
 

1 

 

Innovative aerosol hygroscopic growth study from Mie-Raman-

Fluorescence lidar and Microwave Radiometer synergy 

Robin Miri1, Olivier Pujol1, Qiaoyun Hu1, Philippe Goloub1, Igor Veselovskii2,3, Thierry Podvin1, Fabrice 

Ducos1 30 

1Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d’Optique Atmosphérique, Villeneuve d’Ascq 59650, France 
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia 
3Cimel Electronique, 172 rue de charonneCharonne 75011 Paris, France 

Correspondence to: Robin Miri (robin.miri@univ-lille.fr) 

Abstract. This study focuses on the characterization of aerosol hygroscopicity using remote sensing techniques. We employ 35 

a Mie-Raman-Fluorescence lidar (LILAS), developed at the ATOLL platform, Laboratoire d’Optique Atmosphérique, Lille, 

France, in combination with the RPG-HATPRO G5 microwave radiometer to enable continuous aerosol and water vapor 

monitoring. We identify hygroscopic growth cases when an aerosol layer exhibits an increase in both aerosol backscattering 

coefficient and relative humidity. By examining the aerosol layer type, determined through a clustering method, the 

fluorescence backscattering coefficient, which remains unaffected by the presence of water vapor, the potential temperature 40 

and the absolute humidity, we verify the homogeneity of the aerosol layer. Consequently, the change in the backscattering 

coefficient is solely attributed to water uptake. The Hänel theory is employed to describe the evolution of the backscattering 

coefficient with relative humidity and introduces a hygroscopic coefficient, γ, which depends on the aerosol type. The 

particularity of this method revolves in the use of the fluorescence which is employed to take into account and correct the 

aerosol concentration variations in the layer. Case studies conducted on 29 July 29 and 9 March 9, 2021 examine respectively 45 

an urban and a smoke aerosol layer. For the urban case, γ is estimated as 0.47±0.03 at 532 nm; as for the smoke case, the 

estimation of γ is 0.5±0.3. These values align with those reported in the literature for urban and smoke particles. Our findings 

highlight the efficiency of the Mie-Raman-Fluorescence lidar and Microwave radiometer synergy in characterizing aerosol 

hygroscopicity. The results contribute to advance our understanding of atmospheric processes, aerosol-cloud interactions, and 

climate modeling. 50 
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1 Introduction 

Aerosols play a crucial role in our understanding of climate dynamics. Their impact on the radiation budget is classified into 

direct and semi-direct effects (Hansen et al., 1997; Thorsen et al., 2020), with additional contributions arising from aerosol-

cloud interactions, commonly known as indirect effects. Certain aerosols can act as cloud condensation nuclei (CCN) or ice 

nuclei (INnucleating particle (INP), altering cloud properties including albedo and lifetime (Twomey et al., 1967). These 90 

complex processes remain significant challenges in the interpretation of the Earth energy balance. To advance our 

comprehension of aerosol-cloud interactions is crucial for improving climate models and accurately accounting for their 

influence on the energy balance of our planet. A key process in the understanding of these interactions is hygroscopic growth, 

which consists in aerosol uptake of water vapor in high relative humidity (RH) conditions, resulting in changes in size and, in 

some cases, chemical composition (Hänel, 1976). Hygroscopic growth efficiency varies depending on the aerosol type, with 95 

hydrophobic aerosols like dust and hydrophilic aerosols like marine particles (Chen et al., 2019; Chen et al., 2020). This 

variability is linked to their potential as CCN and ININP, highlighting the importance of understanding the hygroscopic 

properties of aerosols (G. McFiggans et al., 2006; U. Dusek et al., 2006). 

Hygroscopic growth properties of aerosols can be effectively investigated using a range of instruments. Traditionally, 

humidified nephelometers and spectrometers have been widely used to study aerosol hygroscopicity (Covert et al., 1972; 100 

Burgos et al., 2019). However, active remote sensing systems tend appear more advantageous since the last decade as they 

allow to measure with high vertical and temporal resolution, without interfering with the observed system. Lidars, in particular, 

have gained prominence in remotely studying these properties (Feingold and Morley, 2003; Fernández et al., 2015; Granados-

Muñoz et al., 2015; Zieger et al., 2015; Navas-Guzmán et al., 2019,; Dawson et al., 2020); Düsing et al., 2021; Sicard et al. 

2022…) and offer several advantages compared to other methods. In particular, lidars provide high vertical and temporal 105 

resolution, allowing for detailed analysis of aerosol characteristics. Moreover, lidars offer the unique capability of 

simultaneously measuring aerosol properties and water vapor mixing ratio using a single instrument. At the Laboratoire 

d’Optique Atmosphérique (LOA) in Lille, France, the ATOLL platform (ATmospheric Observations at LiLLe) features a Mie-

Raman-Fluorescence lidar (Lille Lidar for Atmospheric Study, LILAS) employed in the frame of EARLINET/ACTRIS-FR. 

(European Aerosol Research Lidar Network/Aerosols, Clouds and Trace Gases Research Infrastructure-France). This 110 

multiwavelength lidar system measures elastic, depolarized and Raman signals, providing comprehensive information on 

aerosol properties. The elastic signal being the one coming from the elastic scattering of the laser light by atmospheric 

molecules and aerosols, the depolarized signal is the part of the elastic signal which either has kept the laser polarization or 

has been depolarized after the scattering, and finally the Raman signal refers to the inelastic scattering, or Raman scattering, 

by atmospheric molecules. Additionally, LILAS captures aerosol fluorescence signal at approximately 460 and water vapor. 115 

Additionally, LILAS captures aerosol fluorescence signal at 466 nm, which is triggered by the lidar UV wavelength at 355 

nm. The fluorescence signal possesses distinctive characteristics that contribute to its utility in aerosol studies. Its intensity 

correlates with aerosol concentration and type, with biological aerosols like pollenspollen or biomass burning smoke exhibiting 
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higher fluorescence, while pure dust or urban aerosols demonstrate lower fluorescence. Furthermore, the fluorescence signal 

at 460466 nm does not arise from pure water, enabling the extraction of aerosol-specific information without the influence of 120 

water vapor, which proves to be essential in studying aerosol hygroscopic growth (Veselovskii et al., 2020). In combination 

with an RPG-HATPRO G5 microwave radiometer, also part of the ATOLL platform, it is possible to monitor both aerosol 

characteristics and water vapor, allowing to study aerosol hygroscopicity. 

