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Abstract. The extensive snow cover across the Tibetan Plateau (TP) has a major influence on 

the climate and water supply for over one billion downstream inhabitants. However, an 

adequate evaluation of Snow Cover Fraction (SCF) variability over the TP simulated by 

multiple reanalysis datasets has yet to be undertaken. In this study, we used the Snow Property 15 

Inversion from Remote Sensing (SPIReS) SCF dataset from the Water Years (WYs) 2001–2017 

to evaluate the capabilities of eight reanalysis datasets (HMASR, MERRA2, ERA5, ERA5L, 

JRA55, CFSR, CRAL, and GLDAS) in simulating the spatial and temporal variability of SCF 

in the TP. CFSR, GLDAS, CRAL, and HMASR are well in simulating the spatial pattern of 

climatological SCF with lower bias and higher correlation and Taylor Skill Score (SS). In 20 

contrast, ERA5L, JRA55, and ERA5 has relatively good performance in terms of SCF annual 

trends among eight reanalysis datasets. The biases in SCF simulations across reanalysis datasets 

are influenced by a combination of meteorological forcings, including snowfall and temperature, 

as well as the SCF parameterization methods. However, the primary influencing factors vary 

among the reanalysis datasets. Additionally, averaging multiple reanalysis datasets can enhance 25 

the spatiotemporal accuracy of SCF simulations, but this enhancement effect does not 

consistently increase with the number of reanalysis datasets used. 
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1 Introduction 

Widespread snow cover on the Tibetan Plateau (TP), with its high albedo and low thermal 

conductivity, plays a crucial role in the surface energy balance (Zhang, 2005) and affects the 

climate locally (Zhang et al., 2022), across Asia, and globally (Lyu et al., 2018; Ma et al., 2017). 35 

Furthermore, in its role as the “Asian water tower” (Kitoh and Arakawa, 2016; Qiu, 2008; Xu 

et al., 2008), the snow that accumulates on the TP during the cold season is an essential 

freshwater resource for over a billion people during the warm season, supplying their domestic, 

agricultural, and industrial water needs (Immerzeel et al., 2010). In the context of climate 

change, the snow cover over the TP is an extremely sensitive element to warming (Yao et al., 40 

2019; You et al., 2020b). Therefore, the accurate and reliable representation of snow cover over 

the TP is crucial to regional climate and ecosystem studies. 

Comprehensive ground-based measurements face challenges due to the complex terrain and 

harsh weather conditions on the TP (Yang et al., 2019), leading to issues of spatial 

representativeness. In contrast, optical satellite observations provide global-scale snow cover 45 

data and offer crucial support for snow research. For example, NASA’s Moderate Resolution 

Imaging Spectroradiometer (MODIS) has been providing moderate-resolution global daily 

snow cover fraction (SCF) data since 2000 (Hall et al., 2002). The Snow Property Inversion 

from Remote Sensing (SPIReS) then uses a more advanced spectral unmixing technique that 

provides improvements to SCF estimates for the period Water Years (WYs) 2000–2021 (Bair 50 

et al., 2021). However, the more precise satellite products and remote sensing data using more 

advanced methods have relatively short time spans from 2000 to the present, limiting their role 

in long-term climate analysis. 

Reanalysis methods based on observations and mathematical models (Fujiwara et al., 2017) 

provide a critical avenue for obtaining long-term snow information. These techniques use data 55 

assimilation to integrate historical environmental observations with short-term weather 

forecasts, yielding optimal estimates of global or regional weather and climate states (Lei et al., 

2023). In recent decades, the major meteorological agencies around the world have generated 

atmospheric and land reanalysis products at varying temporal and spatial resolutions (Fujiwara 
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et al., 2017). Reanalysis datasets have become indispensable sources of data when it comes to 60 

studying processes related to snow variability, as well as their impacts and responses to climate 

change (Lin and Wu, 2011; Thackeray et al., 2016; Wegmann et al., 2017). For example, the 

reanalysis snow dataset (e.g., ERA40 and NCEP-NCAR) has revealed that anomalous snow 

cover in prior autumn facilitates a warm-north, cold-south winter over North America by 

influencing the teleconnection response in the Pacific-North American (PNA) region (Lin and 65 

Wu, 2011). Reanalysis datasets (e.g., MERRA, ERA-Interim, and GLDAS-2) have been 

integrated into the Canadian Sea Ice and Snow Evolution (CanSISE) dataset to analyze the 

impacts of global warming on snow changes on the TP (You et al., 2020a). 

A comprehensive evaluation of multiple snow reanalysis datasets based on referenced 

observation data is of paramount importance before launching related scientific research. 70 

Previous researches have focused more on the accuracy of Snow Depth (SD) and Snow Water 

Equivalent (SWE) in reanalysis datasets across different regions (Bian et al., 2019; Li et al., 

2022; Wang and Zeng, 2012; Zhang et al., 2021). However, only Orsolini et al. (2019) and Li 

et al. (2022) have assessed the SCF performance of reanalysis datasets over the High Mountain 

Asia based on SCF data from the Interactive Multisensor Snow and Ice Mapping System (IMS; 75 

Helfrich et al., 2007) and ground observations. Their studies considered the SCF accuracy of a 

limited number of reanalysis datasets and lacked multidimensional evaluation that considers 

aspects such as regional variations and annual trends, as well as an in-depth analysis of the 

impact of parameterization on SCF bias. In addition, the IMS dataset, which uses microwave 

remote sensing technology, is challenging for detecting shallow or wet snow that may lead to 80 

increased uncertainty in SCF detection (Yu et al., 2013). Therefore, prior evaluations of 

reanalysis SCF datasets are still insufficient. 

The various reanalysis snow datasets have unique spatiotemporal characteristics (Mudryk 

et al., 2015). The differences in snow characteristics originate not only from the use of different 

Land Surface Models (LSMs), but also from the meteorological forcing data and 85 

parameterization methods. De Rosnay et al. (2014) indicated that the accuracy of snow 

simulations is constrained largely by uncertainties associated with some of the key 
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meteorological inputs, including precipitation and temperature (Cao et al., 2020; Zhang et al., 

2015), under regional climate conditions and elevation factors (Brown and Mote, 2009; 

Hernández-Henríquez et al., 2015). Therefore, uncertainties associated with precipitation and 90 

temperature data are likely to be the primary sources of bias within the reanalysis SCF datasets. 

