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Abstract. This paper presents the development of a stochastic particle method to simulate advection in regional-scale models

with a particle-resolving aerosol representation. The new method is based on finite volume discretizations with the flux terms

interpreted as probabilities of particle transport between grid cells. We analyze the method in 1D and show that the stochastic

particle sampling during transport injects energy at high spatial frequencies, which can be partially compensated for with the

choice of a dissipative odd-order finite volume scheme. We then apply the stochastic third- and fifth-order advection algorithms5

with monotonic limiters in WRF-PartMC, using both idealized and realistic wind fields in 2D and 3D. In all cases we observe

the expected convergence rates of the stochastic particle method to the finite volume solution as the number of computational

particles is increased. This work enables the use of particle-based aerosol models on the regional scale.

1 Introduction

Aerosol particles influence the climate system as cloud condensation nuclei (CCN), as ice nucleating particles, and as scatterers10

and absorbers of radiation (Masson-Delmotte et al., 2021). Estimating the magnitude of the aerosol impact on climate requires

not only the information of bulk aerosol composition and size distribution, but also the information of aerosol mixing state

(Riemer et al., 2019), i.e., the way the chemical species are distributed across the particle population (Winkler, 1973). The

aerosol mixing state can vary between a fully external mixture, where each particle contains only one chemical species which

can differ between different particles, and a fully internal mixture where each particle is composed of the same mixture of15

species. In reality, the mixing state is in between these two extreme cases (Bondy et al., 2018; O’Brien et al., 2015; Ye et al.,

2018; Healy et al., 2014). Furthermore, many physical and chemical processes change the mixing state during the aerosol’s

lifetime in the atmosphere (Li et al., 2016). Representing these processes in models poses large challenges but is needed to

predict the aerosol climate impact (Bauer et al., 2013; Fierce et al., 2017).

Atmospheric three-dimensional chemical transport models or Earth system models utilize a variety of aerosol representations20

that differ in their levels of detail. These can be categorized into bulk approaches (Koch, 2001; Tegen and Miller, 1998),

modal modeling approaches (Whitby and McMurry, 1997), and sectional modeling approaches (Seigneur et al., 1986). These

methods have in common that they do not fully resolve the mixing state of the aerosol, but instead use a priori assumptions.

For example, modal models assume that each mode is internally mixed, while different modes can differ in the set of species

1



that they track. Sectional models capture the size dependence of aerosol composition but within one section only the average25

aerosol composition is known. These approaches can be refined by introducing additional modes (Bauer et al., 2008; Liu et al.,

2012, 2016), additional one-dimensional sectional distributions (Jacobson, 2002; Zhang et al., 2014) or additional dimensions

to the bin structure itself (Matsui et al., 2013; Matsui, 2016; Zhu et al., 2015; Ching et al., 2016), where each dimension

represents one species or group of species. Comparing these more sophisticated types of models against versions that use

more simplified mixing state representations shows that mixing state approximations impact the estimation of both optical and30

CCN properties and contribute to the structural and parametric model uncertainties. For example, Zhu et al. (2016) performed

simulations with a sophisticated mixing-state-aware model (SCRAMS) for the region of Paris, France. Different mixing state

treatments caused differences in aerosol water uptake, which propagated into differences in aerosol optical depths of up to

70%. Lee et al. (2016) carried out simulations with a mixing-state-resolving (source-oriented) version of WRF-Chem for the

region of the Californian Central Valley. They found a decrease in the ratio of CCN to total aerosol number concentration35

from 94% with an internal mixture assumption to 80% with a more detailed source-oriented mixture. Furthermore, the range

of uncertainties can depend on the degree to which mixing state is represented. This was shown by Matsui et al. (2018) who

quantified the sensitivity of the present-day BC direct radiative effect due to uncertainties in emission size distributions. They

found that the uncertainty is 5–7 times larger when the BC mixing state is sufficiently resolved compared to a simplified model

representation where an internal mixture is assumed.40

It is important to note that the storage requirements for multi-dimensional bin structures grow exponentially with the number

of species (the curse of dimensionality). Therefore, in practice, the multi-dimensional bin approach is limited to two or three

dimensions, whereas the composition space of the atmospheric aerosol contains tens or even hundreds of species. Hence,

although this model approach carries more detail than 1D bin structures, it is still not able to resolve the mixing state fully.

In contrast to the above mentioned distribution-based methods, particle-resolved methods provide a different approach to45

representing the atmospheric aerosol (Riemer et al., 2009; Shima et al., 2009; Grabowski et al., 2019). They use a collection of

discrete computational particles, where each particle can be thought of as a vector that stores the masses of each aerosol species

and other particle attributes (e.g., information about particle shape or particle source) and that evolves over the course of the

simulation. Aerosol mixing state is therefore intrinsically resolved and does not require any ad hoc assumptions. Furthermore,

it is straightforward to add more attributes to the particles as this does not result in an exponential increase of storage. Instead,50

it scales linearly with the number of particles. Particle methods are therefore beneficial for problems where high-dimensional

data is involved as they break the curse of dimensionality.

In this paper we describe the development of stochastic advection algorithms that enable the particle-resolved aerosol model

PartMC to be used on the regional scale, embedded within the Weather Research and Forecast (WRF) model. While we

only present the development of stochastic advection schemes based on the finite volume methods in WRF, the methodology55

described here is applicable to any finite volume scheme or transport scheme such as Corner-Transport Upwind (Colella, 1990;

LeVeque, 2002) or Flux-Form Semi-Lagrangian (Lin and Rood, 1996, 1997) that can be found in other host models. This

paper builds on previous work of developing the stochastic, particle-resolved PartMC-MOSAIC box model (Riemer et al.,

2009; DeVille et al., 2011; Curtis et al., 2016; DeVille et al., 2019), and the one dimensional single-column model WRF-
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PartMC-MOSAIC-SCM (Curtis et al., 2017). These modeling tools have been used to investigate the black carbon aging60

process (Riemer et al., 2010; Fierce et al., 2015), to quantify the role of mixing state in determining CCN concentration (Ching

et al., 2012, 2016, 2017) and aerosol optical properties (Fierce et al., 2016; Yao et al., 2022), and to determine structural

uncertainty in more approximate aerosol models (Fierce et al., 2017; Zheng et al., 2021).

The methods for particle transport due to turbulent diffusion described in Curtis et al. (2017) and for mean wind advection

described in this paper are based on the idea that the movement of particles between grid cells is represented by stochastic65

sampling. Importantly, the particle position within the grid cell is not tracked. This concept is therefore distinct from the

particle-based Lagrangian techniques in the cloud modeling community (Heus et al., 2010; Arabas et al., 2015; Grabowski

et al., 2018). These methods are similar to ours in that they also explicitly simulate microphysical processes on a population

of computational particles (called super-particles in the cloud physics community), each representing a large number of real

particles. However, they are different in that they simulate transport by tracking the super-droplet positions within the Eulerian70

grid.

There are advantages and disadvantages to each method. First, a stochastic algorithm can be constructed analogously to the

finite volume transport schemes used in numerical weather models and chemical transport models, as we will show in this

paper. This is beneficial for direct comparisons of different aerosol representations, which is one of our main motivations for

developing particle-resolved aerosol models on the regional scale. Second, stochastic methods are more easily implemented75

in models that rely on different numerical grid structures, because they are based on the discretizations of the host model on

the host grid. Lastly, stochastic methods for transport are computationally less expensive than tracking and updating particle

positions throughout the simulation. However, stochastic transport algorithms have the disadvantage of numerical diffusion,

similar to finite volume methods. This is in contrast to Lagrangian particle tracking methods that are inherently free of numer-

ical diffusion.80

The contribution of this paper is the development of stochastic transport algorithms for advection that remove the model-

ing limitations of the single-column model (WRF-PartMC-MOSAIC-SCM) by enabling a fully three-dimensional model to

allow particle-resolved simulations on the regional scale (WRF-PartMC). WRF-PartMC is a tool for error quantification and

benchmarking of traditional chemistry-transport models (e.g., WRF-Chem or CMAQ) that apply simplified aerosol mixing

state representation, without the advection schemes being a potential source of differences.85

The paper is structured as follows. Section 2 develops the stochastic particle advection method. Section 3 analyzes a series of

four numerical experiments of increasing complexity, ranging from simple one-dimensional test cases with constant, uniform

wind fields to a simulation with complex terrain and evolving meteorological fields. Section 4 summarizes our work. See

Table G1 for a list of symbols used throughout the paper.