The first part of this paper introduces the instruments, and outlines a novel method for an automatic aerosol classification, as 

well as for the study of aerosol hygroscopic growth using LILAS measurements. Following the instrument and method 125 

description, case studies are presented to demonstrate the efficiency and potential of the proposed approach. These case studies 

illustrate the practical implementation and feasibility of this innovative methodology, highlighting the added value brought by 

aerosol fluorescence measurement in offering valuable insights into the hygroscopic growth characteristics of these aerosols. 

Finally, the paper concludes with a summary of the findings and offers comments on the obtained results. The conclusions will 

also discuss the potential further advancements and applications of the developed method, emphasizing its importance in 130 

enhancing our understanding of hygroscopic growth phenomena and its broader implications for atmospheric research. 

2 Instrumentation and methodology 

2.1 Experimental setup and data treatment 

LILAS (Fig. 1)All the measurements presented in this paper were performed at the ATOLL platform in Lille (50.611° N, 

3.138° E). The first instrument used in this study is the lidar LILAS. Its emission component consists of a tripled Nd:YAG 135 

laser operating at a repetition rate of 20 Hz, with a pulse energy of 70mJ70 mJ at 355nm355 nm. The lidar system is configured 

in the 3β + 2α + 3δ arrangement, meaning it measures the elastic backscatter coefficient at three wavelengths (355 nm, 532 

nm and 1064 nm), it also measures the extinction at 355 nm and 532 nm, as well as the volume depolarization ratios. for these 

wavelengths. This instrument also includes an additional channel dedicated tofor aerosol fluorescence detection, featuring a 

dedicated interference filter centred at 460466 nm. with a width of 44 nm. For this study, the aerosol elastic backscatter 140 

coefficients (β) and the particulate linear depolarization ratio (PLDR) were computed at 532 nm from Mie-Raman observation 

(Ansmann et al., 1992) due to the lowhigh signal to noise ratio at this wavelength in comparison with the two others. 

Furthermore, the detection part of the lidar includes a channel specifically designed to measure the vibrational-rotational 

Raman scattering of water at 408 nm, allowing for the retrieval of water vapor mixing ratio profiles (RaoAnsmann et al., 

2002).1992, Whiteman et al. 1992). The obtained profiles were acquired during night time only, and averaged over a period 145 

of 60 minutes. General details about the system can be found in Hu et al. (2018) and Veselovskii et al. (2020). 

The proximity of the ATOLL platform to the airport prohibits the use of radiosounding. This poses a challenge for the inversion 

of water vapor using the LILAS lidar, as the computation of the instrumental constant requires a reference. Moreover, 

radiosoundings traditionally provide temperature profiles, which are crucial for calculating RH but are difficult to obtain 

otherwise. 150 
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In order to addressThe second instrument used in this study is the RPG-HATPRO G5 microwave radiometer developed by 

Radiometer Physics present at the ATOLL platform which provides integrated information like Integrated Water Vapor content 

(IWV) or Liquide Water Content (LWC), but also uses an integrated neural network model to retrieve atmospheric profiles of 

temperature, humidity, and liquid water. In situ sensors allow for ground level measurement of temperature, humidity and 

pressure. Finally, an infrared radiometer extension allows to detect cloud base height and ice clouds. Data are acquired at high 155 

temporal resolution (every 10 minutes) and profiles range from the ground to 10km (Louf et al., 2015).  

This instrument has been considered to compensate for the lack of radiosounding measurement at the ATOLL platform for the 

calibration of the lidar water vapor measurement. Unfortunately, after considering using the radiometer humidity and 

temperature profiles for the lidar calibration, these issuesones turned out to be insufficiently accurate. 

Consequently, temperature profiles from the ERA-5 reanalysis database were also collected, and integrated water vapor content 160 

(IWV) measurements from the HATPRO microwave radiometer (Fig. 2), located on the ATOLL platform have been utilized. 

To calibrate LILAS, the the IWV measurement of the radiometer has been used to calibrate the lidar. 

In order to compute the instrumental constant necessary for the lidar water vapor calibration, the radiometer IWV has been 

compared to the integral of absolute humidity (AH) between the ground and 6 km, (above which humidity is negligible), 

derived from the lidar-measured water vapor mixing ratio and the ERA-5 temperature. Following the calibration procedure 165 

described in Foth et al. (2015), the calibration constant of the instrument is determined as the ratio between IWV and the 

integral value. The calibrated water vapor mixing ratio can be computed with:  

𝑥𝐻2𝑂(ℎ) = 𝑥′
𝐻2𝑂(ℎ)𝐼𝑊𝑉 [∫ 𝑥′

𝐻2𝑂(ℎ)
𝑃(ℎ)

𝑅𝑎 𝑇(ℎ)
𝑑ℎ

𝑧𝑚𝑎𝑥

0
]

−1

 ,       (1) 

xH2O(h) = x′
H2O(h)IWV [∫ x′

H2O(h)
P(h)

Ra T(h)
dh

zmax

0
]