Moreover, Jiang et al. (2020) emphasized that optimizing the parameterization methods used to 

convert SD or SWE to SCF would reduce the uncertainties associated with snow modeling, 

which would further reduce biases in land surface albedo simulations, particularly in high-

altitude regions. The reanalysis datasets use different SCF parameterization methods, with a 95 

100% SCF corresponding to an SD that ranges from 2 to 26 cm (Orsolini et al., 2019). The 

selection of different SCF parameterizations for the reanalysis datasets may lead to varying 

degrees bias of SCF.  

For this study, we conducted an in-depth evaluation of SCF simulations derived from eight 

atmospheric and land assimilation reanalysis datasets over the period WYs 2001–2017, using 100 

SPIReS SCF dataset as a reference. The accuracy of SCF was assessed multidimensionally by 

examining the spatial characteristics, seasonal variations, and annual trends across the whole 

TP and its nine basins. Additionally, we aimed to assess the influence of meteorological forcing 

(snowfall and temperature) and the SCF parameterization on the SCF biases associated with the 

various reanalysis datasets. On this basis, we attempted to develop an optimal combination of 105 

reanalysis SCF datasets. 

2 Data and methods 

2.1 Data 

2.1.1 Remote sensing data 

For this study, we utilized the SPIReS SCF dataset (Bair et al., 2021) as the reference SCF. It is 110 

derived from Landsat 8 Operational Land Imager (OLI) and MODIS data using a spectral 

unmixing methodology at a 4 km resolution for the period spanning WY 2000 to WY 2021 (e.g., 

WY 2000 refers to October 1, 1999, to September 30, 2000). The SCF calculation in SPIReS 
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relies on two endmembers (i.e., snow and snow-free) along with an ideal shade component, 

effectively simplifying the calculation process while maintaining high accuracy. SPIReS 115 

reduces the effects of cloud noise through interpolation and smoothing to provide more accurate 

SCF data (Bair et al., 2021; Dozier et al., 2008). In a comprehensive evaluation conducted by 

Stillinger et al. (2023) utilizing airborne lidar datasets for subcanopy snow mapping 

performance over mountain areas in the western United States, spectral unmixing-derived data 

(including SPIReS and MODIS Snow-Covered Area and Grain Size, abbreviated as 120 

MODSCAG) exhibited lower bias and Root Mean Square Error (RMSE) compared to data 

derived from band ratio methods and spectral mixture methods. Moreover, unlike MODSCAG, 

SPIReS incorporates the influence of light-absorbing particles on snow, leading to more 

accurate SCF data. 

2.1.2 Reanalysis datasets 125 

We examined eight widely used reanalysis datasets obtained from various meteorological 

organizations, with details listed in Table 1. Meteorological forcing fields are used to drive the 

LSMs, and parameterization methods are used to calculate the daily SCF data. The assimilation 

of snow data varied among the datasets. 

The High Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) is a snowpack-130 

specific reanalysis dataset produced by NASA High Mountain Asia Team (HiMAT). HMASR 

uses the Simplified Simple Biosphere model, version 3 (SSiB3; Sun and Xue, 2001; Xue et al., 

2003) as the LSM to generate the initial snowpack mass for WYs 2000–2017 based on 

meteorological inputs from MERRA2 and physiographic characteristics. The model-derived 

SCF predictions are then constrained by integrating spectral unmixing algorithm derived SCF 135 

data from the MODIS and Landsat satellites products (Painter et al., 2009) via data assimilation. 

The parameterization method used in HMASR (abbreviated as SSiB3_SCF in Table 1) has not 

been publicly disclosed. 

The Modern-Era Retrospective analysis for Research and Applications, version 2 

(MERRA2; Gelaro et al., 2017), developed by NASA’s Global Modeling and Assimilation 140 
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Office (GMAO), provides land surface state estimates including SCF via the Catchment LSM 

(CLSM; Koster et al., 2000). The surface-forced precipitation is a combination of the National 

Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) unified 

gauge-based analysis of global daily precipitation (CPCU; Xie et al., 2007) product and the 

precipitation generated by the atmospheric general circulation model within the MERRA2 145 

system. The generated precipitation is also adjusted using a precipitation correction algorithm 

(Reichle et al., 2017). MERRA2 does not include snow data assimilation. The parameterization 

scheme in MERRA2 considers 100% SCF to occur when the SWE reaches a threshold of 26 kg 

m–2 (abbreviated as MM_SCF in Table 1; Orsolini et al., 2019; Reichle et al., 2017). 

The ECMWF Reanalysis version 5 (ERA5; Hersbach et al., 2020), produced and published 150 

by the European Centre for Medium-Range Weather Forecasts (ECMWF), uses the Tiled 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) model to simulate various 

land surface variables. The precipitation forcing in ERA5 is adjusted using Global Precipitation 

Climatology Project (GPCP; Adler et al., 2003) data. ERA5 assimilates in situ SD observations 

and binary SCF data from IMS only below 1500 m, so that snow assimilation does not apply to 155 

the TP region (Bian et al., 2019). Additionally, a refined dataset known as ERA5-Land 

(abbreviated as ERAL; Muñoz-Sabater et al., 2021) has been derived from ERA5 via the offline 

rerunning of the land portion of the model at a higher spatial resolution. ERA5L provides solely 

land surface parameters and is based on the same forcing and LSM as ERA5. Both datasets 

have a 10-cm SD threshold to identify full SCF (abbreviated as ME_SCF in Table 1; ECMWF, 160 

2018; Orsolini et al., 2019). ERA5 does not directly output the SCF variable. The SCF values 

for ERA5 used in this study was calculated using ME_SCF method. 

The Japanese 55-year Reanalysis (JRA55; Kobayashi et al., 2015), developed by the Japan 

Meteorological Agency (JMA), generates the land surface analysis field using an offline version 

of the Simple Biosphere (SIB) model (Sato et al., 1989; Sellers et al., 1986). The precipitation 165 

forcing is corrected using precipitable water retrieved from the Special Sensor 

Microwave/Imager (SSM/I) brightness temperature (Onogi et al., 2007). JRA55 incorporates 

daily SD data from the SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS) 
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using a univariate two-dimensional optimal interpolation (OI) approach. In addition, it 

assimilates surface synoptic observations (SYNOP) reports and digitizes China’s daily SD data 170 

from 1971 to 2006 (Onogi et al., 2007). The detection of full SCF in JRA55 is based on a 2-cm 

SD threshold (abbreviated as MJ_SCF in Table 1; Orsolini et al., 2019). Similar to ERA5, the 

SCF in JRA55 was also calculated rather than provided directly by the product. 

