clear lakes, light can penetrate deeper into the water column, but in eutrophic lakes, light is mainly 

absorbed and scattered by algae and suspended particles near the surface, reducing the penetration depth 

of light. Consequently, the heating effect of solar radiation on water is diminished. 

The revised text in the manuscript "For Lake Ulansu, the correlation may be due to the high attenuation 

coefficient caused by the presence of numerous suspended particles and algae, which are common in 

eutrophic lakes (Yang et al., 2020). These particles and algae absorb and scatter solar radiation, 

especially blue light (450–495 nm), reducing the penetration depth of light in water (Lin et al., 2024). As 

a result, the heating effect of solar radiation is confined primarily to the surface layers, leading to a 

diminished overall heating effect on the water." 

 

37. Figure 8: Are you correlating FUS and BUE and ICD with months that occur after ice cover? It seems 

that in BUE and ICD the months stop at March, which feels appropriate. But, for freeze-up start, the 

months from Dec to Mar occur after the event and cannot correlate with the event as they cannot influence 

the event anymore. 

Reply: We have revised Figure 7 to focus on the relevant months for each ice phenology event. We 

appreciate your attention to this detail, which enhances the accuracy and relevance of our analysis. 

 

38. Section 5, Discussion: I would recommend starting this section with an overarching paragraph of main 

findings before delving into each subsection 

Reply: We added this overarching paragraph to the Discussion, which reads "The novel DMTT algorithm 

developed in this study has proven essential for accurately discerning ice and water states in a lake with 



mixed pixel challenges. In this section, we discuss the uncertainties associated with methodologies, 

compare our findings with those of other studies, and elaborate on the implications of the results for 

understanding the impacts of climate change on lake ice phenology." 

 

39. Line 274: If the pixels chosen in the CETB database are such that they reduce the effects of mixed 

pixels, how do you know if your DMTT algorithm does a better job at overcoming mixed pixels. 

Reply: The effectiveness of the DMTT algorithm in managing the challenges posed by mixed pixels in 

Lake Ulansu, even with the selection of higher resolution CETB data at 3.125 km. While these selected 

pixels indeed have greater water coverage, reducing the influence of nonwater elements, they do not 

entirely eliminate the complexities associated with mixed pixel conditions. Compared with the MTT 

algorithm, the DMTT algorithm offers significant improvements in addressing these complexities 

(Section 4.1). By employing a double-threshold approach, the DMTT algorithm specifically adapts to the 

nuanced variations between ice and water states observed in Lake Ulansu. This method allows for a more 

accurate identification of state changes in mixed pixels, reducing the likelihood of undetected transitions, 

which are more common with simpler, single-threshold approaches. Furthermore, our comparative 

analysis between the DMTT and MTT algorithms demonstrates that the DMTT provides a better fit for 

the specific conditions of Lake Ulansu (Section 4.1). It more effectively reduces the incidence of 

undetected states, enhancing the dataset's overall accuracy. This is supported by the robust validation 

against multisource optical satellite data, which corroborates the DMTT algorithm’s performance in 

handling complex mixed pixel scenarios. 

 

40. Line 298: I would elaborate on this further. If most lakes in the Northern Hemisphere that have data 

are deep lakes, but shallow lakes are abundant? Then what about the comparison between the two makes 

it interesting? (I agree with you that it would be interesting, but I would like to know your reasoning) 

Reply: The comparison between shallow and deep lakes is indeed intriguing and scientifically valuable 

for several reasons: 

(1) Methodological insights: Comparing different lake types can also refine our methodological 

approaches in limnology and cryosphere sciences. It challenges existing algorithms and encourages 

the development of new techniques suitable for diverse conditions, as demonstrated by our DMTT 

algorithm for Lake Ulansu. 

(2) Differential thermal dynamics: Shallow lakes, such as Lake Ulansu, have minimal water volumes and 

shallow depths which lead to faster thermal responses. This characteristic makes them highly sensitive 



to atmospheric temperature changes, allowing them to serve as early indicators of climate change 

effects. In contrast, deeper lakes with larger volumes exhibit greater thermal inertia, delaying their 

response to climatic shifts. By comparing these systems, we can better understand the spectrum of 

lake responses to global warming, providing a broader perspective on thermal dynamics under 

changing climatic conditions. 

(3) Ice cover variability: The dynamics of ice cover in shallow lakes are markedly different from those in 

deeper lakes because of their rapid thermal response and shallower thermocline. Shallow lakes tend 

to freeze and thaw more quickly, which could lead to a shorter ice cover duration (ICD) under warming 

scenarios. In deeper lakes, the ICD is generally longer because of its their ability to retain cold 

temperatures. Studying these differences helps illuminate how variations in lake depth influence ice 

phenology, which is crucial for predicting ecological impacts across different lake types. 

These points have been elaborated upon in the revised manuscript to better articulate the scientific 

significance of comparing shallow and deep lakes, thereby clarifying the unique contributions of our study 

to the fields of limnology and climate science. See details on lines 404-442. 

 

41. Line 402: Can you qualify why you chose to compare Lake Ulansu with Qinghai Lake? 

Reply: This comparison is instrumental in highlighting the distinct phenological responses of lakes with 

different physical and ecological characteristics under similar climatic latitudes. Qinghai Lake, one of the 

largest saline lakes in a high-altitude environment and a widely studied subject, offers a robust dataset, 

including long-term ice phenology data. These high-quality, extensive datasets make Qinghai Lake an 

ideal reference point for assessing trends and methodologies, enhancing the validity of our comparative 

analysis. 

The key differences in their physical attributes—such as depth and salinity—result in varied responses to 

climatic factors, particularly air temperature and solar radiation, which influence their freeze-up start and 

break-up end dates. By comparing these two lakes, we aim to illustrate how varying lake characteristics 

can affect ice phenology, thus providing broader insights into how different types of lakes might respond 

to climate change. Qinghai Lake, with its larger volume and more saline water, has different thermal 

inertia and sensitivity to temperature changes than does the more responsive Lake Ulansu. This 

comparative analysis not only enriches our understanding of lake response but also supports the 

development of more nuanced models for predicting lake ice dynamics across diverse ecological settings. 

See details on lines 407-420. 

 



42. 5.2 Comparison with other lakes: In general, I think this section needs to be better qualified, why did 

you choose the comparisons with Qinghai Lake or the northern European lakes? What are some major 

consequences of the similarities/differences? How do you think adding shallow lakes will change our 

contextual understanding of lake ice, globally? Or locally? 

Reply: We have restructured this section to provide a clearer rationale for our choice of comparative 

studies with Qinghai Lake and the lakes in Northern Europe. This revision includes a more detailed 

discussion on why these particular comparisons are pertinent and how they contribute to the broader 

understanding of lake ice phenology under varying climatic and geographic conditions. 

 

43. 5.3 Conclusion: This section is extremely well written and summarizes the study well 

Reply: Thank you for your encouraging feedback on the Conclusion section of the manuscript. 

 

44. Line 455: Is there a citation associated with this, or is this in comparison to the other lakes in section 

5.3? 

Reply: We have revised the statement to emphasize the pronounced reduction in ice cover duration (ICD) 

observed at Lake Ulansu over the last four decades. We note that this change is significantly more marked 

than the gradual trends in the ICD across other Northern Hemisphere lakes. See details on lines 455-459. 

 

45. Line 54 add CERP acronym here 

Reply: Revised accordingly. 
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