−1

 ,       (1) 

where ℎh is the height, 𝑥𝐻2𝑂(ℎ)xH2O(h) and 𝑥′
𝐻2𝑂(ℎ)x′

H2O(h) the calibrated and not-calibrated water vapor mixing ratios 170 

respectively, 𝑧𝑚𝑎𝑥zmax is equal to 6 km, 𝑃P is the atmospheric pressure estimated with the hydrostatic approximation, 𝑅𝑎Ra 

is the air perfect gas constant, 𝑇T  is the temperature all given in the International System of units 

(https://www.bipm.org/en/publications/si-brochure).. The calibration has been exclusively conducted under clear sky 

conditions and taking into account the signal-to-noise ratio of the lidar's water vapor mixing ratio: between 5 and 6 km, if the 

signal to noise ratio on the profile is lower than 0.3, the calibration constant is not computed. The 0.3This threshold has been 175 

determined to ensure both data quality and a sufficient number of calibration constant computations. An interpolation has then 

been performed to estimate the calibration constants of cloudy and noisy situations. 
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Figure 1: Picture of LILAS (pi: Philippe Goloub, philippe.goloub@univ-lille.fr) 

 180 

Figure 2: Picture of the HATPRO microwave radiometer (pi: Olivier Pujol, olivier.pujol@univ-lille.fr) 

2.2 Classification method 

The aerosol typing method developed in this paper is based on that presented by Veselovskii et al. (2022). This method mainly 

relies on the PLDR at 532 nm, hereafter referred to as depolarization ratio for simplicity, and the aerosol fluorescence capacity 

(𝐺𝑓𝑙𝑢𝑜). 𝐺𝑓𝑙𝑢𝑜 is defined as the ratio of the fluorescence backscatter coefficient (𝛽𝑓𝑙𝑢𝑜) to the elastic backscatter coefficient at 185 

532 nm (𝛽532). By analysing these two quantities, we can classify aerosols into four distinct types, as depicted in Figure 3. 
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Figure 3: Schematic empirical aerosol typing repartition in function of the Depolarization (PLDR) & Fluorescence capacity (adapted 

from Veselovskii et al. 2022) 

One of the primary limitations of this method lies in the treatment of hygroscopic growth scenarios. When hygroscopic growth 190 

takes place, the elastic backscatter coefficient increases, while the fluorescence backscatter coefficient is assumed to be 

unchanged (since water does not produce fluorescence at 460 nm (Veselovskii et al., 2020)), resulting in a reduction of the 

fluorescence capacity. Consequently, this situation can potentially lead to misclassification. 

To address this challenge and account for the effect of hygroscopic growth, an automatic classification algorithm based on a 

Gaussian Mixture Model (GMM) has been developed, we have called it FLARE-GMM (Fluorescence Lidar based Aerosol 195 

REcognition with Gaussian Mixture Model). GMM is a clustering technique utilized to discern patterns within a dataset and 

recognize data clusters. It generates Gaussian probability functions, indicating the likelihood of belonging to each class, with 

the highest probability corresponding to the assigned class for each data point (Reynolds, 1992). 

FLARE-GMM has been trained using nighttime lidar data collected during 2021 and 2022, as fluorescence and humidity can 

only be collected by night. For this automatic classification, both the fluorescence capacity and the depolarization ratio have 200 

been considered as features. Additionally, the algorithm takes RH into account to effectively handle cases involving 

hygroscopic growth. By incorporating these evolutions, FLARE-GMM becomes more robust and enables providing accurate 

aerosol typing even under varying hygroscopic conditions. 

To train the model, the data selected for training purposes were restricted to altitudes above 1.5km. This decision has been 

taken in order to avoid most of the boundary layer, where significant mixing takes place, making it more challenging to identify 205 

distinct clusters. Furthermore, only instances where 𝛽532 fell within the range of [1; 10] 𝑠𝑟−1. 𝑀𝑚−1 have been considered in 

order to exclude both cases with low aerosol concentrations which can be difficult to identify, as well as cloud-related data. 

In order to determine the optimal number of clusters for classification, the silhouette coefficient (Aranganayagi et al., 2007), 

a classificator performance indicator, has been computed for different number of clusters (Rousseeuw et al., 1987). This 

coefficient, between -1 and 1, is an indicator that shows if a repartition fits the data, and is widely used to estimate the number 210 
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of clusters a dataset is a priori made of. Due to the limited availability of pure pollen cases in our dataset, the silhouette 

coefficient is maximal for four clusters, the model has therefore been trained for this number. These clusters correspond to 

urban, dust, smoke, and a category encompassing all mixed cases, where aerosols from different sources or with complex 

compositions are assumed to be present. 

2.32.2 Hygroscopic growth identification & study 215 

In order to identify and analyze hygroscopic growth cases, a widely used method consists in searching for a homogeneous 

aerosol layer that spans either in time or altitude. When RH and elastic backscatter coefficient both increase, or decrease, it 

serves as a key indicator of hygroscopic growth. In such casesthe case of a homogeneous aerosol layer, the elastic backscatter 

coefficient evolution can then be attributed only to hygroscopic growth. This approach enables to relate the elastic backscatter 

coefficient and RH, characterizing the hygroscopic properties of the considered aerosol particles. 220 

The verification of the homogeneous nature of the considered aerosol layer is generally performed by investigating two key 

variables, absolute humidity and potential temperature,. Absolute humidity is investigated in order to identify any changes in 

the air mass. When these quantities show relative stability, that would lead to a change in the absolute humidity. A constant or 

decreasing potential temperature means that strong mixing is occurring within the aerosol layer, it supports the hypothesisthus 

supporting that the layer is homogeneous (Granados-Muñoz et al., 2015; GuzmanNavas-Guzmán et al., 2019; Sicard et al. 225 

2022). 

