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Abstract. The extensive snow cover across the Tibetan Plateau (TP) regions has a major 

influence on the climate and water supply for over one billion downstream inhabitants. 

However, an adequate evaluation of snow cover fraction (SCF) variability over the TP 15 

simulated by global multiple reanalysis datasets has yet to be undertaken. In this study, 

we examined eight global reanalysis SCF datasets using the Snow Property Inversion 

from Remote Sensing (SPIReS) product spanning the period 2001–2020. The results 

reveal that the HMASR generated the best SCF simulations because of its outstanding 

spatial and temporal accuracy. The GLDAS and CFSR demonstrated acceptable SCF 20 

accuracy with respect to spatial variability, but struggled to reproduce the annual trend. 

Pronounced SCF overestimations were found when using the ERA5, ERA5L, and 

JRA55, but SCF was underestimated by MERRA2, and CRAL generated poor spatial 

pattern. Overall biases were related to the combined effect of precipitation forcing, 

temperature forcing, snow data assimilation, and SCF parameterization methods, with 25 

the dominant factor changing across datasets. In ERA5 and ERA5L, temperature and 

snowfall bias exhibited significant correlations with SCF bias over most TP areas, 

therefore having a greater impact on the accuracy of SCF in terms of spatial variability 

and temporal evolution. On the other hand, the impact of snow assimilation was 

possibly more pronounced in MERRA2 and CRAL. Although parameterization 30 

methods can improve SCF simulation accuracy, their influence was weaker than those 

of other factors, except for JRA55. To further improve the accuracy of SCF simulation, 

an ensemble average method was developed. The ensemble based on HMASR and 

GLDAS generated the most accurate SCF spatial distribution, whereas the ensemble 

containing ERA5L, CFSR, CRAL, GLDAS, ERA5, and MERRA2 proved optimal for 35 

capturing the annual trend. 
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1 Introduction 40 

Widespread snow cover on the Tibetan Plateau (TP), with its high albedo and low 

thermal conductivity, plays a crucial role in the surface energy balance (Zhang, 2005) 

and affects the climate both locally (Zhang et al., 2022) and across Asia and globally 

(Lyu et al., 2018; Ma et al., 2017). Furthermore, in its role as the “Asian water tower” 

(Kitoh and Arakawa, 2016; Qiu, 2008; Xu et al., 2008), the snow that accumulates on 45 

the TP during the cold season is an essential freshwater resource for over a billion 

people during the warm season, supplying their domestic, agricultural, and industrial 

water needs (Immerzeel et al., 2010). In the context of global warming, the snow cover 

over the TP shows high variability and acts as an extremely sensitive indicator of 

climate change (Dawson et al., 2016). Therefore, the accurate and reliable 50 

representation of snow cover over the TP is crucial to climate and ecosystem studies. 

Ground-based measurements are the most accurate observations with respect to snow 

cover. However, the complex terrain and harsh weather conditions on the TP present 

challenges to comprehensive monitoring (Beniston et al., 2018), leading to issues of 

spatial representativeness. In contrast, optical satellite observations provide global-55 

scale snow cover data and offer crucial support for snow research. For example, 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) has been 

providing moderate-resolution global daily snow cover fraction (SCF) data since 2000 

(Hall et al., 2002). Based on these observations, the Snow Property Inversion from 

Remote Sensing (SPIReS) product uses a more advanced spectral decomposition 60 

method and further considers the impacts of light-absorbing particles on snow 

reflectance, and is recognized as the most accurate optical remotely sensed snow cover 

product (Stillinger et al., 2023). However, the time period covered by satellite remote 

sensing data is relatively short, which limits their utility for long-term climate analysis. 

Reanalysis methods based on observations and mathematical models provide a critical 65 

avenue for obtaining long-term snow data. These techniques use data assimilation to 
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integrate historical environmental observations with short-term weather forecasts, 

yielding optimal estimates of global or regional weather and climate states (Lei et al., 

2023). In recent decades, the major global meteorological agencies have generated 

atmospheric and land reanalysis products at varying temporal and spatial resolutions. 70 

Reanalysis datasets have become indispensable sources of data when it comes to 

studying processes related to snow variability, as well as their impacts and responses to 

climate change. The reanalysis snow dataset has revealed that anomalous snow cover 

facilitates a warm-north, cold-south winter over North America by influencing the 

teleconnection response in the Pacific-North American (PNA) region (Lin and Wu, 75 

2011). Reanalysis datasets have been integrated into the Canadian Sea Ice and Snow 

Evolution (CanSISE) dataset to analyze the impacts of global warming on snow 

changes on the TP (You et al., 2020a). 

A comprehensive evaluation of multiple snow reanalysis datasets based on referenced 

observation data is of paramount importance before launching related scientific 80 

research. Previous research has devoted considerable attention to evaluating Snow 

Depth (SD) and Snow Water Equivalent (SWE) reanalysis datasets using various 

metrics from different regions (Bian et al., 2019; Li et al., 2022; Wang and Zeng, 2012). 

However, only a few studies have assessed SCF over the TP calculated using reanalysis 

datasets based on the Interactive Multisensor Snow and Ice Mapping System (IMS; 85 

Helfrich et al., 2007) satellite and ground data (Li et al., 2022; Orsolini et al., 2019). 

These studies have provided comparisons of the SCF spatial patterns among a limited 

number of reanalysis datasets, yet they lack comprehensive multidimensional analysis 

that considers aspects such as regional variations and temporal trends (Li et al., 2022; 

Orsolini et al., 2019). In addition, the IMS dataset, which uses microwave remote 90 

sensing technology, contains significant variations in the brightness temperature of wet 

snow that lead to increased uncertainty in snow cover detection (Yu et al., 2013). More 

importantly, these studies have not conducted a thorough exploration of the underlying 
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reasons for the biases associated with the reanalysis datasets. 

