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Reviewer 1: 

Mastropierro et al made the use of CMIP6 to investigate Amazon land carbon sink’s uncertainties and 

underpinning drivers. This is a really important topic and I think they can potentially make useful 

contributions to the community. Nevertheless, I have several critical concerns about the methods before I 

can recommend for publications. 

We thank Reviewer #1 for their appreciation of our work and for the useful comments. We have addressed 

all the Reviewer’s comments and suggestions in the revised version of our manuscript. Motivated by the 

reviewers’ comments, we have performed additional analyses and revised several aspects of the study, 

including improvements to the abstract and conclusions. We are confident that the revised manuscript is 

much stronger and more in focus than the original manuscript. Below we provide a point by point reply to 

the Reviewer’s comments (original comments by the Reviewer in black, our response in blue). 

 

1. Section 2.2.2. Have you removed the effects of CO2 fertilization on carbon? If not, the equations 

are the combined effects of eCO2 and climate impact. 

We thank the Reviewer for this very important comment. In the original study, we did not explicitly remove 

the effects of CO2 fertilization on NEP in the equations reported in section 2.2.2 of the manuscript, so that 

the NEP mean state changes (Δ𝑀𝑆), reported in equation 1, were indeed the combined contribution of mean 

climatic changes and CO2 fertilization effects. In the revised manuscript, we have disentangled these two 

contributions by taking advantage of C4MIP simulations: 1pctCO2-bgc, 1pctCO2-rad, ssp585-bgc and 

ssp585-rad. Specifically, we estimated the effect of CO2 fertilization on vegetation productivity by using 

the biogeochemically-only coupled simulation, while we estimated the carbon-climate feedback by using 

the radiative-only coupled simulation.  

The methodology section of the manuscript has been restructured, so that our previous section 2.2.2 

“Separation of mean-state and ENSO effects” has become section 2.2 “Long-term mean-state climatic 

effects” in the revised version. Please refer to lines 124-143 page 5 of the revised manuscript for the revised 

section 2.2. These changes make the study more robust, and lead to different conclusions, specifically that 

CO2 fertilization becomes the most prominent factor dominating uncertainties and influencing the Amazon 

long-term cumulative carbon sink trend across ESMs. Please refer to lines 410-414, page 18 of the revised 

manuscript for the updated section of the conclusions.  

2. The use of water availability: soil moisture is more relevant for plant carbon uptake than 

precipitation. Why the authors did not choose mrso? 

Thank you for bringing this point to the discussion. Given the Reviewer’s suggestion and the general 

modifications in the methodology, in the revised version of the manuscript we consider as water availability 

proxy soil moisture, due to its stronger relevance for plant carbon uptake. We originally decided to adopt 

precipitation rather than soil moisture in equation 3 because of the direct modulation of ENSO on 

precipitation variability, given that the correlation between precipitation and ENSO appeared to be stronger 

than the one between ENSO and soil moisture.  The revised version of the net biomass productivity is: 

𝜟𝑵𝑩𝑷 =  
𝜹𝑵𝑩𝑷

𝜹𝑻
∗ 𝜟𝑻 +

𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
∗ 𝜟𝒎𝒓𝒔𝒐 +

𝜹𝑵𝑩𝑷

𝜹𝑺𝑾𝒊𝒏
∗ 𝜟𝑺𝑾𝒊𝒏 + 𝝐      (1) 

 



2 

 

Accordingly, ENSO is not anymore a factor we consider within equation 3. In the revised study, we model 

the effects of ENSO by considering soil-moisture and temperature-driven ENSO anomalies within the new 

equations 4 and 5 (shown below): 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝑻 =
𝜹𝑵𝑩𝑷

𝜹𝑻
 ∗

𝒅𝑻

𝒅𝒏𝟑𝟒
         (2) 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝒎𝒓𝒔𝒐 =
𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
 ∗

𝒅𝒎𝒓𝒔𝒐

𝒅𝒏𝟑𝟒
         (3) 

The methodology section of the manuscript has been consequently restructured, so that our previous section 

2.2.3 “Effects of climatic drivers” becomes, with modifications, section 2.3 “Carbon fluxes sensitivity at 

inter-annual timescales”. Please refer to lines 145-186 page 6 and 7 of the revised manuscript for section 

2.3. These changes make the study more robust, and lead to different conclusions. In particular, we first 

show that GPP sensitivity to shortwave incoming radiation and heterotrophic respiration sensitivity to both 

soil-moisture and temperature dominate NBP divergence across ESMs at the interannual time-scale. Then, 

we demonstrate that temperature anomalies drive the increase in carbon sink impacts of ENSO under global 

warming at the inter-annual timescale. The updated conclusions are reported in line 410-440, page 18 of 

the revised manuscript. 

3. To my surprise, why pr is negatively correlated with NEP. A drought causes more NEP, which is 

not feasible. 

We thank the Reviewer for making us notice this incongruence. This is merely due to an unfortunate 

mislabeling of Figure 7 and Figure 8 panels in the original manuscript, where precipitation was negatively 

correlated with NEP, whereas precipitation is actually positively correlated with vegetation productivity 

within the area of study, as expected. The mistake comes from having uploaded into the final document a 

wrong version of the figure we generated. As replied to the previous comment, we decided to use soil 

moisture rather than precipitation as a proxy for water availability, thus the new figure does not include 

anymore precipitation. We report below the new Figure 5 (ex Figure 7) that shows the positive influence of 

soil moisture anomalies in panel b. Please refer to lines 272-343 of pages 11-14 of the revised manuscript 

for an overview of changes made to section 3.3 “Inter-annual variability of carbon fluxes”. 

 

 

Figure 1: Multi model ensemble mean of the coefficient values for the climatic drivers obtained by the multi-linear regression, for 

the ssp585 scenario. Hatches represent those grid cells for which at least 8 out of 11 ESMs agree in the sign of the predictor value. 

The Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/), is also represented.  
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Small comments: 

- Lines 54 -57/61-63:  Water availability control on interannual variability of tropical biomes is large and 

could increase. 

Ref: 

Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water 

storage. Nature 560, 628-631 (2018). https://doi.org:10.1038/s41586-018-0424-4 

Liu, L. et al. Increasingly negative tropical water–interannual CO2 growth rate coupling. Nature 618, 755-

760 (2023). https://doi.org:10.1038/s41586-023-06056-x 

We thank the Reviewer for suggesting these additional works that demonstrate the importance of water 

availability control on tropical biomes. We have rephrased the sentences accordingly and explicitly 

considered these works in the manuscript, as reported in lines 55-60 of the revised manuscript: 

“Despite indications of temperature-driven GPP anomalies were responsible for decreased Amazonian 

carbon sink in the 2015/2016 event (Bastos et al., 2018; Zhang et al., 2019), it is still currently debated 

whether fluctuations in temperatures or water availability are the dominant drivers for interannual carbon 

variability of tropical biomes, with recent research indicating that the importance of water availability as a 

controlling factor has increased in the past decades (Jung et al., 2017; Humphrey et al., 2018; Liu et al., 

2023; Zhang et al., 2023).” 

- Lines 177-180. Shall we say this? The units are not same compared to NEP uncertainty. Maybe a 

normalized quantification of uncertainty is fair for comparisons, like spread divided by mean. 