The focus of this paper rounds about the valuable insights provided by 𝛽𝑓𝑙𝑢𝑜. Byβfluo. As stated in Veselovskii et al. (2020), 

fluorescence signal emitted by aerosols around 466 nm is not expected to be impacted by the presence of water, as pure water 

does not fluoresce. Therefore, by assuming that hygroscopic growth does not impact aerosol fluorescence (Veselovskii et al., 

2020), 𝛽𝑓𝑙𝑢𝑜and that the aerosol mixing state remains the same in the considered layer, βfluo becomes a reliable proxy for 230 

monitoring the concentration of dry material within the aerosol layer. Under the hypothesis of a constant aerosol mixture and 

chemical composition in the layer, normalizing 𝛽532β532 by 𝛽𝑓𝑙𝑢𝑜βfluo enables the study of hygroscopic growth properties, 

while also accounting for any possible changes in aerosol concentration within the layer. 

Once the hygroscopic growth case has been identified, it becomes possible to examine the correlations between aerosol optical 

properties and RH. In this paper, particular attention has been given in the investigation of 𝛽532β532. In order to explore this 235 

correlation efficiently, the Hänel parametrization has been used to express the changes in 𝛽532β532 as a function of RH. It 

introduces a parameter γ, known as the hygroscopic growth factor, which depends on the wavelength and the type of aerosol 

(Hänel, 1976). The Hänel parametrization is represented by: 

𝛽532(RH)

𝛽532(RHref)

β532(RH)

β532(RHref)
= (

100−RH

100−RHref
)

−𝛾

,(
100−RH

100−RHref
)

−γ

,        

  (2) 240 

RHref  being the reference relative humidity. From this parametrization, it is possible to use βfluo  to account for aerosol 

concentration changes within the layer, by normalizing β532 such as: 
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β532(RH)

β532(RHref)

βfluo(RHref)

βfluo(R𝐻)
 = (

100−RH

100−RHref
)

−γ

,         (3) 

We obtain an accurate estimation of the hygroscopic parameter γ, by fitting the variation of 𝛽532β532 with respect to RH to the 

function: 245 

𝛽532β532(RH) = 𝛽532β532(RHmin)
𝛽𝑓𝑙𝑢𝑜(RH)

𝛽𝑓𝑙𝑢𝑜(RHmin)

βfluo(RH)

βfluo(RHmin)
 (

100−RH

100−RHmin
)

−𝛾

,     

  (3(
100−RH

100−RHmin
)

−γ

,       (4) 

where RHmin  represents the minimum relative humidity observed within the analysed aerosol layer. Subsequently, these 

estimated the estimations of γ values can be compared to hygroscopic growth parameter estimations from previous studies, 

consideringthe type of the aerosol types determined by FLARE-GMMcan be estimated from the optical properties, mainly its 250 

fluorescence capacity (the ratio between the fluorescence and elastic backscatter coefficients) and PLDR (Veselovskii et al, 

2022) as shown Figure 1. This comparative analysis offers valuable insights on how the hygroscopic growth of aerosols relates 

to their specific compositions and sources, contributing to a deeper understanding of aerosol behaviour in changing 

environmental conditions. 

 255 

Figure 1: Schematic empirical aerosol typing repartition in function of the Depolarization (PLDR) & Fluorescence capacity (adapted 

from Veselovskii et al. 2022) 

3 Results and discussions 

3.1 Classification accuracy estimation 

Assessing the accuracy of clustering models such as GMM can be challenging in the absence of definitive benchmarks. In this 260 

section, a first work has been performed to have an idea of FLARE-GMM performances to identify aerosol types from LILAS 

data. 

Our initial approach involves scrutinizing the classification outcomes in instances where aerosol categories are unequivocally 

established. These situations mainly manifest during specific events of dust or smoke occurrences. The region of Lille 
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frequently experiences such events, which are consistently documented and analysed by the LOA (Baars et al., 2019), and 265 

which origins can be checked from backward trajectories (Stein et al., 2015). 

In order to illustrate this assessment approach, we first examine a dust event. In Lille, typically in March, substantial quantities 

of desert dust originating from the Sahara region are occasionally detected, largely attributable to Sirocco winds. These events 

materialized in both 2021 and 2022 and have been detected by LILAS. In Figure 4 are presented FLARE-GMM results for the 

dust event cases of 2021 and 2022. These figures offer a visual depiction of the algorithm performance in such well-defined 270 

aerosol situations. 

 

Figure 4: FLARE-GMM aerosol typing during the nights (a) from 2 to 3 March 2021 and (b) from 15 to 16 March 2022 

Figure 4 presents the outcomes generated by the classification algorithm on lidar quicklooks. These quicklooks represent 

unaveraged data with notable temporal and spatial resolutions. They are generated with the primary aim of enhancing our 275 

understanding of various atmospheric situations, at the expense of introducing greater measurement noise into the dataset. 

Among the results of the classification algorithm, thresholds on 𝛽532 have been applied to define the clear air and cloudy 

conditions, these thresholds have been arbitrarily fixed at 0.5 𝑀𝑚−1. 𝑠𝑟−1 bellow which the case is considered as background, 

or clear air, and 10 𝑀𝑚−1. 𝑠𝑟−1 above which the case is considered as cloud. The thresholds have been used because bellow 

0.5 𝑀𝑚−1. 𝑠𝑟−1, the PLDR, being computed from a ratio, becomes extremely sensitive to noise, and over 10 𝑀𝑚−1. 𝑠𝑟−1, the 280 

situation is considered as cloudy and therefore much more difficult to analyze accurately. The unknown class is assigned to 

data points for which the GMM probability, denoting the likelihood of belonging to a specific class, falls below the 80% 

threshold. 