The various reanalysis snow datasets have unique spatiotemporal characteristics 95 

(Mudryk et al., 2015). The differences in snow characteristics originate not only from 

the use of different Land Surface Models (LSMs), but also from the meteorological 

forcing data and post-optimization via snow data assimilation. De Rosnay et al. (2014) 

indicated that the accuracy of snow simulations is constrained largely by uncertainties 

associated with some of the key meteorological inputs, including precipitation and 100 

temperature (Zhang et al., 2015), under regional climate conditions and elevation 

factors (Brown and Mote, 2009; Hernández-Henríquez et al., 2015). Therefore, 

uncertainties associated with precipitation and temperature data are likely to be the 

primary sources of bias within the reanalysis SCF datasets. Moreover, Jiang et al. (2020) 

emphasized that optimizing the parameterization methods for SCF calculation would 105 

significantly reduce the uncertainties associated with snow modeling, which would 

further reduce biases in land surface albedo simulations, particularly in high-altitude 

regions. The reanalysis datasets use different SCF parameterization methods, with a 

100% SCF corresponding to an SD that ranges from 26 to 2 cm (Orsolini et al., 2019). 

The selection of different SCF parameterizations for the reanalysis datasets may lead to 110 

varying degrees of SCF bias. On the other hand, data assimilation represents an 

effective approach to reducing the uncertainties in snow models and enhancing the 

ability to monitor seasonal snow changes (Andreadis and Lettenmaier, 2006; Sun et al., 

2004). Brown et al. (2003) used optimal interpolation (OI) techniques to assimilate SD 

observations, resulting in gridded monthly SD and SWE datasets that were better 115 

aligned with in situ and satellite data across North America. 

For this study, we used the SPIReS remote sensing product as the reference dataset to 

conduct an in-depth evaluation of SCF simulations derived from eight global 

atmospheric and land assimilation reanalysis datasets over the period 2001–2020. The 

accuracy of SCF was assessed multidimensionally by examining the spatial 120 
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characteristics, seasonal variations, and temporal trends across the whole TP and its 

nine basins. Additionally, we aimed to assess the influence of meteorological forcing 

factors (snowfall and temperature), snow assimilation, and the SCF parameterization 

method on the biases associated with the various reanalysis SCF datasets. On this basis, 

we attempted to develop an optimal ensemble of reanalysis SCF datasets, and provide 125 

a useful guide for the research community regarding climatic and cryospheric changes 

over the TP. 

2 Data and methods 

2.1 Data 

2.1.1 Remote sensing product 130 

For this study, we used the SPIReS (Bair et al., 2021) product as the reference dataset 

for SCF. SPIReS is derived from Landsat 8 Operational Land Imager (OLI) and 

Moderate-Resolution Imaging Spectroradiometer (MODIS) data using a spectral 

unmixing methodology. The SCF calculation in SPIReS relies on two endmembers (i.e., 

snow and snow-free) along with an ideal shade component, effectively simplifying the 135 

calculation process while maintaining high accuracy. SPIReS reduces the effects of data 

and cloud noise through interpolation and smoothing to provide more accurate SCF 

data (Bair et al., 2021; Dozier et al., 2008). Validation of SPIReS was conducted by 

Stillinger et al. (2023) using airborne lidar datasets, and they reported that SPIReS has 

reduced biases (–0.1%) and a lower root mean square error (RMSE; 12.0%) when 140 

compared with the band ratio approaches applied to MODIS data. 

2.1.2 Reanalysis datasets 

We examined eight reanalysis datasets obtained from various global meteorological 

organizations. Meteorological forcing fields are used to drive the LSMs, and 
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parameterization methods are used to calculate the daily SCF data; however, the 145 

assimilation of the snow data differed among the datasets (Table 1). 

The High Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) is a snowpack-

specific reanalysis dataset produced by the recent NASA High Mountain Asia Team 

(HiMAT). HMASR uses the Simplified Simple Biosphere model, version 3 (SSiB3; 

Sun and Xue, 2001; Xue et al., 2003) as the LSM to generate the initial snowpack mass 150 

based on meteorological inputs from MERRA2 and physiographic characteristics. The 

model-derived SCF predictions are then constrained by integrating SCF data from the 

Landsat satellites and MODIS Snowpack Area and Grain Size (MODSCAG; Painter et 

al., 2009) products via data assimilation. The parameterization method used in HMASR 

(abbreviated as SSiB3_SCF) has not been publicly disclosed. HMASR covers the 155 

period from October 2000 to September 2017, but our analysis focused on the period 

2001 to 2016 to exclude the incomplete start/end years. 

The Modern-Era Retrospective analysis for Research and Applications, version 2 

(MERRA2; Gelaro et al., 2017) dataset, developed by NASA’s Global Modeling and 

Assimilation Office (GMAO), provides land surface state estimates including SCF via 160 

the Catchment Land Surface Model (CLSM; Koster et al., 2000). The surface-forced 

precipitation is a combination of the National Oceanic and Atmospheric Administration 

(NOAA) Climate Prediction Center (CPC) unified gauge-based analysis of global daily 

precipitation (CPCU; Xie et al., 2007) product and the precipitation generated by the 

atmospheric general circulation model (AGCM) within the MERRA2 system. The 165 

generated precipitation is also adjusted using a precipitation correction algorithm 

(Reichle et al., 2017). However, it is important to note that MERRA2 does not include 

snow data assimilation. The parameterization scheme in MERRA2 considers 100% 

SCF to occur when the SWE reaches a threshold of 26 kg m–2 (abbreviated as 

MM_SCF). 170 

The ECMWF Reanalysis version 5 (ERA5; Hersbach et al., 2020), produced and 
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published by the European Centre for Medium-Range Weather Forecasts (ECMWF), 

uses the Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSE) model to 

simulate various land surface variables including SCF. The precipitation forcing in 

ERA5 is adjusted using Global Precipitation Climatology Project (GPCP; Adler et al., 175 

2003) data. ERA5 assimilates in situ SD observations and binary snow cover data from 

IMS only below 1500 m, so that snow assimilation does not apply to the TP region 

(Bian et al., 2019). Additionally, a refined dataset known as ERA5-Land (abbreviated 

as ERAL; Muñoz-Sabater et al., 2021) has been derived from ERA5 via the offline 

rerunning of the land portion of the model at a higher spatial resolution. ERA5L 180 

provides solely land surface parameters and is based on the same forcing and LSM as 

ERA5. Both datasets have a 10-cm SD threshold to identify full snow cover 

(abbreviated as ME_SCF).  

The Japanese 55-year Reanalysis (JRA55; Fujiwara et al., 2017), developed by the 

Japan Meteorological Agency (JMA), generates the land surface analysis field using an 185 

offline version of the Simple Biosphere (SIB) model (Sato et al., 1989; Sellers et al., 

1986). The precipitation forcing is corrected using precipitable water retrieved from the 

Special Sensor Microwave/Imager (SSM/I) brightness temperature (Onogi et al., 2007). 