We agree with the Reviewer that a more precise quantification of uncertainty would better describe the 

differences among models. Therefore, following the Reviewer’s suggestion, in the revised manuscript we 

include results from a calculation of normalized uncertainty in the projections of carbon fluxes within the 

Amazon basin, for the different ESMs (reported as z-score standard deviation). The additional text reads as 

follows (see lines 208-218 pages 7 and 8 of the revised manuscript): 

“Regarding the intra-model spread, the highest influence of internal climatic variability (±1 standard 

deviations) is observed in precipitation and shortwave incoming radiation, followed by soil moisture 

(spreads in Figure 2c,e and d). This indicates that within the Amazon basin the major source of uncertainty 

deriving from internal climate variability is associated with cloud formation and coverage, which is causally 

linked with the amount of precipitation (thus soil moisture content) and shortwave incoming radiation 

within the regional domain. All the carbon fluxes from which NBP is derived (GPP, Ra and Rh) depict an 

increasing trend throughout the 21st century (Figure S5), with the notable exception of GPP and 

heterotrophic respiration for ACCESS-ESM1-5. Among these carbon fluxes, Rh presents the highest end 

of 21st century normalized uncertainty (186.74 gCm-2, z-score std-dev of 1.62), followed by GPP and Ra 

(753.59 and 548.71 gCm-2, z-score std-dev of 1.12 and 0.76 respectively). This shows that uncertainty in 

cumulative NBP does not solely stem from single climatic factors; instead, it arises from inconsistencies 

and differences in how models represent photosynthetic activity, autotrophic and heterotrophic respiration.” 

Additionally, our aim here is twofold: on the one hand, we want to show that intra-model uncertainty is 

higher for climatic variables rather than for carbon fluxes, and on the other hand we want to show that 

divergence in carbon cycle projections is mostly related to terrestrial carbon sensitivity to climate, rather 

than climatic uncertainty itself. In the revised manuscript, we have therefore rewritten this part to emphasize 

https://doi.org:10.1038/s41586-023-06056-x
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the differences among ESMs in the long-term trends of the variables considered (please see lines 191-197, 

page 7 of the revised manuscript): 

“Considering the projections of cumulative carbon sink in Figure 1a and carbon fluxes in Figure S5, the 

inter-model uncertainty is much higher compared to intra-model uncertainty (which stems from the 

instrinsic climatic variability expressed in each realization and is represented by the ±1 standard deviation 

spread in Figure 1 and Figure S5). For the physical variables in Figure 1b-e, intra-model uncertainty is 

considerably higher than for carbon fluxes and reflects the substantial internal climate variability intrinsic 

in each simulation. These considerations already highlight that part of the divergence across carbon cycle 

predictions is related to differences in the land sensitivity to climatic forcings, rather than uncertainties in 

the evolution of the climate itself. Overall, the climatological variables present a stronger agreement and 

coherence in the sign of projected changes among ESMs with respect to NBP.”. 

We report the revised Figure 1 below: 

Figure 2: Long-term trends of (a) cumulative NBP, (b) temperature, (c) precipitation, (d) soil-moisture, (e) shortwave incoming 

radiation in the Amazon basin for the historical and ssp585 experiments. Trends are computed with respect to the first 30-year 

mean of the historical period (1850-1880), and are visualized as a 10-year moving average for clarity. For the models with more 

than one realization, both the model-ensemble mean (line) and the spread (±1 standard deviation, shading) are shown. 
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Reviewer 2: 

Summary: 

The authors examine drivers of uncertainty in and divergence among CMIP6 model projections of Amazon 

carbon cycling. First, they separate the C cycle changes driven by ENSO from those driven by mean-state 

climate change. Then, they use regression approaches to separate the effects of mean-state changes resulting 

from different climate drivers, including precipitation, temperature, solar radiation, and latent heat flux. 

They find that changes in ENSO account for relatively little change in the Amazon C cycle relative to mean-

state climate changes, which generally (but not exclusively) enhanced net ecosystem production (NEP) in 

the ssp585 scenario. Using the empirical approach to disentangle the various drivers of mean-state change, 

they further claim that most of the diversity among the models is attributable to differences in representation 

of C cycle responses to surface energy fluxes (solar radiation and latent heat flux in particular). Overall, 

while the article presents some interesting results, I think there are some major flaws that ought to be 

addressed. 

We thank Reviewer #2 for their appreciation of our work and for the useful comments. We have addressed 

all the Reviewer’s comments and suggestions in the revised version of our manuscript. The refined 

methodology led us to slightly revise the conclusions of the study, which we are confident to be now much 

more robust and relevant. In particular, in the revised manuscript we have explicitly considered the role of 

CO2 fertilization, therefore being able to quantify its predominant contribution in determining long-term 

carbon sink trends in the Amazon basin across the considered ensemble of CMIP6 models. Additionally, 

we show that NBP divergence across ESMs is mainly related to the modulation of photosynthetic activity 

by shortwave incoming radiation and uncertainty in the representation of heterotrophic respiration 

sensitivity to both soil moisture and temperature. Lastly, we were able to demonstrate that temperature is 

the main controlling mechanism by which ENSO modulates the carbon sink at interannual timescales in 

the Amazon region, and that this mechanism is expected to be exacerbated by global warming, as opposed 

to impacts by soil-moisture anomalies. 

Please see the revised abstract and conclusions in lines 8-24 and 409-440 of the revised manuscript, 

respectively. 

General comments: 

1) The biggest flaw, in my opinion, comes from the attribution of mean state change to specific drivers, 

especially the claim that inter-model differences in latent heat flux are driving differences in C cycling. 

Latent heat flux is not an exogenous variable but is instead itself driven by things like solar radiation, soil 

moisture, temperature and humidity as well as by plant responses to climate forcings. The authors use an 

empirical regression approach (Eqn. 4) to separate out the constituent drivers of NEP (including latent heat 

flux), but what if latent heat flux is not directly driving NEP but is instead being forced by the same drivers 

as NEP? In this case, both NEP and latent heat flux would be highly correlated with each other despite 

neither one “causing” the variation in the other but instead both just responding to a common external 

driver. Eqn. 4 would thus misattribute change in NEP to change in latent heat flux. I think this is very likely 

at least partly the case because NEP and latent heat flux are both affected by stomatal conductance (which 

in the models is affected by vegetation characteristics, soil moisture, VPD, etc.): all else being equal, higher 

conductance would increase both GPP and transpiration, and thus both NEP and latent heat flux, without 

latent heat flux itself causing any change in NEP. While latent heat flux could indeed cause (or at least 

reinforce) change in NEP through land-atmosphere feedbacks, I think the regression modeling approach 

used here, and thus the conclusions of the paper, are likely mistaking a correlation between latent heat flux 

and NEP via their common drivers for a causal driver of NEP by latent heat flux. 
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Thank you for this very useful comment. We acknowledge that part of the variance of NEP attributed to 

latent heat fluxes may be spurious due to co-variability between both variables, and we agree that this 

especially concerns interannual variability. To avoid spurious attribution, in the revised manuscript we use 

the same methodology as in the original study (i.e., ridge regression), but instead of using five independent 

variables in our model, we opted for using only three, namely temperature, soil-moisture and shortwave 

incoming radiation. We therefore neglect the role of latent heat fluxes for NBP interannual variability 

because of the influence of transpiration, itself influenced by stomatal conductance, on both variables. 

Accordingly, the revised equation 3 of the regression model is: 

𝜟𝑵𝑩𝑷 =  
𝜹𝑵𝑩𝑷

𝜹𝑻
∗ 𝜟𝑻 +

𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
∗ 𝜟𝒎𝒓𝒔𝒐 +

𝜹𝑵𝑩𝑷

𝜹𝑺𝑾𝒊𝒏
∗ 𝜟𝑺𝑾𝒊𝒏 + 𝝐      (4) 

Nevertheless, we acknowledge that latent heat fluxes may be an additional source of NBP variability at 

inter-annual timescales, given its impact on vapor pressure deficit, which in turn affects NBP (and we 

reported this in line 155 to 158 in our revised manuscript). Testing this mechanism and quantifying its 

effects on NBP lies outside the scope of the present research work. 

Please refer to revised Section 2.3 (lines 145-169, page 5 and 6 of the revised manuscript) for details on the 

new methodology. 