Figure 4 visually validates the classification algorithm accuracy in identifying predominant dust layers. In the 2021 case, the 

algorithm identifies a mixture of aerosols in the lower part of the layer, and a domination of dust in upper layer. In the 2022 285 

case, the algorithm classifies it as a predominantly pure dust event. An interesting observation is made near the cloud region, 

where FLARE-GMM tends to associate the situation with urban aerosols. We acknowledge that this represents one of the 

algorithm limitations. Given that the classifier was not trained on cloudy scenarii, situations characterized by low 

depolarization and limited fluorescence capacity tend to be erroneously classified as urban aerosols in the vicinity of clouds. 

This issue is however specific to the quicklooks and is a consequence of the high temporal and spatial measurement resolution. 290 
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Regarding smoke events, a significant occurrence was the fires near Bordeaux in July 2022. The smoke aerosols originating 

from this region were observable at ATOLL during the period approximately spanning from July 17 to July 20. Figure 5 

illustrates the outcomes of FLARE-GMM for this particular scenario and demonstrates that in this instance, the layer is 

accurately categorized as a smoke layer, highlighting the algorithm capability to detect such events. 

 295 

Figure 5: FLARE-GMM estimation of aerosol class during the night on 19 July 2022 

Figure 4 and Figure 5 illustrate the algorithm ability to discriminate extreme events during substantial pure dust and smoke 

events. These specific examples provide compelling evidence that the algorithm accurately identifies instances of pure smoke 

and dust, clearly discriminating them from other aerosol types. This, in turn, enhances the overall confidence in the algorithm 

results. 300 

An alternative method employed to assess FLARE-GMM accuracy consists in comparing it to a relative reference. In this 

capacity, NATALI (Neural Network Aerosol Typing Algorithm Based on Lidar Data), another automated classifier relying on 

lidar data, has been used. By juxtaposing the outcomes obtained from NATALI, whose accuracy is estimated at approximately 

70% (Nicolae et al., 2018, Papagiannopoulos et al., 2018), with FLARE-GMM outcomes, it becomes feasible to estimate the 

relative accuracy of the latter. This method is however imperfect because the comparison does not yield absolute accuracy. 305 

Instead, it offers a rough approximation of the classifier performance. The comparative analysis has been conducted on 38 

profiles from the year 2022. The findings are presented in a confusion matrix (Fig. 6). 
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Figure 6: Confusion matrix between NATALI aerosol type estimation (y axis) and FLARE-GMM estimation (x axis) on 38 profiles 

from 2022 310 

Figure 6 shows the confusions matrix between the results from FLARE-GMM and NATALI on 38 profiles of 2022. The 

confusions matrix shows the correspondence between the number of identified cases of each class, these matrixes are regularly 

used to assess the performance of a classifier in machine learning, by comparing the model results to a reference. In this case, 

the confusion matrix illustrates disparities in the outcomes between NATALI and FLARE-GMM in various aspects. On one 

hand, concerning the classification of dust, it appears that the dust cases identified by FLARE-GMM are often categorized as 315 

Marine/CC by NATALI. This outcome may appear unexpected, given the ATOLL’s inherent characteristics, which typically 

result in a very low presence of marine aerosols. These differences could be explained by two aspects. First, NATALI bases 

its classification on the lidar ratio (LR) and the Angstrom exponent, both parameters highly susceptible to measurement 

uncertainties which might introduce errors in aerosol typing. Moreover, the dataset employed to train NATALI consists of 

simulated data, which might introduce bias in classifying data obtained from the LILAS system, generated from the 320 

specificities of both the instrument and Lille atmospheric conditions. In contrast, FLARE-GMM is directly trained on LILAS 

data, enhancing its performance. 

On the other hand, when examining urban and smoke cases, it becomes obvious that the results from the two models diverge, 

with numerous cases identified by NATALI as smoke, classified as urban by FLARE-GMM. An explanation is that FLARE-

GMM could present a bias towards urban cases, possibly due to hygroscopic growth. This growth diminishes the smoke 325 

fluorescence capacity, leading to misclassifications as urban aerosols. However, it is worth noting that this issue should have 

been addressed, given that RH is integrated as a feature in the model. Therefore, a situation with high RH and relatively low 

fluorescence capacity can still be correctly identified as a smoke case. The explanation could also stem from the assumptions 

made in the former paragraph. 

In conclusion, while drawing precise quantitative conclusions about FLARE-GMM accuracy may be challenging, the 330 

comparison with NATALI provides encouraging results, with a substantial agreement between the two models (approximately 
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50%). The alignment between the models enhances confidence in the GMM results. Combined with the conclusions drawn 

from the analysis of extreme events, these findings demonstrate promising results for the overall classification performance. 

3.2 Hygroscopic growth methodology study 

In order to experiment the potential of the hygroscopic growth study approach, this method has been tested on two potential 335 

hygroscopic growth cases, the first one occurring during 29 July 2021 at 10 pm, averaged from 22:00 to 23:00 UTC, and the 

second during 9 March 2021 at 9 pm. The optical properties of the first case aerosol layer, identified by FLARE-GMM as a 

layer of urban aerosols, are displayed on Figure 7, averaged from 21:00 to 22:00 UTC. 
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3.1 Hygroscopic growth study during the event of 29 July 2021, from 22:00 to 23:00 UTC 340 

 

Figure 2: LILASProfile of retrieved optical properties in function of altitude above ground level (a) Waterwater vapor mixing ratio 

[g/kg] and Potentialpotential temperature [K], (b) 𝜷𝟓𝟑𝟐 elastic backscatter coefficient at 532 nm [1/m.sr] and RH, (c) 
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𝜷𝒇𝒍𝒖𝒐fluorescence backscatter coefficient at 466 nm [1/m.sr] and PLDRparticular linear depolarization ratio at 532 nm, on 29 July 

2021 at 10 pmfrom 22:00 to 23:00 UTC, the black dashed lines identify the area where hygroscopic growth is expected to occur 345 

Figure 2 shows the profiles of the different measurements on the case study of 29 July 2021. In this particular scenario, both 

the water vapor mixing ratio and potential temperature exhibit relative stability, which are the two criteria commonly used to 

assess that the considered aerosol layer is homogeneous (Granados-Muñoz et al., 2015; GuzmanNavas-Guzmán et al., 2019; 

Sicard et al., 2022). Even though the potential temperature is derived from model estimationsERA-5 reanalysis temperature 

profiles rather than direct measurements, this still provides a strong indication of the aerosol layer homogeneity. Moreover, 350 

the 𝛽𝑓𝑙𝑢𝑜 remains highly stableβfluo does not show strong variations within the defined region, as does  (the standard deviation 

of βfluo  in the class determined by FLARE-GMM,considered layer is about 10% of the average), further supporting this 

conclusion. 

