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Abstract. The extensive snow cover across the Tibetan Plateau (TP) has a major influence on 

the climate and water supply for over one billion downstream inhabitants. However, an 

adequate evaluation of Snow Cover Fraction (SCF) variability over the TP simulated by 

multiple reanalysis datasets has yet to be undertaken. In this study, we used the Snow Property 15 

Inversion from Remote Sensing (SPIReS) SCF dataset from the Water Years (WYs) 2001–2017 

to evaluate the capabilities of eight reanalysis datasets (HMASR, MERRA2, ERA5, ERA5L, 

JRA55, CFSR, CRAL, and GLDAS) in simulating the spatial and temporal variability of SCF 

in the TP. CFSR, GLDAS, CRAL, and The results reveal that HMASR generated are the 

bestwell in simulating the SCF climatological spatial pattern simulationof climatological SCF 20 

compared to SPIReS, with lower the least bias and , the higher est correlation coefficient, and 

the highest Taylor Skill Score (SS) value. GLDAS and CFSR also performed well in simulating 

SCF spatial distribution. In contrast, ERA5L,, ERA5, and JRA55, and ERA5 showed has 

relatively good performance in terms of SCF annual trends among eight reanalysis datasets. 

The biases in SCF simulations across reanalysis datasets are influenced by a combination of 25 

meteorological forcings, including snowfall and temperature, as well as the SCF 

parameterization methods. However, the primary influencing factors vary among the reanalysis 

datasets. Snow data assimilation and finer resolution could potentially improve SCF simulation 

accuracy to some extent. Additionally, averaging multiple reanalysis datasets can enhance the 

spatiotemporal accuracy of SCF simulations, but this enhancement effect does not consistently 30 

increase with the number of reanalysis datasets used.  
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1 Introduction 

Widespread snow cover on the Tibetan Plateau (TP), with its high albedo and low thermal 

conductivity, plays a crucial role in the surface energy balance (Zhang, 2005) and affects the 

climate both locally (Zhang et al., 2022) and, across Asia, and globally (Lyu et al., 2018; Ma et 

al., 2017). Furthermore, in its role as the “Asian water tower” (Kitoh and Arakawa, 2016; Qiu, 40 

2008; Xu et al., 2008), the snow that accumulates on the TP during the cold season is an essential 

freshwater resource for over a billion people during the warm season, supplying their domestic, 

agricultural, and industrial water needs (Immerzeel et al., 2010). In the context of climate 

change, the snow cover over the TP is an extremely sensitive element to warming (Yao et al., 

2015, 2019; You et al., 2020b). Therefore, the accurate and reliable representation of snow cover 45 

over the TP is crucial to regional climate and ecosystem studies. 

Comprehensive ground-based measurements face challenges due to Ground-based 

measurements are the most accurate observations with respect to snow cover (Ma et al., 2022). 

However, tthe complex terrain and harsh weather conditions on the TP present challenges to 

comprehensive monitoring (Yang et al., 2019), leading to issues of spatial representativeness. 50 

In contrast, optical satellite observations provide global-scale snow cover data and offer crucial 

support for snow research. For example, NASA’s Moderate Resolution Imaging 

Spectroradiometer (MODIS) has been providing moderate-resolution global daily snow cover 

fraction (SCF) data since 2000 (Hall et al., 2002). The Snow Property Inversion from Remote 

Sensing (SPIReS) then uses a more advanced spectral unmixing technique that provides 55 

improvements to SCF estimates for the period Water Years (WYs) 2000–2021 (Bair et al., 2021). 

However, the more precise satellite products and remote sensing data using more advanced 

methods have relatively short time spans from 2000 to the present, limiting their role in long-

term climate analysis.However, the time period covered by satellite and remote sensing data is 

relatively short, which limits their utility for long-term climate analysis. 60 

Reanalysis methods based on observations and mathematical models (Fujiwara et al., 2017) 

provide a critical avenue for obtaining long-term snow informationdata. These techniques use 

data assimilation to integrate historical environmental observations with short-term weather 
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forecasts, yielding optimal estimates of global or regional weather and climate states (Lei et al., 

2023). In recent decades, the major meteorological agencies around the world have generated 65 

atmospheric and land reanalysis products at varying temporal and spatial resolutions (Fujiwara 

et al., 2017). Reanalysis datasets have become indispensable sources of data when it comes to 

studying processes related to snow variability, as well as their impacts and responses to climate 

change (Lin and Wu, 2011; Thackeray et al., 2016; Wegmann et al., 2017). For example, the 

reanalysis snow dataset (e.g., ERA40 and NCEP-NCAR) has revealed that anomalous snow 70 

cover in prior autumn facilitates a warm-north, cold-south winter over North America by 

influencing the teleconnection response in the Pacific-North American (PNA) region (Lin and 

Wu, 2011). Reanalysis datasets (e.g., MERRA, ERA-Interim, and GLDAS-2) have been 

integrated into the Canadian Sea Ice and Snow Evolution (CanSISE) dataset to analyze the 

impacts of global warming on snow changes on the TP (You et al., 2020a). 75 

A comprehensive evaluation of multiple snow reanalysis datasets based on referenced 

observation data is of paramount importance before launching related scientific research. 

Previous researches have focused more on the accuracy of has devoted considerable attention 

to evaluating Snow Depth (SD) and Snow Water Equivalent (SWE) in reanalysis datasets using 

various metrics fromacross different regions (Bian et al., 2019; Li et al., 2022; Wang and Zeng, 80 

2012; Zhang et al., 2021). However, only Orsolini et al. (2019) and Li et al. (2022) a few studies 

have assessed the SCF performance of reanalysis datasets over the High Mountain Asia TP 

based on SCF data from the Interactive Multisensor Snow and Ice Mapping System (IMS; 

Helfrich et al., 2007) and ground observations (Li et al., 2022; Orsolini et al., 2019). These 

Their studies considered the SCF accuracy of have provided comparisons of the SCF spatial 85 

patterns among a limited number of reanalysis datasets, and they and lacked multidimensional 

evaluation analysis that considers aspects such as regional variations and annual trends (Li et 

al., 2022; Orsolini et al., 2019), as well as an in-depth analysis of the impact of parameterization 

on SCF bias. In addition, the IMS dataset, which uses microwave remote sensing technology, 

is challenging for detecting shallow or wet snow that may lead to increased uncertainty in SCF 90 

detection (Yu et al., 2013). The discussion by Li et al. (2022) on the simulation errors of SCF 
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in reanalysis datasets appears somewhat lacking. Therefore, prior evaluations of reanalysis SCF 

datasets are still insufficient. 

The various reanalysis snow datasets have unique spatiotemporal characteristics (Mudryk 

et al., 2015). The differences in snow characteristics originate not only from the use of different 95 

Land Surface Models (LSMs), but also from the meteorological forcing data and 

parameterization methodspost-optimization via snow data assimilation. De Rosnay et al. (2014) 

indicated that the accuracy of snow simulations is constrained largely by uncertainties 

associated with some of the key meteorological inputs, including precipitation and temperature 

(Cao et al., 2020; Zhang et al., 2015), under regional climate conditions and elevation factors 100 

(Brown and Mote, 2009; Hernández-Henríquez et al., 2015). Therefore, uncertainties associated 

with precipitation and temperature data are likely to be the primary sources of bias within the 

reanalysis SCF datasets. Moreover, Jiang et al. (2020) emphasized that optimizing the 

parameterization methods used to convert SD or SWE to SCF for SCF calculation would reduce 

the uncertainties associated with snow modeling, which would further reduce biases in land 105 

surface albedo simulations, particularly in high-altitude regions. The reanalysis datasets use 

different SCF parameterization methods, with a 100% SCF corresponding to an SD that ranges 

from 2 to 26 cm (Orsolini et al., 2019). The selection of different SCF parameterizations for the 

reanalysis datasets may lead to varying degrees bias of SCF. On the other hand, data 

assimilation represents an effective approach to reducing the uncertainties in snow models and 110 

enhancing the ability to monitor seasonal snow changes (Andreadis and Lettenmaier, 2006; Sun 

et al., 2004). Brown et al. (2003) used optimal interpolation (OI) techniques to assimilate SD 

observations, resulting in gridded monthly SD and SWE datasets that were better aligned with 

in situ and satellite data across North America. 

For this study, we conducted an in-depth evaluation of SCF simulations derived from eight 115 

atmospheric and land assimilation reanalysis datasets over the period Water Years (WYs) 2001–

2017, using SPIReS SCF dataset data as a reference. The accuracy of SCF was assessed 

multidimensionally by examining the spatial characteristics, seasonal variations, and annual 

trends across the whole TP and its nine basins. Additionally, we aimed to assess the influence 



 6 

of meteorological forcing factors (snowfall and temperature), and the SCF parameterization 120 

methods, and snow assimilation on the SCF biases associated with the various reanalysis 

datasets. On this basis, we attempted to develop an optimal combination of reanalysis SCF 

datasets and provide a useful guide for the research community regarding climatic and 

cryospheric changes over the TP. 