2 Stochastic particle transport scheme90

This section describes the spatial and temporal discretization of the advection equation and then explains the stochastic sam-

pling algorithm for the use in particle-resolved models. We will present the detailed derivation for one spatial dimension.
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The generalization to three dimensions in space is straightforward and for brevity will not be explicitly written out, although

see Sections 2.3 for notes on implementation details. In this study, we adopted the advection methods implemented by the

host model WRF, rather than exploring alternative approaches. This choice ensures that future comparisons between WRF-95

PartMC and other aerosol representations in WRF-Chem will be fair and consistent. WRF-PartMC model was developed using

WRFv3.9.1.1, coupled with chemistry for gas scalar transport and PartMC-MOSAIC for gas and aerosol chemistry with an

additional interface for simulating stochastic particle transport.

2.1 Spatial and temporal discretization

The one-dimensional advection equation of a scalar quantity with (number) concentration n(x,t) can be written as100

∂n(x,t)

∂t
=−u

∂n(x,t)

∂x
, (1)

where u > 0 is the velocity of the advecting wind field (assumed to be constant in time and uniform in space here), x is the

spatial coordinate, and t is time.

We discretize this equation spatially as

∂ni(t)

∂t
=− 1

∆x

(
fi+ 1

2
(t)− fi− 1

2
(t)
)
, (2)105

where ∆x is the grid spacing in the x-coordinate, and fi+ 1
2
(t) and fi− 1

2
(t) are the fluxes through the right and left grid cell

boundaries of grid cell i at time t, respectively, for i= 0, . . . ,Nx − 1.

The fluxes can be spatially discretized to different orders, with the WRF schemes of orders 1 to 6 written as (Wicker and

Skamarock, 2002; Shu, 2009):

f1st
i− 1

2
= uni−1, (3)110

f2nd
i− 1

2
=

u

2
(ni +ni−1), (4)

f3rd
i− 1

2
=

u

6
(2ni +5ni−1 −ni−2), (5)

f4th
i− 1

2
=

u

12
(−ni+1 +7ni +7ni−1 −ni−2), (6)

f5th
i− 1

2
=

u

60
(−3ni+1 +27ni +47ni−1 − 13ni−2 +2ni−3), (7)

f6th
i− 1

2
=

u

60
(ni+2 − 8ni+1 +37ni +37ni−1 − 8ni−2 +ni−3), (8)115

and similarly for the fluxes through the other boundary, fi+ 1
2

. We will explore the effect of using different orders of discretiza-

tion in the context of stochastic particle-based advection in Sections 3.1 and 3.2.
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For the temporal discretization, we use a 3rd-order Runge-Kutta method, analogous to the approach in WRF (Wicker and

Skamarock, 2002), where the concentration at time ℓ+1 is calculated from the values at time ℓ as

n†
i = nℓ

i −
∆t

3

1

∆x
(f ℓ

i+ 1
2
− f ℓ

i− 1
2
), (9)120

n††
i = nℓ

i −
∆t

2

1

∆x
(f†

i+ 1
2

− f†
i− 1

2

), (10)

nℓ+1
i = nℓ

i −∆t
1

∆x
(f††

i+ 1
2

− f††
i− 1

2

), (11)

where ∆t is the time step. The fluxes f†
i+ 1

2

, f†
i− 1

2

, f††
i+ 1

2

and f††
i− 1

2

are calculated as given in Eq. (3)–(8), using the concentrations

n†
i and n††

i , respectively.

Next, we will show how the discretized equations defined above are translated to specify the probabilities of particles moving125

between grid cells. Although we are presenting the method using the particular discretizations above, it is straightforward to

derive stochastic versions of other spatial and temporal discretizations in the same way.

2.2 Stochastic sampling

To transform the method from Section 2.1 to a stochastic particle method, we consider a set of N ℓ
i particles in grid cell i at

time step ℓ. In reality, each particle will have an exact spatial location with a well-defined x coordinate and will be moving130

with constant velocity u. However, in our stochastic method we will not track this per-particle spatial location and instead only

track the set of particles in each grid cell. This is equivalent to the usual finite volume method of tracking the concentration

in each grid cell, except that we are now sampling the concentration with a finite set of particles, allowing us to capture the

high-dimensional variation in particle properties.

Note that the full WRF-PartMC model implementation explicitly tracks each particle in each grid cell so that it can store135

additional information about each particle (e.g., particle diameter, chemical constituents, etc.). In the following exposition we

will not explicitly track the particles, but instead will only track the number of particles, N ℓ
i , in each grid cell. Section 2.4

contains further comments on translating the count-based scheme to a true per-particle method.

To advect the particles we relate the number of particles in each grid cell to the concentration in that grid cell, using

nℓ
i =

N ℓ
i

V
, (12)140

where V is the computational sampling volume within each grid cell. We can think of V as controlling the “resolution” of the

particle sampling and it will generally be much smaller than the true grid cell volume.

Having computed the values of nℓ
i for each grid cell, we then compute the finite volume fluxes f††

i+ 1
2

through each boundary

from Eq. (11). This tell us that the average number of particles that should cross boundary i+ 1
2 is

F̄ ℓ
i+ 1

2
= V

∆t

∆x
f††
i+ 1

2

. (13)145

We interpret this probabilistically to mean that each of the N ℓ
i particles has a probability of

pℓi+ 1
2
=

F̄ ℓ
i+ 1

2

N ℓ
i

(14)
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of crossing the boundary and leaving grid cell i. We then sample the number of particles that actually cross the boundary using

a binomial distribution with N ℓ
i trials and probability pℓ

i+ 1
2

, to give the discrete particle flux across the boundary to be

F ℓ
i+ 1

2
=Binom

(
N ℓ

i ,p
ℓ
i+ 1

2

)
. (15)150

Finally, we update the number of particles in each grid cell according to

N ℓ+1
i =N ℓ

i −F ℓ
i+ 1

2
+F ℓ

i− 1
2
. (16)

Note that this method obviously conserves the total number of discrete particles, because the F ℓ
i+ 1

2

particles that leave grid

cell i will all be transferred to grid cell i+1. In addition, because the mean of a binomial distribution is equal to the number

of trials times the probability of success, we see that the average value of N1
i is exactly equal to V n1

i for the first time step.155

However, because the next time step will start from the stochastically sampled discrete value N1
i , the average value of N2

i will

not be exactly equal to the average value of V n2
i .

Since probabilities larger than 1 are not meaningful, the time step needs to be chosen such that the probability (14) is less than

or equal to 1. As a result, WRF-PartMC may need to take somewhat smaller time steps than required by the finite-difference

advection in WRF.160

2.3 Three-dimensional advection

The above derivation is for a one-dimensional domain, but the extension to three dimensions is straightforward. In three

dimensions, we have a set of N ℓ
i,j,k particles in grid cell (i, j,k) at time step ℓ. The fluxes are then defined as f ℓ

i+ 1
2 ,j,k

and

f ℓ
i,j+ 1

2 ,k
and f ℓ

i,j,k+ 1
2

for the fluxes through the three positive boundaries of grid cell (i, j,k), respectively. The fluxes through

the other boundaries are defined similarly. The fluxes are then computed from a 3D finite volume discretization, but with the165

concentrations ni replaced by the number of particles N ℓ
i,j,k. This then yields probabilities of particles crossing each boundary

by extending Eq. (14) from i to three dimensions (i, j,k). However, we now have three different probabilities, one for each

boundary, corresponding to the three different directions in which particles can move. The time step should be chosen so that the

sum of these probabilities is at most 1. We then sample the number of particles that move in each direction using a multinomial

distribution with N ℓ
i,j,k trials and probabilities pℓ

i+ 1
2 ,j,k

, pℓ
i,j+ 1

2 ,k
, and pℓ

i,j,k+ 1
2

for the three directions, respectively. See Curtis170

et al. (2017) for a detailed description of the multinomial sampling algorithm. Finally, the number of particles in each grid cell

is updated by extending Eq. (16) from one dimension (i) to three dimensions (i, j,k).

