
1 

 

Supporting information: CMIP6 models validation and Amazon 

carbon cycle projections 

Matteo Mastropierro1, Daniele Peano2, Davide Zanchettin1 

1 Department of Environmental Sciences, Statistics and informatics, Ca’ Foscari University of Venice, Venice, Italy 
2 Fondazione Centro euro-Mediterraneo sui Cambiamenti Climatici, CMCC, Bologna, Italy 5 

Correspondence to: Matteo Mastropierro (matteo.mastropierro@unive.it) 

 

Table 1: Overview of ESMs considered in this study 

ESM Reference 

Curvilinear 

Ocean 

Grid 

Land 

carbon 

Nitrogen 

cycle 

Phosphorous 

cycle Fires 
Dynamic 

vegetation 

ECS 

(°C) 

IPSL-

CM6A-LR 

(Boucher et al., 

2020) 
Yes 

ORCHIDEE, 

br.2.0 
No No No No 4.70 

CNRM-

ESM2-1 

(Séférian et al., 

2019) 
Yes 

ISBA-

CTRIP 
Implicit No 

Yes 

(natural) 
No 4.79 

CanESM5 
(Swart et al., 

2019) 
Yes 

CLASS-

CTEM 
Implicit No No 

dynamic 

wetlands 
5.64 

UKESM1-

0-LL 

(Sellar et al., 

2019) 
No 

JULES-ES-

1.0 
Yes No No Yes 5.36 

MIROC-

ES2L 

(Hajima et al., 

2020) 
No VISIT-e Yes No No No 2.66 

ACCESS-

ESM1-5 

(Ziehn et al., 

2020) 
No CABLE Yes Yes No No 3.88 

BCC-

CSM2-1 

(Wu et al., 

2019) 
No 

BCC-

AVIM2  
Implicit No 

Yes 

(natural) 
No 3.02 

E3SM-1-1-

ECA 

(Burrows et al., 

2020) 
No ELMv1.1 No No No 

dynamic 

wetlands 
5.31 

MPI-

ESM1-2-

LR 

(Mauritsen et 

al., 2019) 
Yes JSBACH3.2 Yes No No Yes 3.03 

NorESM2-

MM 

(Seland et al., 

2020) 
No CLM5 Yes No Yes No 2.49 

TaiESM1  
(Wang et al., 

2021) 
No CLM4 No No No No 4.36 

CMCC-

ESM2 

(Lovato et al., 

2022) 
Yes CLM-4.5 Yes No 

Yes 

(natural) 
No 3.58 

CESM2-

WACCM  

(Danabasoglu et 

al., 2020) 
No CLM5 Yes No Yes 

dynamic 

wetlands 
4.68 
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Earth System Models evaluation 10 

The ESM ability to simulate ENSO is first assessed in terms of the Nino3.4 index seasonality (phase-locking, Figure S1). 

Figure S1 clearly shows that all the models, with the exception of MPI-ESM1-2-LR, CanESM5 ACCESS-ESM1-5 and 

BCC-CSM2-MR, exhibit a stronger interannual variability than observations, represented by the HadISST dataset (Rayner et 

al., 2003), during all the calendar months (black line). Those four models, on the opposite, are characterized by a lower 

seasonality of the ENSO signal, with higher and lower than observed variability during boreal summer and boreal winter 15 

months, respectively. Beyond the bias in the annual standard deviation, the normalized index indicates that ESMs typically 

yield a much higher minimum from March to August and lower maximum from September to January compared to 

observations (Figure S1b), thus displaying a negative bias in the amplitude of ENSO seasonal variations. 

We also considered the ability of the ESMs to simulate the climatology of the Amazon basin as well as its land carbon and 

surface energy fluxes by assessing their seasonality. A dry precipitation bias is persistent during the whole year and for all 20 

the ESMs (Ortega et al., 2021; Monteverde et al., 2022, Figure S2, panel a). Despite this, however, not all the models display 

a consistent dry bias for soil moisture, but rather roughly half of them overestimate the volumetric soil content of water, most 

likely a direct consequence of the parameterization of soil water depth in the different land models used (Qiao et al., 2022, 