2 Data and methods 125 

2.1 Data 

2.1.1 Remote sensing data 

For this study, we utilized the SPIReS SCF dataset data (Bair et al., 2021) as the reference SCF 

data. It is derived from Landsat 8 Operational Land Imager (OLI) and MODIS data using a 

spectral unmixing methodology at a 4 km resolution for the period spanning WY 2000 to WY 130 

2021 (e.g., WY 2000 refers to October 1, 1999, to September 30, 2000). The SCF calculation 

in SPIReS relies on two endmembers (i.e., snow and snow-free) along with an ideal shade 

component, effectively simplifying the calculation process while maintaining high accuracy. 

SPIReS reduces the effects of cloud noise through interpolation and smoothing to provide more 

accurate SCF data (Bair et al., 2021; Dozier et al., 2008). In a comprehensive evaluation 135 

conducted by Stillinger et al. (2023) utilizing airborne lidar datasets for subcanopy snow 

mapping performance over mountain areas in the western United States, spectral unmixing-

derived data (including SPIReS and MODIS Snow-Covered Area and Grain Size, abbreviated 

as MODSCAG) exhibited lower bias and Root Mean Square Error (RMSE) compared to data 

derived from band ratio methods and spectral mixture methods. Moreover, unlike MODSCAG, 140 

SPIReS incorporates the influence of light-absorbing particles on snow, leading to more 

accurate SCF data. 

2.1.2 Reanalysis datasets 

We examined eight widely used reanalysis datasets obtained from various meteorological 
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organizations, with details listed in Table 1. Meteorological forcing fields are used to drive the 145 

LSMs, and parameterization methods are used to calculate the daily SCF data. However, tThe 

assimilation of snow data varied among the datasets. 

The High Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021) is a snowpack-

specific reanalysis dataset produced by NASA High Mountain Asia Team (HiMAT). HMASR 

uses the Simplified Simple Biosphere model, version 3 (SSiB3; Sun and Xue, 2001; Xue et al., 150 

2003) as the LSM to generate the initial snowpack mass for WYs 2000–2017 based on 

meteorological inputs from MERRA2 and physiographic characteristics. The model-derived 

SCF predictions are then constrained by integrating spectral unmixing algorithm derived SCF 

data from the MODIS and Landsat satellites products (Painter et al., 2009) via data assimilation. 

The parameterization method used in HMASR (abbreviated as SSiB3_SCF in Table 1) has not 155 

been publicly disclosed. 

The Modern-Era Retrospective analysis for Research and Applications, version 2 

(MERRA2; Gelaro et al., 2017) dataset, developed by NASA’s Global Modeling and 

Assimilation Office (GMAO), provides land surface state estimates including SCF via the 

Catchment LSM (CLSM; Koster et al., 2000). The surface-forced precipitation is a combination 160 

of the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center 

(CPC) unified gauge-based analysis of global daily precipitation (CPCU; Xie et al., 2007) 

product and the precipitation generated by the atmospheric general circulation model within the 

MERRA2 system. The generated precipitation is also adjusted using a precipitation correction 

algorithm (Reichle et al., 2017). However, it is important to note that MERRA2 does not include 165 

snow data assimilation. The parameterization scheme in MERRA2 considers 100% SCF to 

occur when the SWE reaches a threshold of 26 kg m–2 (abbreviated as MM_SCF in Table 1; 

Orsolini et al., 2019; Reichle et al., 2017). 

The ECMWF Reanalysis version 5 (ERA5; Hersbach et al., 2020), produced and published 

by the European Centre for Medium-Range Weather Forecasts (ECMWF), uses the Tiled 170 

ECMWF Scheme for Surface Exchanges over Land (HTESSEL) model to simulate various 

land surface variables including SCF. The precipitation forcing in ERA5 is adjusted using 
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Global Precipitation Climatology Project (GPCP; Adler et al., 2003) data. ERA5 assimilates in 

situ SD observations and binary SCF data from IMS only below 1500 m, so that snow 

assimilation does not apply to the TP region (Bian et al., 2019). Additionally, a refined dataset 175 

known as ERA5-Land (abbreviated as ERAL; Muñoz-Sabater et al., 2021) has been derived 

from ERA5 via the offline rerunning of the land portion of the model at a higher spatial 

resolution. ERA5L provides solely land surface parameters and is based on the same forcing 

and LSM as ERA5. Both datasets have a 10-cm SD threshold to identify full SCF (abbreviated 

as ME_SCF in Table 1; ECMWF, 2018; Orsolini et al., 2019). ERA5 does not directly output 180 

the SCF variable. The SCF values for ERA5 used in this study was calculated using ME_SCF 

method. 

The Japanese 55-year Reanalysis (JRA55; Kobayashi et al., 2015), developed by the Japan 

Meteorological Agency (JMA), generates the land surface analysis field using an offline version 

of the Simple Biosphere (SIB) model (Sato et al., 1989; Sellers et al., 1986). The precipitation 185 

forcing is corrected using precipitable water retrieved from the Special Sensor 

Microwave/Imager (SSM/I) brightness temperature (Onogi et al., 2007). JRA55 incorporates 

daily SD data from the SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS) 

using a univariate two-dimensional optimal interpolation (OI) OI approach. In addition, it 

assimilates surface synoptic observations (SYNOP) reports and digitizes China’s daily SD data 190 

from 1971 to 2006 (Onogi et al., 2007). The detection of full SCF in JRA55 is based on a 2-cm 

SD threshold (abbreviated as MJ_SCF in Table 1; Orsolini et al., 2019). Similar to ERA5, the 

SCF in JRA55 was also calculated rather than provided directly by the product. 

The Climate Forecast System Reanalysis (CFSR; Saha et al., 2010), developed by the 

National Center for Environmental Prediction (NCEP) under NOAA, is a weakly coupled 195 

global reanalysis system. The land surface analysis utilizes the Noah model (Meng et al., 2012). 

Two observed global precipitation analyses, namely the CPC Merged Analysis of Precipitation 

(CMAP; Xie and Arkin, 1997) and the CPCU, are used as alternative forcings for precipitation. 

In terms of snow analysis, CFSR assimilates IMS and the Global Snow Depth Model 

(SNODEP). On 1 January 2011, CFSR transitioned to a newer version of the NCEP data 200 
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assimilation system called CFSv2 (Saha et al., 2014). Despite differences in horizontal 

resolution and minor changes to the physical parameterization, CFSv2 is considered a 

continuation of CFSR in most cases (Fujiwara et al., 2017). The SCF parameterization method 

in CFSR is related to the surface characteristics, using varying SD thresholds to identify the full 

SCF depending on the underlying surface type (abbreviated as Noah_SCF in Table 1; Ek et al., 205 

2003). 

The Global Land Data Assimilation System version 2.1 (GLDAS-2.1; Rodell et al., 2004) 

is a global land data assimilation product developed jointly by NASA and NOAA. It uses the 

global meteorological forcing dataset from Princeton University (Sheffield et al., 2006) and the 

GPCP V1.3 Daily Analysis precipitation fields (Adler et al., 2003; Huffman et al., 2001) to 210 

drive three distinct LSMs: the CLSM model, the Noah model, and the Variable Infiltration 

Capacity (VIC) model. As a result, four datasets are generated (Table S1). Notably, the full 

series datasets within GLDAS-2.1 do not assimilate snow observations. Furthermore, owing to 

the unavailability of SCF variables in these datasets, this study derived different SCF values 

using three parameterization methods (MM_SCF, ME_SCF and MJ_SCF). Finally, the 0.25° × 215 

0.25° GLDAS–Noah product using the MM_SCF approach was selected as a representative of 

GLDAS due to its better SCF simulation (Fig. S1). 

China’s First Generation Global Atmospheric and Land Reanalysis (CRA-40; Liu et al., 

2023) is produced by the China Meteorological Administration (CMA). The matched land 

surface reanalysis datasets (CRA-40/Land, abbreviated as CRAL) are simultaneously generated 220 

offline based on an updated version of the Noah model and atmospheric driving factors from 

CRA-40. In CRAL, precipitation meteorological forcing is derived from a similar combination 

of data sources as CFSR (Liang et al., 2020). However, CRAL does not assimilate other 

observational data in the LSM. Instead, data from over 2,400 CMA surface weather 

observatories indirectly influence the land surface product through conventional meteorological 225 

forcing derived from atmospheric reanalysis (Liang et al., 2020). The SCF parameterization 

method in CRAL is the same as that in CFSR. 
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Table 1: Characteristics of the reanalysis datasets used in this study. 