JRA55 incorporates daily SD data from the SSM/I and the Special Sensor Microwave 

Imager Sounder (SSMIS) using a univariate two-dimensional OI approach. In addition, 190 

it assimilates surface synoptic observations (SYNOP) reports and digitizes China’s 

daily SD data from 1971 to 2006 (Onogi et al., 2007). The detection of full snow cover 

in JRA55 is based on a 2-cm SD threshold (abbreviated as MJ_SCF). 

The Climate Forecast System Reanalysis (CFSR; Saha et al., 2010), developed by the 

National Center for Environmental Prediction (NCEP) under NOAA, is a weakly 195 

coupled global reanalysis system. The land surface analysis utilizes the Noah model 

(Meng et al., 2012). Two observed global precipitation analyses, namely the CPC 

Merged Analysis of Precipitation (CMAP; Xie and Arkin, 1997) and the CPCU, are 
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used as alternative forcings for precipitation. In terms of snow analysis, CFSR 

assimilates IMS and the Global Snow Depth Model (SNODEP). On 1 January 2011, 200 

CFSR transitioned to a newer version of the NCEP data assimilation system called 

CFSv2 (Saha et al., 2014). Despite differences in horizontal resolution and minor 

changes to the physical parameterization, CFSv2 is considered a continuation of CFSR 

in most cases (Fujiwara et al., 2017). However, the inherent discontinuities in this 

dataset may introduce changes in boundary conditions, potentially leading to variations 205 

in model output variables (Fujiwara et al., 2017). Consequently, we examined the entire 

temporal domain of CFSR (Fig. S1). We found noticeable uncontrollable oscillatory 

patterns in SCF, snowfall, and temperature during the period 2007-2010, which were 

therefore excluded from our subsequent assessments. The SCF parameterization 

method in CFSR is related to the surface characteristics, using varying SD thresholds 210 

to identify the full SCF depending on the underlying surface type (abbreviated as 

Noah_SCF). 

The Global Land Data Assimilation System version 2.1 (GLDAS-2.1; Rodell et al., 

2004) is a global land data assimilation product developed jointly by NASA and NOAA. 

It uses the global meteorological forcing dataset from Princeton University (Sheffield 215 

et al., 2006) and the GPCP V1.3 Daily Analysis precipitation fields (Adler et al., 2003; 

Huffman et al., 2001) to drive three distinct LSMs: the CLSM model, the Noah model, 

and the Variable Infiltration Capacity (VIC) model. As a result, four datasets are 

generated (Table S1). Notably, the full series datasets within GLDAS-2.1 do not 

assimilate snow observations. Furthermore, owing to the unavailability of SCF 220 

variables in these datasets, this study derived different SCF values using three 

parameterization methods (MM_SCF, ME_SCF and MJ_SCF). Finally, the 0.25° × 0.25° 

GLDAS–Noah product using the MM_SCF approach was selected as a representative 

of GLDAS due to its better SCF simulation (Fig. S2). 

CRA-Land (CRAL; Liu et al., 2023) is the land surface component of the first 225 
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generation of China’s global reanalysis dataset produced by the China Meteorological 

Administration (CMA). CRAL uses an updated version of the Noah model. The 

precipitation meteorological forcing is derived from a similar combination of data 

sources as CFSR (Liang et al., 2020). However, CRAL does not assimilate other 

observational data in the LSM. Instead, data from over 2,400 CMA surface weather 230 

observatories indirectly influence the land surface product through conventional 

meteorological forcing derived from atmospheric reanalysis (Liang et al., 2020). The 

SCF parameterization method in CRAL is the same as that in CFSR. 

 

Table 1: Characteristics of the reanalysis datasets used in this study. 235 

Reanalysis 
dataset 

Centre 
Temporal 
coverage 

Resolution 
Land 
Model 

Snow data 
assimilation 

Variables used 
in analysis 

SCF parameterization 
Scheme  

HMASR 
NASA 
HIMAT 

1999 to 
2017 

1/225×1/225 SSiB3 
Landsat and 
MODSCAG 

SCF SSiB3_SCF 

MERRA2 
NASA 
GMAO 

1980 to 
present 

0.625°×0.5° Catchment - 
SCF, SWE, SD, 
Snowfall, T2 

SCF= min (1, SWE/26) * 

ERA5 ECMWF 
1979 to 
present 

0.25°×0.25° H-TESSEL - 
SCF, SWE, SD, 
Snowfall, T2 

SCF= min (1, (SD)/10) * 

ERA5-Land ECMWF 
1981 to 
present 

0.1°×0.1° H-TESSEL - 
SCF, SWE, SD, 
Snowfall, T2 

SCF= min (1, (SD)/10) * 

CRA-Land CMA 
1979 to 
present 

0.5°×0.5° Noah - 
SCF, SWE, SD, 
Snowfall, T2 

Noah_SCF 

JRA55 JMA 
1958 to 
present 

0.563°×0.563° SiB 
Station, 
SSM/I, 
SSMIS 

SCF, SWE, SD, 
Snowfall, T2 

SCF= min (1, (SD)/2) * 

CFSR / CFSv2 
NOAA 
NCEP 

1979 to 
present 

0.5°×0.5° Noah 
SNODEP, 
IMS 

SCF, SWE, SD, 
Snowfall, T2 

Noah_SCF 

GLDAS 
NASA and 
NOAA 

2000 to 
present 

0.25°×0.25° Noah - 
SWE, SD, 
Snowfall, T2 

Noah_SCF 

* The unit for SWE is kg m-2, and for SD is cm. 

2.1.3 Meteorological dataset 

To identify the source of the SCF bias, we used the high-resolution near-surface 

meteorological forcing dataset for the Third Pole region (TPMFD; Yang et al., 2023) as 

the reference dataset. Precipitation and 2-m temperature are derived by combining a 240 

short-term high-resolution Weather Research and Forecasting (WRF) simulation (Zhou 
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et al., 2021), long-term ERA5 data, and in situ observations. The precipitation data are 

downscaled using a Convolutional Neural Network (CNN) trained on WRF simulations. 