Conversely, there is an increase in both 𝛽532β532 and RH, suggesting a potential case of hygroscopic growth. RH rises from 

74% to 96% which is a significant growth and strongly support the hypothesis that hygroscopic growth occurs. Lastly, the 355 

PLDR slightly decreases, but given its already low value, further decrease due to hygroscopic growth is not anticipated. 

A limitation to consider in this situation is that the studied layer is below 1500 m. This is due to the lack of nice hygroscopic 

growth cases in high altitudes in the dataset used in this study. As mentioned, FLARE-GMM has not been trained on data 

bellow this threshold, so it could potentially lead to a drop of performance. However, since the optical characteristics of an 

aerosol type are the same bellow this threshold, the classification performance is not expected to drop. The outcomes of the 360 

fitting process to the Hänel parametrization are displayed in Figure 8. 

 

Finally, it is possible to estimate the aerosol type of the considered layer by looking at its optical properties. Figure 3 shows 

the scatter plot of the PLDR at 532 nm and the fluorescence capacity which is here the ratio between βfluo and β532. The 
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considered aerosol layer exhibits low PLDR as well as low fluorescence capacity, characteristics that allow it to be identified 365 

as an urban aerosol layer. 

 

Figure 3: Fluorescence capacity (𝛃𝐟𝐥𝐮𝐨/𝛃𝟓𝟑𝟐)  and Particle Linear Depolarization Ratio at 532 nm between 1000 m and 1500 m above 

ground level on 29 July 2021 from 22:00 to 23:00 UTC, characteristic of an urban aerosol layer. 

 370 

Figure 4: Evolution of 𝜷𝟓𝟑𝟐the elastic backscatter coefficient at 532 nm in function of RH on 29 July 2021 at 10 pmfrom 22:00 to 

23:00 UTC, between 1000 m and 1500 m above ground level, and results of the fit on the Hänel parametrization 

Figure 84 presents the outcomes of the fitting process for the relationship between 𝛽532β532  and RH using the Hänel 

parametrization. These results indicate a good fit to the Hänel parametrization in this particular case, as evidenced by the 

determination coefficient being close to 1 (𝑅2R2 = 0.991). However, the estimated value of 𝛾γ, which is expected to fall 375 

between 0.3 and 0.5 for a case of urban particles (GuzmanNavas-Guzmán et al., 2019), is equal to 0.331 in this instance, which 

is very close to the lower limit for this type of aerosols. It also comes along with a slight divergence between the fit and the 

data, specially at high RH.  

Several factors may contribute to the deterioration of the results and explain the low value of 𝛾γ. First, it is possible that in this 

case, there is merely no significant hygroscopic growth occurring for this particular type of aerosol within the observed range 380 
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of RH. However, given the substantial RH variation, starting at 74% and reaching up to 96%, this hypothesis becomes less 

plausible. 

Second, it is possible that the main assumption of the studyon which lies this parametrization, i.e. constant aerosol 400 

concentration within the observed layer, may not hold true. Even with stable potential temperature and water vapor mixing 

ratio, there is a possibility that aerosol concentration varies within the designated area, especially considering that potential 

temperature is derived from modelsERA-5 reanalysis profiles and not directly measured. This potential aerosol concentration 

variation could potentially account for the low estimation of the hygroscopic growth factor. 

In order to investigate this, we can assume that aerosol mixing remains constant within the study area, and that  𝛽𝑓𝑙𝑢𝑜βfluo 405 

varies solely with changes in aerosol concentration. Doing so, it becomes possible to normalize 𝛽β532 based on variations in 

aerosol concentration according to:  

𝛽532
̅̅ ̅̅ ̅̅ β532

̅̅ ̅̅ ̅̅ (RH) =  𝛽532β532(RH)
𝛽𝑓𝑙𝑢𝑜(RHmin)

𝛽𝑓𝑙𝑢𝑜(RH)

βfluo(RHmin)

βfluo(RH)
,       

  (4) 

Here, 𝛽532
̅̅ ̅̅ ̅̅ β532

̅̅ ̅̅ ̅̅ (RH) is the normalized elastic backscatter coefficient and 𝛽𝑓𝑙𝑢𝑜βfluo(RHmin) is 𝛽𝑓𝑙𝑢𝑜βfluo  at the minimum 410 

value of RH in the studied area. 