2.4 Explicit tracking of individual particles

Much of the power of a particle-based aerosol model is the ability to track the chemical composition and potentially morphology

of individual particles, as is done by the PartMC (Riemer et al., 2009) model, which explicitly tracks a set of particles Πℓ
i,j,k in175

grid cell (i, j,k) at time step ℓ. To apply the stochastic advection algorithm of Section 2.2 to such a case, the stochastic fluxes

can be computed using the total number, N ℓ
i,j,k, of particles in each grid cell, to give F ℓ

i+ 1
2 ,j,k

, F ℓ
i+ 1

2 ,j,k
, and F ℓ

i+ 1
2 ,j,k

as the

number of particles that will cross each boundary. However, rather than simply updating the particle counts using the fluxes,
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we uniformly randomly sample F ℓ
i+ 1

2 ,j,k
particles from the set Πℓ

i,j,k to move across the boundary, and similarly for the other

two directions. This approach is used in the WRF-PartMC model.180

2.5 Monotonicity

It is advisable in WRF-Chem simulations to use monotonic, positive-definite advection schemes (Wang et al., 2009; Chapman

et al., 2009). WRF advection schemes without limiters have the tendency to overshoot as well as locally produce unrealistically

low values. This is particularly problematic for chemical variables that have strong gradients due to the heterogeneity of emis-

sions. The host WRF model features only a fifth order scheme for monotonic limiters. However due to the high computational185

expense of WRF-PartMC and the required domain decomposition to adequately meet that expense, we implemented third-order

advection with monotonic limiters in WRF. This implementation utilized the existing third-order positive-definite scheme in

WRF and applied the same limiter as used in the fifth-order monotonic scheme term (Skamarock, 2006; Wang et al., 2009).

We focused on third- and fifth-order advection schemes because they combine good accuracy with some numerical dissipation

at high spatial frequencies to suppress stochastic oscillations, as we will see in Sections 3.1 and 3.2.190

2.6 Mixing ratio versus concentration

Many 3D atmospheric models such as WRF track the aerosol mixing ratio q (units of #/kg) rather than the number concen-

tration n (units #/m3) because this removes the need to adjust the tracer for changes in air density. However, the stochastic

advection algorithm described above is based on the number concentration. In WRF-PartMC we convert the aerosol num-

ber concentration to a mass mixing ratio via q = n/ρ, compute mixing ratio fluxes using WRF’s finite volume discretization,195

convert these back to number-concentration fluxes by multiplying by ρ, and then sample the stochastic particle transport

with (14)–(16).

2.7 Variable sampling volumes and grid cell sizes

In Section 2.2 we assumed that the sampling volume V is a constant. However, in the WRF-PartMC model the sampling

volume is allowed to vary in space and time. This is done by defining a set of V ℓ
i,j,k volumes in each grid cell (i, j,k) at time200

step ℓ, and allows the “particle resolution” to be adaptive to increase the accuracy while minimizing the computational cost. In

such simulations a target number of particles per grid cell, Np, is chosen to be a fixed value and the sampling volume is then

adapted using a halving/doubling procedure to maintain the actual number of particles per grid cell close to Np (Riemer et al.,

2009).

As described in detail in Curtis et al. (2017), the variable sampling volumes mean that the number of particles that move out205

of a grid cell (the “particle loss”) is no longer generally equal to the number of particles that move into the neighboring cell

(the “particle gain”). Instead, if F ℓ
i+ 1

2 ,j,k
particles move out of grid cell (i, j,k), then the number of particles that move into

grid cell (i+1, j,k) is scaled by the ratio of the sampling volumes. That is, the number of particles that move into grid cell
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(i+1, j,k) is

F ℓ
i+ 1

2 ,j,k

V ℓ
i+1,j,k

V ℓ
i,j,k

. (17)210

Similarly, if the grid cells have different physical volumes Volℓi,j,k then the above expression must be additional scaled by the

ratio Volℓi,j,k/Vol
ℓ
i+1,j,k. The advection algorithm in WRF-PartMC implements this scaling following the method in Curtis

et al. (2017), which uses a variance-minimizing sampling algorithm that first samples the larger of the particle loss and gain

terms and then subsamples from this to determine the other term. A potential concern is that the repeated resampling due

to varying computational volumes, grid cell volumes, and air densities may cause the high-dimensional infomation carried215

by particles (see Section 2.4) to degenerate into overly similar representations. For example, if the particles carry a diameter

sampled from a size distribution, the repeated resampling may cause the particles to converge to a single diameter. In Sec. 3.4

we investigate this numerically and see that it is not a significant issue in practice.

2.8 Computational cost

Regarding the computational costs of the finite volume, stochastic sampling, and Lagrangian particle tracking approaches,220

we consider a domain consisting of Ng grid cells and Np computational particles per grid cell. The finite volume method,

which only depends on the number of grid cells, has a cost O(Ng). In contrast, the Lagrangian particle tracking and stochastic

methods depend on both number of grid cells and the number of particles. Therefore these methods scale as O(Ng ×Np) but

the Lagrangian method has a higher cost as each particle must be checked and updated. In contrast, the cost of the stochastic

method depends on the number of particles that actually move from one grid cell to another, which is frequently only a small225

fraction of the total number.

2.9 Comparison to Lagrangian particle tracking

With particles transported by deterministic advection there is no variance in the final position of particles that start in the

same initial position. However, when we quantize space and only store which grid cell a particle is in, we can no longer move

particles to the exact position where they should be located. That is, we are forced to incur some error. In a classic bias/variance230

tradeoff, we could achieve zero variance by moving all collocated particles to the same new grid cell, but this would result in

an incorrect average position of the particles and a large bias. Alternatively, as we do in this paper, we can move some particles

and not others, resulting in the correct mean velocity (zero bias) at the expense of introducing variance in particle position.

Consequently, some particles will move faster and some slower than the mean velocity. To quantify the magnitude of this effect,

see the example in Section 3.2 and Fig. 7.235

3 Numerical experiments

The total error of a stochastic transport scheme can be bounded by two error terms that can be evaluated independently: (1)

the stochastic error between the the stochastic solution and the finite volume solution, and (2) the deterministic error due to the
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space-time discretization of the finite volume scheme. That is, for a stochastic solution nstoc, a finite volume solution nFV, and

an exact true solution ntrue, we can write:240

∥nstoc −ntrue∥︸ ︷︷ ︸
total error

≤ ∥nstoc −nFV∥︸ ︷︷ ︸
stochastic error

+∥nFV −ntrue∥︸ ︷︷ ︸
deterministic error

. (18)

In this section we focus on the stochastic error. We do not consider the refinement of ∆x→ 0 or ∆t→ 0 as it is well understood

how the finite volume methods converge to the true solution (deterministic error goes to zero) in these limits.

We present numerical examples of increasing complexity and discuss their convergence properties as the number of compu-

tational particles increases. Sec. 3.1 presents a one-dimensional test case with a soft-hat initial condition advected by a constant,245

uniform wind velocity to quantify the convergence as the number of computational particles increases. Sec. 3.2 simplifies the

1D test case to a uniform initial condition to study how the order of the advection scheme impacts convergence. Sec. 3.3,

presents an idealized two-dimensional test case for solid-body rotational flow developed within WRF-PartMC using mono-

tonic advection schemes. Finally, Sec. 3.4, shows stochastic particle transport for a realistic model domain and with realistic

and evolving meteorological fields as simulated by the WRF-PartMC model.250

To quantify the accuracy of the stochastic particle-resolved transport algorithm described above we use the relative root

mean square error (RRMSE) between two solutions n and n′ as given by

RRMSE(n,n′) =

√∑Nx

i (ni −n′
i)

2√∑Nx

i (n′
i)

2

. (19)

To determine the mean and confidence intervals for the RRMSE, we ran an ensemble of simulations with different random

seeds for the stochastic sampling algorithm. The RRMSE was computed for each simulation run and then the overall mean and255

standard deviation were calculated, with the standard deviation being used to determine the 95% confidence interval for the

RRMSE mean.

3.1 One-dimensional test case: Soft hat advected by uniform wind

We begin with the 1D soft-hat test case from Wicker and Skamarock (2002), with initial condition

n(x,t= 0) = 0.5+
0.5

1+ exp80(|x−0.5|−0.15)
, (20)260

on the periodic domain x ∈ [0,1]. Eq. 20 was modified from the expression in Wicker and Skamarock (2002) to include a

background concentration so that there are some particles everywhere throughout the domain. The uniform velocity field was

u= 1 (all quantities are taken as dimensionless here). For all presented results, the number of grid cells was Nx = 50 and the

time step was ∆t= 0.008, resulting in a Courant number of 0.4. The simulation duration was T = 2, giving two full revolutions

of the domain. Simulation results were produced for first- through sixth-order advection schemes with no limiters applied.265

Figure 1 shows the solution to the soft-hat problem after two revolutions (t= 2) for the finite volume method and one

ensemble member of the stochastic method. Considering the finite volume solutions, we observe that the even-order methods
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Figure 1. One dimensional soft-hat test case (Sec. 3.1): A single ensemble member of the stochastic solution is shown in blue for first to

sixth-order methods, the deterministic finite volume solution is represented by the solid red line, and the analytical solution is shown as a

black dashed line. The stochastic solution was simulated using Np = 104 computational particles per grid cell.