Validation conducted by Jiang et al. (2023) demonstrates that the precipitation data from 

TPMFD are unbiased overall and considerably better than other widely used datasets, 245 

including the latest generation of reanalysis (ERA5L), a state-of-the-art satellite-based 

dataset (IMERG), and multi-source merged datasets (MSWEP v2 and AERA5-Asia).  

2.2 Methods 

We used bias and Pearson’s correlation coefficient (R) as the principal metrics to 

evaluate the accuracy of the SCF across different reanalysis datasets. The assessment 250 

of SCF accuracy in relation to spatial and temporal variations was obtained by 

calculating spatial correlations and comparing temporal trends. To capture the spatial 

correlation from various perspectives and levels, we used Taylor diagrams (Taylor, 

2001) to visually represent the combined information of standard deviation ratio 

(STDR), central RMSE, and spatial correlation coefficients. STDR quantifies the 255 

degree of similarity in the dispersion patterns between the reanalysis dataset and 

observational data. Additionally, Taylor skill scores (SS, ranging from 0 to 1; Taylor, 

2001) were calculated to provide comprehensive statistics for the composite index. The 

SS is defined as follows: 

SS=
4 1+R 4

STDR+ 1 STDR 2 1+R0
4                                                                                   (1) 260 

where R0 is the maximum correlation attainable. 

The reliability of trend analysis depends on the significance testing, and the sign (+ or 

–) may impact the robustness of the trend analysis results. Therefore, we used the 

Mann–Kendall (MK; Kendall, 1975; Mann, 1945) test to ascertain the significance of 

temporal trends, and the consistency index (CI; Zhang et al., 2021) to validate the SCF 265 

trends. The CI is defined as follows: 
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CI=
Ninc+Ndec+Nno

Ntot
                                                                                                      (2) 

where Ninc is the number of grid points with a significant increasing trend in both the 

reanalysis dataset and SPIReS (P < 0.05), Ndec is the number of grid points with a 

significant decreasing trend in both datasets, Nno is the number of grid points with a 270 

non-significant trend in both datasets, and Ntot is the total number of grid points. The 

higher the CI value, the better the performance of the trend simulation. 

3. Results 

3.1 Spatial variability of SCF climatology 

3.1.1 Evaluation of spatial variability 275 

The reanalysis datasets exhibit a range of snow cover patterns over the TP (Fig. 1a). 

The basin-averaged values were obtained by averaging pixel points within each basin 

of the TP throughout the dataset from 2001 to 2020 (Fig. 1b). The regional average SCF 

values from HMASR, GLDAS, and CRAL are 0.14, 0.12, and 0.11, respectively, which 

align closely with the SPIReS average value of 0.13. In more detail, HMASR (GLDAS 280 

and CRAL) displays a slight underestimation (overestimation) in westerlies-dominated 

basins such as the Amu Darya and Indus, and overestimation (underestimation) in 

monsoon-dominated basins such as the Yellow, Yangtze, Mekong, Salween, and 

Brahmaputra (Fig. 2a). This indicates a more accurate SCF simulation. On the other 

hand, ERA5, ERA5L, and JRA55 show large positive biases in SCF across all basins, 285 

whereas MERRA2 displays a large negative bias in SCF. ERA5 and MERRA2 yield 

the least-accurate SCF values for the whole TP, with extreme regional averages of 0.41 

and 0.05, respectively, which are highly different from the SPIReS satellite observations. 

Figure 1a and 2a further show that, although all reanalysis datasets have spatial SCF 

patterns that are similar to those from SPIReS, the varying magnitude of SCF across 290 
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these datasets results in different spatial correlations (characterized by R values) and 

similarities in dispersion patterns (characterized by STDR values) when compared with 

SPIReS, which ultimately influences their synthesis performance (characterized by SS 

values). In the Taylor diagram (Fig. 2b; see Fig. S3 for a clearer version), HMASR has 

the highest R values across all basins, with STDR values for monsoon-dominated basins 295 

close to 1 (e.g., 0.96 for the Yangtze River). Consequently, HMASR achieves the 

highest SS value of 0.67, indicating its superior SCF performance across the whole TP. 

Although GLDAS has slightly lower R values than HMASR in the westerlies-

dominated basins (Amu Darya and Indus) and inland basins (Tarim and Inner Tibetan 

Plateau), its STDR values are closer to 1. This enables GLDAS to perform as well as 300 

HMASR over the whole TP, as characterized by the same highest SS value. CFSR 

consistently exhibits high R values across all basins, despite its moderate performance 

in the regional climate averages. Consequently, CFSR has an SS value of 0.62, second 

only to HMASR and GLDAS. In contrast to CFSR, although CRAL has a regional 

average SCF close to SPIReS, its spatial distribution is overly uniform, with a relatively 305 

low spatial correlation, leading to a moderate SS value. The Taylor performance of 

ERA5 is notably poor, which corresponds to its extreme regional average. Bian et al. 

(2019) also reported the inadequate performance of ERA5 in representing snow-related 

characteristics, with the highest RMSD values and the lowest R value. MERRA2 shows 

the worst Taylor performance, not only across the whole TP but also within each basin. 310 

This seems opposite to the conclusions of Orsolini et al. (2019), who found MERRA2 

to perform well in capturing the SCF and SWE characteristics on the TP. The reason 

for this discrepancy is that their results depended mainly on the high spatial correlation 

between MERRA2 and the reference dataset, while overlooking the severe 

underestimations in SCF values. These underestimations result in a very small self-315 

standard-deviation in the STDR calculation, leading to the worst SS value in this study 

of 0.2.  
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Figure 1: (a) Spatial distribution of average Snow Cover Fraction (SCF) for 2001–
2020 over the Tibetan Plateau region. (b) Basin-averaged SCF for 2001–2020  320 
from SPIReS (black horizontal line) and the eight reanalysis datasets overlain on 
a map of the Tibetan Plateau region. ITP = Inner Tibetan Plateau. 

For each reanalysis dataset, the SCF simulation exhibits varying performance over 

different TP basins, influenced by their unique topographic and climatic characteristics. 