2) Related to this, elevated CO2 is almost certainly a major factor driving both change in NEP and inter-

model divergence in NEP trends, but CO2 fertilization is not examined at all in this manuscript. Instead, 

any CO2-related changes in NEP are likely being “lumped in” with any other climate drivers that have 

long-term trends (like temperature). The authors claim that temperature trends positively force NEP (e.g. in 

fig. 5), but to me, this seems more likely to be a CO2 effect than a temperature effect. If I recall correctly 

(and I could definitely be wrong about this), most other studies have found that temperature on its own 

should *negatively*, not positively, force Amazon NEP, especially in an extreme scenario like ssp585. 

Because the temperature trends closely track CO2 trends in the future projections, this to me seems very 

likely to be a misattribution of CO2 effects to temperature effects. Previous studies (e.g. Huntzinger et al. 

2017) have also shown that much of the divergence among land surface model predictions of NEP arises 

from differences in vegetation responses to elevated CO2. 

We acknowledge the limitation of our initial analysis, as the Reviewer stresses in this comment.  In the 

revised manuscript, we assess the Amazon ecosystem sensitivity to the increase in atmospheric carbon 

dioxide by analyzing the carbon cycle response to CO2 according to the 1pctCO2-bgc and ssp585-bgc 

experiments. In these experiments, the forced increase in atmospheric CO2 only affects the terrestrial and 

ocean ecosystems, without affecting climatic physical variables, therefore enabling us to derive the carbon-

concentration feedback for the ESMs within the Amazon basin. According to this, the contribution of 

atmospheric CO2, by means of the carbon-concentration feedback (𝛽) on the long-term cumulative carbon 

sink results to be stronger than the climatic impacts (γ). Please refer to revised section 2.2 (line 124-143, 

page 5) of the revised manuscript for the description of the new methodology. 

Because of this modification in our methodology, the results point to a predominant contribution of CO2 

fertilization in determining long-term carbon sink trends in the Amazon basin across the considered 

ensemble of CMIP6 models. Please see the detailed results on lines 235-269 of the revised manuscript. 

3) A much smaller point, but for the ENSO analysis, the authors use a December-February averaging period 

of the Niño3.4 index but don’t really justify this choice aside from saying that ENSO anomalies tend to 

peak in boreal winter (which is true). However, this does not necessarily imply that ENSO effects on surface 

climate and vegetation peak in boreal winter. Previous studies (e.g. the Zhu et al. 2017 and Zhang et al. 
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2019 papers already cited in the manuscript) have shown that the lags between ENSO anomalies and 

vegetation productivity can vary pretty substantially over the land surface and don’t necessarily correspond 

to that DJF period. (Another more specific question I had about this was why Niño3.4 anomalies that 

already represented 5-month averages [line 124] were then further averaged to DJF) 

Thank you for your comment on this point. In the revised version of the manuscript, we have changed the 

methodology to assess ENSO modulation of Amazon vegetation productivity. Specifically, we do not 

include anymore the Niño3.4 index in the ridge regression model, and additionally, being our focus on 

interannual timescales, we averaged the Niño3.4 index (as well as all other variables) to annual values. In 

this way, we are able to partially overcome the problem related to the lag effects of ENSO anomalies on 

vegetation productivity and at the same time have a clearer description of the ENSO modulation by means 

of temperature and soil-moisture changes. The parts of section 2.3 describing the new methodology to 

assess ENSO impacts are available in lines 168-186, page 6 and 7 of the revised manuscript. 

This new methodological approach has led to slightly different results than the original study. Given the 

new equations 4 and 5 in the revised manuscript (reported below), we now identify temperature anomalies 

as the dominant mechanism by which ENSO impacts the vegetation carbon sink in the Amazon basin, 

compared to soil-moisture ENSO-driven anomalies (Figures 6 and 7, reported below). 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝑻 =
𝜹𝑵𝑩𝑷

𝜹𝑻
 ∗

𝒅𝑻

𝒅𝒏𝟑𝟒
         (5) 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝒎𝒓𝒔𝒐 =
𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
 ∗

𝒅𝒎𝒓𝒔𝒐

𝒅𝒏𝟑𝟒
         (6) 
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Figure 3: Variability of NBP at interannual timescales associated to ENSO (y-axis), and mediated by either soil moisture or surface 

air temperature (x-axis), for every ESM. Reported are the distribution of the values within the Amazon basin, for the historical 

period (light-green) and the ssp585 scenario (orange). Statistical difference among the distribution of the coefficients for the two 

periods are tested by means of a Mann-Whitney U-test and is reported in the stars above the plots with the following convention: 

*: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04. 
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Figure 4: Only grid-cells within the Amazon basin are included. Statistical significance, tested by means of a Mann-Whitney U-

test, is reported in the stars above the plot, and refers to the following convention: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p 

<= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04 

 

4) The authors mention that they obtained soil moisture (mrso) from the CMIP6 models, but they used 

precipitation in Eqn. 4. Both vegetation and soil microbial communities are likely responding more directly 

to soil moisture than to precipitation, so why not use soil moisture in Eqn. 4 instead of precipitation? 

Thank you for the comment. We have received a similar question from Reviewer #1, and we respond here 

along the same line. Given the Reviewer’s suggestion and the general modifications in the methodology, in 

the revised version of the manuscript we consider soil moisture as a proxy of water availability, due to its 

stronger relevance for plant carbon uptake. The reason why we originally decided to adopt precipitation 

rather than soil moisture in equation 3 was because of the direct modulation of ENSO on precipitation 

variability, given that the correlation between precipitation and ENSO appeared to be stronger than the one 

between ENSO and soil moisture.  The revised equation 3 is: 

𝜟𝑵𝑩𝑷 =  
𝜹𝑵𝑩𝑷

𝜹𝑻
∗ 𝜟𝑻 +

𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
∗ 𝜟𝒎𝒓𝒔𝒐 +

𝜹𝑵𝑩𝑷

𝜹𝑺𝑾𝒊𝒏
∗ 𝜟𝑺𝑾𝒊𝒏 + 𝝐      (7) 

Additionally, ENSO is not anymore a factor we consider within equation 3, as we model it separately by 

considering soil-moisture and temperature-driven ENSO anomalies as in the new equations 4 and 5 (shown 

below): 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝑻 =
𝜹𝑵𝑩𝑷

𝜹𝑻
 ∗

𝒅𝑻

𝒅𝒏𝟑𝟒
         (8) 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝒎𝒓𝒔𝒐 =
𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
 ∗

𝒅𝒎𝒓𝒔𝒐

𝒅𝒏𝟑𝟒
         (9) 

The methodology section of the manuscript has been restructured, so that our previous section 2.2.3 “Effects 

of climatic drivers” becomes, with modifications, section 2.3 “Carbon fluxes sensitivity at inter-annual 

timescales”. Please refer to lines 145-191 page 6 of the revised manuscript for the revised section 2.3. These 

changes make the study more robust, and lead to different conclusions than the original study. In particular, 
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we first show that GPP sensitivity to shortwave incoming radiation and heterotrophic respiration sensitivity 

to both soil-moisture and temperature dominate NBP divergence across ESMs at the interannual time-scale. 

Second, we demonstrate that ENSO-driven temperature anomalies drive the increase in carbon sink impacts 

of ENSO under global warming at the inter-annual timescale. Conclusions are reported in line 409-440, 

page 18 of the revised manuscript“. 

5) In general, I was a little confused about section 3.4 and the corresponding methods section (2.2.3). There 

seem to be some inconsistencies in how the regression coefficients were described in the text and how they 

appear in the figures. For example, line 332 says that the models show a negative influence of temperature, 

but doesn’t Fig. 5 show a *positive* influence of temperature? I also found the precipitation response 

confusing… the authors variously describe precipitation as being negatively correlated with NEP (lines 

341-342) on the one hand, but also say that places with larger negative trends in precipitation have lower 

NEPs (lines 319-320). In order for a negative trend in precipitation to result in lower NEP, that would mean 

that NEP and precipitation would have to be *positively* (not negatively) correlated with each other, right? 