(2nd, 4th, 6th) produce more oscillatory solutions than the odd-order methods. This disparity between the even- and odd-order

methods also occurs for the stochastic method, where the even-order solutions contain significantly more high-frequency noise

than the odd-order solutions. We will analyze this phenomenon in more detail in Section 3.2.270

We now turn to understanding the convergence of the stochastic particle method as the number of particles is increased.

Figure 2(a) shows the ensemble mean error for the particle solution compared to the finite volume solutions for each order

of advection, i.e., this is the error due to using a finite particle number but does not include any spatial discretization error

as that is present for both the stochastic and finite volume methods. As the number of computational particles per grid cell,

Np, increased, the solution converged to the deterministic finite volume solution. The rate of convergence for these stochastic275

methods is expected to be 1√
Np

due to the central limit theorem and is denoted by the dashed line with slope − 1
2 . The stochastic

error is largest for the even-order methods and smallest for the first-order method. In Sec. 3.2 we will show that this is because

10



10−8

10−6

10−4

10−2

R
R

M
S
E

slope = − 1
2

First

Third
Fifth
Second

Fourth

Sixth

(a) Stochastic error (particle − finite volume)

102 105 108 1011 1014

Number of computational particles Np

10−2

10−1

R
R

M
S
E

First

Second

Third
Fourth

Fifth
Sixth

(b) Total error (particle − analytical)

Figure 2. One dimensional soft-hat test case (Sec. 3.1): (a) Relative root-mean square error (RRMSE) between the stochastic particle solution

and the deterministic finite volume solution for first- to sixth-order advection with varying number of computational particles. The dashed line

shows the expected 1√
Np

convergence rate. (b) Relative root-mean square error (RRMSE) between the particle solution and the analytical

solution for first- to sixth-order advection with varying number of computational particles per grid cell at t= 2. Error bars denote the 95%

confidence interval as determined from an ensemble of 25 simulations.
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the odd-order methods benefit from the damping of high frequency noise and the first-order method has the lowest stochastic

error because it has the most damping.

Figure 2(b) shows the ensemble mean error for the particle solution compared to the analytical solution, i.e., the “total” error280

(finite volume error plus stochastic error). As the number of particles increases, the ensemble mean error approaches a constant

value, which is the error due to the finite volume discretization. No matter how many computational particles are used, the total

error cannot become smaller than the error introduced by the finite volume discretization. The finite volume error decreases

in magnitude as the order of the advection method increases. For small values of Np, the stochastic error dominates the total

error. The odd-order methods (third- and fifth-order) have lower stochastic error than the even-order methods which results in285

the total error converging to the finite volume error with fewer computational particles. In contrast, the first-order method has

such large finite volume error, shown with the poor comparison of the finite volume solution to the true solution in Fig. 1, and

such low stochastic error, shown in Fig. 2, that the finite volume error dominates the total error immediately. In all cases the

finite volume error could also be reduced by decreasing the grid cell size, following the standard convergence analysis of finite

volume methods (Durran, 2010).290

In summary, these results show that the stochastic error of particle-resolved advection converges as expected with the rate of
1√
Np

. Conservative even-order schemes exhibit high-frequency oscillations in the finite-volume solution that are compounded

by high-frequency noise from the stochastic sampling. For the dissipative odd-order schemes, numerical dissipation damps the

high-frequency oscillations, as will be shown in Sec. 3.2. We therefore recommend the use of dissipative (odd-order) advection

schemes. We also note that the stochastic advection scheme will be especially useful in open domains where we have an outflow295

boundary condition. In this case, the artificial noise injected by the stochastic sampling will be advected out of the domain and

will not accumulate.

3.2 One-dimensional test case: Uniform concentration advected by uniform wind

The difference observed in Fig. 1 between the even- and odd-order solutions is of course due to the amount of numerical

dissipation in the methods, where the even-order methods are conservative, while the odd-order methods have numerical300

dissipation of energy at high spatial frequencies (see, e.g., Durran (2010, §§3.3.2–3.3.3)). To understand how this interacts

with the stochastic particle solution we derived a simple explicit model for the power spectrum of the stochastic solution. The

details of this derivation are given in Appendices C–E. Briefly, we considered the uniform initial condition

n(x,t= 0) = 1 (21)

on the periodic domain x ∈ [0,1] with the uniform velocity field u= 1. We used a computational volume of V = 10000 which305

thus means the stochastic particle system started with Np = 10000 particles per grid cell.

Figure 3 shows the solution to the case with uniform concentration and uniform wind after two revolutions for the finite

volume method and for one ensemble member of the stochastic method using the same parameters as for Fig. 1, i.e., Nx = 50

grid cells and a time step of ∆t= 0.008 resulting in a Courant number of 0.4. The exact solution to this problem is clearly

n(x,t) = 1 for all x and t, and the finite volume solution yields this solution exactly. However, as the stochastic method moves310
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Figure 3. One dimensional uniform concentration advected by uniform wind: A single ensemble member of the stochastic solution is shown

in blue for first to sixth-order methods, the determiniistic finite volume solution is represented by the solid red line and the analytical solution

is shown as a black dashed line. The stochastic solution was simulated using Np = 104 computational particles per grid cell.

particles from one grid cell to the next, it is sampling a per-grid random number that is uncorrelated between grid cells, and is

thus injecting energy at high spatial frequencies. As we will show with further analysis, this energy may then be dissipated by

the numerical dissipation of the spatial discretization, and the question is whether the dissipation can effectively dampen the

energy injection. To answer this question we will derive a simple model for the power spectrum of the stochastic solution.

We start by writing n̂k for the discrete Fourier transform (DFT) of ni, and recalling the classical fact that the power spectrum315

of the spatially-discretized system evolves according to

P ℓ+1
k = exp(Ak)P

ℓ
k , (22)

where P ℓ
k = |n̂ℓ

k|2 is the power at wavenumber k and time step ℓ, and Ak is the amplification factor at wavenumber k (see

Appendix A for details). Figure 4 shows the amplification factors for the different spatial discretizations. From this, we see

that the even-order methods have an amplification factor of zero at all wavenumbers, meaning that these methods are exactly320
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Figure 4. One dimensional uniform test case (Sec. 3.2): (a) Amplification factors, Ak, for the 1st to 6th order spatial discretizations. See

Eq. (B8)–(B13) for details. (b) Excitation term, Ek. See Eq. (D12) for details.

conservative. In contrast, the odd-order methods have negative amplification factors at higher wavenumbers, showing that these

methods will dissipate high spatial frequency components.

To understand the interaction between the stochastic sampling and the spatial discretization dissipation, Appendix D derives

a recurrence relation for the power spectrum of an approximation to the stochastic solution:

P̃ ℓ+1
k = exp(Ak)P̃

ℓ
k +Ek, (23)325

where P̃ ℓ
k is the power at wavenumber k and time step ℓ of the approximate stochastic solution Ñ , Ak is the amplification

factor of the spatial discretization, and Ek is a stochastic excitation term (see Appendix D for details). Figure 4(b) plots the

excitation term and we see that it is injecting energy at higher wavenumbers, due to the uncorrelated random noise in each grid

cell from the stochastic transport. By comparing panels (a) and (b) in Fig. 4, we see that the negative amplification factors at

high wavenumbers will tend to suppress the energy injection.330

To improve the clarity of results, we discretized with Nx = 50 grid cells, a time step of ∆t= 0.00125, and total time T = 2

to give 1600 time steps for two revolutions and all simulations were run without limiters. Figure 5 shows the power spectrum of
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Figure 5. One dimensional uniform test case (Sec. 3.2): mean power spectra for third- and fourth-order advection methods after 1, 100, 400,

and 1600 time steps. The overlaid black lines indicate the model prediction for each method at each time step. Each stochastic case was

repeated 100 times to obtain the mean power spectra.

the stochastic solution for third- and fourth-order advection after 1, 100, 400 and 1600 time steps, with the black lines showing

the model prediction for the power spectrum (see Appendix E for details). Here we see the constant energy injection at high

wavenumbers, with the fourth-order method steadily scaling up the power spectrum by the excitation term at each time step.335

In contrast, the third-order method has dissipation at higher wavenumbers which partially suppresses the injected energy and

eventually reaches an equilibrium. This serves to suppress the high-frequency noise in the solution and explains the difference

between the even- and odd-order stochastic solutions in Fig. 1.