Reanalysis 
dataset 

Agency 
Centre 

Temporal 
coverage 

Resolution 
Land 
Model 

Snow data 
assimilation 

Variables used in 
analysis b 

SCF parameterization 
method used in this 
study 

Reference dataset 

HMASR 
NASA 
HIMATHi
MAT 

WY 1999 to 
WY 2017 

1/225×1/225 SSiB3 
MODIS and 
Landsat 

SCF, SWE, SD SSiB3_SCF Liu et al., (2021) 

MERRA2 
NASA 
GMAO 

1980 to present 0.625°×0.5° Catchment - 
SCF, SWE, SD, 
T2, Snowfall 

SCF= min (1, SWE/26) a Gelaro et al., (2017) 

ERA5 ECMWF 1979 to present 0.25°×0.25° H-TESSEL - 
SWE, SD, T2, 
Snowfall, RH 

SCF= min (1, (SD)/10) a 
Hersbach et al., 
(2020) 

ERA5L ECMWF 1981 to present 0.1°×0.1° H-TESSEL - 
SCF, SWE, SD, 
T2, Snowfall 

SCF= min (1, (SD)/10) a 
Muñoz-Sabater et al., 
(2021) 

CRAL CMA 1979 to present 0.5°×0.5° Noah - 
SCF, SWE, SD, 
T2, Snowfall 

Noah_SCF Liu et al., (2023) 

JRA55 JMA 1958 to present 0.563°×0.563° SiB 
Station, SSM/I, 
SSMIS 

SWE, SD, T2, 
Snowfall 

SCF= min (1, (SD)/2) a 
Kobayashi et al., 
(2015) 

CFSR 
NOAA 
NCEP 

1979 to present 0.5°×0.5° Noah SNODEP, IMS 
SCF, SWE, SD, 
T2, Snowfall 

Noah_SCF 
Saha et al., (2010); 
Saha et al., (2014) 

GLDAS 
NASA and 
NOAA 

2000 to present 0.25°×0.25° Noah - 
SWE, SD, T2, 
Snowfall 

NoahMM_SCF Rodell et al., (2004) 

a The unit for SWE is kg m-2, and for SD is cm. b ERA5, and JRA55, and GLDAS do not provide 230 

output for the SCF variable directly. In this study, the SCF values for ERA5 and JRA55 were 

derived using their respective parameterization methods, as shown in the Table 1. The SCF 

values for GLDAS were derived using MERRA2 parameterization methods. as shown in the 

Table 1. T2 is 2-m air temperature. 

2.1.3 Meteorological dataset 235 

To investigate the effects of snowfall and temperature biases on SCF bias, we used precipitation 

and 2-m air temperature data from the high-resolution near-surface Meteorological Forcing 

Dataset for the Third Pole region (TPMFD; Yang et al., 2023) as the reference data. 

Precipitation and 2-m air temperature in TPMFD were derived by combining a short-term high-

resolution Weather Research and Forecasting (WRF) simulation (Zhou et al., 2021), long-term 240 

ERA5 data, and in situ observations, all at a resolution of 1/30° for the period spanning 1979 

to 2020. Validation conducted by Jiang et al. (2023) demonstrated that the precipitation data 

from TPMFD are unbiased overall and considerably better than other widely used datasets, 

including the latest generation of reanalysis (ERA5L), a state-of-the-art satellite-based dataset 

(the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement, abbreviated as 245 
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IMERG), and multi-source merged datasets (the Multi-Source Weighted-Ensemble 

Precipitation version 2, abbreviated as MSWEP v2, and the long-term Asian precipitation 

dataset, abbreviated as AERA5-Asia). To obtain snowfall data for our this study, we applied a 

dynamic threshold parameterization scheme, which considers surface air conditions such as wet 

bulb temperature, altitudesurface elevation, and relative humidity, to convert TPMFD total 250 

precipitation to snowfallto convert precipitation data in TPMFD to snowfall. This approach has 

been proven effective in capturing snowfall variations on the TP through comparisons with 

station observations (Ding et al., 2014) and has been used in many studies (Deng et al., 2017; 

Luo et al., 2020; Yang et al., 2021; Zhu et al., 2021). For detailed calculation methods and 

further information, readers are referred to the work of Ding et al. (2014). We note that TPMFD 255 

lacks the relative humidity variable necessary for snowfall conversion, while all variables in 

TPMFD are assimilated from ERA5 data. Therefore, we utilized ERA5 surface relative 

humidity as a substitute. 

2.2 Study region 

The boundary of the TP used in this study is identified as an isoline of 2,500 m according to the 260 

Global Multi-resolution Terrain Elevation Data 2010 (Danielson and Gesch, 2011), spanning 

from 26°N to 41°N and from 67°E to 105°E (Fig. 1b). The prevailing westerlies and monsoons 

are the primary moisture sources in this region, exerting significant influence on the spatial and 

temporal distribution of snowfall and glacier mass balance (Liu et al., 2021; Yao et al., 2012). 

Specifically, the westerlies dominate winter precipitation, while the Indian and East Asian 265 

monsoons dominate summer precipitation in the southeast (Yao et al., 2012), resulting in 

diverse snow regimes. We identified nine major river basins within the TP using Hydrological 

Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS; 

Lehner et al., 2008), namely the Amu, Indus, Tarim, Inner Tibetan Plateau (abbreviated as ITP), 

Brahmaputra, Salween, Mekong, Yangtze, and Yellow basins. Due to the differing impacts of 270 

winter and summer atmospheric forcing, the performance of SCF simulations from reanalysis 

datasets varies across these basins. 
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2.3 Methods 

2.3.1 Evaluation of SCF accuracy for reanalysis datasets 

In this study, we used time series spanning from WYs 2001–2017, covering periods for which 275 

all data were available. Before our evaluation, all data were regridded to a 0.5°×0.5° grid via 

via the bilinear interpolation for MERRA2, JRA55, and CRAL, and the grid averaging approach 

for HMASR, ERA5, ERA5L, GLDAS, SPIReS, and TPMFD.method to 0.5°×0.5° grids, 

ensuring the resolution uniformity between different datasets. After unifying the resolution, all 

datasets included 1200 pixel points in the TP. 280 

For each 0.5°×0.5° grid cell within the TP, we calculated the climatological SCF over the 

full period and seasonally for SPIReS and eight reanalysis datasets (e.g., Fig. 1a and Fig. S3). 

Absolute bias and correlation (Pearson’s correlation coefficient) were calculated from these 

values at both the basin and the TP scales. Spatial distribution and basin-averaged values of the 

climatological SCF, as well as bias maps of the reanalysis datasets compared to SPIReS, are 285 

presented. Additionally, Taylor diagrams are used to provide additional information regarding 

the RMSE and standard deviation ratio (STDR). The climatological SCF values for each grid 

cell within basin and region were used as input to calculate the Taylor Diagram’s component 

metrics (correlation, RMSE, and STDR). The component metrics were summarized by the 

Taylor Skill Score (SS) as follows: 290 

We employed absolute bias and Pearson’s correlation coefficient (R) as the evaluation 

metrics for assessing SCF accuracy. To visually capture the spatial variability of SCF 

climatology across multiple dimensions in the reanalysis datasets, Taylor diagrams (Taylor, 

2001) were further employed to represent the combined information of R, RMSE, and Standard 

Deviation Ratio (STDR). These three metrics in the Taylor diagrams of Fig. 2b were computed 295 

for 1200 pixel points within the TP between reanalysis datasets and SPIReS after averaging the 

SCF climatology from WY 2001 to WY 2017. R and RMSE describe the degree of phase and 

amplitude agreement of the reanalysis SCF climatological spatial fields with SPIReS. To 

facilitate comparison across reanalysis datasets in one Taylor diagram, we normalized the 
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Standard Deviation (STD) to obtain STDR, representing the consistency in dispersion of spatial 300 

field values between reanalysis datasets and SPIReS (Cui et al., 2021). Better performance is 

indicated by relatively higher R, lower RMSE, and closer STD (in other words, STDR closer 

to 1). Additionally, Taylor Skill Scores (SS, ranging from 0 to 1; Taylor, 2001) were calculated 

to provide comprehensive statistics for the composite index. The SS is defined as follows: 

SS=
4(1+R)4

(STDR+ 1 STDR⁄ )2(1+R0)4                                                                                                 (1) 305 

where R0 is the maximum correlation attainable. The R and RMSE required to calculate SS 

in Fig. 4 are consistent with the method described above, but for different seasonal averages for 

SCF climatology. 

The reliability of annual trend analysis depends on the significance testing, and the sign (+ 

or –) may impact the robustness of the annual trend analysis results. Therefore, we used the 310 

Mann-Kendall (MK; Kendall, 1975; Mann, 1945) test was used to assess to ascertain the 

significance of annual trends, . Since the sign (+ or –) may impact the robustness of the trend 

analysis results, we employed and the Consistency Index (CI; Zhang et al., 2021) to compare 

the agreement in SCF annual trend signs between the reanalysis datasets and SPIReS. The CI 

is defined as follows: to validate the SCF annual trends. The CI is defined as follows: 315 

CI=
Ninc+Ndec+Nno

Ntot
                                                                                                                     (2) 

where Ninc is the number of grid points with a significant increasing trend in both the 

reanalysis dataset and SPIReS (P < 0.05), Ndec is the number of grid points with a significant 

decreasing trend in both datasets, Nno is the number of grid points with a non-significant trend 

in both datasets, and Ntot is the total number of grid points. The higher the CI value, the better 320 

the performance of the trend simulation. 

2.3.2 Analysis of SCF bias sources and generation of optimal datasets 

2.3.2 Analysis of SCF bias sources for meteorological forcings 

Variations in snowfall and temperature are the dominant influences on snow evolution and can 

explain half to two-thirds of the interannual variability in snow cover (Xu et al., 2017). Hence, 325 

biases in snowfall and temperature within reanalysis datasets are likely the main sources of bias 
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in SCF. Here, the analysis of bias sources was primarily based on correlation analysis between 

the bias of SCF and those of snowfall and temperature. Similar to the SCF case, tThe absolute 

biases of snowfall and temperature were computed by comparing the reanalysis datasets with 

TPMFD. Additionally, we calculated the correlation R between the annual time series of 330 

snowfall and temperature annual average biases in snowfall and temperature at each TP grid 

cell pixel point over the TP and SCF SCF biases  to obtain the spatial distribution of 

correlations as shown in Fig. 36. 