I’m also struggling to figure out how precipitation would be negatively correlated with NEP (or have a 

negative regression coefficient with NEP, as in fig. 5 and 6) in the Amazon. 

Thank you for making us notice this unfortunate incongruence and for stressing out a lack of clarity in 

section 3.4. Figure 5 of the original manuscript has been removed in the revised manuscript, due to the 

changes in the methodology reported in our response to comment nr. 4. Additionally, in the original 

manuscript we mistakenly reported the coefficients of precipitation as being negative in Figure 7 and Figure 

8. This was due to an unfortunate mislabeling of Figure 7 and Figure 8 panels: precipitation is actually 

positively correlated with NEP within the area of study, as expected. The error came from having uploaded 

into the final document a wrong version of the figure. New Figure 4 and Figure 5 in the revised manuscript 

(reported below) provide correct values and signs of the regression coefficients. 

 

Figure 5: Partial derivatives explaining the contribution of temperature (a), soil moisture (b) and shortwave incoming radiation (c) 

to interannual NBP, averaged across the Amazon basin. The black vertical bars represent the spread in the predictors coefficients 

for models with more than one realization available, whereas the stars indicate the level of significance (p-value), averaged over 

the Amazon basin, associated to every coefficient. Statistical significance refers to the following convention: *: 1.00e-02 < p <= 

5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04 
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Figure 6: Multi model ensemble mean of the coefficient values for the climatic drivers obtained by the multi-linear regression, for 

the ssp585 scenario. Hatches represent those grid cells for which at least 8 out of 11 ESMs agree in the sign of the predictor value. 

The Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/), is also represented.  

 

Specific comments: 

Line 69: is “given” supposed to say “driven”? 

Correct, we meant that precipitation decline is driven by increased CO2 as a consequence of stomatal 

closure. We have corrected the sentence in the revised manuscript accordingly. 

Line 75: Another ENSO property that could influence the Amazon carbon cycle is the spatial location of 

SST anomalies in the tropical Pacific (i.e., central Pacific vs. eastern Pacific ENSO events). Recent 

frequencies of central Pacific ENSO events are considerably above the norm based on paleoclimate 

reconstructions (Freund et al., 2019) and have been shown to have distinct impacts on GPP and NEP in 

many regions, especially in the Amazon (Dannenberg et al., 2021). Further, some studies have shown that 

central Pacific El Niños are projected to be more frequent under 21st century warming (e.g., Shin et al., 

2022), though some of this might result from biases in CMIP6 model simulations of equatorial zonal flows 

(Wang & Lin, 2023). Still, might be worth noting that this (along with increases in ENSO amplitude and 

vegetation sensitivity to ENSO) is another potential source of future change in the Amazon-ENSO 

connection that is not examined here since the Niño3.4 region mixes the two (but is mostly centered in the 

central Pacific). To be clear, I’m not necessarily suggesting that the authors redo analyses to explicitly 

examine the CP vs. EP ENSO effect on Amazon C cycling, though it could be really interesting at least for 

future work! 

Yes, we agree with the Reviewer that previous research has demonstrated the different influence of CP vs 

EP ENSO impacts on vegetation carbon fluxes. However, we decided to maintain the current approach 

based on Nino3.4 because it is the ENSO index which shows the highest correlation with climatic anomalies 

in various regions of the globe. Furthermore, given the bias that ESMs display in the variability of SST in 

the equatorial Pacific (as mentioned by the Reviewer and shown in Figure S1 of the Supplementary 

Material), considering the diversity of CP and EP ENSO events would result in additional uncertainty and 

complexity in our analysis. However, we appreciate these considerations from the Reviewer, and we 

decided to include them in the Discussion section of the revised manuscript (lines 361-367 page 14). 

Line 92: Could using a variable number of realizations from each model cause some model 

overrepresentation that would bias results? For example, if Model A has five realizations but Model B only 

has one, then Model A would be weighted five times more than Model B in the presentation of inter-model 
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results. For this reason, some previous studies have only used one realization per model (Diffenbaugh et al. 

2018). 

It is true that using a variable number of realizations for each model results in an overall overweighting of 

those models with more than one realization, when the ensemble analysis is performed on multi-model 

averaging of all available realizations. However, this is not the approach in our study, as we always keep 

models separated. In our methodology, where multiple realizations are available (i.e. in the estimation of 

the drivers of interannual variability), the results are always averaged by model when reported in figures 

and therefore represent a way to highlight the forced component of variability, reducing the uncertainties 

related to internal climatic variability within each ESM. This is seen, as an example, in Figure 4 and Figure 

S12 of the manuscript for the average values and the uncertainty range (for those models with more than 

one realization available) of the partial derivatives of the ridge regression model. 

 

Lines 128-129: 10th and 90th percentiles seem like pretty strict definitions. That would result in only 6 events 

per 60 year period. Would 20th and 80th percentiles be a better choice? I don’t feel strongly about this though, 

so I’ll leave that to the authors’ discretion. 

We agree with the Reviewer that the choice of the 10th and 90th percentiles may lead to few events being 

selected. In the revised version of the manuscript, we have changed our methodology with respect to ENSO, 

so that we do not rely anymore on the composite analysis (and consequently on the choice of 10th and 90th 

percentiles) presented in the original manuscript. Indeed, we now consider ENSO impact on vegetation 

productivity by means of a regression analysis (see equations 4-5 of the revised manuscript), hence we 

consider the whole distribution of the processes of interest. Please see the results of this new approach on 

line 354-406 of the revised manuscript. 

 

Line 148: I’m not sure I understand what the authors mean by “uniquely standardized”… could you explain 

a little bit more how MLR-trend and MLR-iav were obtained? 

Thank you for this comment. In the revised version of the manuscript, for the estimation of the long-term 

carbon fluxes trends we do not use anymore the regression framework specified as “MLR_trend”, but use 

instead the carbon-cycle feedbacks framework to derive the long-term effects of CO2 fertilization and 

climate (section 2.2 of the revised manuscript). We keep the previous “MLR_iav” methodology (which now 

we describe as “Carbon fluxes sensitivity at inter-annual timescales”, in section 2.3), which aims to quantify 

the contribution of different drivers of carbon fluxes interannual variability. Therefore, we now adopt only 

one multivariate regression framework, in which we detrend the dependent variable, and both detrend and 

standardize the three independent variables. This is made clear in the revised manuscript, please check lines 

151-165 page 6, where we write: “The dependent variable (NBP, as well as GPP, Ra and Rh) has been 

linearly detrended to remove the influence of CO2 fertilization and other long-term climatic changes, while 

the three independent variables have been detrended and standardized (divided by their standard deviation) 

to obtain comparable coefficients. Therefore, the standardized coefficients represent the quantitative 

contribution of temperature, soil-moisture and shortwave incoming radiation considering the simultaneous 

confounding impacts of the other variables.” 
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Lines 160-164: I’m confused about equations 5-8. What are the alphas in these equations? Are those alphas 

different for each of equations 5-8 (in other words, removing the effect of Nino3.4 on each variable 

individually)? If so, the nomenclature is kind of confusing. 

We agree that the nomenclature was potentially confusing, because we used the same symbology (α) to 

represent the different residuals of the independent variables with respect to ENSO. Nonetheless, because 

of the revised methodology, we disregard equations 5-8, hence the alphas reported there are not considered 

anymore in our current methodology. 

 

Lines 165-169: Did the authors examine the predictive skill of their model? It could have significant 

regression coefficients without being a particularly skillful model. I think it would be good to do so using 

data withheld from calibration of equation 4. 