Figure S2, panel c). Temperatures are also overestimated in the Amazon basin, both concerning their seasonal amplitude 

cycle, which is accentuated in ESM, as well as considering annual mean values. This mainly occurs during the second half of 25 

the year, while from January until July roughly half of the ESMs simulate a lower temperature compared to ERA5 reanalysis 

(Figure S2, panel c). Considering the energy fluxes, shortwave incoming radiation is probably the most consistent bias 

observable in the region considered (Figure S3, panel b), and its presence has strongly persisted since the 5th generation of 

CMIP models (Wild et al., 2015). Despite a correct seasonality, the values of incoming radiation are almost two times the 

FLUXCOM ones (Jung et al., 2019): this bias is a consequence of low cloudiness within the tropical basin, and most likely it 30 

is the direct factor that generates the dry precipitation bias. Latent heat does not resemble the observed pattern, as it 

overestimated in all the models up to July, while in the second part of the year roughly half of the ESMs project lower values 

than the FLUXCOM dataset. ESMs also struggle to reproduce the seasonal cycle of GPP, TER and consequently NEP 

(Figure S4). Here, the general behaviour of the ESMs is a shift in the lower productivity peak towards the end of the year 

(Figure S4 panel a). Figure S5 shows the spatially averaged NEP, GPP and TER in the Amazon basin for the DJF season. All 35 

the models depict a clear and strong underestimation of seasonal values. Compared to the FLUXOM carbon fluxes dataset 

(Jung et al., 2020). The NEP bias is mainly due to an overestimation of TER in the DJF season for four ESMs (E3SM-1-1-

ECA, MPI-ESM1-2-LR, TaiESM1, UKESM1-0-LL, Figure S4 panel b) and c) and Figure S5), while for the rest of the 

models this bias is the result of a combination of both low GPP and high TER. The four models with strong DJF TER bias 

also present high GPP values compared to FLUXCOM and the other ESMs, indicating a particularly high vegetation (and 40 

thus Land Module) sensitivity to climatological forcings. 
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Figure S1: Model biases with respect to the HadISST dataset in ENSO seasonal variability, for the period 1979/2013. a) seasonality as 

expressed by the Nino3.4 index standard deviation, b) seasonality expressed by the normalized Nino3.4 standard deviation. 

 

 50 

Figure S2: Model biases with respect to the ERA5 dataset in the climatological seasonal variability, for the period 1979/2013. Shown are 

the monthly zonal means within the Amazon basin for a) precipitation, b) temperature and c) soil moisture. 
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Figure S3: Model biases with respect to the FLUXCOM dataset in the seasonal variability of surface energy fluxes, for the period 55 
1979/2013. Shown are the monthly zonal means within the Amazon basin for a) latent heat and b) shortwave incoming radiation. 

 

 

Figure S4: Model biases with respect to the FLUXCOM dataset in the seasonal variability of carbon fluxes, for the period 1979/2013. 

Shown are the monthly zonal means within the Amazon basin for a) NEP, b) GPP and c) TER. 60 
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Figure S5: Model biases with respect to the FLUXCOM dataset in the DJF distribution of carbon fluxes values, for the period 1979/2013. 

Shown are the DJF zonal means within the Amazon basin for a) NEP, b) GPP and c) TER. 
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Figure S6: Simulated anomalies of (a) NEP, (b) GPP, (c) Rh and (d) Ra in the Amazon basin for the hist and ssp585 experiments. 

Anomalies are computed with respect to the 1901-1960 mean. For the models with more than one realization, both the model-ensemble 85 
mean (line) and the spread (±1 standard deviation, shading) are shown. 4 years moving average values are shown for clarity. 
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Figure S7: Power Spectrum Density (PSD) of the Nino3.4 signal in all the considered CMIP6 models under the historical (green) and 

ssp585 (yellow) scenarios. The historical HadISST Nino3.4 frequency (blue line) is added as reference. 
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Figure S8: NEP response to El Nino during the historical period (𝑬𝑵𝒉𝒊𝒔𝒕). Hatches indicate statistically significant grid-cells according to 95 
a Mann-Whitney U-test. The Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/), is also represented 

 

Figure S9: Difference in NEP response to El Nino composites in the ssp585 scenario compared to the historical (∆EN). Hatches indicate 

statistically significant grid-cells according to a Mann-Whitney U-test. The Amazon basin, obtained from the SO HYBAM service 

(https://hybam.obs-mip.fr/), is also represented 100 
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Figure S10: NEP response to La Nina composites in the historical scenario (𝑳𝑵𝒉𝒊𝒔𝒕). Hatches indicate statistically significant grid-cells 

according to a Mann-Whitney U-test. The Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/), is also 

represented. 