Basins affected primarily by the winter westerlies (e.g., the Amu Darya and Indus 325 

basins) display better consistency between reanalysis datasets and SPIReS. The Indus 

basin shows the best performance in the SCF regional average and the highest SS value. 

https://doi.org/10.5194/egusphere-2024-82
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

 

In basins influenced by the summer monsoon (e.g., the Yellow, Yangtze, Mekong, 

Salween, and Brahmaputra basins) the SCF performance varies. All reanalysis datasets 

are scattered on the Taylor diagram panels in monsoon-dominated basins except for the 330 

Salween. In particular, ERA5, ERA5L, and JRA55 (MERRA2) produce regional 

averages more than 2× larger (lower) than SPIReS. In the inland basins (e.g., the Tarim 

and Inner Tibetan Plateau basins) most reanalysis datasets exhibit greater deviations 

compared with other basins. ERA5, JRA55, CRAL, and MERRA2 have much lower 

SS values (<0.15), reflecting the poorest performance in these basins. 335 

 

 
Figure 2: (a) Spatial distribution of the average SCF bias from the reanalysis 
datasets based on SPIReS for 2001–2020 over the Tibetan Plateau region. (b) 
Taylor diagrams showing the spatial correlation coefficients (R) and standard 340 
deviation ratio (STDR) of SCF between reanalysis datasets and SPIReS for each 
basin, overlain on a map of the Tibetan Plateau region. (c) Taylor skill scores (SS) 
for each basin overlain on a map of the Tibetan Plateau region. 

3.1.2 Bias attribution in the spatial distribution of SCF 

The evolution of SCF can be determined from the balance between snow mass gain via 345 

snowfall and snow depletion via snowmelt, sublimation, and wind drifting (Liu et al., 
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2022), as well as from the data assimilation techniques used in the reanalysis datasets. 

Our findings demonstrate that reanalysis datasets incorporating snow assimilation (e.g., 

HMASR and CFSR) always outperform those without snow assimilation, including 

ERA5, ERA5L, MERRA2, and CRAL, across the whole TP and for all of its basins, in 350 

terms of SCF regional averages and SS values. Moreover, HMASR (MERRA2 and 

CRAL) with (without) snow assimilation showed a better (worse) performance with 

respect to the SCF annual trends (see Section 3.2.2). This highlights the effectiveness 

of snow assimilation in enhancing the accuracy of SCF simulation. Indeed, previous 

studies have indicated that advanced data assimilation algorithms, which use multiple 355 

observational datasets to interpolate and correct the initial or output model values and 

so constrain the discrepancies between models and observations, can improve the 

accuracy and reliability of numerical models (Reichle, 2008). For instance, Magnusson 

et al. (2017) used a particle filter method to assimilate SD observations into a multilayer 

energy-balance snow model, resulting in reduced errors in SWE, snowpack runoff, and 360 

soil temperature. However, there were two unexpected results regarding the JRA55 and 

GLDAS datasets. First, GLDAS, despite lacking snow data assimilation, ranks second 

in SCF simulation performance among all datasets. Conversely, JRA55, which 

incorporates daily SD data from SSM/I and SSMIS, as well as surface synoptic 

observations, performs less well than half of the reanalysis datasets that do not 365 

incorporate snow assimilation. These results imply that other factors influence the 

accuracy of the SCF simulation. Variations in snowfall and temperature are the 

dominant influence on snow evolution and can explain half to two-thirds of the 

interannual variability in snow cover (Xu et al., 2017). Hence, the accuracy of these 

two pivotal meteorological forcing factors directly impacts the integrity of the LSMs 370 

(Zhang et al., 2015). In addition, different SCF parameterizations influence the 

instability inherent in the snow models (Dutra et al., 2011). Therefore, we further 

investigated the SCF bias by examining the performance with respect to snowfall and 
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temperature in each reanalysis dataset, along with the inadequacies of parameterization 

methods. 375 

 
Figure 3: The columns show (from left to right): spatial distribution of the 
averaged snowfall bias from the reanalysis datasets based on TPMFD for 2001–
2020 over the Tibetan Plateau region; spatial distribution of the correlation 
coefficients (R value) between snowfall bias and SCF bias; spatial distribution of 380 
the averaged 2-m temperature (T2) bias for 2001–2020; and spatial distribution of 
R values between T2 bias and SCF bias. Black dots in the second and fourth 
columns indicate that the correlation exceeds the 95% confidence level. 

ERA5, ERA5L, and CFSR overestimated snowfall in both the westerlies-dominated 

and monsoon-dominated basins (Fig. 3). The snowfall biases are particularly 385 

pronounced in the western and southeastern regions of the TP, including on the Pamir 

Plateau and the southern slopes of Mount Namcha Barwa. The only exception is the 

inland basin of the Inner Tibetan Plateau, where snowfall is underestimated. In contrast 
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to snowfall, these reanalysis datasets consistently underestimated temperatures in 

westerlies-dominated and monsoon-dominated basins. The excessive snowfall 390 

contributes to heightened snow accumulation, while the reduced temperatures hinder 

the ablation process by impeding the snow from attaining the freezing threshold (Liu et 

al., 2022). Simultaneously, under conditions of adequate atmospheric water vapor, low 

temperatures further intensify snow accumulation through enhanced snowfall (You et 

al., 2020b). The combined impacts result in a positive SCF bias within ERA5, ERA5L, 395 

and CFSR, characterized by significant correlations between snowfall and temperature 

bias versus SCF bias. Moreover, compared with snowfall, temperature bias exhibits 

stronger significant correlations with SCF bias over broader areas. This implies that 

physical processes influenced by temperature bias may have a more pronounced and 

widespread responsibility with respect to SCF bias. JRA55 shows a similar pattern of 400 

snowfall and temperature bias to ERA5, ERA5L, and CFSR, but these two 

meteorological factors can explain SCF in only limited areas. In addition, because 

JRA55 incorporates multiple snow observations, the snow assimilation cannot be the 

primary cause of the SCF bias. This suggests the presence of another significant factor 

that is responsible for the overestimation of SCF in JRA55. A previous study indicated 405 

that JRA55 performed well with respect to SD simulation and benefited from the 

assimilation of SD data from Chinese ground observation stations (Orsolini et al., 2019). 

This indirectly implies the influence of the SCF parameterization method. Indeed, 

JRA55 uses an aggressive parameterization approach with a 2-cm SD threshold to 

define the complete SCF, which differs markedly from other reanalysis datasets (see 410 

Section 2.1.2). When adopting a more appropriate parameterization method (see Fig. 