We thank the Reviewer for bringing to the discussion the predictive skill of our model. We indeed have 

tested the skills of our model, for both the historical period and the ssp585 scenario, by adopting a 5-fold 

cross-validation process for our ridge regression model, a procedure we used with the aim to optimize the 

learning performance of our model itself. 

The results of the predictive skills of our regression model with the 5-fold cross-validation are reported 

below in new Figure S10 of the Supplementary Information. In the revised manuscript, the predictive skills 

and the performance of the ridge regression approach are described as follows (lines 278-290, page 11): 

“The skills of the model optimized with the 5-fold cross-validation procedure are reported in Figure S10. 

Overall, a multi-model mean coefficient of determination of 0.55 is obtained, despite with substantial 

differences across ESMs. Remarkably lower values of variance explained (R2<0.4) are found for CESM2, 

CMCC-ESM2 and NorESM2-LM, whereas CanESM5, MIROC-ES2L and UKESM1-0-LL stand out as the 

models with the highest goodness of fit and predictive capability (R2>0.6),  (Figure S10a). Undoubtedly, 

we acknowledge the limitations that arise from the adoption of a linear ridge regression model. As we didn’t 

account for interactive and non-linear effects among the predictors influencing NBP IAV, we are not able 

to capture a portion of the unexplained variance in our regression model. The results in Figure S10 reflects 

this fact, suggesting that other factors, as well as the effects emerging from the interaction of temperature, 

soil-moisture and shortwave incoming radiation, are likely having an important influence on NBP IAV, 

especially for CESM2, NorESM2-LM and partly CMCC-ESM2. Nevertheless, we opted for this modelling 

framework, as it still allows our results to be compared with prior works (Jung et al., 2017; Humphrey et 

al., 2018).” 
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Figure S7: Predictive skills of the ridge regression model by adopting the 5-fold cross-validation procedure, for every ESM and 

for both the historical and the ssp585 scenario. In panel a) is reported R2, in panel b) the Explained Variance, in panel c) the RMSE 

and in panel d) the MAE.  

 

Line 228: It’s not clear to me what “stronger inhibition of the tropical teleconnection pathway” means. 

In this sentence, we refer to the mechanism(s) by which ENSO controls temperature and precipitation over 

South America. More specifically, we refer to the possible increase in the frequency and magnitude of the 

positive phase of ENSO (El Niño) influence, with consequent stronger inhibitions in the southward shifts 

of the Inter Tropical Convergence Zone (ITCZ) to the Amazon basin. In the revised manuscript (see lines 

329-332), we have rephrased the quoted text as follows:  

“For example, several studies indicate the possibility of an increase in the frequency or magnitude of El 

Niño and La Niña events under global warming (Cai et al., 2014, 2015; Berner et al., 2020; Brown et al., 

2020; Fredriksen et al., 2020). This strengthening of ENSO variability could have important implications 

for the Amazon ecosystem especially due to a stronger inhibition, under El Niño events, of the boreal winter 

southward shift of Inter Tropical Convergence Zone (ITCZ) that regulates the ENSO tropical teleconnection 

pathway.”.  

Lines 228-232: Just to clarify, is this based on a comparison of the historical ESM SST simulations to those 

actually observed with measurements? 

Correct, we compare the ESMs SST historical simulations of ENSO amplitude to the SST data from the 

HadISST dataset. 

Lines 274-278: This last paragraph of section 3.3 seems to give pretty short shrift to the results. Can you 

expand? 
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We have substantially modified the results section, and the paragraph mentioned by the Reviewer is now in 

section 3.2 “Long-term carbon sink sensitivity”, which can be found at lines 228-262, pages 9 and 10 of 

the revised manuscript. 

Lines 282-284: I’d suggest being more explicit here. What does “satisfactory” mean? What skill thresholds 

need to be met for it to be satisfactory? Was the assessment of model skill based on data withheld from 

model training? 

We agree with the Reviewer that we need to remain confined within an objective quantification for 

 our regression model skills. In the revised manuscript we avoid the use of vague terms such as 

“satisfactory” and only describe the performance of the model in terms of R2,, RMSE, MAE and EVS. 

The text added in the revised manuscript (see lines 278-290) can be found above, as the reply to the 

Reviewer’s specific comment about lines 165-169.  

Fig. 1 (also worth checking the other figures as well): some of the text (especially in the legend) is very 

hard to read. 

We thank the Reviewer for making us notice this: we have updated the legend and the labels of the figures 

in the revised manuscript and in the supplementary information, carefully checking for readability and 

completeness of information. 

Fig. 2: Is it possible to include confidence intervals on these? 

Yes, it is possible to include confidence intervals for those ESMs presenting more than one realization. To 

do so, Figure S18 of the revised manuscript (ex Figure 2 of the original manuscript) now illustrates 

confidence intervals of the Nino3.4 standard-deviation, which represent the ENSO amplitude values for 

those models with more than one realization available. Updated Figure S18 is reported below: 

 

Figure S88: ENSO amplitude change as represented by the Nino3.4 signal standard deviation from the historical period (green 

crosses) to the future ssp585 scenario (orange dots). The black cross represents the value of Nino3.4 signal amplitude calculated 

from the HadISST dataset. 
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Reviewer 3: 

The authors explored the inter-model diversity of vegetation productivity simulated under CMIP6 historical 

and SSP585 scenarios, and found out that the uncertainty in Amazon vegetation productivity in CMIP6 

projections is driven by the dominant role of local mean-state climate changes and the minor role of El 

Nino-Southern Oscillation (ENSO). In particular, the surface energy balance components (shortwave 

incoming radiation & latent heat fluxes) are the main cause of divergence actress ESM responses. They 

also pointed out the need for phosphorus limitation. 

We thank the Reviewer for the appreciation of our work and for the useful comments that address key points 

of the manuscript. Motivated by the reviewers’ comments, we have performed additional analyses and 

revised several aspects of the study, up to improving abstract and conclusions. We are confident that the 

revised manuscript is much stronger and more in focus than the original manuscript. Below we provide a 

point by point reply to the Reviewer’s comments (original comments by the Reviewer in black, our response 

in blue). 

 

Major comments: 

1. Novelty 

This paper investigates the drivers of inter-model diversity, with a focus on local mean climate and ENSO, 

introducing novelty in its findings. In particular, this paper goes beyond coarse climate but examines 

specific climate drivers and their effects on inter-model variability.  

However, some statements appear misleading, implying that it’s a new discovery, when it might not be. For 

example, in the result section (3.1), the authors state that “Inter-model uncertainty is much higher than intra-

model uncertainty, originated by ESMs internal climate variability” (Line 176) and “This shows that 

uncertainty in NEP does not solely stem from photosynthesis or respiration; instead, it arises from 

inconsistencies and limitations in how models represent both processes” (Line 197). In fact, Heavens et al 

(2013) already explained that ESM predictions differ because 1) models do not agree on the details of how 

climate will change; and 2) land carbon models are differently sensitive to the four processes: a. varied 

vegetation growth in fixing carbon; b. climate change driving changes in precipitation, which drives 

changes in vegetation growth; c. warming climate increasing microbial respiration; and d. carbon fixation 

slowing as vegetation deplete soil nutrients.  I think it is ok to include those in the result section. However, 

the authors need to make it clear that these findings are not novel and align with previous studies to provide 

the necessary context. 