This point is further emphasized in Fig. 6 where all the stochastic methods are compared after 1600 time steps. The conser-

vative even-order schemes all fall on the same curve, increasing in power at higher frequencies. For the dissipative odd-order340

methods, high frequencies are damped. As expected from Fig. 4, the damping was least pronounced for the fifth-order method,

and most pronounced for first order. In general, stochastic methods are less stable than their finite volume counterparts as the

stochastic noise injects energy on average. Conservative even-order methods are unconditionally unstable due to this noise

injection, because the scheme itself will never damp any of this additional energy.

Finally, to study the effect of spatial quantization where some particles move faster and some slower, causing variance in345

particle velocity and position (Sec. 2.9), let us consider the following example. If we assume a constant solution at all times

(as in Appendix C), then the probability that a particle moves k grid cells is Binom
(
k;Nt,p

)
, where Nt is the number of time

steps and p is the probability of moving each step, which will be equal to the Courant number. To investigate this, we refined the

grid spacing and time step both by a factor of 10 to be ∆x= 0.002 (Nx = 500) and ∆t= 0.0008, which preserves the Courant

number of C = p= 0.4 of the original simulation, and we took T = 1 (Nt = 1250) for one revolution. Then, using the binomial350

distribution, the mean number of grid cells moved in one revolution is µ=Nt p= 500, which is an exact approximation (zero

bias), while the standard deviation is σ =
√
Ntp(1− p) = 17.3. This corresponds to a physical distance of xσ = σ∆x= 0.035.
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Figure 6. One dimensional uniform test case (Sec. 3.2): power spectra for first to sixth-order advection methods after 1600 time steps (two

full revolutions of the system). The overlaid black lines indicate the model predictions for each method.

To understand the limiting behavior, we can use Nt = T/∆t and p= C = u∆t/∆x to rewrite xσ as

xσ =∆x

√
T

∆t

u∆t

∆x
(1−C) =

√
Tu(1−C)∆x. (24)

Now consider refining the grid (∆x→ 0) and time step (∆t→ 0) while keeping constant the Courant number C, the final time355

T and the velocity u. In this limit, we can see that xσ → 0, so that the numerical diffusion of particles caused by the stochastic

method vanishes.

Figure 7 shows the numerical result of the diffusion after one revolution for the particles originating in grid cell 250 (in

blue), with the analytical binomial model shown in red. During sampling, some particles will travel faster and some will travel

slower, resulting in the binomial distribution of particles around the mean position.360

3.3 Two-dimensional test case: Gaussian cone advected by solid body rotational wind field

To test the schemes in 2D, we used a scalar advection problem modified from Wicker and Skamarock (2002) where a Gaussian

cone is advected in a square domain by a prescribed solid-body rotation flow. Simulations were conducted using third- and

fifth-order monotonic advection schemes. Figure 8 shows the initial conditions. The domain is 100 × 100 nondimensional units

and the velocity field is defined as u(x,y) =−ω (y− 50) and v(x,y) = ω(x−50) where ω = 2π
628 . We took ∆x=∆y = 1 and365

∆t= 0.5, so that one full rotation requires 1256 time steps. The maximum Courant number was 0.5. The initial particle mixing

ratio was given as

q(x,y) = max

(
1010 exp

(
−
(

r

r0

)2
)
,10−15

)
, (25)
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Figure 7. One dimensional uniform test case (Sec. 3.2) for the effect of spatial quantization on the stochastic solution: (a) Initial condition

showing the uniform number concentration in all grid cells and the location of number concentration originating in grid cell 250 at about

x= 0.5. (b) Number concentration of particles originating from grid cell 250 after one revolution at time t= 1 (blue points) with the

analytical binomial model (solid red line). The vertical dashed line separates particles that moved too fast (to the right) and too slow (to the

left).

where r =
√
(x− 50)2 +(y− 75)2 and r0 = 6. The grid cell average values were constructed using 5× 5-point Gaussian

quadrature.370

Figure 9 shows the solution after one revolution for the region of interest with 100, 1000 and 10 000 computational particles

per grid cell as well as the finite volume solution. As the number of computational particles increased, the solution became less

noisy and more similar to the finite-volume solution. This is quantified in Fig. 10, which shows the error of the particle solution

compared to the finite volume solution. As expected, the stochastic error of the Monte Carlo method has a rate of convergence

of 1√
Np

. As the convergence of finite volume solutions to the analytical solution is well studied (Wicker and Skamarock, 2002),375

we do not include results showing convergence in ∆x and ∆y.

3.4 Three-dimensional test case: Plume transported by WRF simulated meteorology

For this simulation we used WRF to fully simulate the meteorology, resulting in an evolving velocity field in 3D. We prescribed

an idealized initial condition of particle mixing ratio and gas tracer mixing ratio for the model domain of Northern California.

The gas tracer mixing ratio was used as a proxy for the solution of the finite volume method. The domain comprised 170×380

160× 40 grid cells, with ∆x=∆y = 4 km and ∆z increasing logarithmically from an average value of 55 m near the surface

to 650 m near the top of the model domain. The model time step was set to ∆t= 20 s, ensuring that the sum of particle cell

transfer probabilities did not exceed 1. For this case, an initial cloud of aerosol particle mixing ratio and gas mixing ratio was
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Figure 8. Two dimensional test case (Sec. 3.3): (a) rotational wind field, (b) the true solution of the Gaussian cone after one complete

revolution, and (c) true solution of the red outlined region in (b).
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and the finite volume solution after one revolution for the region shown in red in Fig. 8(b).
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Figure 10. Two dimensional test case (Sec. 3.3): relative root-mean square error (RRMSE) between the particle solution and the finite

volume solution for third- and fifth-order monotonic advection. Error bars indicate the 95% confidence interval from 10 simulations. The

black reference line indicates the theoretical convergence rate with slope 1√
Np

.

determined by

qgrid(x,y,z) = max

1010 exp

−

√(x−x0

rx

)2

+

(
y− y0
ry

)2

+

(
z− z0
rz

)2
 ,10−15

 , (26)385

where rx = ry = 6 and rz = 4, and the cloud is centered at grid cell x0 = 75, y0 = 75, and z0 = 1. Here qgrid(x,y,z) is

specified in grid coordinates (each grid cell is square of size 1×1×1 grid units) before being transformed to physical coordinates

for the simulation. Figure 11(a) shows the initial condition described by Eq. (26) at the lowest model layer. The initial condition

was advected by the dynamic meteorology over a 12 hour period beginning at 0 UTC on 7 June 2010 using a time step of

∆t= 20 s. Meteorological initial and boundary conditions were based on analyses from the National Center for Environmental390

Predictions North American Mesoscale (NAM) model. The temporal evolution of the wind field is shown in Fig. 11(b)–(d)

in increments of 6 hours. Gases and particles are subject only to advection and do not experience turbulent diffusion or any

removal processes. Gas and aerosol boundary conditions were prescribed from initial values given in Eq. (26). When flow enters

the domain at a boundary grid cell, the prescribed value is applied. Conversely, when flow exits the domain, the boundary grid

cell assumes a zero gradient condition, consistent with the host model WRF. Simulations were conducted using third- and395

fifth-order monotonic advection.

Figure 12 shows the solution after 12 hours for a varying number of computational particles per grid cell, with the finite

volume solution for comparison. The simulation with 10 particles per grid cell is noisy as expected, capturing only general

features of the particle number mixing ratio. As the number of computational particles was increased, the particle number

mixing ratio field became smoother and similar to the finite volume solution.400
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Figure 11. Three-dimensional test case (Sec. 3.4): (a) the initial condition and (b)-(d) snapshots of the wind velocity field at times t= 0, 6

and 12 h in the lowest model layer.
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Figure 12. Three-dimensional test case (Sec. 3.4): lowest layer mixing ratios after 12 hours of simulation for 10, 100 and 1000 computational

particles per grid cell, and the deterministic finite volume solution reference solution.
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Figure 13. Three-dimensional test case (Sec. 3.4): convergence of the relative root-mean square error (RRMSE) between the stochastic

solution and the finite volume solution as the number of computational particles per grid cell increases. Error bars show the 95% confidence

interval from an ensemble of 5 simulations.

Figure 13 shows the convergence of the three-dimensional test case for third-order monotonic advection. As the number

of computational particles increased, the error when compared to the finite volume solution converged at the expected rate of
1√
Np

. Due to the stochastic nature of the problem, monotonic limiters may be applied to the number mixing ratio field that do

not exist in the finite volume solution. As a result, a perfect 1√
Np

convergence rate is not expected.