9), the SCF simulation by JRA55 shows a noteworthy increase in the SS value of 0.12. 

This apparent improvement confirms the important role of the parameterization method 

in influencing SCF accuracy in JRA55. For MERRA2 and CRAL, the snowfall and 

temperature bias can explain the SCF bias over only a limited area of the TP. In addition, 415 
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alternative SCF parameterization methods are unable to improve the SCF simulation. 

Therefore, we propose that the absence of snow assimilation, which is used to correct 

the LSM-derived initial snowpack, is the main reason for the SCF bias in MERRA2 

and CRAL. Interestingly, regardless of the snow assimilation or SCF parameterization 

methods, most of the reanalysis datasets show significant correlations between the bias 420 

in snowfall and temperature versus SCF in high-altitude areas above 5 km, such as the 

Karakoram Mountains, Pamir Plateau, and Himalaya, which suggests a primary 

contribution of snowfall and temperature to SCF bias in these regions. 

3.2 Seasonal evolution and annual trends in SCF 

3.2.1 Evaluation of seasonal evolution and bias attribution 425 

Figure 4 shows the SCF bias, its probability density distribution, and the skill scores for 

the four seasons. In general, the different seasons show similar spatial patterns of SCF 

bias for each reanalysis dataset, which is consistent with the annual average results. 

This suggests the persistent influence of the uncertainties associated with the snowfall 

and temperature data, on the SCF bias throughout the year. However, the bias values 430 

vary seasonally, with higher biases observed during the accumulation period (winter 

and spring), but lower biases during the ablation period (summer and autumn). The 

largest bias in winter can be several times larger than the lowest bias in summer. 

However, this does not imply a better SCF simulation for summer than winter. As the 

SCF during winter is much higher than that during summer (Fig. S4), a smaller 435 

fractional difference in winter can result in a larger absolute bias. Conversely, the spatial 

correlations and similarity in dispersion patterns between the reanalysis datasets and 

SPIReS SCF are higher during the accumulation period than the ablation period, leading 

to a better Taylor performance for winter and spring, as shown by the larger SS values. 

The seasonal variability associated with the SCF simulation performance is most 440 

evident in MERRA2 and CRAL. 
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Figure 4: The first four columns show the spatial distribution of seasonal SCF bias 
from the reanalysis datasets based on SPIReS over the Tibetan Plateau region 
during (left to right): autumn (September–November: SON), winter (December–445 
February: DJF), spring (March–May: MAM), and summer (June–August: JJA). 
The SS values are shown in the fifth column. The probability density distribution 
of SCF bias is shown in the sixth column. The dashed lines in the sixth column 
represent the TP-average SCF bias for each season. 

Figure 5 further shows the seasonal evolution of the SCF bias, as well as the snowfall 450 

and temperature biases. For the four reanalysis datasets, including ERA5, ERA5L, 

JRA55, and CFSR, snowfall (temperature) shows large positive (negative) biases 

during the accumulation period, which together cause the large positive SCF bias during 

winter and spring. In contrast, both the snowfall and temperature biases are small during 

the ablation period, resulting in a small SCF bias. Thus, snowfall and temperature 455 

collectively explain the apparent seasonal variations in the SCF bias, as evidenced by 

the statistically significant correlations. Compared with snowfall, the temperature bias 

seems to have a greater impact, which is characterized by the larger R values. For 

MERRA2, CRAL, and GLDAS, the SCF biases remain small and stable across all four 

seasons, which corresponds to the well-simulated snowfall, despite the highly variable 460 
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temperature bias. Therefore, snowfall may be more responsible for the seasonality in 

the SCF bias associated with these three reanalysis datasets. 

 
Figure 5: Temporal variations of SCF (black), snowfall (light pink), and T2 (purple) 
bias averaged at five-day intervals from all reanalysis datasets. R in light pink 465 
(purple) represents the correlation coefficient between snowfall (T2) bias and SCF 
bias. The stars indicate the correlation exceeds the 95% confidence level. 

3.2.2 Evaluation of annual trends and bias attribution 

Figure 6 presents the annual trends in SCF from 2001 to 2020 for the SPIReS and seven 

reanalysis datasets. As HMASR covers only the period from 2001 to 2016, a separate 470 

comparison between HMASR and SPIReS is provided in Fig. S5. The SPIReS satellite 

observations generally show increased SCF over the Indus, west Brahmaputra, Yellow, 

https://doi.org/10.5194/egusphere-2024-82
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

 

Yangtze, and Mekong basins, but decreased SCF over the Amu Darya, Tarim, and east 

Brahmaputra basins. However, these trends are not statistically significant over most 

areas of the TP, indicating fluctuations in the variability of SCF over the past two 475 

decades. This pattern is clearly demonstrated by the spatial distribution of snowfall and 

temperature trends (Fig. 8). In comparison to SPIReS, ERA5L and ERA5 show greater 

variability in the SCF trends, especially in the Tarim basin and on the southeastern TP, 

where a significant decrease in SCF is evident. Nevertheless, ERA5L and ERA5 still 

exhibit the most similar spatial patterns to SPIReS, with the highest R values. Moreover, 480 

ERA5L and ERA5 have the highest CI values (>0.5) over the whole TP and in most 

basins (Fig. 7), indicating that these datasets can reproduce the SCF trend over more 

than half of the area of the TP. Consequently, ERA5L and ERA5 demonstrate the best 

performance in SCF trend simulation among these eight reanalysis datasets. This can 

be attributed to the superior spatial consistency of ERA5L and ERA5 when compared 485 

with TPMFD with respect to simulations of snowfall and temperature trends (Fig. 8). 

The SCF trend simulated using the HMASR data is also accurate, with a spatial pattern 

similar to SPIReS, and high CI values of around 0.5 over the TP and all basins (Fig. 

S5). Therefore, the performance of HMASR is very close to that of ERA5L and ERA5. 