The Climate Forecast System Reanalysis (CFSR; Saha et al., 2010), developed by the 

National Center for Environmental Prediction (NCEP) under NOAA, is a weakly coupled 175 

global reanalysis system. The land surface analysis utilizes the Noah model (Meng et al., 2012). 

Two observed global precipitation analyses, namely the CPC Merged Analysis of Precipitation 

(CMAP; Xie and Arkin, 1997) and the CPCU, are used as alternative forcings for precipitation. 

In terms of snow analysis, CFSR assimilates IMS and the Global Snow Depth Model 

(SNODEP). On 1 January 2011, CFSR transitioned to a newer version of the NCEP data 180 

assimilation system called CFSv2 (Saha et al., 2014). Despite differences in horizontal 

resolution and minor changes to the physical parameterization, CFSv2 is considered a 

continuation of CFSR in most cases (Fujiwara et al., 2017). The SCF parameterization method 

in CFSR is related to the surface characteristics, using varying SD thresholds to identify the full 

SCF depending on the underlying surface type (abbreviated as Noah_SCF in Table 1; Ek et al., 185 

2003). 

The Global Land Data Assimilation System version 2.1 (GLDAS-2.1; Rodell et al., 2004) 

is a global land data assimilation product developed jointly by NASA and NOAA. It uses the 

global meteorological forcing dataset from Princeton University (Sheffield et al., 2006) and the 

GPCP V1.3 Daily Analysis precipitation fields (Adler et al., 2003; Huffman et al., 2001) to 190 

drive three distinct LSMs: the CLSM model, the Noah model, and the Variable Infiltration 

Capacity (VIC) model. As a result, four datasets are generated (Table S1). Notably, the full 

series datasets within GLDAS-2.1 do not assimilate snow observations. Furthermore, owing to 

the unavailability of SCF variables in these datasets, this study derived different SCF values 

using three parameterization methods (MM_SCF, ME_SCF and MJ_SCF). Finally, the 0.25° × 195 
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0.25° GLDAS–Noah product using the MM_SCF approach was selected as a representative of 

GLDAS due to its better SCF simulation (Fig. S1). 

China’s First Generation Global Atmospheric and Land Reanalysis (CRA-40; Liu et al., 

2023) is produced by the China Meteorological Administration (CMA). The matched land 

surface reanalysis datasets (CRA-40/Land, abbreviated as CRAL) are simultaneously generated 200 

offline based on an updated version of the Noah model and atmospheric driving factors from 

CRA-40. In CRAL, precipitation meteorological forcing is derived from a similar combination 

of data sources as CFSR (Liang et al., 2020). CRAL does not assimilate other observational 

data in the LSM. Instead, data from over 2,400 CMA surface weather observatories indirectly 

influence the land surface product through conventional meteorological forcing derived from 205 

atmospheric reanalysis (Liang et al., 2020). The SCF parameterization method in CRAL is the 

same as that in CFSR. 

Table 1: Characteristics of the reanalysis datasets used in this study. 

Reanalysis 
dataset 

Agency  
Temporal 
coverage 

Resolution 
Land 
Model 

Snow data 
assimilation 

Variables used in 
analysis b 

SCF parameterization 
method used in this 
study 

Reference dataset 

HMASR 
NASA 
HiMAT 

WY 1999 to 
WY 2017 

1/225×1/225 SSiB3 
MODIS and 
Landsat 

SCF, SWE, SD SSiB3_SCF Liu et al., (2021) 

MERRA2 
NASA 
GMAO 

1980 to present 0.625°×0.5° Catchment - 
SCF, SWE, SD, 
T2, Snowfall 

SCF= min (1, SWE/26) a Gelaro et al., (2017) 

ERA5 ECMWF 1979 to present 0.25°×0.25° H-TESSEL - 
SWE, SD, T2, 
Snowfall, RH 

SCF= min (1, (SD)/10) a 
Hersbach et al., 
(2020) 

ERA5L ECMWF 1981 to present 0.1°×0.1° H-TESSEL - 
SCF, SWE, SD, 
T2, Snowfall 

SCF= min (1, (SD)/10) a 
Muñoz-Sabater et al., 
(2021) 

CRAL CMA 1979 to present 0.5°×0.5° Noah - 
SCF, SWE, SD, 
T2, Snowfall 

Noah_SCF Liu et al., (2023) 

JRA55 JMA 1958 to present 0.563°×0.563° SiB 
Station, SSM/I, 
SSMIS 

SWE, SD, T2, 
Snowfall 

SCF= min (1, (SD)/2) a 
Kobayashi et al., 
(2015) 

CFSR 
NOAA 
NCEP 

1979 to present 0.5°×0.5° Noah SNODEP, IMS 
SCF, SWE, SD, 
T2, Snowfall 

Noah_SCF 
Saha et al., (2010); 
Saha et al., (2014) 

GLDAS 
NASA and 
NOAA 

2000 to present 0.25°×0.25° Noah - 
SWE, SD, T2, 
Snowfall 

MM_SCF Rodell et al., (2004) 

a The unit for SWE is kg m-2, and for SD is cm. b ERA5, JRA55, and GLDAS do not provide 

output for the SCF variable directly. In this study, the SCF values for ERA5 and JRA55 were 210 

derived using their respective parameterization methods, as shown in the Table 1. The SCF 

values for GLDAS were derived using MERRA2 parameterization methods. T2 is 2-m air 

temperature. 
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2.1.3 Meteorological dataset 

To investigate the effects of snowfall and temperature biases on SCF bias, we used precipitation 215 

and 2-m air temperature data from the high-resolution near-surface Meteorological Forcing 

Dataset for the Third Pole region (TPMFD; Yang et al., 2023) as the reference data. 

Precipitation and 2-m air temperature in TPMFD were derived by combining a short-term high-

resolution Weather Research and Forecasting (WRF) simulation (Zhou et al., 2021), long-term 

ERA5 data, and in situ observations, all at a resolution of 1/30° for the period spanning 1979 220 

to 2020. Validation conducted by Jiang et al. (2023) demonstrated that the precipitation data 

from TPMFD are unbiased overall and considerably better than other widely used datasets. To 

obtain snowfall data for this study, we applied a dynamic threshold parameterization scheme, 

which considers surface air conditions such as wet bulb temperature, altitude, and relative 

humidity, to convert TPMFD total precipitation to snowfall. This approach has been proven 225 

effective in capturing snowfall variations on the TP through comparisons with station 

observations (Ding et al., 2014) and has been used in many studies (Deng et al., 2017; Luo et 

al., 2020; Yang et al., 2021; Zhu et al., 2021). For detailed calculation methods and further 

information, readers are referred to the work of Ding et al. (2014). We note that TPMFD lacks 

the relative humidity variable necessary for snowfall conversion, while all variables in TPMFD 230 

are assimilated from ERA5 data. Therefore, we utilized ERA5 surface relative humidity as a 

substitute. 