It is now possible to apply the Hänel parametrization on 𝛽532
̅̅ ̅̅ ̅̅ β532

̅̅ ̅̅ ̅̅  instead of 𝛽532β532  to take into account aerosol 

concentration variations within the layer, and assess whether this normalization yields improved results. The relationship 

between 𝛽532
̅̅ ̅̅ ̅̅  and RH, along with its fit to the Hänel parametrization is presented in Figure 9. Mis en forme : Anglais (Royaume-Uni)
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 415 

 

Figure 5: Evolution of 𝜷𝟓𝟑𝟐the normalized elastic backscatter coefficient at 532 nm (normalized with fluorescence backscatter 

coefficient) in function of RH on 29 July 2021 at 10 pmfrom 22:00 to 23:00 UTC, between 1000 m and 1500 m above ground level, 

and results of the fit on the Hänel parametrization 

The resultsrelationship between β532
̅̅ ̅̅ ̅̅  and RH, along with its fit to the Hänel parametrization presented in Figure 95 420 

demonstrate a significantly improved fit to the Hänel parametrization, with a notably higher determination coefficient (𝑅R² =

 0.98 instead of 0.91). Furthermore, the estimation of 𝛾γ is found to be equal to 0.47 ± 0.03, falling precisely within the range 

of estimations conducted at 532nm532 nm by previous studies (GuzmanNavas-Guzmán et al. 2019, Sicard et al. 2022). These 

findings support the hypothesis that aerosol concentration varies within the aerosol layer, and that such fluctuations are 

traceable through 𝛽𝑓𝑙𝑢𝑜βfluo , corroborating the efficiency of the presented approach for investigating hygroscopic growth 425 

phenomena. 
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3.2 Hygroscopic growth study during the event of 9 March, from 21:00 to 22:00 UTC 

Another case study can be presented to further support the validity of this approach. It is the case occurring on 9 March 9 

2021at 9 pm. Lidar measurements for this aerosol layer are displayed on Figure 102021 averaged between 21:00 UTC and 

22:00 UTC. 430 
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Figure 6: LILASProfile of retrieved optical properties in function of altitude above ground level (a) Waterwater vapor mixing ratio 

[g/kg] and Potentialpotential temperature [K], (b) 𝜷𝟓𝟑𝟐elastic backscatter coefficient at 532 nm [1/m.sr] and RHrelative humidity, 

(c) 𝜷𝒇𝒍𝒖𝒐fluorescence backscatter coefficient at 466 nm [1/m.sr] and PLDRparticular linear depolarization ratio at 532 nm, on 9 435 

March 2021 at 9 pmfrom 21:00 to 22:00 UTC, the black dashed lines identify the area where hygroscopic growth is expected to occur 
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Figure 6 shows the profiles of the different measurements on the case study of 9 March 2021. In this situation, both the water 

vapor mixing ratio and the potential temperature are relatively stable in the layer. (potential temperature variations remain 

under 2 K, and the water vapor mixing ratio variations remain under 1 g/kg), indicating a good mixing in the considered layer. 

An increase in both RH and 𝛽532β532 can also be noticed. On the other hand, there is a small variation of 𝛽𝑓𝑙𝑢𝑜are fluctuations 440 

of βfluo, mostly in the lower part of the layer, and the PLDR remains stable, but once again, given its already low value, it is 

not expected to decrease with hygroscopic growth. These elements together indicate that a hygroscopic growth scenario is 

most likely to occur in this layer. The evolution of both 𝛽532 and 𝛽532
̅̅ ̅̅ ̅̅  with RH can be fitted using the Hänel parametrization 

(Figure 11). 

 445 

The aerosol type can be investigating once again by looking at the fluorescence capacity and the PLDR. Both are represented 

Figure 7 and show characteristics indicating that the aerosol layer comes from biomass burning smoke with low PLDR and 

strong fluorescence. Something worth noticing however is the low value of the fluorescence capacity. Indeed, the fluorescence 

capacity is the ratio between fluorescence backscatter coefficient and elastic backscatter coefficient. While the first one is 

expected to remain stable with hygroscopic growth, the second increases in high humidity condition, consequently decreasing 450 

the fluorescence capacity and potentially leading to misclassification as indicated in Veselovskii et al., 2020. In this case 

however, it is still possible to identify the biomass burning smoke aerosol layer. 
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Figure 7: Fluorescence capacity (𝛃𝐟𝐥𝐮𝐨/𝛃𝟓𝟑𝟐)  and Particle Linear Depolarization Ratio at 532 nm between 850 m and 1280 m above 

ground level on 9 March 2021 from 21:00 to 22:00 UTC, characteristic of a biomass burning smoke aerosol layer. 455 

 

Figure 8: Evolution of (a) 𝜷𝟓𝟑𝟐the elastic backscatter coefficient at 532 nm (a) without normalization and (b) 𝜷𝟓𝟑𝟐with normalization 

with the fluorescence backscatter coefficient, in function of RH on 9 March 2021 at 9 pmfrom 21:00 to 22:00 UTC, between 850 m 

and 1280 m above ground level, and results of the fit on the Hänel parametrization 

The results of the fit to the Hänel parametrization on both 𝛽532β532  and 𝛽532β532   shown Figure 8 indicate a significant 460 

improvement brought by the normalization with the fluorescence. Without this process, the fit to the Hänel parametrization is 

extremely poor, with 𝑅2R2 = −0.06. Furthermore, the estimation of the hygroscopic growth parameter is much lower than 

expected (𝛾γ = 0.111 ± 0.283) while the value is expected to fall around 0.5 at 532 nm for smoke aerosols according to 

Gomez et al. (2018). On the other hand, by using the information given by the fluorescence to normalize the elastic backscatter 

coefficient, it is possible to obtain a much better fit to the Hänel parametrization, with 𝑅2R2 = 0.93 and a better estimation of 465 

the hygroscopic growth parameter, with 𝛾γ = 0.5 ± 0.3 falling in the expected range for smoke aerosols. These findings 

suggest that it is indeed possible to use 𝛽𝑓𝑙𝑢𝑜βfluo to correct the variation of aerosol concentration within the aerosol layer to 

study hygroscopic growth. The only drawback of this case lays in its high uncertainty.  
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Explanation for this high uncertainty could be instrumental noise, or the span of RH covered being narrower than the first 

presented case (RH varying from 77.8% to 87.6%), or even the atmospheric variability being more important in this situation. 470 

Nevertheless, the point demonstrated in this analysis relies in the utility of the fluorescence correction for the hygroscopic 

factor estimation which is well emphasized here. 