Combining the analysis in Section 3.1, we note that HMASR is the best reanalysis 490 

dataset for SCF simulation based on its outstanding performance in both the spatial and 

temporal dimensions. This is because HMASR directly assimilates snow cover data, 

not only from the moderate-resolution MODIS satellite, but also from the high-

resolution Landsat satellite. The high-resolution data improve the SCF spatial 

simulation, while the medium-resolution data enhance the temporal simulation. 495 

Moreover, the MODSCAG algorithm-based satellite SCF products assimilated by 

HMASR are more accurate than the NDSI-based SCF. Previous studies also reported 

the superior SWE simulation generated using the HMASR data when compared with 

the other seven reanalysis datasets over the TP (Liu et al., 2022). MERRA2 shows a 
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general increasing trend for SCF, which is statistically significant over approximately 500 

half of the TP. This is caused mainly by the widespread and significant increase in 

snowfall simulation (Fig. 8). This spatial pattern in the SCF trends differs considerably 

from SPIReS, and is characterized by the lowest R value. The CI values are also the 

lowest, at around 0.2–0.3 over the TP and most basins. Consequently, MERRA2 

generates the worst simulation of SCF, both spatially (Section 3.1) and temporally. The 505 

contrast in performance between HMASR and MERRA2, both of which use the same 

meteorological forcing (Liu et al., 2021) but differ with regards to snow assimilation, 

further emphasizes the significant impact of snow assimilation in the reanalysis SCF 

datasets. 

CRAL shows a similar pattern to MERRA2 with respect to the SCF trends, snowfall, 510 

and temperature. In addition, it also does not assimilate snow observations, resulting in 

poor SCF trends. JRA55 performs moderately in simulating the SCF trend, similar to 

its performance in simulating the spatial distribution. CFSR exhibits a significant SCF 

increase over the northeastern TP, which can be partly explained by increased snowfall 

and decreased temperatures. This leads to low consistency with SPIReS and lower CI 515 

values, especially for the Inner Tibetan Plateau and the Yellow basin. GLDAS exhibits 

a widespread and apparent decrease (increase) in snowfall (temperature) over the 

Himalayas, leading to a significant SCF decrease. This trend is opposite to the 

observations in SPIReS. As a result, GLDAS shows poor trend simulations over 

Himalaya-related areas such as the Brahmaputra, Salween, Indus, and Amu Darya 520 

basins. The poor performance of GLDAS with respect to annual variability contrasts 

with its good performance with respect to the spatial distribution. 
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Figure 6: (a) Spatial distribution of the SCF annual trend from the reanalysis 525 
datasets over the Tibetan Plateau region over the period 2001 to 2020. (b) Spatial 
correlations of 20-year SCF trends between the reanalysis datasets and SPIReS in 
each basin, overlain on a map of the Tibetan Plateau region. Black dots in (a) 
indicate that the linear trend exceeds the 95% confidence level. 
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 530 
Figure 7: Consistency index (CI) from the reanalysis SCF datasets (excluding 
HMASR) calculated by comparing with SPIReS dataset trends from 2001 to 2020. 
The CI value for HMASR was obtained by comparing trends from 2001 to 2016. 
The red text indicates the maximum CI value within each basin, and the blue text 
indicates the minimum value.  535 
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Figure 8: Spatial distribution of the annual snowfall trend over the Tibetan 
Plateau region for the period 2001 to 2020 from the reanalysis datasets (left), and 
the T2 annual trend (right). Black dots indicate that the trend exceeds the 95% 
confidence level. 540 

https://doi.org/10.5194/egusphere-2024-82
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



27 

 

 

4 Discussion 

4.1 Influence of parameterization method on SCF 

For the eight reanalysis datasets analyzed here, five parameterization methods were 

used to convert SWE or SD into SCF; i.e., MM_SCF, ME_SCF, MJ_SCF, SSiB3_SCF, 

and Noah_SCF (Section 2.1.2). These parameterization methods have been evaluated 545 

in diverse regions (Jiang et al., 2020; Orsolini et al., 2019), and the results indicate that 

different parameterizations of snow processes will introduce different uncertainties into 

snow simulations (Jiang et al., 2020). Moreover, specific challenges arise on the TP 

because of its complex terrain and unstable snow conditions (Huang et al., 2023). In 

order to evaluate the impact of the parameterization method on SCF simulations and 550 

develop an optimized method, we incorporated three parameterization methods 

(MM_SCF, ME_SCF, and MJ_SCF) separately into each reanalysis dataset to derive 

another three (two) SCF products for HMASR, CRAL, and CFSR (MERRA2, ERA5, 

ERA5L, JRA55, and GLDAS). The SSiB3_SCF and Noah_SCF methods were not 

considered here because their complex schemes cannot be easily applied offline (Ek et 555 

al., 2003).  

Figure 9 shows the SS and CI values of the SCF simulations from each reanalysis 

dataset using the different parameterization methods. For most reanalysis datasets, the 

MM_SCF method generates the best SCF simulation in terms of synthetic performance 

on spatial and temporal dimensions. This advantage is especially distinct for MERRA2 560 

and ERA5. In addition, MM_SCF is better (more or less) than the built-in method in 

ERA5, CRAL, and JRA55. These results demonstrate the wide applicability of the 

MM_SCF method. The performance of ME_SCF is also good, and only slightly below 

that of MM_SCF. In contrast, MJ_SCF generates the worst SCF simulations for most 

reanalysis datasets. Even for JRA55, for which MJ_SCF is built-in, the performance is 565 

worse than the other two methods, both spatially and temporally. For the SSiB3_SCF 
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and Noah_SCF methods, although they incorporate the complex impacts of the 

underlying surface characteristics on SCF parameterization, the performance in SCF 

simulation is only comparable with that of MM_SCF and ME_SCF. This implies that 

considering the underlying surface characteristics has a limited impact on the accuracy 570 

of the SCF simulation. We note that an appropriate parameterization method can 

actually improve the SCF simulation. However, such improvements do not change the 

general performance of these eight reanalysis datasets. This indirectly highlights the 

primary role of meteorological forcing inputs (snowfall and temperature) and snow 

assimilation with respect to SCF simulations. 575 

 

Figure 9: SS and CI values of SCF for all reanalysis datasets calculated offline 
using the MM_SCF, MJ_SCF, and ME_SCF parameterization methods.  
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4.2 Reanalysis dataset ensemble for SCF optimization 

Mortimer et al. (2020) demonstrated that product accuracy can be enhanced by 580 

averaging multiple reanalysis datasets, because this allows unrelated errors and 

deficiencies between them to offset each other. To optimize SCF simulation over the 

TP, we considered all possible combinations of the eight reanalysis datasets and present 

the best and worst combinations regarding both the spatial and temporal dimensions 