2.2 Study region 

The boundary of the TP used in this study is identified as an isoline of 2,500 m according to the 

Global Multi-resolution Terrain Elevation Data 2010 (Danielson and Gesch, 2011), spanning 235 

from 26°N to 41°N and from 67°E to 105°E (Fig. 1b). The prevailing westerlies and monsoons 

are the primary moisture sources in this region, exerting significant influence on the spatial and 

temporal distribution of snowfall and glacier mass balance (Liu et al., 2021; Yao et al., 2012). 

Specifically, the westerlies dominate winter precipitation, while the Indian and East Asian 

monsoons dominate summer precipitation in the southeast (Yao et al., 2012), resulting in 240 
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diverse snow regimes. We identified nine major river basins within the TP using Hydrological 

Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS; 

Lehner et al., 2008), namely the Amu, Indus, Tarim, Inner Tibetan Plateau (ITP), Brahmaputra, 

Salween, Mekong, Yangtze, and Yellow basins. Due to the differing impacts of winter and 

summer atmospheric forcing, the performance of SCF simulations from reanalysis datasets 245 

varies across these basins. 

2.3 Methods 

2.3.1 Evaluation of SCF accuracy for reanalysis datasets 

In this study, we used time series spanning from WYs 2001–2017, covering periods for which 

all data were available. Before evaluation, all data were regridded to a 0.5°×0.5° grid via 250 

bilinear interpolation for MERRA2, JRA55, and CRAL, and the grid averaging approach for 

HMASR, ERA5, ERA5L, GLDAS, SPIReS, and TPMFD. 

For each 0.5°×0.5° grid cell within the TP, we calculated the climatological SCF over the 

full period and seasonally for SPIReS and eight reanalysis datasets (e.g., Fig. 1a and Fig. S3). 

Absolute bias and correlation (Pearson’s correlation coefficient) were calculated from these 255 

values at both the basin and the TP scales. Spatial distribution and basin-averaged values of the 

climatological SCF, as well as bias maps of the reanalysis datasets compared to SPIReS, are 

presented. Additionally, Taylor diagrams are used to provide additional information regarding 

the RMSE and standard deviation ratio (STDR). The climatological SCF values for each grid 

cell within basin and region were used as input to calculate the Taylor Diagram’s component 260 

metrics (correlation, RMSE, and STDR). The component metrics were summarized by the 

Taylor Skill Score (SS) as follows: 

SS=
4 1+R 4

STDR+ 1 STDR 2 1+R0
4                                                                                   (1) 

where R0 is the maximum correlation attainable. 

The Mann-Kendall (MK; Kendall, 1975; Mann, 1945) test was used to assess the 265 

significance of annual trends. Since the sign (+ or –) may impact the robustness of the trend 

analysis results, we employed the Consistency Index (CI; Zhang et al., 2021) to compare the 
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agreement in SCF annual trend signs between the reanalysis datasets and SPIReS. The CI is 

defined as follows: 

CI=
Ninc+Ndec+Nno

Ntot
                                                                                                      (2) 270 

where Ninc is the number of grid points with a significant increasing trend in both the 

reanalysis dataset and SPIReS (P < 0.05), Ndec is the number of grid points with a significant 

decreasing trend in both datasets, Nno is the number of grid points with a non-significant trend 

in both datasets, and Ntot is the total number of grid points. The higher the CI value, the better 

the performance of the trend simulation. 275 

2.3.2 Analysis of SCF bias sources for meteorological forcings 

Variations in snowfall and temperature are the dominant influences on snow evolution and can 

explain half to two-thirds of the interannual variability in snow cover (Xu et al., 2017). Hence, 

biases in snowfall and temperature within reanalysis datasets are likely the main sources of bias 

in SCF. Here, the analysis of bias sources was primarily based on correlation analysis between 280 

the bias of SCF and those of snowfall and temperature. The absolute biases of snowfall and 

temperature were computed by comparing the reanalysis datasets with TPMFD. Additionally, 

we calculated the correlation between the annual time series of snowfall and temperature biases 

at each TP grid cell and SCF bias to obtain the spatial distribution of correlations as shown in 

Fig. 6. 285 

2.3.3 Analysis of SCF bias sources for parameterization method 

Evaluations have shown that in the TP, with relatively thin and short‐lived snow (Huang et al., 

2023), optimizing the SCF parameterization can significantly reduce the annual SCF bias in 

snow models (Jiang et al., 2020). Orsolini et al. (2019) noted that SCF parameterization differs 

significantly among reanalyses, affecting SCF bias. For the eight reanalysis datasets considered 290 

here, five parameterizations were used to convert SWE or SD into SCF; i.e., MM_SCF, 

ME_SCF, MJ_SCF, SSiB3_SCF, and Noah_SCF (see Section 2.1.2 and Table 1). In order to 

evaluate the impact of the parameterization on SCF simulations, we incorporated three publicly 



 13 

available and easily offline-usable parameterization methods (MM_SCF, ME_SCF, and 

MJ_SCF) separately into each reanalysis dataset. For HMASR, CRAL, and CFSR, which do 295 

not include their parameterization among these three methods, we derived three additional SCF 

datasets. MERRA2, ERA5, ERA5L, JRA55, and GLDAS derive another two SCF datasets. 

2.3.4 Generation of combined optimal datasets 

Mortimer et al. (2020) demonstrated that product accuracy can be enhanced by averaging 

multiple reanalysis datasets, as this allows unrelated errors and deficiencies between them to 300 

offset each other. To investigate whether averaging of multiple datasets can improve SCF 

accuracy over the complex terrain of the TP, we considered all possible combinations of the 

eight reanalysis datasets, totaling 247. The output of each combined dataset was computed as 

the equally weighted average of all reanalysis datasets in the combination (Mudryk et al., 2015). 

Subsequently, we characterized the SCF accuracy of combined datasets in spatial distribution 305 

and annual trends by computing the SS and CI values. 