2.3.3 Analysis of SCF bias sources for parameterization method 

Evaluations have shown that in the TP, with relatively thin and short‐lived snow (Huang et al., 335 

2023), In the snow model, optimizing the SCF parameterization method can significantly 

reduce the annual SCF biases in snow models (Jiang et al., 2020). Orsolini et al. (2019) noted 

that SCF parameterization differs significantly among reanalyses, affecting SCF bias. For the 

eight reanalysis datasets considered here, five parameterizations  methods were used to 

convert SWE or SD into SCF; i.e., MM_SCF, ME_SCF, MJ_SCF, SSiB3_SCF, and Noah_SCF 340 

(see Section 2.1.2 and Table 1). These parameterization methods have been evaluated in diverse 

regions (Orsolini et al., 2019), and the results indicate that different parameterizations of snow 

processes will introduce different uncertainties into snow simulations (Jiang et al., 2020). 

Moreover, specific challenges arise on the TP because of its complex terrain and unstable snow 

conditions (Huang et al., 2023). In order to evaluate the impact of the parameterization method 345 

on SCF simulations, we incorporated three publicly available and easily offline-usable 

parameterization methods (MM_SCF, ME_SCF, and MJ_SCF) separately into each reanalysis 

dataset. For HMASR, CRAL, and CFSR, which do not include their parameterization among 

these three methods, we derived three additional SCF datasets. MERRA2, ERA5, ERA5L, 

JRA55, and GLDAS to derive another three (two SCF datasets) SCF products for HMASR, 350 

CRAL, and CFSR (MERRA2, ERA5, ERA5L, JRA55, and GLDAS). 
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2.3.4 Generation of combined optimal datasets 

Mortimer et al. (2020) demonstrated that product accuracy can be enhanced by averaging 

multiple reanalysis datasets, as this allows unrelated errors and deficiencies between them to 355 

offset each other. To investigate whether averaging of multiple datasets can improve SCF 

accuracy over the complex terrain of the TP, we considered all possible combinations of the 

eight reanalysis datasets, totaling 247. The output of each combined dataset was computed as 

the equally weighted average of all reanalysis datasets in the combination (Mudryk et al., 2015). 

Subsequently, we characterized the SCF accuracy of combined datasets in spatial distribution 360 

and annual trends by computing the SS and CI values. 

3. Results 

3.1 Evaluation of spatial and temporal accuracy in SCFSpatial variability of SCF 

climatology 

3.1.1 Spatial variability of SCF climatology Evaluation of spatial variabilityand 365 

seasonality 

The reanalysis datasets exhibit a range of SCF patterns over the TP (Fig. 1a). The basin-

averaged values were obtained by averaging pixel points within each basin of the TP after SCF 

climatological average from WY 2001 to WY 2017 (Fig. 1b). The TP TP-averaged of SCF 

climatology from for HMASR, GLDAS, and CRAL are is 0.14, 0.12, and 0.12, respectively, 370 

which align closely with the SPIReS value of 0.13 (Fig. 1b). In more detail, HMASR (GLDAS 

and CRAL) displays a slightly underestimation underestimates (overestimationoverestimate) in 

westerlies-dominated basins such as the Amu and Indus, and overestimation overestimates 

(underestimationunderestimate) in monsoon-dominated basins such as the Yellow, Yangtze, 

Mekong, Salween, and Brahmaputra (Fig. 2a). These regional biases average out when 375 

considering the entire TP, which is reflected in the strong permanence of these datasets over the 

TP.These biases probably average out when looking at the TP as a whole, resulting in more 
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accurate reanalysis SCF simulations. Conversely, On the other hand, ERA5, ERA5L, and 

JRA55 have show large positive SCF biases across all basins, whereas MERRA2 has displays 

a large negative bias in SCF in all basins.. Over the TP as a whole, ERA5 (MERRA2) has the 380 

largest positive (negative) biasIn comparison to SPIReS, ERA5 stands out as the dataset 

showing the highest positive bias, while MERRA2 demonstrates the largest negative bias, with 

extreme TP average values of 0.41 and 0.05, respectively (Fig. 1b). 

 
Figure 1: (a) Spatial distribution of Snow Cover Fraction (SCF) climatological average 385 
for Water Years (WYs) 2001–2017 from SPIReS and eight reanalysis datasets over the 
Tibetan Plateau region. (b) Basin-averaged of SCF climatology from SPIReS (black 
horizontal line) and the eight reanalysis datasets overlain on a map of the TP. ITP = Inner 
Tibetan Plateau. 
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All datasets have similar spatial patterns of SCF, with higher values in the western TP and 390 

lower values in the interior (Fig. 1a). However, compared to SPIReS, the magnitude and sign 

of their biases vary spatially (Fig. 2a). This variation is demonstrated by their differing 

correlation, STDR, and RMSE values (Fig. 2b; see Fig. S2 for a clearer version) and hence their 

SS values(Fig. 2c) between the reanalysis datasets and SPIReS.Figures 1a and 2a further show 

that, although all reanalysis datasets have spatial SCF patterns that are similar to those from 395 

SPIReS, the varying magnitude of SCF value across these datasets results in different 

correlations (characterized by R values), bias (characterized by RMSE values) and similarities 

in dispersion patterns (characterized by STDR values) when compared with SPIReS, which 

ultimately influences their synthesis performance (characterized by SS values). In the Taylor 

diagram (Fig. 2b; see Fig. S2 for a clearer version), HMASRCFSR has the highest SS R values 400 

of 0.83, reflecting its strong correlation in across westerlies-dominated basins and variability 

close to that of SPIReS in monsoon-dominated basins (STDR close to 1, e.g., 0.98 for the Indus 

basin)all basins, with STDR values for monsoon-dominated basins close to 1 (e.g., 1.01 for the 

Salween basin). The SS values for GLDAS, CRAL, and HMASR are all above 0.7, benefiting 

from their high correlations similar to CFSR. Consequently, these four datasets HMASR have 405 

achieves the highest SS value of 0.68, indicating its superior SCF spatial performance across 

the TP. In contrast, although Following HMASR, GLDAS comes next, with its R values ranking 

second in the TP. Meanwhile, GLDAS captures high SCF climatological values in the Tarim 

and Indus basins and low values in the ITP, Yellow, and central Brahmaputra basins, similar to 

SPIReS (Fig. 1a), giving it better STDR values in the TP compared to HMASR (Fig. 2b). CFSR 410 

consistently exhibits high R values across all basins, despite its positive bias in the TP average 

of SCF climatology. Consequently, CFSR has an SS value of 0.57, similar to GLDAS. In 

contrast to CFSR, although CRAL has a TP average close to SPIReS, its spatial distribution is 

overly uniform, with a relatively low R value and high RMSE, leading to a moderate SS value. 

Other reanalysis datasets that overestimate SCF climatology, such as ERA5, ERA5L, and 415 

JRA55, can adequately are able to capture the STDR well in monsoon-dominated some basins, 

but their large positive biases lead to result in high RMSE, resulting in moderate and low SS 
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values across in the TP, consistent with Bian et al. (2019). MERRA2 has the worst spatial 

performance, with the lowest SS value in all basins and across the TPshows the worst STDR 

and SS value, not only across the TP but also within each basin. This contradicts . This seems 420 

opposite to the conclusions of Orsolini et al. (2019),, who found MERRA2 to perform well in 

capturing the SCF and SWE SD characteristics on the TP. The reason for this discrepancy arises 

because is that their results depended mainly on the high correlation between MERRA2 and the 

reference dataset, ignoring while overlooking the severe underestimations in SCF values. These 

underestimations result in a very small self-standard deviations STD in the STDR calculation, 425 

leading to the lowest worst SS value in this study of 0.16.. 

 
Figure 2: (a) Spatial distribution of the SCF climatological bias from the reanalysis 
datasets based on SPIReS over the TP. (b) Taylor diagrams showing the correlation 
coefficients (R), Root Mean Square Error (RMSE), and Standard Deviation Ratio (STDR) 430 
of SCF between reanalysis datasets and SPIReS for each basin, overlain on a map of the 
TP. (c) Taylor Skill Scores (SS) for each basin overlain on a map of the TP. The black line 
is the average of the SS values for all reanalysis datasets in basin. 
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 435 
Figure 1: (a) Spatial distribution of Snow Cover Fraction (SCF) climatological average 
for Water Years (WYs) 2001–2017 from SPIReS and eight reanalysis datasets over the 
Tibetan Plateau region. (b) Basin-averaged of SCF climatology from SPIReS (black 
horizontal line) and the eight reanalysis datasets overlain on a map of the TP. ITP = Inner 
Tibetan Plateau. 440 

For each reanalysis dataset, the SCF simulation exhibits varying spatial performance over 

different TP basins, influenced by their unique topographic and climatic characteristics. Basins 

affected primarily by the winter westerlies (e.g., the Amu and Indus basins) have better spatial 

performance, display better consistency betweenwith the SS values for all reanalysis datasets 

within these basins exceeding 0.66 (Fig. 2c) reanalysis datasets and SPIReS.  The Indus basin 445 

shows the best SCF spatial performance with the highest SS value (Fig. 2c). In basins influenced 

by the summer monsoon (e.g., the Yellow, Yangtze, Mekong, Salween, and Brahmaputra basins), 
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SCF spatial consistency with SPIReS performance varies. The basin-averaged of SCF 

climatology is highly biased in the Yellow and Yangtze basins for the reanalysis datasets (Fig. 