 105 

Figure S11: Difference in NEP response to La Nina composites in the ssp585 scenario compared to the historical (∆LN). Hatches indicate 

statistically significant grid-cells according to a Mann-Whitney U-test. The Amazon basin, obtained from the SO HYBAM service 

(https://hybam.obs-mip.fr/), is also represented. 
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Figure S12: Regression model performance in the Amazon basin for a) historical and b) ssp585 scenarios. Differences among the zonal 110 
mean values of NEP predicted with the 5-CV ridge regression model (nep_pred) are reported as orange bars, while the zonal mean NEP 

directly retrieved from ESMs output (nep) are shown as green bars. 

 

Figure S13: Regression model performance in the Amazon basin. a) Yearly DJF values of NEP predicted and NEP retrieved from ESMs. 

b) R2 values of the 5-fold CV ridge regression model, for both the historical and the ssp585 scenario. 115 
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Figure S14: Model diversity in the representation of Amazon basin spatially averaged values for predicted NEP (on the y-axis), with 

respect to the regression coefficients of a) precipitation and b) shortwave incoming radiation, obtained with the MLR_iav regression. 

Shown are the values referring to the historical experiment. All the data have been detrended and standardized before the analysis. 
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Figure S15: Values of zonal detrended 5-fold CV regression coefficients for the MLR_iav regression in the Amazon basin, for every 

ESM, for a) historical scenario and b) ssp585 scenario. The black vertical bars represent the spread in the predictors coefficients for 

models with more than one realization available. 
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Figure S16: : Multi model ensemble mean of the coefficient values for the five climatic drivers obtained by the MLR_iav regression, for 

the ssp585 period. Hatches represent those grid cells for which at least 10 out of 13 ESM agree in the sign of the predictor value. The 

Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/),  is also represented. 130 

 

 

 

 

 135 

 

 

 

 

 140 

 

 

 

 

 145 



13 

 

 

 

Figure S17: Time lagged ENSO teleconnection effect on Amazon basin NEP. Displayed are the value of the regression coefficient 

between the standardized Nino3.4 index in the DJF season, and the 3 months running zonal NEP mean in the Amazon basin. Please note 

that, on the y-axes, the inverse value of NEP regression coefficient is shown for clarity (higher values depict higher negative NEP 150 
anomalies). 
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Table S2: Regression coefficients and p-values of Tropical North Atlantic signal. The values represent the zonal mean effect on NEP in 

the Amazon basin, expressed in 𝒈𝑪𝒎−𝟐𝒚−𝟏, as also shown in Figure S17. 

ESM 

TNA 

coefficient - 

historical  

TNA pvalue 

- historical 

TNA 

coefficient – 

ssp585 

TNA pvalue 

– ssp585 

ACCESS-ESM1-5 -0.82 0.40 -7.27 0.43 

BCC-CSM2-MR -0.12 0.50 7.62 0.40 

CESM2-WACCM 2.96 0.36 -0.53 0.43 

CMCC-ESM2 0.64 0.48 4.81 0.38 

CNRM-ESM2-1 2.32 0.44 -0.67 0.48 

CanESM5 -1.00 0.44 5.06 0.43 

E3SM-1-1-ECA 2.58 0.42 8.58 0.50 

IPSL-CM6A-LR 0.17 0.45 -3.84 0.46 

MIROC-ES2L -3.00 0.41 -7.44 0.35 

MPI-ESM1-2-LR 1.29 0.48 0.07 0.43 

NorESM2-MM -0.35 0.44 -0.58 0.51 

TaiESM1 10.13 0.29 21.12 0.30 

UKESM1-0-LL -1.31 0.45 -1.69 0.48 

Multimodel Mean 1.20 0.43 1.94 0.43 
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Figure S18: Multi model ensemble mean of the coefficient values of the drivers considered in the regression, for the ssp585 period. The 

black vertical bars represent the spread in the predictors coefficients for models with more than one realization available. 
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