We want to thank the Reviewer for this major comment. We agree that some of the results presented in our 

manuscript expand and confirm previous studies. Their inclusion seems to be relevant because the results 

stem from different models and different approaches and assumptions. Indeed, several works have 

examined the sensitivity of tropical terrestrial carbon cycle (including the Amazon basin) to different 

climatic drivers, as well as the divergence of different ESMs. However, ours is the first study, to our 

knowledge, to assess carbon cycle dynamics in the Amazon basin using a multi-model ensemble of CMIP6 

ESMs, considering the high radiative forcing ssp585 scenario and considering within the same framework 

both long-term tendential changes and interannual variability. The unique use of data, approach and focus 

of our study requires that we provide the necessary context, hence including some results that have little 

novelty. In the revised version of the manuscript, we pay special attention to distinguishing results that 

provide new knowledge and results that confirm previous knowledge. In particular, the revised manuscript 

includes the following statements that put our results better in the frame of previous knowledge: 
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Lines 55-60: “Despite indications of temperature-driven GPP anomalies were responsible for decreased 

Amazonian carbon sink in the 2015/2016 event (Bastos et al., 2018; Zhang et al., 2019), it is still currently 

debated whether fluctuations in temperatures or water availability are the dominant drivers for interannual 

carbon variability of tropical biomes, with recent research indicating the increased importance of water 

availability as a controlling factor in the past decades and with ESMs failing to reproduce this observed 

behavior (Jung et al., 2017; Humphrey et al., 2018; Liu et al., 2023; Zhang et al., 2023).” 

Lines 229-232: “Overall, inconsistencies in projected Amazon NBP cannot be simply understood as a 

consequence of discrepancies in the climatic factors affecting vegetation, as already discussed by Heavens 

et al., (2013)” 

Lines 311-316: “In Figure 5, seven out of eleven models project temperature as the first NBP predictor, 

while for CanESM5, IPSL-CM6A-LR and MPI-ESM1-2-LR soil moisture results to be more important, 

and MIROC-ES2L predicts shortwave incoming radiation as the most dominant driver of NBP IAV. Overall, 

these results complement and partially confirm what shown in a recent research (Padrón et al., 2022), which 

found temperature to be more important than soil moisture to explain interannual variability of NBP in an 

ensemble of models, considering the ssp126 low emission scenario.” 

Lines 375-378: “While the carbon cycle response to ENSO within the Amazon region presented here is 

well in agreement with previous research (Kim et al., 2017; Betts et al., 2020; Le et al., 2021; Le, 2023), 

our results further identify temperature as  the key factor in the mechanism by which ENSO affects Amazon 

carbon fluxes in a high radiative forcing future scenario.” 

Lines 420-433: “Specifically, we identified CO2 fertilization as the predominant mechanism determining 

the long-term Amazon carbon sink trend and uncertainty under the range of atmospheric CO2 concentrations 

of the ssp585 scenario (400-1135 ppmvv). These results reaffirm, for the CMIP6 generation of ESMs, what 

reported in a previous study by Huntzinger et al. (2017), that under different research assumptions showed 

the predominant role of vegetation sensitivity to CO2 in shaping the net carbon sink variability across 

CMIP5 generation Land Surface Models (LSMs). Additionally, we disentangled the fundamental physical 

processes behind net carbon sink discrepancies across ESMs, highlighting dominant mechanisms affecting 

simulated carbon fluxes uncertainty for the Amazon basin ecosystem. Particularly, we show that the 

ensemble divergence of NBP under future warming scenario is largely determined by GPP modulation by 

shortwave incoming radiation and uncertainty in the representation of heterotrophic respiration sensitivity 

to both soil moisture and temperature. Our multi-model ensemble approach expands the results obtained in 

previous researches (Ma et al., 2021) by allowing for an explicit consideration of model uncertainty. By 

showing the strong uncertainties in driving factors of heterotrophic respiration, we suggest that not only 

ESMs differ in the positive modulation of temperature on Rh (controlled by the Q10 equation), but also 

largely disagree in the association between soil moisture and soil decomposition rates leading to respiration 

fluxes, as recently pointed out by Guenet et al., (2024).” 

 

2. Data, Method and Results 

I have major concerns in this part. The method section lacks clarity/validity and the results are not 

consistent. 

We thank the Reviewer for highlighting issues with the description of the methodology in our original study. 

As a preliminary general answer to the Reviewer’s concerns, in the revised manuscript we have restructured 

the methodology to better address long-term mean state climatic effects, including CO2 fertilization, and 
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the influence of different climatic factors on carbon fluxes at interannual timescales. Consequently, below 

are the replies to the three specific concerns raised by the Reviewer. 

First, the way to define El Nino and La Nina might not be convincing.  The authors defined El Niño and La 

Niña events using the 90th and 10th percentiles of the DJF averaged Nino3.4 index time series. Citations 

or evidence were missing to prove why they chose 90/10th percentiles as thresholds. They claimed that they 

detrended the average Nino 3.4 index over Dec-Feb, by means of a 1st order polynomial and normalized 

(without citation and proof as well). At least they need to clarify how “the means of a 1st order polynomial” 

were defined and which normalization was applied (eg., Z-score normalization, or Min-max scaling). If Z-

score normalization was used, I would recommend using standard deviations as thresholds to define El 

Niño and La Niña events, instead of percentiles. 

We agree with the Reviewer that the choice of the 10th and 90th percentiles is subjective. In the revised 

version of the manuscript, we have changed our methodology with respect to ENSO, so that we do not rely 

anymore on the composite analysis, hence on the 10th and 90th percentiles definitions. Furthermore, our 

predictor for ENSO is a detrended time series of the canonical Nino3.4 index, aggregated from monthly to 

annual time resolution. We consider this an appropriate choice considering the focus on ENSO modulation 

on interannual timescales. The new methodology regarding ENSO is described in the revised manuscript 

in lines 172-191, pages 6 and 7, which read as follows: 

“Given the predominant modulation of carbon fluxes IAV within the Amazon basin by means of ENSO 

(Mcphaden et al., 2021a), a further analysis is conducted to assess the ENSO contribution to Amazon 

vegetation productivity mediated by either temperature and water-availability (using soil moisture as a 

proxy). For this, an annual time series of ENSO is obtained for each historical and ssp585 realization by 

averaging the corresponding monthly Nino3.4 index over the calendar year. The Nino3.4 index is defined 

as the 5-month moving average of mean sea-surface temperatures over the region 170-120°W and 5°S-5°N, 

subsequently detrended by means of a 1st order polynomial to remove the warming trend of SST. By taking 

the univariate sensitivities of temperature and soil-moisture to ENSO, and accounting for the partial 

derivatives of NBP with respect to temperature and soil-moisture as in Equation 3, we estimate the 

contribution of ENSO driven by the two mechanisms as below: 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝑻 =
𝜹𝑵𝑩𝑷

𝜹𝑻
 ∗

𝒅𝑻

𝒅𝒏𝟑𝟒
         (10) 

𝒅𝑵𝑩𝑷𝒏𝟑𝟒,𝒎𝒓𝒔𝒐 =
𝜹𝑵𝑩𝑷

𝜹𝒎𝒓𝒔𝒐
 ∗

𝒅𝒎𝒓𝒔𝒐

𝒅𝒏𝟑𝟒
         (11) 

Using the partial derivatives δ
δ

 and δ
δ

 ensures that the effects of temperature and soil moisture are 

considered independently, accounting for potential confounding influences from each other, a condition not 

met if the univariate estimates 
dNBP

dT
 and 

dNBP

dmrso
 were applied. A Mann-Whitney U-test of independence 

with Bonferroni correction was used to assess whether the zonal values of the regression coefficients within 

the Amazon basin are significantly different between the historical period and ssp585 scenario. To mitigate 

the risk of overstating the significance of the statistical tests conducted, we employ a false discovery rate 

(FDR) control method based on (Wilks, 2016). This approach effectively addresses the issue of multiple 

hypothesis testing, ensuring a more accurate interpretation of the obtained results.” 

Because of our new methodology, the revised manuscript results and conclusions change in two aspects. 