3. Results 

3.1 Evaluation of spatial and temporal accuracy in SCF 

3.1.1 Spatial variability of SCF climatology and seasonality 

The TP-averaged SCF for HMASR, GLDAS, and CRAL is 0.14, 0.12, and 0.12, respectively, 310 

which align closely with the SPIReS value of 0.13 (Fig. 1b). HMASR (GLDAS and CRAL) 

slightly underestimates (overestimate) in westerlies-dominated basins such as the Amu and 

Indus, and overestimates (underestimate) in monsoon-dominated basins such as the Yellow, 

Yangtze, Mekong, Salween, and Brahmaputra (Fig. 2a). These regional biases average out when 

considering the entire TP, which is reflected in the strong permanence of these datasets over the 315 

TP. Conversely, ERA5, ERA5L, and JRA55 have large positive SCF biases across all basins, 

whereas MERRA2 has a negative bias in all basins. Over the TP as a whole, ERA5 (MERRA2) 

has the largest positive (negative) bias. 
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Figure 1: (a) Spatial distribution of Snow Cover Fraction (SCF) climatological average 320 
for Water Years (WYs) 2001–2017 from SPIReS and eight reanalysis datasets over the 
Tibetan Plateau region. (b) Basin-averaged of SCF climatology from SPIReS (black 
horizontal line) and the eight reanalysis datasets overlain on a map of the TP. ITP = Inner 
Tibetan Plateau. 

All datasets have similar spatial patterns of SCF, with higher values in the western TP and 325 

lower values in the interior (Fig. 1a). However, compared to SPIReS, the magnitude and sign 

of their biases vary spatially (Fig. 2a). This variation is demonstrated by their differing 

correlation, STDR, and RMSE values (Fig. 2b; see Fig. S2 for a clearer version) and hence their 

SS values(Fig. 2c) between the reanalysis datasets and SPIReS. CFSR has the highest SS value 

of 0.83, reflecting its strong correlation in westerlies-dominated basins and variability close to 330 
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that of SPIReS in monsoon-dominated basins (STDR close to 1, e.g., 0.98 for the Indus basin). 

The SS values for GLDAS, CRAL, and HMASR are all above 0.7, benefiting from their high 

correlations similar to CFSR. Consequently, these four datasets have superior SCF spatial 

performance across the TP. In contrast, although ERA5, ERA5L, and JRA55 can adequately 

capture the STDR in monsoon-dominated basins, their large positive biases lead to high RMSE, 335 

resulting in moderate SS values across the TP. MERRA2 has the worst spatial performance, 

with the lowest SS value in all basins and across the TP. This contradicts Orsolini et al. (2019), 

who found MERRA2 to perform well in capturing the SCF and SD characteristics. This 

discrepancy arises because their results depended mainly on the high correlation between 

MERRA2 and the reference dataset, ignoring severe underestimations in SCF values. These 340 

underestimations result in very small self-standard deviations in the STDR calculation, leading 

to the lowest SS value. 

 
Figure 2: (a) Spatial distribution of the SCF climatological bias from the reanalysis 
datasets based on SPIReS over the TP. (b) Taylor diagrams showing the correlation 345 
coefficients (R), Root Mean Square Error (RMSE), and Standard Deviation Ratio (STDR) 
of SCF between reanalysis datasets and SPIReS for each basin, overlain on a map of the 
TP. (c) Taylor Skill Scores (SS) for each basin overlain on a map of the TP. The black line 
is the average of the SS values for all reanalysis datasets in basin. 
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Basins affected primarily by the winter westerlies (e.g., the Amu and Indus basins) have 350 

better spatial performance, with the SS values for all reanalysis datasets within these basins 

exceeding 0.66 (Fig. 2c). In basins influenced by the summer monsoon (e.g., the Yellow, 

Yangtze, Mekong, Salween, and Brahmaputra basins), SCF spatial consistency with SPIReS 

varies. The basin-averaged of SCF climatology is highly biased in the Yellow and Yangtze 

basins for reanalysis datasets (Fig. 1b). Specifically, the basin-averaged SCF values of ERA5, 355 

ERA5L, and JRA55 (MERRA2) are more than 2× larger (lower) than SPIReS. These biases 

result in varied RMSE and STDR among these reanalysis datasets (Fig. 2b) and lower SS values 

(Fig. 2c). However, this phenomenon is less pronounced in the Salween and Brahmaputra 

basins. The Tarim and ITP basins are considered inland basins. In particular, the ITP basin 

shows the poorest SCF spatial performance among basins, with the reanalysis average SS values 360 

only 0.33. 

Figure 3 shows the SCF bias, its probability density distribution, and the SS values for four 

seasons. In general, the different seasons have similar spatial patterns of SCF bias for each 

reanalysis dataset (Fig. 3, first to fourth columns on left). However, there are seasonal variations 

in the bias magnitudes, with larger biases during the accumulation period (winter and spring) 365 

and smaller biases during the ablation period (summer and autumn). The largest bias in winter 

can be several times larger than the lowest bias in summer. This is because higher seasonal 

averages of SCF (Fig. S3) may induce larger seasonal bias. Additionally, correlation and STDR 

(Table S2), and hence SS (Fig. 3, fifth column on left), are better during the accumulation period, 

indicating that winter and spring have better spatial performance for SCF. MERRA2 and CRAL 370 

have the largest seasonal variability in SCF performance (Fig. 3, sixth column on left). 
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Figure 3: The first four columns show the spatial distribution of seasonal SCF 
climatological bias from the reanalysis datasets based on SPIReS over the TP during (left 375 
to right): autumn (September–November: SON), winter (December–February: DJF), 
spring (March–May: MAM), and summer (June–August: JJA). The SS values of seasonal 
SCF climatology are shown in the fifth column. The probability density distribution of 
seasonal SCF climatological bias is shown in the sixth column. The dashed lines in the 
sixth column represent the TP-average SCF bias for each season. 380 

3.1.3 Annual variability and trends in SCF 

The 17 WY time series of reanalysis datasets has spatially consistent overestimates for ERA5L, 

ERA5, and JRA55 and an underestimate for MERRA2 (Fig. 4a). Notably, the fluctuations in 

CFSR around 2010 align with variations in its temperature and snowfall (Fig. S4), likely due to 

inherent discontinuities in the dataset that cause changes in boundary conditions and 385 

subsequently in model output variables (Fujiwara et al., 2017). Additionally, the annual 

variation of TP-averaged SCF has no significant annual trend in SPIReS (Fig. 4b). ERA5L, 

JRA55, and GLDAS have annual trends consistent with SPIReS, showing a slight decline and 

significant correlation, with correlation coefficients above 0.7 (Fig. 4c). Although HMASR and 



 18 

ERA5 have a slight increasing trend, they remain significantly correlated with SPIReS. 390 

Conversely, the correlation of MERRA2, CFSR, and GLDAS with SPIReS did not pass the 

statistical significance test. 