1b). Specifically, the basin-averaged SCF climatological basin-averaged values of ERA5, 450 

ERA5L, and JRA55 (MERRA2) are more than 2× larger (lower) than SPIReS. These biases 

result in varied RMSE and STDR among these reanalysis datasets (Fig. 2b) and lower SS values 

(Fig. 2c). However, this phenomenon is less pronounced in the Salween and Brahmaputra 

basins, where SS values are relatively higher. The Tarim and ITP basins are considered inland 

basins. In particular, the ITP basin shows the poorest SCF spatial performance among basins, 455 

with the reanalysis average SS values of the reanalysis datasets <only 0.1533, except for 

HMASR. 

 

Figure 2: (a) Spatial distribution of the SCF climatological bias from the reanalysis datasets 

based on SPIReS over the TP. (b) Taylor diagrams showing the correlation coefficients (R), 460 

Root Mean Square Error (RMSE), and Standard Deviation Ratio (STDR) of SCF between 

reanalysis datasets and SPIReS for each basin, overlain on a map of the TP. (c) Taylor Skill 

Scores (SS) for each basin overlain on a map of the TP. The black line is the average of the SS 

values for all reanalysis datasets in basin.3.1.2 Spatial variability of seasonal SCF  

Figure 3 shows the SCF bias, its probability density distribution, and the SS values for four 465 

seasons. In general, the different seasons have similar spatial patterns of SCF bias for each 
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reanalysis dataset (Fig. 3, first to fourth columns on left). However, there are seasonal variations 

in the bias magnitudes, with larger biases during the accumulation period (winter and spring) 

and smaller biases during the ablation period (summer and autumn). The largest bias in winter 

can be several times larger than the lowest bias in summer. This is because higher seasonal 470 

averages of SCF (Fig. S3) may induce larger seasonal bias. Additionally, correlation and STDR 

(Table S2), and hence SS (Fig. 3, fifth column on left), are better during the accumulation period, 

indicating that winter and spring have better spatial performance for SCF. MERRA2 and CRAL 

have the largest seasonal variability in SCF performance (Fig. 3, sixth column on left). 

 475 
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Figure 3: The first four columns show the spatial distribution of seasonal SCF 
climatological bias from the reanalysis datasets based on SPIReS over the TP during (left 
to right): autumn (September–November: SON), winter (December–February: DJF), 
spring (March–May: MAM), and summer (June–August: JJA). The SS values of seasonal 480 
SCF climatology are shown in the fifth column. The probability density distribution of 
seasonal SCF climatological bias is shown in the sixth column. The dashed lines in the 
sixth column represent the TP-average SCF bias for each season. 

3.1.3 Annual variability and trends in SCF 

The 17 WY time series of reanalysis datasets has spatially consistent overestimates for ERA5L, 485 

ERA5, and JRA55 and an underestimate for MERRA2 (Fig. 4a). Notably, the fluctuations in 

CFSR around 2010 align with variations in its temperature and snowfall (Fig. S4), likely due to 

inherent discontinuities in the dataset that cause changes in boundary conditions and 

subsequently in model output variables (Fujiwara et al., 2017). Additionally, the annual 

variation of TP-averaged SCF has no significant annual trend in SPIReS (Fig. 4b). ERA5L, 490 

JRA55, and GLDAS have annual trends consistent with SPIReS, showing a slight decline and 

significant correlation, with correlation coefficients above 0.7 (Fig. 4c). Although HMASR and 
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ERA5 have a slight increasing trend, they remain significantly correlated with SPIReS. 

Conversely, the correlation of MERRA2, CFSR, and GLDAS with SPIReS did not pass the 

statistical significance test. 495 

 
Figure 4: (a) Time series of the annual SCF from SPIReS and eight reanalysis datasets 
over the TP. (b) The annual trends of SCF from SPIReS and eight reanalysis datasets over 
the TP. (c) The correlation of SCF annual trends in reanalysis datasets with SPIReS over 
the TP. Slashes in (b)and (c)indicate that the annual trends and correlation exceeds the 500 
95% confidence level. 

We further evaluated the spatial consistency of annual trends in reanalysis datasets with 

SPIReS (Fig. 5). SPIReS have generally decreased SCF over the westerlies-dominated and the 

eastern and southeastern monsoon-dominated basins, but increased SCF in the northeastern ITP, 

the central Brahmaputra, and the northern Yangtze basins. However, these changes are 505 

statistically significant in only about 17% of the TP (Fig. 5a). ERA5L, JRA55, and ERA5 have 

greater variability in SCF annual trends, with significant decreases in the Tarim basin. 

Nevertheless, they still have relatively high CI values of 0.62, 0.58, and 0.51, respectively (Fig. 

5b). This indicates that ERA5L, JRA55, and ERA5 can capture more than half of the SCF 

annual trend changes over the TP, having the most similar spatial pattern of annual trends 510 

compared to SPIReS. In contrast, CFSR has highly uneven SCF annual trends with intermixed 

increases and decreases across grid cells, resulting in poorer trend performance with a CI value 

of only 0.39. MERRA2 exhibits significant increasing trends in the Indus basin but fails to 
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capture the correct decreasing trend in the monsoon-dominated basins. Consequently, it has the 

lowest CI value of 0.38, with CI values below 0.4 in most basins (Fig. S6). GLDAS has a 515 

significant decrease in SCF over more than 60% of the TP, notably differing from SPIReS. 

Although the widespread significant trends allow GLDAS to capture the most correct 

significant increase and decrease trends, reaching 16.42% (as indicated by the red and yellow 

bars in Fig. 5b), it also introduces a major drawback by misjudging too many insignificant SCF 

fluctuations. Therefore, GLDAS has the lowest CI value, similar to MERRA2. Combination of 520 

SCF time series and spatial consistency of SCF annual trend, ERA5L, JRA55, and ERA5 have 

better temporal performance, while CFSR, MERRA2, and GLDAS perform worse. 

 

Figure 5: (a) Spatial distribution of the SCF annual trend from SPIReS and eight 
reanalysis datasets over the TP for the period WY 2001 to WY 2017. (b) The Consistency 525 
Index (CI) of SCF trends in reanalysis datasets with SPIReS over the TP. 
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3.1.2 Bias attribution in the spatial distribution of SCF 

3.2.1 Meteorological forcing effects on SCF bias 

The evolution of SCF can be determined from the balance between snow mass gain via snowfall 

and snow depletion via snowmelt, sublimation, and wind drifting (Liu et al., 2022),. Both s 530 

while snowfall and snowmelt are strongly dependent on temperature (Serquet et al., 2011; 

Vorkauf et al., 2021). Hence, the accuracy of these two pivotal meteorological forcing factors, 

snowfall and temperature forcings, directly impacts the accuracy of snow-related variables the 

integrity of the LSMs (Zhang et al., 2015). In addition, different SCF parameterizations 

influence the instability inherent in the snow models (Dutra et al., 2011; Jiang et al., 2020), and 535 

the data assimilation techniques also affect the final results of SCF simulations (Magnusson et 

al., 2017). Therefore, wWe further investigated the impact of meteorological factors on SCF 

bias by examining the performance with respect to snowfall and temperature in each reanalysis 

dataset, along with the inadequacies of parameterization methods. Moreover, by discussing 

snow data assimilation among reanalysis datasets, we tried to understand its impact on SCF 540 

accuracy. 

In the climatological spatial distribution, ERA5, ERA5L, JRA55, and CFSR overestimated 

snowfall in both both the westerlies-dominated and monsoon-dominated basins, particularly in 

the Indus and Brahmaputra basins (Fig. 36, first column on left). The snowfall biases are 

particularly pronounced in the western and southeastern regions of the TP, including on the 545 

Pamir Plateau and the southern slopes of Mount Namcha Barwa. The only exception is the 

inland basin of the ITP, where snowfall is underestimated. ConverselyIn contrast to snowfall, 

these reanalysis datasets consistently underestimated temperatures in these regions westerlies-

dominated and monsoon-dominated basins (Fig. 36, third column on left). Overestimated The 

excessive snowfall contributes to heightened snow accumulation, while underestimated the 550 

reduced temperatures can impede hinder the snowmelt ablation process, leading to an 

overestimation of snow cover by impeding the snow from attaining the freezing threshold (Liu 

et al., 2022). Simultaneously, under conditions of adequate atmospheric water vapor, low 
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temperatures further intensify snow accumulation through enhanced snowfall (You et al., 

2020b). The combination of overestimated snowfall and underestimated temperatures 555 

contributes to the combined impacts result in a positive SCF bias observed in within ERA5, 

ERA5L, JRA55, and CFSR, evidenced by the significant correlations between snowfall and 

temperature biases and SCF bias (Fig. 6, second and fourth columns on the left). Additionally, 

the positive SCF and snowfall biases, as well as negative temperature bias for these reanalysis 

datasets persist across four seasons, reflecting that the uncertainties in snowfall and temperature 560 

data affect the SCF bias year-round (Fig. 7). Compared to snowfall, Furthermore, there are 

characterized by significant correlations between snowfall and temperature biases versus and 

SCF bias (Fig. 6, second and fourth columns on the left). Moreover, compared with snowfall, 

ttTemperature bias, in particular, exhibits have higher stronger significant correlations with SCF 

bias and pass significance tests over broader areas (Fig. 6, second and fourth columns on the 565 

left). This indicates implies that physical processes influenced by temperature bias may have a 

more pronounced and widespread responsibility with respect to SCF bias. The temperature 

biases in ERA5, ERA5L, JRA55, and CFSR also appear to have a greater impact on the seasonal 

evolution of SCF biases, as evidenced by the higher correlation values (Fig. 7).  