The influence of a shift in RH on γ has also been examined. For the case of 9 March 2021, when RHa bias of minus 0.1 is 

decreased by 10%,manually introduced on RH, the corresponding γ valueestimation becomes 0.82, while an increasea positive 

bias of 10%0.1 in RH results in a γ value of 0.23. The estimation of RH is based on both measurement from LILAS and the 475 

radiometer but also on ERA-5 reanalysis data, which heavily relies on computational models. While this estimation provides 

valuable insights, it inherently introduces a level of uncertainty on the results. It is anticipated that the uncertainty associated 

with this estimation falls within the range of 10%. The estimation of γ and the conclusions draw from this estimation should 

then be considered with caution. Future studies might focus on refining the methods used for RH estimation, aiming at 

minimizing this inherent uncertainty and enhancing the accuracy of these findings. However, even if a shift in RH introduces 480 

high variability in 𝛾γ, the determination coefficient 𝑅R² remains almost unchanged (𝑅2R2 = 0.92 when RH is decreased by 

10%0.1 and 𝑅2R2 = 0.91 for a 10%0.1 increase) meaning that the conclusion drawn on the use of the fluorescence correction 

are still valid in spite of the uncertainty on RH. 

4. Conclusion 

In this article, we have examined the possibility of using LILAS data for aerosol typing and aerosol hygroscopic growth studies. 485 

The calibration of LILAS's water vapor channel has been addressed using thermodynamic data from the RPG-HATPRO 

microwave radiometer and temperature data from ERA-5 reanalysis. A novel classification, FLARE-GMM typing has been 

developed as well as aA new approach to analyse aerosol hygroscopicity, both relying on the fluorescence profiles measured 

by LILAS has been developed and tested on two situations. 

The classification, FLARE-GMM is a Gaussian Mixture Model trained on LILAS profiles collected during 2021 and 2022. 490 

This model incorporates fluorescence capacity, particular linear depolarization ratios, and RH as features. The outcome of 

FLARE-GMM enables the categorization of aerosol layers into four distinct classes: dust, smoke, urban, or a mixture thereof. 

FLARE-GMM's performance has been assessed in specific aerosol events, such as the transport of Saharan dust or smoke 

plumes from southern France. In these instances, the model demonstrates accurate aerosol layer classifications. 

FLARE-GMM results have also been compared to another classifier, NATALI, also relying on lidar data. Although the 495 

comparison presents analytical challenges and raises questions regarding the treatment of dust events and the confusion 

between smoke and urban aerosols. It also yields promising results, providing valuable insights into the FLARE-GMM 

accuracy and potential avenues for further research in aerosol characterization. Further studies will explore the enhancement 

of this method since features will be be added such as multiwavelength depolarization ratios, or more complex features such 

as the lidar ratio, or the Angstrom exponent.  500 
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Further work will enlarge the classification to aerosol layers located above 6 km, despite the limited availability of humidity 

data, or during daytime conditions when both humidity and fluorescence measurements are challenging. 

Regarding the hygroscopic growth study, theThe unique feature of the method presented in this article hinges on its use of the 

fluorescence backscatter coefficient. This coefficient serves as a weighting factor in tracking the evolution of aerosol 535 

concentration within the aerosol layer. Consequently, it leads to a significantly improved representation of the hygroscopic 

state evolution of the aerosols, thereby enhancing the characterization of the Hänel hygroscopic coefficient, γ. To validate this 

approach, evaluations were performed on two cases from July and March 2021, yielding promising results and highlighting 

the value brought by the fluorescence backscatter coefficient measurement with the lidar. With, in the first case, an estimation 

of 𝛾γ of 0.47 ± 0.03 with the fluorescence correction, falling in the expected range of hygroscopic growth parameter of and 540 

urban aerosol layeraerosols at 532 nm. In the second case, the estimation of 𝛾γ  is of 0.5 ± 0.3  which, despite higher 

uncertainty, is in the expected values for smoke particles at 532 nm and most importantly, is a great improvement compared 

to the estimation carried on without the fluorescence correction.  

In order to further increase the accuracy of our results, this method could be applied on a site featuring both fluorescence lidar 

measurement as well as radiosoundings could be used in order to better estimate RH, a variable that significantly influences γ 545 

estimation and which is really complicated to estimate accurately otherwise. Based on the presented approach, values of γ can 

be calculated for various types of aerosols, and the assessment of the relationship between γ and aerosol optical properties like 

PLDR or fluorescence capacity can be considered. These relationships are expected to provide valuable insights for modelling 

interactions between aerosols and water vapor, serving as an initial step in studying aerosol-cloud interactions (Dusek et al., 

2006, Petters and Kreideweis, 2007). 550 

However, a current limitation of the present work arises in the identification of hygroscopic growth cases which is made 

manually. Future efforts could focus on automatically identifying hygroscopic growth cases using lidar measurements, 

simplifying the study of γ dependency with aerosol parameters on a large number of situations (Gysel et al., 2007). In this 

perspective, an automatic classification method is also currently being developed using clustering approach in order to 

automatically classify aerosol layers based on their optical properties as well as thermodynamic parameters accounting for 555 

humidity impact on the fluorescence capacity as illustrated in the analysis of Figure 7. These relationships are expected to 

provide valuable insights for modelling interactions between aerosols and water vapor, serving as an initial step in studying 

aerosol-cloud interactions (Dusek et al., 2006, Petters et al., 2007). 

Furthermore, both the classification and the hygroscopic growth study will be adapted and improved for the LIFE lidar (Laser 

Induced Fluorescence Explorer), anticipated to be operational by 2024. This upcoming lidar system is set to have more power 560 

and include additional fluorescence channels, thereby increasing the amount of information available, which will significantly 

enhance the performance of the classification and provide greater precision in aerosol typingretrieval performance. 

Mis en forme : Anglais (États-Unis)
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