 
Figure 4: (a) Time series of the annual SCF from SPIReS and eight reanalysis datasets 
over the TP. (b) The annual trends of SCF from SPIReS and eight reanalysis datasets over 395 
the TP. (c) The correlation of SCF annual trends in reanalysis datasets with SPIReS over 
the TP. Slashes in (b)and (c)indicate that the annual trends and correlation exceeds the 
95% confidence level. 

We further evaluated the spatial consistency of annual trends in reanalysis datasets with 

SPIReS (Fig. 5). SPIReS have generally decreased SCF over the westerlies-dominated and the 400 

eastern and southeastern monsoon-dominated basins, but increased SCF in the northeastern ITP, 

the central Brahmaputra, and the northern Yangtze basins. However, these changes are 

statistically significant in only about 17% of the TP (Fig. 5a). ERA5L, JRA55, and ERA5 have 

greater variability in SCF annual trends, with significant decreases in the Tarim basin. 

Nevertheless, they still have relatively high CI values of 0.62, 0.58, and 0.51, respectively (Fig. 405 

5b). This indicates that ERA5L, JRA55, and ERA5 can capture more than half of the SCF 

annual trend changes over the TP, having the most similar spatial pattern of annual trends 

compared to SPIReS. In contrast, CFSR has highly uneven SCF annual trends with intermixed 

increases and decreases across grid cells, resulting in poorer trend performance with a CI value 

of only 0.39. MERRA2 exhibits significant increasing trends in the Indus basin but fails to 410 
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capture the correct decreasing trend in the monsoon-dominated basins. Consequently, it has the 

lowest CI value of 0.38, with CI values below 0.4 in most basins (Fig. S6). GLDAS has a 

significant decrease in SCF over more than 60% of the TP, notably differing from SPIReS. 

Although the widespread significant trends allow GLDAS to capture the most correct 

significant increase and decrease trends, reaching 16.42% (as indicated by the red and yellow 415 

bars in Fig. 5b), it also introduces a major drawback by misjudging too many insignificant SCF 

fluctuations. Therefore, GLDAS has the lowest CI value, similar to MERRA2. Combination of 

SCF time series and spatial consistency of SCF annual trend, ERA5L, JRA55, and ERA5 have 

better temporal performance, while CFSR, MERRA2, and GLDAS perform worse. 

 420 
Figure 5: (a) Spatial distribution of the SCF annual trend from SPIReS and eight 
reanalysis datasets over the TP for the period WY 2001 to WY 2017. (b) The Consistency 
Index (CI) of SCF trends in reanalysis datasets with SPIReS over the TP. 
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3.2 Bias attribution of SCF 

3.2.1 Meteorological forcing effects on SCF bias 425 

The evolution of SCF can be determined from the balance between snow mass gain via snowfall 

and snow depletion via snowmelt, sublimation, and wind drifting (Liu et al., 2022). Both 

snowfall and snowmelt are strongly dependent on temperature (Serquet et al., 2011; Vorkauf et 

al., 2021). Hence, the accuracy of snowfall and temperature forcings impacts the accuracy of 

snow-related variables (Zhang et al., 2015). We investigated the impact of meteorological 430 

factors on SCF bias by examining the performance with respect to snowfall and temperature in 

each reanalysis dataset. 

In the climatological spatial distribution, ERA5, ERA5L, JRA55, and CFSR overestimate 

snowfall in both the westerlies-dominated and monsoon-dominated basins, particularly in the 

Indus and Brahmaputra basins (Fig. 6, first column on left). Conversely, these reanalysis 435 

datasets consistently underestimate temperatures in these regions (Fig. 6, third column on left). 

Overestimated snowfall contributes to heightened snow accumulation, while underestimated 

temperatures can impede the snowmelt process, leading to an overestimation of snow cover 

(Liu et al., 2022). The combination of overestimated snowfall and underestimated temperatures 

contributes to the positive SCF bias observed in ERA5, ERA5L, JRA55, and CFSR, evidenced 440 

by the significant correlations between snowfall and temperature biases and SCF bias (Fig. 6, 

second and fourth columns on the left). Additionally, the positive SCF and snowfall biases, as 

well as negative temperature bias for these reanalysis datasets persist across four seasons, 

reflecting that the uncertainties in snowfall and temperature data affect the SCF bias year-round 

(Fig. 7). Compared to snowfall, temperature bias have higher correlations with SCF bias and 445 

pass significance tests over broader areas (Fig. 6, second and fourth columns on the left). This 

indicates that physical processes influenced by temperature bias may have a more pronounced 

and widespread responsibility with respect to SCF bias. The temperature biases in ERA5, 

ERA5L, JRA55, and CFSR also appear to have a greater impact on the seasonal evolution of 

SCF biases, as evidenced by the higher correlation values (Fig. 7). For MERRA2, CRAL and 450 
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GLDAS, the SCF climatology has large biases in the westerlies-dominated basins, as well as in 

the Tarim and Brahmaputra basins (Fig. 2a), where a significant correlation exists between 

snowfall and temperature biases and SCF bias (Fig. 6, second and fourth columns on the left). 

This suggests that in these regions, both snowfall and temperature play equally important roles 

in influencing the SCF biases in MERRA2, CRAL and GLDAS. When considering the TP as a 455 

whole, the SCF biases across four seasons for these three datasets align with their well-

simulated snowfall (Fig. 7). Therefore, snowfall is likely the primary driver of the seasonal SCF 

bias. 

 
Figure 6: The columns show (from left to right): spatial distribution of the snowfall 460 
climatological bias for the reanalysis datasets based on TPMFD over the TP; spatial 
distribution of the R value between snowfall bias and SCF bias; spatial distribution of the 
temperature climatological bias for the reanalysis datasets based on TPMFD over the TP; 
and spatial distribution of R values between temperature bias and SCF bias. Black dots 
in the second and fourth columns indicate that the correlation exceeds the 95% confidence 465 
level. HMASR and MERRA2 share the same meteorological forcing data. 
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Figure 7: Temporal variations of SCF (black), snowfall (light pink), and temperature 
(purple) bias averaged at five-day intervals from all reanalysis datasets. R in light pink 
(purple) represents the correlation coefficient between snowfall (temperature) bias and 470 
SCF bias. The stars indicate the correlation exceeds the 95% confidence level. HMASR 
and MERRA2 share the same meteorological forcing data. 