Figure 14 confirms that the stochastic solution converges to the finite volume solution for the three-dimensional test case and405

that the variance decreases as the number of computational particles increases. For reference, Figure 14(a) shows an x-y cross

section of the mean mixing ratio in the lowest model layer at t= 12 h. The mean mixing ratio was calculated by averaging the

stochastic solution over five simulations using Np = 100 computational particles.

Fig. 14(b)–(d) show different transects through the three-dimensional space and time. The star in Fig. 14(a) marks the

location of the vertical mixing ratio profile (log-scaled) in Fig. 14(b) and the time series shown in Fig. 14(d). The red line410

denotes the transect shown in Fig. 14(c). The finite volume solution is compared to the ensemble mean of 10, 100 and 1000

computational particles with error bars denoting the 95% confidence interval. As the number of particles increased, the variance

decreased and the solution converged to the finite volume solution.

In Sec. 2.7, we discussed sampling complexities due to different computational volumes, grid cell volumes and air densities.

When these quantities substantially differ in adjacent grid cells, it could lead to undersampling of rare particle types. In our415

three-dimensional example, the largest ratio in density was 1.29, and the largest grid cell volume ratio was 1.96. For most of

the grid cells, these ratios were closer to 1, indicated by domain average ratios of 1.01 and 1.11, respectively, at t= 12 h.

To investigate whether undersampling occurred in practice, we ran the same scenario but sampled the particle diameter (a

1D attribute carried by particles) from a log-normal size distribution so that both rare large and small particles existed while
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Figure 14. Three-dimensional test case (Sec. 3.4): (a) ensemble mean mixing ratio averaged over 5 simulations after 12 hours for the lowest

model layer with Np = 100 computational particles per grid cell, (b) vertical profile of mixing ratio on logarithmic scale for stochastic

solutions of Np = 10, 100 and 1000 computational particles per grid cell at x= 75, y = 75 at time t= 12h, (c) x transect at y = 25 for

stochastic solutions of Np = 10, 100 and 1000 computational particles per grid cell at t= 12h, and (d) time series at x= 75, y = 25 for

Np = 10, 100 and 1000 computational particles per grid cell. The finite volume solutions for the profile, transect and time series are denoted

by black lines. Points show means of 5 simultations and error bars denote the corresponding 95% confidence intervals.
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Figure 15. (a) Locations and patches where the normalized size distributions were computed. (b) Normalized size distributions at single grid

cell locations shown in (a) using an ensemble of five simulations. (c) Mean normalized size distributions for the 15× 15 subdomain patches

shown in (a). Solid blue lines show the initial distributions computed at t= 0 h and at the initial point/region, while red dashed lines show

the final distributions computed at t= 12 h and at the final point/region.

most computational particles resided in the center of the size distribution. We then compared the final size distributions with420

the initial size distributions to determine to what extent the rare large and small particles were systematically lost due to

undersampling.

Figure 15(a) shows the locations for the initial and final size distribution plots. The locations of the initial and final points

were chosen so that the final point is downwind of the initial point. All grid cells were initialized with 100 computational

particles drawn from a single log-normal mode, all with a constant geometric mean diameter and geometric standard deviation425

where only the magnitude of the distribution was adjusted. Figure 15(b) shows the normalized mean particle size distribution

at the initial time and the final time at two single grid cells. Each distribution was averaged over five ensemble runs.

As we see from Fig. 15(b), the size distribution at the final time was similar to that at the initial time, with some stochastic

noise. To reduce the stochastic noise, Fig. 15(c) shows the normalized mean particle size distribution at the initial time and the

final time for two 15×15 grid cell patches surrounding the points chosen for Fig. 15(b). Here the normalized size distributions430

were nearly identical, indicating that the size distribution information was not lost in the sampling procedure.

4 Conclusions

In this paper we presented the development of a stochastic particle advection method and demonstrated its performance for

particle-resolved atmospheric aerosol transport in the combined WRF-PartMC model. The method is based on finite volume

advection schemes but interprets the fluxes as probabilities of particle transport, which can then be stochastically sampled.435

We analyzed the method in the one-dimensional setting to show that the stochastic particle sampling injects noise at high

spatial frequencies and so the method performs best when using dissipative finite-volume discretizations, such as the third- and

fifth-order schemes used in WRF.
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We applied the new method in WRF-PartMC with the existing monotonic limiter for the fifth-order scheme and a new

limiter for third order. We considered two test cases: a solid-body rotational wind field in 2D, and an atmospherically-relevant440

dynamic wind field over complex terrain in 3D. In both cases we observed the expected rates of convergence of the stochastic

particle transport to the finite volume solution as the number of computational particles per grid cell was increased. For these

examples, significant stochastic noise was evident in simulations with 100 computational particles per grid cell but stochastic

noise was found to be less than 10% for simulations with 1000 particles per grid cell. This is considered a reasonable number

of computational particles for large-scale WRF-PartMC simulations, as these simulations typically use on the order of 10 000445

computational particles to accurately capture properties of the aerosol mixing state (Gasparik et al., 2020).

The value of this work is to enable direct comparison of particle-resolved aerosol representations to models that use ap-

proximate aerosol representations with simplified assumptions regarding size and composition (e.g., internally mixed modes or

bins). Because the stochastic particle method is based on the same finite volume schemes used for the approximate represen-

tations, model comparisons can isolate the differences arising due to aerosol representation. Additionally, the new stochastic450

transport scheme allows the WRF-PartMC model to be used on the regional scale to quantify the impact of aerosol mixing

state on climate-relevant aerosol properties, such as aerosol absorption and CCN concentration, and to compare these findings

to existing studies (Matsui et al., 2013; Zhang et al., 2014; Zhu et al., 2016).

Code and data availability. WRF-PartMC version 1.0 is available at https://doi.org/10.5281/zenodo.10794890 (Curtis et al., 2024a). The

current version of WRF-PartMC is available at https://github.com/open-atmos/wrf-partmc. The Python Jupyter notebooks and WRF-PartMC455

simulation data to reproduce figures contained within this manuscript are available at Curtis et al. (2024b).
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Appendix A: 1D advection in the frequency domain

To understand the behavior of the 1D deterministic and stochastic numerical methods it is helpful to write them in the frequency

domain. To do this, we start in this section by considering only the deterministic (finite volume) case. We will then extend this

to the stochastic case in the next section. We will use the vector notation595

n= [n0,n1, . . . ,nNx−1], (A1)

f = [f 1
2
,f3/2, . . . ,fNx− 1

2
]. (A2)

We assume periodicity, so ni = ni+Nx
and fi− 1

2
= fi− 1

2+Nx
for any i. Similarly, we encode the finite difference stencils as

vectors:

r1st = [1,0, . . . ,0], (A3)600

r2nd =
1

2
[1,0, . . . ,0,1], (A4)

r3rd =
1

6
[5,−1,0, . . . ,0,2], (A5)

r4th =
1

12
[7,−1,0, . . . ,0,−1,7], (A6)

r5th =
1

60
[47,−13,2,0, . . . ,0,−3,27], (A7)

r6th =
1

60
[37,−8,1,0, . . . ,0,1,−8,37]. (A8)605
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This allows us to express the fluxes (3)–(8) via a convolution:

f = ur ∗n, (A9)

fi+ 1
2
= u

Nx−1∑
j=0

ri−jnj . (A10)

Next, define the finite difference stencil

d= [1,−1,0, . . . ,0] (A11)610

so we can approximate the spatial derivative as

∂n

∂x
≈ 1

∆x
d ∗n. (A12)

Using this we can write the spatially discretized advection equation (2) as

∂n

∂t
=− 1

∆x
d ∗ f (A13)

=− u

∆x
d ∗ r ∗n. (A14)615

We denote the discrete Fourier transform (DFT) using a hat, so n̂= F(n) and similarly for other variables, and recall that the

DFT is given by

n̂k =

Nx−1∑
j=0

nj exp(−i2πjk/Nx), (A15)

where i is the imaginary unit. Taking the DFT of (A14) gives

∂n̂k

∂t
=− u

∆x
dkrknk (A16)620

for each wavenumber k. The solution over one time step is then given by

n̂ℓ+1
k = exp(−Cd̂kr̂k)n̂

ℓ
k, (A17)

where C is the Courant number given by

C =
u∆t

∆x
. (A18)

Composing ℓ time steps gives the solution at time step ℓ as625

n̂ℓ
k = exp(−ℓCd̂kr̂k)n̂

0
k. (A19)