For MERRA2, CRAL and GLDAS, the SCF climatology shows has large biases in the 570 

westerlies-dominated basins, as well as in the Tarim and Brahmaputra basins (Fig. 2a), where 

a significant correlation exists between snowfall and temperature biases and SCF bias (Fig. 6, 

second and fourth columns on the left). This suggests that in these regions, both snowfall and 

temperature play equally important roles in influencing the SCF biases in MERRA2, CRAL 

and GLDAS. When considering the TP as a whole, the SCF biases across four seasons for these 575 

three datasets align with their well-simulated snowfall (Fig. 7). Therefore, snowfall is likely the 

primary driver of the seasonal SCF bias. 
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Figure 36: The columns show (from left to right): spatial distribution of the snowfall 580 
climatological bias for the reanalysis datasets based on TPMFD over the TP; spatial 
distribution of the R value between snowfall bias and SCF bias; spatial distribution of the 
temperature climatological bias for the reanalysis datasets based on TPMFD over the TP; 
and spatial distribution of R values between temperature bias and SCF bias. Black dots 
in the second and fourth columns indicate that the correlation exceeds the 95% confidence 585 
level. HMASR and MERRA2 share the same meteorological forcing data. 
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Figure 7: Temporal variations of SCF (black), snowfall (light pink), and temperature 
(purple) bias averaged at five-day intervals from all reanalysis datasets. R in light pink 
(purple) represents the correlation coefficient between snowfall (temperature) bias and 590 
SCF bias. The stars indicate the correlation exceeds the 95% confidence level. HMASR 
and MERRA2 share the same meteorological forcing data. 

The snowfall and temperature annual trends in most datasets are significantly correlated 

with their own SCF annual trends (Table S3), indicating that the ability of datasets to capture 

meteorological factors annual trends influences the simulation of SCF annual trends. ERA5L, 595 

JRA55, and ERA5 have correct decreasing snowfall trends and increasing temperature trends 

in the southeastern monsoon-dominated basins (Fig. 8). Their CI values for meteorological 

factors trends all exceed 0.5, showing better spatial consistency with TPMFD (Table 2), 

resulting in better SCF trend simulations. In contrast, MERRA2 has an incorrect significant 

increase in snowfall over a broad region, except for the Tarim basin (Fig. 8), resulting in a 600 
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snowfall CI value of only 0.34 (Table 2) and poorer SCF trend simulations. The highly uneven 

spatial distribution of annual snowfall and temperature trends in CFSR, as well as the 

widespread significant trends in GLDAS (with temperature trends significantly increasing in 

over 90% of the TP), mirror their respective SCF annual trend patterns (Fig. 8). Consequently, 

CFSR and GLDAS have the lowest CI values for SCF trends (Fig. 5b). 605 

 
Figure 8: Spatial distribution of the snowfall annual trend from the reanalysis datasets 
over the TP for the period WY 2001 to WY 2017 (left), and the temperature annual trend 
(right). Black dots indicate that the trend exceeds the 95% confidence level. HMASR and 
MERRA2 share the same meteorological forcing data. 610 
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Table 2: CI value for snowfall and temperature from eight reanalysis datasets calculated 
by comparing with TPMFD annual trends from WY 2001 to WY 2017. 

 CI values for snowfall CI values for temperature 

MERRA2 0.34 0.58 

ERA5 0.54 0.73 

ERA5L 0.55 0.59 

JRA55 0.54 0.51 

CFSR 0.37 0.29 

CRAL 0.53 0.30 

GLDAS 0.21 0.35 

3.2.2 Parameterization approach effects on SCF bias 

Different SCF parameterizations influence the instability inherent in the snow models (Dutra et 

al., 2011; Jiang et al., 2020). We considered the impact of different parameterizations on the 615 

spatial distribution and annual trend simulation of SCF for each reanalysis dataset (Fig. 9). 

JRA55 shows similar patterns and magnitudes of snowfall and temperature biases to ERA5, 

ERA5L, and CFSR, but these two meteorological factors can explain SCF bias in only limited 

areas. In addition, Orsolini et al. (2019) found that JRA55 performs well in SD simulation due 

to assimilating SD data from ground observation stations in China. Thus, the conversion process 620 

from SD to SCF within LSM in JRA55 may affect the accuracy of SCF simulations. Indeed, 

JRA55 uses an aggressive parameterization approach with a 2-cm SD threshold to define the 

complete SCF, which differs markedly from other reanalysis datasets (see Section 2.1.2 and 

Table 1). When adopting a more appropriate parameterization method (see Fig. 9), the SCF 

simulation by JRA55 shows a noteworthy increase in the SS value from 0.37 to 0.5. This 625 

apparent improvement confirms the importance of the parameterization method to SCF 

accuracy in JRA55. 

An interesting observation is that while MERRA2 and HMASR share the same meteorological 

forcing data but differ in snow assimilation situation. HMASR directly assimilates SCF data 

obtained from MODIS and Landsat satellites (Liu et al., 2021), which are processed using a 630 

spectral unmixing algorithm that has been found more accurate than the original band ratio 
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methods (Stillinger et al., 2023). Therefore, the assimilation of high-precision satellite SCF data 

enhances the SCF simulation in HMASR, while the lowest SS value obtained by MERRA2 in 

SCF spatial simulations was likely related to its lack of SCF data assimilation. As for JRA55 

and CFSR, which although assimilated SD data and have been found good simulations in SD 635 

and SWE (Bian et al., 2019; Orsolini et al., 2019), the process of transforming SD to SCF 

through model parameterization introduced additional errors, thereby leading SD assimilation 

to only a limited effect on the accuracy of SCF simulations. Compared to JRA55, the SCF 

parameterization method employed in CFSR is more reasonable, resulting in spatial simulation 

performance batter than JRA55 by a considerable margin. This indirectly illustrates the impact 640 

of parameterization methods on the SCF simulation in JRA55. 

3.2 Seasonal evolution and annual trends in SCF 

3.2.1 Evaluation of seasonal evolution and bias attribution 

Figure 4 shows the SCF bias, its probability density distribution, and the SS values for the four 

seasons. In general, the different seasons show similar spatial patterns of SCF bias for each 645 

reanalysis dataset, which is consistent with the climatological SCF bias results (Fig. 2a). This 

suggests the persistent influence of the uncertainties associated with the snowfall and 

temperature data, on the SCF bias throughout the year. However, the bias values vary seasonally 

(Fig. 4), with higher biases observed during the accumulation period (winter and spring), but 

lower biases during the ablation period (summer and autumn). The largest bias in winter can be 650 

several times larger than the lowest bias in summer. However, this does not imply a better SCF 

simulation for summer than winter. As the SCF during winter is much higher than that during 

summer (Fig. S3), a smaller fractional difference in winter can result in a larger absolute bias. 

Conversely, higher R values and better STDR values (in other words, STDR closer to 1) in 

seasonal SCF between the reanalysis datasets and SPIReS are obtained during the accumulation 655 

period than the ablation period (Table S2), leading to a better SCF spatial performance for 

winter and spring, as shown by the larger SS values (Fig. 4). The seasonal variability associated 

with the SCF simulation performance is most evident in MERRA2 and CRAL. 
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Figure 4: The first four columns show the spatial distribution of seasonal SCF climatological 660 

bias from the reanalysis datasets based on SPIReS over the TP during (left to right): autumn 

(September–November: SON), winter (December–February: DJF), spring (March–May: 

MAM), and summer (June–August: JJA). The SS values of seasonal SCF climatology are 

shown in the fifth column. The probability density distribution of seasonal SCF climatological 

bias is shown in the sixth column. The dashed lines in the sixth column represent the TP-average 665 

SCF bias for each season. 