The snowfall and temperature annual trends in most datasets are significantly correlated 

with their own SCF annual trends (Table S3), indicating that the ability of datasets to capture 

meteorological factors annual trends influences the simulation of SCF annual trends. ERA5L, 475 

JRA55, and ERA5 have correct decreasing snowfall trends and increasing temperature trends 

in the southeastern monsoon-dominated basins (Fig. 8). Their CI values for meteorological 

factors trends all exceed 0.5, showing better spatial consistency with TPMFD (Table 2), 

resulting in better SCF trend simulations. In contrast, MERRA2 has an incorrect significant 

increase in snowfall over a broad region, except for the Tarim basin (Fig. 8), resulting in a 480 
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snowfall CI value of only 0.34 (Table 2) and poorer SCF trend simulations. The highly uneven 

spatial distribution of annual snowfall and temperature trends in CFSR, as well as the 

widespread significant trends in GLDAS (with temperature trends significantly increasing in 

over 90% of the TP), mirror their respective SCF annual trend patterns (Fig. 8). Consequently, 

CFSR and GLDAS have the lowest CI values for SCF trends (Fig. 5b). 485 

 
Figure 8: Spatial distribution of the snowfall annual trend from the reanalysis datasets 
over the TP for the period WY 2001 to WY 2017 (left), and the temperature annual trend 
(right). Black dots indicate that the trend exceeds the 95% confidence level. HMASR and 
MERRA2 share the same meteorological forcing data. 490 
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Table 2: CI value for snowfall and temperature from eight reanalysis datasets calculated 
by comparing with TPMFD annual trends from WY 2001 to WY 2017. 

 CI values for snowfall CI values for temperature 

MERRA2 0.34 0.58 

ERA5 0.54 0.73 

ERA5L 0.55 0.59 

JRA55 0.54 0.51 

CFSR 0.37 0.29 

CRAL 0.53 0.30 

GLDAS 0.21 0.35 

3.2.2 Parameterization approach effects on SCF bias 

Different SCF parameterizations influence the instability inherent in the snow models (Dutra et 

al., 2011; Jiang et al., 2020). We considered the impact of different parameterizations on the 495 

spatial distribution and annual trend simulation of SCF for each reanalysis dataset (Fig. 9). The 

parameterization process primarily affects the SCF values, while its impact on the phase of 

fluctuations in SCF time series is limited, as evidenced by the small variations in CI values 

among the reanalysis datasets (Fig. 9b). Therefore, the focus is on the spatial performance of 

the parameterization-improved SCF simulation, reflecting by the spatial distribution of SCF 500 

bias (Fig. S7) and SS values (Fig. 9a). 

The MM_SCF method improves the SCF spatial simulation in ERA5, ERA5L, JRA55, 

HMASR, and CFSR, reducing biases and increasing SS values, demonstrating its broad 

applicability. Meanwhile, the MM_SCF method is applicable in most of the basins (Fig. S8). 

The ME_SCF method also slightly enhances the spatial performance of some dataset (Fig. 9a). 505 

The Noah_SCF method, which accounts for the complex influence of underlying surface 

characteristics on SCF, has spatial performance comparable to MM_SCF and ME_SCF. This 

indicates that surface characteristics have a limited impact on spatial SCF accuracy. In contrast 

to the parameterization above, the aggressive MJ_SCF approach with a 2-cm SD threshold to 

define the complete SCF (Table 1), reduces the spatial performance of all datasets, particularly 510 

in JRA55, which uses MJ_SCF as its built-in method. Additionally, SCF obtained using the 
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MJ_SCF method for all reanalysis datasets have large positive biases (Fig. S7), further 

reflecting its inapplicability. Orsolini et al. (2019) found that JRA55 performs well in SD 

simulation due to assimilating SD data from Chinese ground observation stations. When 

adopting a more appropriate method to transform SD into SCF, the bias of JRA55 significantly 515 

decreased, and the SS value increases from 0.57 to 0.81, comparable to the best-performing 

CFSR (Fig. 9a). This apparent improvement confirms the importance of parameterization to 

JRA55 SCF accuracy. Apart from JRA55, optimizing parameterization does not significantly 

alter the spatial performance ranking of the eight reanalysis datasets. For example, the SS values 

for MERRA2, ERA5, and ERA5L using the optimal MM_SCF method are still lower than those 520 

for CFSR using the poorest MJ_SCF method. This indirectly highlights the primary role of 

snowfall and temperature forcing inputs with respect to SCF simulations. 

 
Figure 9: SS (a) and CI (b) values of SCF for all reanalysis datasets calculated offline using 
the MM_SCF, MJ_SCF, and ME_SCF parameterization methods. The green bars 525 
represent the built-in parameterization methods for HMASR, CRAL, and CFSR. 
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3.3 Combination of reanalysis dataset for SCF optimization 

Combining datasets can improve SCF accuracy, as evidenced by the SS and CI values of all 

combined datasets being higher than those of the single best-performing dataset (Fig. 10). 530 

However, SCF accuracy does not monotonically improve with the number of combined datasets. 

Spatially, the SS value improves when transitioning from CFSR alone to a combination with 

GLDAS and HMASR, but declines when more datasets are combined (Fig. 10a). This appears 

reasonable because CFSR, GLDAS, and HMASR have excellent accuracy in simulating SCF 

spatial variability, but adding poorly performing datasets (e.g., MERRA2 and JRA55) 535 

introduces more bias, resulting in a suboptimal outcome. Consequently, we concluded that a 

combination of CFSR, GLDAS, and HMASR is optimal for spatial SCF studies over the TP. 

Temporally, the highest CI value is achieved with the combination of more datasets, namely 

ERA5L, JRA55, HMASR, ERA5, GLDAS, and CRAL, which is different from the SS results 

(Fig. 10b). This is because reanalysis datasets generally have moderate SCF annual trend 540 

performance. Combining more datasets can help mitigate the shortcomings of individual 

datasets and improve the overall annual trend accuracy. In contrast to the optimal combination, 

the worst combination shows a monotonically and significantly improving performance for 

both spatial distribution and annual trends with increased number of combined datasets (Fig. 