To understand the numerical effect of the finite difference approximation we can compute the evolution of the power spectrum

of the solution. The power spectrum is given by

Pk = |n̂k|2 (A20)
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and the evolution of the power spectrum over one time step is given by630

|n̂ℓ+1
k |2 = n̂ℓ+1n̂

(ℓ+1)∗
k (A21)

=
(
exp(−Cd̂kr̂k)n̂

ℓ
k

)(
exp(−Cd̂kr̂k)n̂

ℓ
k

)∗
(A22)

= exp(−Cd̂kr̂k)exp(−Cd̂∗kr̂
∗
k)n̂

ℓ
kn̂

ℓ∗
k (A23)

= exp
(
− 2CRe(d̂kr̂k)

)
|n̂ℓ

k|2. (A24)

The energy amplification of the method is thus given by635

Ak =−2CRe(d̂kr̂k) (A25)

and we can write the power spectrum evolution as

P ℓ+1
k = exp(Ak)P

ℓ
k . (A26)

If Ak is zero then the method conserves the energy in wavenumber k, while negative values indicate that the method will

dissipate energy with each time step.640

Appendix B: DFT of finite difference stencils

The DFT of the finite difference stencils d and r are found by applying (A15) to (A11) and (A3)–(A8). This gives

d̂k = 1− exp(−i2πk/Nx) (B1)

and

r̂1stk = 1, (B2)645

r̂2ndk =
1

2

(
exp(i2πk/Nx)+ 1

)
, (B3)

r̂3rdk =
1

6

(
2exp(i2πk/Nx)+ 5− exp(−i2πk/Nx)

)
, (B4)

r̂4thk =
1

12

(
− exp(i2π2k/Nx)+ 7exp(i2πk/Nx)+ 7− exp(−i2πk/Nx)

)
, (B5)

r̂5thk =
1

60

(
− 3exp(i2π2k/Nx)+ 27exp(i2πk/Nx)+ 47− 13exp(−i2πk/Nx)+ 2exp(−i2π2k/Nx)

)
, (B6)

r̂6thk =
1

60

(
exp(i2π3k/Nx)− 8exp(i2π2k/Nx)+ 37exp(i2πk/Nx)+ 37− 8exp(−i2πk/Nx)+ exp(−i2π2k/Nx)

)
. (B7)650
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The amplification Ak of the above stencils can now be found by evaluating (A25) to give

A1st
k = C

(
− 2+2cos(2πk/Nx)

)
(B8)

A2nd
k = 0 (B9)

A3rd
k =

C

3

(
− 3+4cos(2πk/Nx)− cos(2π2k/Nx)

)
(B10)

A4th
k = 0 (B11)655

A5th
k =

C

30

(
− 20+30cos(2πk/Nx)− 12cos(2π2k/Nx)+ 2cos(2π3k/Nx)

)
(B12)

A6th
k = 0. (B13)

Appendix C: An approximate model for particle advection in 1D

We want to model the stochastic particle advection process as a deterministic advection process with some additional noise.

We start by writing Equation (15) as660

F ℓ
i+ 1

2
=Binom

(
N ℓ

i ,p
ℓ
i+ 1

2

)
(C1)

= E[F ℓ
i+ 1

2
] +Sℓ

i+ 1
2

(C2)

= pℓi+ 1
2
N ℓ

i +Sℓ
i+ 1

2
(C3)

= F̄ ℓ
i+ 1

2
+Sℓ

i+ 1
2
, (C4)

where F̄ ℓ
i+ 1

2

is the deterministic mean flux and Sℓ
i+ 1

2

is a zero-mean random variable representing the stochastic noise, given665

by

Sℓ
i+ 1

2
=Binom

(
N ℓ

i ,p
ℓ
i+ 1

2

)
− F̄ ℓ

i+ 1
2
. (C5)

We approximate this stochastic noise by assuming that it is sampled from a constant uniform particle state with exactly N̆

particles per grid cell. From Equation (12) we have

n̆=
N̆

V
(C6)670

and because the velocity u is constant and uniform the discretized flux is given by

f̆†† = un̆. (C7)
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From Equations (13) and (14) we then have

˘̄F = V
∆t

∆x
f̆†† (C8)

= V
∆t

∆x
u
N̆

V
(C9)675

= CN̆, (C10)

p̆=
˘̄F

N̆
(C11)

= C. (C12)

We can thus write the approximate stochastic noise by modifying Equation (C5) to give

S̆i =Binom(N̆, p̆)− ˘̄F (C13)680

=Binom(N̆,C)−CN̆. (C14)

We want to write the approximate stochastic model in the frequency domain by taking a DFT. It is thus helpful to rewrite

the equations in vector form, as we did in Section A. Similarly to Equations (A1) and (A2), we can write the particle counts

N ℓ
i and particle fluxes F ℓ

i− 1
2

as vectors N ℓ and F ℓ, and also do the same for other variables such as the average particle flux

F̄ ℓ
i+ 1

2

and probabilities pℓ
i+ 1

2

.685

Using the above vector notation and the difference stencil (A11) we can write the temporal update (16) as

N ℓ+1
i =N ℓ

i −F ℓ
i+ 1

2
+F ℓ

i− 1
2
, (C15)

N ℓ+1 =N ℓ + d ∗F ℓ (C16)

=N ℓ + d ∗ F̄ ℓ + d ∗Sℓ. (C17)

Taking the DFT now gives690

N̂ ℓ+1
k = N̂ ℓ

k + d̂kF̂
ℓ
k + d̂kŜ

ℓ
k (C18)

≈ exp(−Cd̂kr̂k)N̂
ℓ
k + d̂kŜ

ℓ
k (C19)

≈ exp(−Cd̂kr̂k)N̂
ℓ
k + d̂k

ˆ̆
Sk. (C20)

In Equation (C19) we approximated the update of the deterministic component with the exact solution of the deterministic

advection equation, as in (A17). That is, we approximated the Runge-Kutta time step update with the exact solution. We then695

approximated the update of the stochastic component in (C20) by using the approximate stochastic noise S̆.

Defining Ñ to be the solution of the approximate model, we can write the final approximate model from (C20) and (C14) as

ˆ̃N ℓ+1
k = exp(−Cd̂kr̂k)

ˆ̃N ℓ
k + d̂k

ˆ̆
Sk, (C21)

S̆i =Binom(N̆,C)−CN̆. (C22)
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We observe that the approximate stochastic noise has mean and variance given by700

E[S̆i] = 0 (C23)

Var[S̆i] = C(1−C)N̆ (C24)

for all i. The initial condition for the approximate model is given by Ñ0
i = N̆ for all i, which has DFT given by

ˆ̃N0
k =NxN̆δk,0. (C25)

Appendix D: Recurrence relations for the first and second moments of the approximate model705

Our aim is to solve the approximate model (C21) and (C22) analytically. Because the process is stochastic we will solve for the

first two moments of the particle counts Ñ in the frequency domain and in this section we begin by deriving the appropriate

recurrence relations.

Taking an expected value of (C21) gives the following recurrence relation for the first moment:

E[ ˆ̃N ℓ+1
k ] = E

[
exp(−Cd̂kr̂k)

ˆ̃N ℓ
k + d̂k

ˆ̆
Sk

]
(D1)710

= exp(−Cd̂kr̂k)E[
ˆ̃N ℓ
k] + d̂kE[

ˆ̆
Sk] (D2)

= exp(−Cd̂kr̂k)E[
ˆ̃N ℓ
k] (D3)

where we used the fact that the stochastic noise has zero mean.

Next we obtain a recurrence relation for the second moment of the particle counts. We use (C21) to compute

E[ ˆ̃N ℓ+1
k

ˆ̃N
(ℓ+1)∗
k ] = E

[(
exp(−Cd̂kr̂k)

ˆ̃N ℓ
k + d̂k

ˆ̃Sk

)(
exp(−Cd̂kr̂k)

ˆ̃N ℓ
k + d̂k

ˆ̆
Sk

)∗]
(D4)715

= exp(−Cd̂kr̂k −Cd̂∗kr̂
∗
k)E[

ˆ̃N ℓ
k
ˆ̃N ℓ∗
k ] + d̂k exp(−Cd̂∗kr̂

∗
k)E[

ˆ̃N ℓ
k
ˆ̆
S∗
k ] (D5)

+exp(−Cd̂kr̂k)d̂kE[
ˆ̆
Sk

ˆ̃N ℓ∗
k ] + d̂kd̂

∗
kE[

ˆ̆
Sk

ˆ̆
S∗
k ] (D6)

= exp
(
− 2CRe(d̂kr̂k)

)
E[ ˆ̃N ℓ

k
ˆ̃N ℓ∗
k ] + d̂kd̂

∗
kE[

ˆ̆
Sk

ˆ̆
S∗
k ]. (D7)

In the final step above we used the fact that the approximate stochastic noise, ˆ̆
Sk, has zero mean and is uncorrelated with

the current solution, ˆ̃Nk, because the noise is sampled from a fixed distribution, (C22), at each time step. This means that720

E[ ˆ̃N ℓ
k
ˆ̆
S∗
k ] = E[

ˆ̆
Sk

ˆ̃N ℓ∗
k ] = 0 and so the cross terms vanish.