Figure 5 further shows the seasonal evolution of the SCF bias, as well as the snowfall and 

temperature biases. For the four reanalysis datasets, including ERA5, ERA5L, JRA55, and 

CFSR, snowfall (temperature) shows large positive (negative) biases during the accumulation 

period, which together cause the large positive SCF bias during winter and spring. In contrast, 670 

both the snowfall and temperature biases are small during the ablation period, resulting in a 

small SCF bias. Thus, snowfall and temperature collectively explain the apparent seasonal 

variations in the SCF bias, as evidenced by the statistically significant correlations. Compared 

with snowfall, the temperature bias seems to have a greater impact, which is characterized by 

the larger R values. For MERRA2, CRAL, and GLDAS, the SCF biases remain small and stable 675 
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across all four seasons, which corresponds to the well-simulated snowfall, despite the highly 

variable temperature bias. Therefore, snowfall may be more responsible for the seasonality in 

the SCF bias associated with these three reanalysis datasets. 

 

Figure 5: Temporal variations of SCF (black), snowfall (light pink), and temperature (purple) 680 

bias averaged at five-day intervals from all reanalysis datasets. R in light pink (purple) 

represents the correlation coefficient between snowfall (temperature) bias and SCF bias. The 

stars indicate the correlation exceeds the 95% confidence level. HMASR and MERRA2 share 

the same meteorological forcing data. 

3.2.2 Evaluation of annual trends and bias attribution 685 

Figure 6 presents the annual trends in SCF from WY 2001 to WY 2017 for the SPIReS and 

eight reanalysis datasets, as well as the CI values that characterize the agreement in SCF annual 

trends between the reanalysis datasets and SPIReS. The SPIReS generally show decreased SCF 
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over the westerlies-dominated and east and southeast monsoon-dominated basins, but increased 

SCF over the east ITP, central Brahmaputra, and north Yangtze basins. However, these trends 690 

are not statistically significant over most areas of the TP, indicating fluctuations in the 

variability of SCF over the past 17 years. This insignificant distribution over a wide area is also 

clearly demonstrated by snowfall trends in TPMFD (Fig. 7). 

In comparison to SPIReS, ERA5L, ERA5, and JRA55 show greater variability in SCF annual 

trends, particularly noticeable in the Tarim basin and southeastern TP, where a significant 695 

decrease in SCF is evident (Fig. 6a). Nevertheless, ERA5L, ERA5, and JRA55 still exhibit the 

most similar spatial patterns to SPIReS, with relatively high CI values for SCF trends in the TP, 

specifically 0.51, 0.48, and 0.49 respectively (Fig. 6b). This indicates their relatively well 

annual trends performance among the eight reanalysis datasets and can reproduce the SCF 

annual trend approximately half of the TP. This can be attributed to the superior spatial 700 

consistency of ERA5L, ERA5, and JRA55 in simulating snowfall and temperature annual 

trends when compared with TPMFD (Fig. 7), as evidenced by CI values exceeding 0.5 for both 

snowfall and temperature annual trends (Table S3). For JRA55, suboptimal parameterization 

methods primarily affect the numerical magnitude of SCF simulation, resulting in higher RMSE 

and lower SS values in SCF climatological spatial distribution (see Section 3.1). However, the 705 

parameterization process has minimal impact on the fluctuating variations of SCF over the time 

series, allowing JRA55 to demonstrate good annual trend performance (Fig. 6). 
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Figure 6: (a) Spatial distribution of the SCF annual trend from SPIReS and eight reanalysis 

datasets over the TP for the period WY 2001 to WY 2017. (b) The Consistency Index (CI) of 710 

SCF trends in reanalysis datasets with SPIReS over the TP. 

The SCF annual trend of CRAL is statistically significant over approximately half of the TP, 

different from SPIReS. Consequently, CRAL demonstrates moderate performance in simulating 

SCF annual trends, similar to its spatial performance. CFSR presents highly uneven SCF annual 

trends with intermixed increases and decreases across pixel points, mirroring its snowfall and 715 

temperature annual trend distributions, resulting in poorer SCF annual trend performance with 

a CI value of only 0.34. GLDAS shows a significant decrease in SCF over more than 75% of 

the TP, markedly differing from SPIReS. While the widespread significant trends allow GLDAS 

to capture the most correct trends, reaching 9.25% (as indicated by the red and yellow bars in 

Fig. 6b), it also introduces a major drawback by misjudging too many insignificant SCF 720 
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fluctuations. Therefore, GLDAS has the lowest CI value of 0.29, with most basins having a CI 

value below 0.3 (Fig. S4). This is associated with its widespread and significant decreases in 

snowfall and increases in temperature annual trends (Fig. 7). 

  
Figure 8: Spatial distribution of the snowfall annual trend from the reanalysis datasets over the 725 

TP for the period WY 2001 to WY 2017 (left), and the temperature annual trend (right). Black 

dots indicate that the trend exceeds the 95% confidence level. HMASR and MERRA2 share the 
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same meteorological forcing data. 

MERRA2 depicted a significantly increase trend in the southwestern TP, not align with SPIReS. 

This discrepancy is linked to MERRA2's erroneous portrayal of a significant increase in 730 

snowfall and a significant decrease in temperature in this region (Fig. 7). In contrast, HMASR, 

forced by the same meteorological input fields as MERRA2, partly corrected the falsely 

increase SCF trend in the southwestern TP and succeeded in capturing a significant declining 

trend in the southeastern TP, compared to MERRA2. This is evidenced by a higher proportion 

of correct significant trends (indicated by the red and yellow bars in Fig. 6b being greater for 735 

HMASR than for MERRA2). Moreover, the spatial pattern of HMASR SCF annual trends is 

more similar to SPIReS than MERRA2. However, when considering TP as a whole, the SCF 

trend simulations by HMASR showed limited improvement compared to MERRA2 as indicated 

by the similar CI values, yet still underperformed compared to ERA5L, ERA5, and JRA55. 

This suggests that data assimilation can only partially enhance SCF trend simulations, with 740 

meteorological forcings remaining the primary influencing factors. 

4 Discussion 

4.1 Influence of parameterization method on SCF 

Figure 9 shows the SS and CI values of SCF simulations from each reanalysis dataset using the 

different parameterization methods. TheThe parameterization process primarily affects the SCF 745 

values, while its impact on the phase of fluctuations in SCF time series is limited, as evidenced 

by the small variations in CI values among the reanalysis datasets (Fig. 9b).  value rather than 

the SCF phase variation over the time series, Therefore, so the our focus is on the on the spatial 

performance of the parameterization-improved SCF simulation, spatial performance induced 

by the different parameterizations reflecting among the reanalysis datasets, indicated by the 750 

spatial distribution of SCF bias (Fig. S7) and SS values (Fig. 9a) obtained.  

For most reanalysis datasets, tThe MM_SCF method improves generates the best SCF 

spatial simulation in ERA5, ERA5L, JRA55, HMASR, and CFSR, reducing biases and 

increasing SS values, in terms of spatial performance with higher SS among most reanalysis 

datasets. This advantage is especially distinct for MERRA2 and ERA5. Moreover MM_SCF 755 
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performs better than the built-in methods in ERA5, ERA5L, CRAL, and JRA55, demonstrating 

demonstrating its its broad applicability. Meanwhile, the MM_SCF method is applicable in 

most of the basins (Fig. S8). The performance of ME_SCF method is also slightly enhances the 

spatial performance of some dataset (Fig. 9a)good, with SS values slightly lower than those of 

MM_SCF. The Noah_SCF method, which accounts for the complex influence of underlying 760 

surface characteristics on SCF, has spatial performance comparable to MM_SCF and ME_SCF. 

This indicates that surface characteristics have a limited impact on spatial SCF accuracy. In 

contrast to the parameterization above, the aggressive MJ_SCF approach with a 2-cm SD 

threshold to define the complete SCF (Table 1), reduces the spatial performance of all datasets, 

particularly in JRA55 generally results in the poorest spatial performance across most 765 

reanalysis datasets, including JRA55, which uses MJ_SCF as its built-in method. Additionally, 

SCF obtained using the MJ_SCF method for all reanalysis datasets have large positive biases 

(Figure. SXXX7), further reflecting its inapplicability. Orsolini et al. (2019) found that JRA55 

performs well in SD simulation due to assimilating SD data from Chinese ground observation 

stations. When adopting a more appropriate method to transform SD into SCF, the bias of 770 

JRA55 significantly decreased, and the SS value increases from 0.57 to 0.81, comparable to the 

best-performing CFSR (Fig. 9a). This apparent improvement confirms the importance of 

parameterization to JRA55 SCF accuracy. Apart from JRA55, optimizing For the Noah_SCF 

methods, although they incorporate the complex impacts of the underlying surface 

characteristics on SCF parameterization, the spatial performance of SCF is only comparable 775 

with that of MM_SCF and ME_SCF. This implies that considering the underlying surface 

characteristics has a limited impact on the accuracy of the SCF spatial simulations. We note that 

parameterization an appropriate parameterization method can actually improve SCF simulation. 

However, such improvements does not significantly alter the spatial performance ranking of the 

eight reanalysis datasets; . for For example,instance, the SS values for MERRA2, ERA5, and 780 

ERA5L, and JRA55 using the optimal MM_SCF method are still lower than those for HMASR 

CFSR using the poorest MJ_SCF method. This indirectly highlights the primary role of 
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snowfall and temperature meteorological forcing inputs (snowfall and temperature) and snow 

assimilation with respect to SCF simulations. 