First, we do not dtermine anymore mean-state changes by using ENSO composites, thus using the criticized 

10th and 90th percentiles. By the new analyses, we identify CO2 fertilization as the main factor influencing 

long-term cumulative carbon sink evolution in the Amazon basin (see the next reply for a detailed 
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description of this). Second, equations 4 and 5 reported above allow us to determine that temperature is the 

main controlling variable involved in the mechanism by which ENSO modulates the carbon sink in the 

Amazon region at interannual timescales, and that this mechanism is expected to be strongly exacerbated 

by global warming, as opposed to soil-moisture anomalies impacts. We report this conclusion in lines 433-

438 page 18 of the revised manuscript: “Additionally, our results point towards a stronger ENSO-driven 

temperature-mediated impact on carbon sink anomalies for the vast majority of ESMs, compared to ENSO-

driven impacts associated with deficits in water availability. Accordingly, the considered CMIP6 multi-

model ensemble shows a robust and statistically significant increase in carbon sink sensitivity to ENSO-

driven temperature anomalies under global warming in the region of the Amazon basin: as a consequence, 

climate change is likely to significantly diminish the Amazon ecosystem capacity to function as a carbon 

sink, further aggravating the atmospheric CO2 burden.” 

 

Second, the separation of mean-state climate and ENSO effects might be confusing. According to Power 

and Delage 2018 (the method the authors applied), El Nino effects on climates are defined as 

𝜟𝑬𝑵=(𝛅𝑬𝑵𝒔𝒔𝒑)-(𝛅𝑬𝑵𝒉𝒊𝒔𝒕)=(Essp − Nssp)-(Ehist-Nhist), where ESSP denotes climates averaged over 

the El Nino events under SSP scenarios and Nssp denotes the climates averaged over the neutral years under 

SSP scenarios.  Notably, the definition in Power and Delage (2018) is about the effects on climate, rather 

than effects on NEP. The author should make it clear that the effects of ENSO on climate differ from its 

effects on NEP. They need explain how they applied 𝜟𝑬𝑵 to get the impacts of El Nino on NEP(Fig. 3&4). 

If they directly used the idea of 𝜟𝑬𝑵 to calculate effects on NEP— where ESSP and Nssp denoted NEP 

averaged over the El Nino events and over neutral years under SSP scenarios, respectively,  𝚫𝑴𝑺 (=𝑁𝑠𝑠𝑝 

− 𝑁ℎ𝑖𝑠𝑡) would be the long-term trend effects, including CO2 fertilization. The inclusion of CO2 

fertilization effects can largely lead to misinterpretation of the results and may explain conflicted findings 

presented in the paper. 

For example, Fig. 4A demonstrates that both climate and La Niña have positive impacts on NEP, which 

seems counterintuitive. Rising temperatures and water deficits are expected to increase stress on vegetation, 

and La Niña, often associated with flooding, should exhibit some negative effects. 

We acknowledge that the framework used by Power and Delage to derive mean state changes is originally 

applied to climate conditions, rather than vegetation productivity. By applying it to vegetation productivity 

within the Amazon basin, we incorporated the CO2-fertilization effect, which we agree was a substantial 

limitation of our original approach. In the revised manuscript, we overcome this limitation by disentangling 

the CO2-fertilization effect and the climate impact in the estimation of long-term effects on the cumulative 

Amazon carbon sink. We did this by taking advantage of C4MIP simulations, specifically the 1pctCO2-bgc, 

1pctCO2-rad, ssp585-bgc and ssp585-rad simulations with the goal of estimating the effect of CO2 

fertilization on vegetation productivity (by using the biogeochemically only coupled simulation), as well 

as the carbon-climate feedback (by using the radiative-only coupled simulation) in the Amazon basin. With 

this methodology, we are therefore able to distinguish these two different mechanisms affecting ecosystem 

carbon fluxes in the region. This new methodology can be found in lines 124-143, page 5 of the revised 

manuscript: 

“Increasing trends of atmospheric CO2 concentrations affect terrestrial carbon sinks directly through a 

fertilization effect on vegetation (carbon-concentration feedback) and indirectly by forcing changes in the 

physical climate via a strengthened greenhouse effect, which in turn affects vegetation (carbon-climate 

feedback). A common approach to disentangle the two effect relies on the carbon-cycle feedback 

framework, by which it is possible to estimate the magnitude of the carbon-concentration feedback and the 
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carbon-climate feedback (Jones et al., 2016; K. Arora et al., 2020). The contribution of these two feedbacks 

is estimated with the following equations: 

𝜷 =  
𝜟𝑵𝑩𝑷𝒄𝒖𝒎,𝑩𝑮𝑪

𝜟𝒑𝒑𝒎𝑩𝑮𝑪
          (12) 

𝜸𝑻 =
𝜟𝑵𝑩𝑷𝒄𝒖𝒎,𝑹𝑨𝑫

𝜟𝑻𝑹𝑨𝑫
;    𝜸𝒎𝒓𝒔𝒐 =  

𝜟𝑵𝑩𝑷𝒄𝒖𝒎,𝑹𝑨𝑫

𝜟𝒎𝒓𝒔𝒐𝑹𝑨𝑫
;    𝜸𝑺𝑾𝒊𝒏

=  
𝜟𝑵𝑩𝑷𝒄𝒖𝒎,𝑹𝑨𝑫

𝜟𝑺𝑾𝒊𝒏𝑹𝑨𝑫
     (13) 

Carbon sink is represented here by cumulative NBP, whose long-term sensitivity to , and 

climate , is estimated from biogeochemically only coupled simulations (1pct -bgc and ssp585-bgc) 

and radiative only coupled simulations (1pct -rad and ssp585-rad) respectively. Within the former, the 

increased  atmospheric concentration is uniquely exerting a biogeochemical effect which interests the 

terrestrial and ocean carbon cycle processes, whereas in the radiative simulation only the radiative transfer 

processes in the atmosphere are affected by the changing atmospheric  concentrations, with no 

consequences for biochemical processes (Friedlingstein et al., 2006; Jones et al., 2016). Changes are 

expressed with respect to the first year of the simulations; for 1pctCO2 experiments only the years with 

atmospheric CO2 ranges similar to the ssp585 scenario (400-1135 ppm, resulting in 104 years) have been 

considered. On the other hand, the carbon-climate feedback has been further computed with respect to 

surface atmospheric temperatures (T), soil moisture (mrso) and shortwave incoming radiation (SWin), to 

represent the variety of mean-state climatic changes affecting the cumulative carbon fluxes within the 

Amazon basin.” 

Consequently, without the need to adopt the framework of Power and Delage (2018), we were able to 

identify CO2 fertilization as the main factor influencing long-term cumulative carbon sink evolution in the 

Amazon basin. Specifically, the considered ensemble of ESMs projects an strengthening of the carbon sink 

resulting from the effect of atmospheric CO2 concentrations from the ssp585 scenario, without which the 

carbon climate-feedback would lead to a sustained reduction in the carbon sink capacity. We report this 

conclusion in lines 412-416, page 18: “Specifically, we identified CO2 fertilization as the predominant 

mechanism determining the long-term Amazon carbon sink trend and uncertainty under the range of 

atmospheric CO2 concentrations of the ssp585 scenario (400-1135 ppmv). These results reaffirm, for the 

CMIP6 generation of ESMs, what reported in a previous study by Huntzinger et al. (2017), that under 

different research assumptions showed the predominant role of vegetation sensitivity to CO2 in shaping the 

net carbon sink variability across CMIP5 generation LSMs.” 