(Fig. 10). 585 

Our results reveal that the SCF accuracy does not monotonically improve with the 

number of combined datasets. For the spatial aspect, the SS value increases from 

HMASR alone to the combination of HMASR and GLDAS, but then begins to decrease 

with the continued increasing number of datasets used. Consequently, we concluded 

that an ensemble of HMASR and GLDAS is optimal for spatial SCF studies over the 590 

TP. This implies that the combination of more datasets does not always improve 

simulation accuracy, and may instead have a negative impact. This appears reasonable 

because HMASR and GLDAS have excellent accuracy in simulating the spatial 

variability of SCF, but the addition of poorly performing datasets (e.g., MERRA2 and 

JRA55) introduces more bias, resulting in a suboptimal outcome. From a temporal 595 

aspect, the CI value is highest for the combination of six datasets (i.e., ERA5L, CFSR, 

CRAL, GLDAS, ERA5, and MERRA2), but is similar when using from three to seven 

datasets. This differs from the SS result. As these datasets generally demonstrate 

moderate accuracy in simulating annual SCF trends, a combination of more datasets 

helps offset the deficiencies within each dataset, leading to an overall enhancement in 600 

accuracy. In contrast to the optimal combination, the worst combination shows a 

monotonically improving performance for both spatial and temporal trends. Notably, 

each worst combination includes the MERRA2 dataset, whereas HMASR and ERA5L 

consistently contribute to the optimal combination for SS and CI. This corresponds with 

the results in Section 3. 605 
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Figure 10: (a) SS for optimal reanalysis dataset combinations across varying 
numbers of datasets. (b) As in (a) but for CI. (c) and (d) As in (a) and (b), but for 
the worst combinations.  

4.3 Limitations 610 

This study focused primarily on the impact of snowfall and temperature within snow 

models, as well as snow data assimilation and the choice of SCF parameterization, on 

the performance of reanalysis datasets in simulating SCF over the TP. However, other 

model parameters related to precipitation and temperature, such as the precipitation 

gradient used to describe precipitation variations at different elevations, and the critical 615 

temperature used to distinguish rain from snow, are equally vital to snow simulations 

(Zhang et al., 2015). Furthermore, snow, being a suspended substance, is susceptible to 

sublimation. It is estimated that blowing snow sublimation accounts for ~30% of global 

surface sublimation (Déry and Yau, 2002). The TP is perpetually influenced by the 

westerly jet stream, and processes such as blowing snow sublimation may be significant 620 

under windy and arid conditions. However, most LSMs used in reanalysis datasets do 

not consider blowing snow (Mortimer et al., 2020), and deficiencies in their model 
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structures may also affect the accuracy of SCF simulations. 

In addition to these factors, the spatial resolution of reanalysis datasets may also affect 

the accuracy of SCF simulations. Lei et al. (2023) pointed out that reanalysis datasets 625 

characterized by finer spatial resolutions exhibit better consistency with in situ 

measurements of SD over the TP; e.g., ERA5L outperforms ERA5 and MERRA2. In 

our study, the fine spatial resolution version of GLDAS generates better SCF 

simulations than the coarse spatial resolution version for both spatial and temporal 

dimensions (Fig. S2), which demonstrates the non-negligible impact of model 630 

resolution on the accuracy of SCF simulations. This also indirectly implies that the 

much finer resolution of 1/225° × 1/225° may contribute to the outstanding performance 

of HMASR. However, SCF products with different spatial resolutions are available only 

in GLDAS. Therefore, this study cannot conclusively state that the impact of spatial 

resolution on SCF accuracy is universal. 635 

5. Conclusions 

Snow cover on the TP is highly sensitive to climate change. With global climate 

warming, the quantity and variability of SCF have become crucial indicators for 

understanding climate change and related hydrological processes. In this study, we 

assessed the ability and attributed the biases of eight reanalysis datasets to simulate 640 

spatiotemporal variations in SCF over the TP based on SPIReS satellite data covering 

the period 2001–2020. The key findings are: 

HMASR exhibits the best accuracy in SCF simulation among all eight reanalysis 

datasets. Its outstanding performance is benefiting from the snow assimilation of the 

moderate-resolution MODIS satellite and high-resolution Landsat satellite data, which 645 

can improve SCF simulation of the temporal and spatial scales, respectively. GLDAS 

and CFSR also demonstrate commendable SCF accuracy, comparable to that of 

HMASR, with CFSR benefiting from snow assimilation. However, CRAL exhibits 
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moderate performance in SCF, and MERRA2 generates the worst SCF simulation both 

spatially and temporally. The absence of snow assimilation may be responsible for 650 

poorer SCF simulations generated by MERRA2 and CRAL, because it uses the same 

meteorological forcings as HMASR and CFSR.  

ERA5 and ERA5L exhibit pronounced SCF overestimations over most TP areas, but 

the trend simulation is the best in this study. In ERA5 and ERA5L, overestimated 

snowfall and underestimated temperature jointly contributed to the overestimation of 655 

SCF over most of the TP. Moreover, compared with snowfall, temperature-related 

physical processes have a more pronounced and widespread responsibility for SCF bias 

and the seasonal variation of SCF bias. 

JRA55 similarly overestimates the SCF. We find that SCF accuracy of JRA55 is 

sensitive to the choice of SCF parameterization, rather than meteorological forcings and 660 

snow assimilation. 

A two-member ensemble of HMASR and GLDAS was optimal for the study of SCF 

spatial scales, whereas a six-member ensemble of ERA5L, CFSR, CRAL, GLDAS, 

ERA5, and MERRA2 was optimal for the study of annual trends. 

These findings are crucial for selecting the most suitable reanalysis SCF datasets and 665 

gaining deeper insights into SCF variations and their controlling mechanisms on the TP. 

Reducing uncertainties within reanalysis SCF datasets stands as a pivotal stride toward 

refining climate models and prediction systems. Considering the significant impact of 

precipitation and temperature bias, along with snow assimilation, acquiring more 

precise meteorological forcing data and snow observations data is essential to further 670 

enhance the accuracy of reanalysis SCF simulations. Simultaneously, selecting more 

appropriate parameterization methods specific to reanalysis data models will contribute 

to improving dataset reliability. Optimizing simulations of snow cover on the TP will 

provide critical support for future climate change research and response strategies. 

  675 
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