To compute the expected value of the squared magnitude of the stochastic noise, E[ ˆ̆Sk
ˆ̆
S∗
k ], we use (F7) and the statistics (C23)

and (C24) of the stochastic noise to obtain

E[
ˆ̆
Sk

ˆ̆
S∗
k ] =N2

x

∣∣E[S̆0]
∣∣2δk,0 +NxVar[S̆0] (D8)

=NxC(1−C)N̆. (D9)725
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Substituting this into (D7) gives the recurrence relation

E
[
| ˆ̃N ℓ+1

k |2
]
= exp(Ak)E

[
| ˆ̃N ℓ

k|2
]
+ |d̂k|2NxC(1−C)N̆, (D10)

where we have also used the amplification factor Ak given by (A25).

Define the power at wavenumber k by

P̃ ℓ
k = E

[
| ˆ̃N ℓ

k|2
]

(D11)730

and the excitation as

Ek = |d̂k|2NxC(1−C)N̆, (D12)

where we can evaluate

|d̂k|2 = 2− 2cos(2πk/Nx). (D13)

Using the above expressions we can write the final recurrence relation for the second moment (the power) as735

P̃ ℓ+1
k = exp(Ak)P̃

ℓ
k +Ek. (D14)

The first term on the right-hand side represents the evolution of the second moment due to the discretized advection scheme,

which may preserve the second moment or dissipate it depending on the scheme. This first term is identical to the evolution of

the power for the semi-discretization (A26). The second term on the right-hand side represents a constant injection of variance

(energy) due to the stochastic noise.740

Appendix E: Analytical solution for the moments of the approximate model

In Appendix D we derived the recurrence relations for the first and second moments of the approximate model. In this section

we solve these recurrence relations analytically. Starting with the first moment, the recurrence relation D3 has the solution

E[ ˆ̃N ℓ
k] = exp(−ℓCd̂kr̂k)E[

ˆ̃N0
k ] (E1)

= exp(−ℓCd̂kr̂k)NxN̆δk,0 (E2)745

= exp(−ℓCd̂0r̂0)NxN̆δk,0 (E3)

=NxN̆δk,0 (E4)

= E[ ˆ̃N0
k ], (E5)

where we used the initial condition (C25) and the fact that d̂0 = 0. From this we see that the first moment of the approximate

model is constant in time and thus equal to its initial condition. We can write this as750

E[Ñ ℓ
k] = N̆, (E6)
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for all i and ℓ. We thus see that the mean of the approximate model is identical to the solution (A19) of the deterministic

spatial semi-discretization (A16), which is also constant for a uniform initial condition. That is, the approximate model mean

is exactly the same as the exact time integration of the finite volume discretization, which is consistent with the observation

that in Fig. 1 the particle solution oscillates around the finite volume solution.755

To solve the recurrence relation for the second moment (D14) we first recall that the linear first-order recurrence relation

zℓ+1 = azℓ + b (E7)

for a ∈ [0,1] has the solution

zℓ =

aℓz0 +(1− aℓ)z∞ if a < 1,

z0 + ℓb if a= 1,
(E8)

where z0 is the initial condition and z∞ is the steady state solution in the decaying case, given by760

z∞ =
b

1− a
. (E9)

Applying this to (D14) gives

P̃ ℓ
k =

exp(ℓAk)P̃
0
k +

(
1− exp(ℓAk)

)
P̃∞
k if Ak < 0,

P̃ 0
k + ℓEk if Ak = 0,

(E10)

where the limiting moments are

P̃ 0
k =N2

x N̆
2δk,0, (E11)765

P̃∞
k =

Ek

1− exp(Ak)
, (E12)

using (C25). To evaluate the above expression we need the amplification factors (B8)–(B13), the excitation (D12), and the

squared magnitude (D13).

Appendix F: Power identity for vectors with i.i.d. random components

Consider a vector of i.i.d. random variables zi for i= 0, . . . ,Nx − 1. We want to compute the expected value of the squared770

magnitude of the DFT of this vector, i.e., E
[
|ẑk|2

]
for each wavenumber k.

We start by observing that E[ziz∗j ] = E[zi]E[zj ] =
∣∣E[z0]∣∣2 for i ̸= j because the random variables are independent. We also

have E[ziz
∗
i ] = E

[
|zi|2

]
= E

[
|z0|2

]
=Var[z0] +

∣∣E[z0]∣∣2. We can thus write

E[ziz
∗
j ] =

∣∣E[z0]∣∣2 +Var[z0]δi,j , (F1)

for all i, j, where δi,j is the Kronecker delta.775
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We can now compute the expected value of the squared magnitude of the DFT:

E
[
|ẑk|2

]
= E[ẑkẑ

∗
k] (F2)

= E

[(
Nx−1∑
j=0

zj exp(−i2πjk/Nx)

)(
Nx−1∑
ℓ=0

z∗ℓ exp(i2πℓk/Nx)

)]
(F3)

=

Nx−1∑
j=0

Nx−1∑
ℓ=0

E[zjz
∗
ℓ ] exp(−i2π(j− ℓ)k/Nx) (F4)

=

Nx−1∑
j=0

Nx−1∑
ℓ=0

(∣∣E[z0]∣∣2 +Var[z0]δj,ℓ

)
exp(−i2π(j− ℓ)k/Nx) (F5)780

=
∣∣E[z0]∣∣2Nx−1∑

j=0

Nx−1∑
ℓ=0

exp(−i2π(j− ℓ)k/Nx)+Var[z0]

Nx−1∑
j=0

Nx−1∑
ℓ=0

δj,ℓ exp(−i2π(j− ℓ)k/Nx). (F6)

Consider the first term in the above expression. When k = 0 the sum is N2
x and when k ̸= 0 the sum is zero because the inner

sum consists of Nx complex numbers that are spaced around the unit circle in a symmetric fashion. Now consider the second

term. This collapses to
∑Nx−1

j=0 exp(−i2π(j− j)k/Nx) =Nx for all k. We thus have the final expression

E
[
|ẑk|2

]
=N2

x

∣∣E[z0]∣∣2δk,0 +NxVar[z0]. (F7)785

We see that the power spectrum consists of a uniform component that depends on the variance of the random variable and a

DC component that depends on the mean of the random variable.

Appendix G: Symbols used in this paper

Table G1 lists the symbols used in this paper.
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Table G1. Symbols used in this paper.

Symbol Description Reference

A Amplification factor (A25)

C Courant number (A18)

d Finite difference derivative stencil (A11)

δ Kronecker delta (F1)

∆t Time step (9)–(11)

∆x Spatial grid spacing (2)

E Excitation (D12)

f Concentration flux (2)

F̄ Average particle flux (13)

F Discrete Fourier transform (DFT) (A15)

i Spatial grid index (2)

k Wavenumber index (A15)

ℓ Time step index (9)–(11)

n Number concentration (1)

n̂ DFT (discrete Fourier transform) of n (A15)

N Number of computational particles in a grid cell §2.2, (12)

Ñ Solution to the approximate model (C21)
ˆ̃N DFT (discrete Fourier transform) of Ñ (C21)

N̆ Initial particle number for the approximate model (C6)

Np Number of computational particles per grid cell (2)

Nx Number of spatial grid points (2)

p Probability (14)

P Power spectrum of the semi-discrete solution (A20)

P̃ Power spectrum of the approximate model solution Ñ (D11)

Π Particle set §2.4

q Mixing ratio §2.6

r Finite difference stencil coefficient (A3)–(A8)

S Stochastic noise (C5)

t Time (1)

T Total simulation duration §3

u Velocity (1)

V Computational volume (12)

x Spatial coordinate (1)

y Spatial coordinate §3.3, §3.4

z Spatial coordinate or generic complex variable §3.4, §E, §F
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