 

Third, the method section 2.2.3 (Effects of climatic drivers) is very confusing. In this section, the authors 

used detrended climate anomalies to disentangle their effects on NEP from ENSO. But in the result section 

3.4.1, they claimed that it is the long-term changes effects on NEP by using method 2.2.3. I have two 

questions here: 1) what are the different purposes between methods of 2.2.2 and 2.2.3? It appears to me that 

the two method sections are unrelated to each other, especially in the result presentations. If detrending 

climates in method section 2.2.3 is to remove the long-term trend effects (eg., partially remove CO2 

fertilization), why did the authors use the method section 2.2.2, including CO2 fertilization?   2) Why did 

the authors apply a simple linear regression model in 2.2.3? To my understanding, El Niño events tend to 

interact with climate in impacting NEP, suggesting additive non-linear negative effects once climate tipping 

thresholds are exceeded. Although the linear model in the paper used the residuals of the single-climate 

regression model against ENSO, there is still lack of consideration of their interactive, non-linear effects. 

In this case, the method section 2.23 may not have fully eliminated the CO2 fertilization effects and may 
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have overlooked the interactive effects between ENSO and climate, which can cause conflicted results as 

well.  

We agree that the methodology in our original study could generate confusion. We are confident that the 

revised manuscript presents a clearer and more straightforward approach. The previous sections 2.2.2 and 

2.2.3 have now become section 2.2 “Long-term mean-state climatic effects” and 2.3 “Carbon fluxes 

sensitivity at inter-annual timescales” respectively. We therefore now clearly differentiate long-term drivers 

(CO2 fertilization effect and mean-state climatic changes) from climatic influences at the inter-annual 

timescales, and this methodological framework is now reflected in the results sections 3.2 (long-term 

effects) and 3.3 and 3.4 for the results regarding the drivers of interannual variability of carbon fluxes. 

About the Reviewer’s second question, we agree and acknowledge the limitation of adopting a linear 

regression framework in our methodology, as interactions and non-linear terms are not accounted for. 

Nonetheless, we opted for a state-of-the-art regression model, as the 5-fold cross-validation ridge regression 

that would still allow our results to be compared with prior works (Jung et al., 2017 and Humphrey et al., 

2018, have used this same approach). We acknowledge this limitation in the revised manuscript (Lines 282-

288):  

“Undoubtedly, we acknowledge the limitations that arise from the adoption of a linear ridge regression 

model. As we didn’t account for interactive and non-linear effects among the predictors influencing NBP 

IAV, we are not able to capture a portion of the unexplained variance in our regression model. The results 

in Figure S10 reflects this fact, suggesting that other factors, as well as the effects emerging from the 

interaction of temperature, soil-moisture and shortwave incoming radiation, are likely having an important 

influence on NBP IAV, especially for CESM2, NorESM2-LM and partly CMCC-ESM2. Nevertheless, we 

opted for this modelling framework, as it still allows our results to be compared with prior works (Jung et 

al., 2017; Humphrey et al., 2018).” 

 

For instance, Fig. 5 shows that precipitation has negative effects while temperature has positive effects, 

which seems counterintuitive. Surprisingly, Fig. 7 and 8 both show temperature has negative effects, which 

conflicted with the results in Fig. 5. It seems that all these figures come from the method section 2.2.3. 

I hope the authors can take these conflicted results carefully and report them with consistency if revision is 

invited. 

Regarding the incongruences of Figures 5, 7 and 8, please note that Figure 5 in the original manuscript has 

been removed from the revised manuscript, following the changes in the methodology described above. We 

nonetheless remark here that in the original Figures 7 and 8 the negative coefficients shown for precipitation 

were regrettably due to an unfortunate mislabeling of the panels. In fact, precipitation is associated with a 

positive regression coefficient within the area of study, as expected. This is illustrated in the Figure 4 and 

Figure 5 of the revised manuscript (which correspond to the previous Figures 7 and 8), reported below. All 

figures and captions have now been carefully checked in the revised manuscript. 
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Figure 9: Partial derivatives explaining the contribution of temperature (a), soil moisture (b) and shortwave incoming radiation (c) 

to interannual NBP, averaged across the Amazon basin. The black vertical bars represent the spread in the predictors coefficients 

for models with more than one realization available, whereas the stars indicate the level of significance (p-value), averaged over 

the Amazon basin, associated to every coefficient. Statistical significance refers to the following convention: *: 1.00e-02 < p <= 

5.00e-02; **: 1.00e-03 < p <= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04 

 

 

 

Figure 10: Multi model ensemble mean of the coefficient values for the climatic drivers obtained by the multi-linear regression, 

for the ssp585 scenario. Hatches represent those grid cells for which at least 8 out of 11 ESMs agree in the sign of the predictor 

value. The Amazon basin, obtained from the SO HYBAM service (https://hybam.obs-mip.fr/), is also represented.  

 

3. Clarity 

The writing in the method section can be improved and please ensure consistency between the methods and 

results. 

We have carefully revised the writing of the methods section and made it consistent with the results 

presented in the revised manuscript. Please refer to the revised manuscript in lines 124-186, pages 5 to 7, 

for the revised methodology. 

Specific comments: 

Figs. 5-8 Please explain what the labels represent in captions. There is no explanation in the paper for “res”. 
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Figures 5-8 have been updated to correct for a mistaken label (see above), and the label “res” in the caption 

has now been removed due to change in the methods and associated terminology. 

Line 176 “Inter-model uncertainty is much higher than intra-model uncertainty”. There is no intra-model 

uncertainty reported in the paper. Please add the missing information. 

Intra-model uncertainty describes the uncertainty arising from the internal climatic variability of each ESM. 

It is represented by the ±1 standard deviation spread in the plots of Figure 1 and Figure S5. Below are 

reported the revised sentences in which this is explained: 

Lines 192-198: “Considering the projections of cumulative carbon sink in Figure 1a and carbon fluxes in 

Figure S5, the inter-model uncertainty is much higher compared to intra-model uncertainty (which stems 

from the instrinsic climatic variability expressed in each realization and is represented by the ±1 standard 

deviation spread in Figure 1 and Figure S5). For the physical variables in Figure 1b-e, intra-model 

uncertainty is considerably higher than for carbon fluxes and reflects the substantial internal climate 

variability intrinsic in each simulation. These considerations already highlight that part of the divergence 

across carbon cycle predictions is related to differences in the land sensitivity to climatic forcings, rather 

than uncertainties in the evolution of the climate itself. Overall, the climatological variables present a 

stronger agreement and coherence in the sign of projected changes among ESMs with respect to NBP.” 

Lines 208-212: “Regarding the intra-model spread, the highest influence of internal climatic variability (±1 

standard deviations) is observed in precipitation and shortwave incoming radiation, followed by soil-

moisture (spreads in Figure 2c,e and d). This indicates that within the Amazon basin, the major source of 

uncertainty deriving from internal climate variability is associated to cloud formation and coverage, which 

is causally associated with the amount of precipitation (thus soil moisture content) and shortwave incoming 

radiation within the regional domain.” 

Therefore, what we want to emphasize here is twofold: on the one hand, intra-model uncertainty is higher 

for climatic variables rather than for carbon fluxes; on the other hand, divergence in carbon cycle 

projections is mostly related to terrestrial carbon sensitivity to climate, rather than climatic uncertainty 

itself. 

Line 197-200 Please rephrase these sentences. 

We have revised the mentioned sentences (lines 226-232 of the revised manuscript) as follows: 

“This shows that uncertainty in cumulative NBP does not solely stem from uncertainty in single climatic 

factors; instead, it arises from inconsistencies and differences in how models represent photosynthetic 

activity, and autotrophic and heterotrophic respiration. Overall, inconsistencies in projected Amazon NBP 

cannot be simply understood as a consequence of discrepancies in the climatic factors affecting vegetation, 

as already discussed by Heavens et al., (2013). A point that deserves attention is therefore how the projected 

carbon sink in the Amazon basin is sensitive to mean-state changes in environmental factors and climatic 

variability at the interannual timescale.” 

 

 

Reference: 

Heavens, Nicholas G., Daniel S. Ward, and M. M. Natalie. "Studying and projecting climate change with 

earth system models." Nature Education Knowledge 4, no. 5 (2013): 4. 
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