10c and 10d).  545 
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Figure 10: (a) SS for optimal reanalysis dataset combinations across varying numbers of 
datasets. (b) As in (a) but for CI. (c) and (d) As in (a) and (b), but for the worst 
combinations. H: HMASR; M: MERRA2; E: ERA5; EL: ERA5L; J: JRA55; C: CFSR; 550 
CL: CRAL; G: GLDAS. 

4 Discussion 

4.1 Effects of data assimilation, resolution, and LSM 

Data assimilation is an effective approach for reducing snow model uncertainties and enhancing 

the capability to monitor seasonal snow changes (Andreadis and Lettenmaier, 2006; Sun et al., 555 

2004). HMASR directly assimilates SCF data obtained from MODIS and Landsat satellites (Liu 

et al., 2021), which are processed using a spectral unmixing algorithm that has been found more 

accurate than the original band ratio methods (Stillinger et al., 2023). Under the same 

meteorological input fields as MERRA2, the data assimilation in HMASR corrects the 

widespread SCF underestimation and erroneous trends in the southwestern TP exhibited by 560 

MERRA2, enhancing the spatiotemporal simulation performance of HMASR. In contrast, 

lowest SS and CI values in SCF spatiotemporal simulations for MERRA2 may be partly related 

to its lack of SCF data assimilation. JRA55 and CFSR assimilate SD data and show good 
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simulation performance in SD and SWE (Bian et al., 2019; Orsolini et al., 2019). However, the 

process of converting SD to SCF in JRA55 introduces additional errors, limiting the impact of 565 

SD assimilation on SCF spatial simulation accuracy. In contrast, CFSR employs a more 

reasonable SCF parameterization, resulting in significantly higher spatial simulation 

performance compared to JRA55. This indirectly highlights the influence of parameterization 

methods on SCF simulation in JRA55. 

The spatial resolution of reanalysis datasets and the choice of LSM may also affect the 570 

accuracy of SCF simulations. Lei et al. (2023) pointed out that reanalysis datasets characterized 

by finer spatial resolutions exhibit better consistency with in situ measurements of SD over the 

TP; e.g., ERA5L outperforms ERA5 and MERRA2. Sun et al. (2023) evaluated the ability of 

different LSMs to simulate SD in China based on station observation data and found that the 

community Noah LSM with multi-parameterization options (Noah-MP model) provided the 575 

best overall performance. In our study, the fine spatial resolution version of GLDAS generates 

better SCF simulations than the coarse spatial resolution version for both spatial distribution 

and annual trend (Fig. S1). Additionally, compared to the CLSM and VIC models, GLDAS 

simulations using the Noah model show better SCF performance at a 1°×1° resolution. This 

indicates the non-negligible impact of model resolution and LSM choice on SCF simulation 580 

accuracy. However, SCF products with different spatial resolutions and LSMs are available 

only in GLDAS. Therefore, this study cannot conclusively state that the impact of spatial 

resolution and LSM on SCF accuracy is universal. 

4.2 Limitations 

This study focused primarily on the impact of snowfall and temperature factors in snow models, 585 

as well as the choice of SCF parameterization, on the performance of reanalysis datasets in 

simulating SCF over the TP. However, other model parameters related to precipitation and 

temperature, such as the precipitation gradient used to describe precipitation variations at 

different elevations, and the critical temperature used to distinguish rain from snow, are equally 

vital to snow simulations (Zhang et al., 2015). Furthermore, snow, being a suspended substance, 590 
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is susceptible to sublimation. It is estimated that blowing snow sublimation accounts for ~30% 

of global surface sublimation (Déry and Yau, 2002). The TP is perpetually influenced by the 

westerly jet stream, and processes such as blowing snow sublimation may be significant under 

windy and arid conditions. However, most LSMs used in reanalysis datasets do not consider 

blowing snow (Mortimer et al., 2020), and deficiencies in their model structures may also affect 595 

the accuracy of SCF simulations. 

5. Conclusions 

This study evaluates the ability and attributed the biases of eight widely used reanalysis datasets 

to simulate spatiotemporal variations in SCF over the TP based on SPIReS covering the period 

WYs 2001–2017. The results indicate that CRAL, GLDAS, and HMASR agree best with 600 

SPIReS in TP-averaged SCF and SS values all exceeding 0.7. CFSR, despite overestimating 

SCF, has the highest SS value due to good correlation with SPIReS and a high STDR value. 

These four datasets perform well spatially. In contrast, ERA5, ERA5L, and JRA55 generally 

overestimate SCF, while MERRA2 consistently underestimates it, leading to poor spatial 

performance. Overall, the reanalysis datasets exhibit moderate accuracy in annual trend 605 

analysis. ERA5L, JRA55, and ERA5 have relatively good temporal performance, with 

significant correlation in trend time series and better CI values in trend spatial consistency. 

GLDAS and CFSR perform poorly in trend representation. While MERRA2 has the worst 

performance in both spatial distribution and annual trend. 

Snowfall and temperature significantly impact SCF bias. ERA5, ERA5L, and JRA55 610 

overestimate SCF due to overestimated snowfall and underestimated temperature. Temperature-

related physical processes have a more significant impact on SCF bias and its seasonal 

variations in these datasets. The poor trend performance in GLDAS and CFSR is due to 

inconsistent between temperature and snowfall trends compared to TPMFD trends. 

Meteorological factor errors impact the poor spatiotemporal performance of MERRA2. 615 

Additionally, the overestimation of SCF in JRA55 is also linked to aggressive parameterization. 

Except for JRA55, parameterization optimization improves SCF but does not significantly alter 
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the spatial performance ranking of the eight reanalysis datasets. To improve SCF accuracy, 

combining datasets is an effective method. A three-member combined of CFSR, GLDAS, and 

HMASR is optimal for the study of SCF spatial scales, while the combination of ERA5L, 620 

JRA55, HMASR, ERA5, GLDAS, and CRAL is optimal for the study of annual trends. 

These findings are crucial for selecting the most suitable reanalysis SCF datasets and 

gaining deeper insights into SCF variations and their controlling mechanisms on the TP. 

Reducing uncertainties within reanalysis SCF datasets stands as a pivotal stride toward refining 

climate models and prediction systems. Considering the significant impact of precipitation and 625 

temperature bias, acquiring more precise meteorological forcing data is essential to further 

enhance the accuracy of reanalysis SCF simulations. Simultaneously, selecting more 

appropriate parameterization methods specific to reanalysis data models will contribute to 

improving dataset reliability. Optimizing simulations of snow cover on the TP will provide 

critical support for future climate change research and response strategies. 630 
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