 The influence of parameterization methods on the temporal performance of the datasets, 785 

excluding CRAL, is limited, as indicated by small variations in the CI values among the 

reanalysis datasets. 

 
Figure 9: SS (lefta) and CI (rightb) values of SCF for all reanalysis datasets calculated 790 
offline using the MM_SCF, MJ_SCF, and ME_SCF parameterization methods. The green 
bars represent the built-in parameterization methods for HMASR, CRAL, and CFSR. 
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4.23.3 Combination of Reanalysis reanalysis dataset ensemble for SCF optimization 

To optimize SCF simulation over the TP, we considered all possible combinations of the eight 

reanalysis datasets, identifying the best and worst combinations regarding both the spatial 795 

distribution and annual trend (Fig. 10). Combining datasets can improve SCF accuracy, as 

evidenced by the SS and CI values of all combined datasets being higher than those of the single 

best-performing dataset (Fig. 10). However, Our results reveal that the SCF accuracy does not 

monotonically improve with the number of combined datasets. For the sSpatially aspect, the SS 

value improves when transitioning from CFSR HMASR alone to a combination with GLDAS 800 

and HMASRGLDAS, but declines when more datasets are combined (Fig. 10a). The SS value 

with four datasets combined is lower than that achieved with HMASR alone, indicating that 

merging additional datasets does not always improve simulation accuracy, and may instead 

have a negative impact. Consequently, we concluded that a combination of HMASR and 

GLDAS is optimal for spatial SCF studies over the TP. This appears reasonable because CFSR, 805 

GLDAS, and HMASR HMASR and GLDAS have excellent accuracy in simulating SCF the 

spatial variability of SCF, but adding the addition of poorly performing datasets (e.g., MERRA2 

and JRA55) introduces more bias, resulting in a suboptimal outcome. Consequently, we 

concluded that a combination of CFSR, GLDAS, and HMASR is optimal for spatial SCF 

studies over the TP. TemporallyFrom the trend aspect, the highest CI values are is achieved with 810 

by the combination of more the three best-performing datasets for SCF annual trends, namely 

ERA5L, JRA55, HMASR, ERA5, GLDAS, and CRALERA5L, JRA55, and ERA5, which is 

different from the SS results (Fig. 10b). Unlike SS, combining more datasets does not lead to a 

rapid decrease in CI values. The CI value from combining seven datasets still surpasses that 

obtained from ERA5L alone. This is because reanalysis datasets generally Given the minor 815 

annual trend changes in SCF over the 17 years, all reanalysis datasets struggle to capture 

significant trend variations, displaying have moderate SCF annual trend performance. C. Thus, 

combining more datasets can helps mitigate the shortcomings of individual datasets and 

improve the, enhancing overall annual trend accuracy. In contrast to the optimal combination, 

the worst combination shows a monotonically and significantly improving performance for 820 
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both spatial distribution and annual trends with increased number of combined datasets (Fig. 

10c and 10d). Notably, the worst combinations for SS and CI consistently include MERRA2 

and GLDAS, whereas HMASR and ERA5L consistently contribute to the optimal combination 

for SS and CI. This corresponds with the results in Section 3. 

  825 

 

Figure 10: (a) SS for optimal reanalysis dataset combinations across varying numbers of 
datasets. (b) As in (a) but for CI. (c) and (d) As in (a) and (b), but for the worst 
combinations. H: HMASR; M: MERRA2; E: ERA5; EL: ERA5L; J: JRA55; C: CFSR; 
CL: CRAL; G: GLDAS. 830 
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4 Discussion 

4.1 Effects of data assimilation, resolution, and LSMs 

Data assimilation is an effective approach for reducing snow model uncertainties and enhancing 

the capability to monitor seasonal snow changes (Andreadis and Lettenmaier, 2006; Sun et al., 

2004). HMASR directly assimilates SCF data obtained from MODIS and Landsat satellites (Liu 835 

et al., 2021), which are processed using a spectral unmixing algorithm that has been found more 

accurate than the original band ratio methods (Stillinger et al., 2023). Under the same 

meteorological input fields as MERRA2, the data assimilation in HMASR corrects the 

widespread SCF underestimation and erroneous trends in the southwestern TP exhibited by 

MERRA2, enhancing the spatiotemporal simulation performance of HMASR. HoweverIn 840 

contrast, lowest SS and CI values in SCF spatiotemporal simulations for MERRA2 aremay be 

likely partly related to its lack of SCF data assimilation. JRA55 and CFSR assimilate SD data 

and show good simulation performance in SD and SWE (Bian et al., 2019; Orsolini et al., 2019). 

However, the process of converting SD to SCF in JRA55 introduces additional errors, limiting 

the impact of SD assimilation on SCF spatial simulation accuracy. In contrast, CFSR employs 845 

a more reasonable SCF parameterization, resulting in significantly higher spatial simulation 

performance compared to JRA55. This indirectly highlights the influence of parameterization 

methods on SCF simulation in JRA55. 

The spatial resolution of reanalysis datasets and the choice of LSM may also affect the 

accuracy of SCF simulations. Lei et al. (2023) pointed out that reanalysis datasets characterized 850 

by finer spatial resolutions exhibit better consistency with in situ measurements of SD over the 

TP; e.g., ERA5L outperforms ERA5 and MERRA2. Sun et al. (2023) evaluated the ability of 

different LSMs to simulate SD in China based on station observation data and found that the 

community Noah LSM with multi-parameterization options (Noah-MP model) provided the 

best overall performance. In our study, the fine spatial resolution version of GLDAS generates 855 

better SCF simulations than the coarse spatial resolution version for both spatial distribution 

and annual trend (Fig. S1). Additionally, compared to the CLSM and VIC models, GLDAS 
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simulations using the Noah model show better SCF performance at a 1°×1° resolution. This 

indicates the non-negligible impact of model resolution and LSM choice on SCF simulation 

accuracy. However, SCF products with different spatial resolutions and LSMs are available 860 

only in GLDAS. Therefore, this study cannot conclusively state that the impact of spatial 

resolution and LSM on SCF accuracy is universal. 

 

4.23 Limitations 

This study focused primarily on the impact of snowfall and temperature factors within snow 865 

models, as well as snow data assimilation and the choice of SCF parameterization, on the 

performance of reanalysis datasets in simulating SCF over the TP. However, other model 

parameters related to precipitation and temperature, such as the precipitation gradient used to 

describe precipitation variations at different elevations, and the critical temperature used to 

distinguish rain from snow, are equally vital to snow simulations (Zhang et al., 2015). 870 

Furthermore, snow, being a suspended substance, is susceptible to sublimation. It is estimated 

that blowing snow sublimation accounts for ~30% of global surface sublimation (Déry and Yau, 

2002). The TP is perpetually influenced by the westerly jet stream, and processes such as 

blowing snow sublimation may be significant under windy and arid conditions. However, most 

LSMs used in reanalysis datasets do not consider blowing snow (Mortimer et al., 2020), and 875 

deficiencies in their model structures may also affect the accuracy of SCF simulations. 

In addition to these factors, the spatial resolution of reanalysis datasets and may also affect 

the accuracy of SCF simulations. Lei et al. (2023) pointed out that reanalysis datasets 

characterized by finer spatial resolutions exhibit better consistency with in situ measurements 

of SD over the TP; e.g., ERA5L outperforms ERA5 and MERRA2. In our study, the fine spatial 880 

resolution version of GLDAS generates better SCF simulations than the coarse spatial 

resolution version for both spatial distribution and annual trend (Fig. S1), which demonstrates 

the non-negligible impact of model resolution on the accuracy of SCF simulations. This also 

indirectly implies that the much finer resolution of 1/225° × 1/225° may contribute to the 

outstanding performance of HMASR. However, SCF products with different spatial resolutions 885 
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are available only in GLDAS. Therefore, this study cannot conclusively state that the impact of 

spatial resolution on SCF accuracy is universal. 

5. Conclusions 

Snow cover on the TP is sensitive to climate change. With global climate warming, the quantity 

and variability of SCF have become crucial indicators for understanding climate change and 890 

related hydrological processes. In tThis study evaluates, we assessed the ability and attributed 

the biases of eight widely used reanalysis datasets to simulate spatiotemporal variations in SCF 

over the TP based on SPIReS data covering the period WYs 2001–2017. The results indicate 

that CRAL, GLDAS, and HMASR agree best with SPIReS in TP-averaged SCF and SS values 

all exceeding 0.7. CFSR, despite overestimating SCF, has the highest SS value due to good 895 

correlation with SPIReS and a high STDR value. These four datasets perform well spatially. In 

contrast, ERA5, ERA5L, and JRA55 generally overestimate SCF, while MERRA2 consistently 

underestimates it, leading to poor spatial performance. Overall, the reanalysis datasets exhibit 

moderate accuracy in annual trend analysis. ERA5L, JRA55, and ERA5 have relatively good 

temporal performance, with significant correlation in trend time series and better CI values in 900 

trend spatial consistency. GLDAS and CFSR perform poorly in trend representation. While 

MERRA2 has the worst performance in both spatial distribution and annual trend. 

Snowfall and temperature significantly impact SCF bias. ERA5, ERA5L, and JRA55 

overestimate SCF due to overestimated snowfall and underestimated temperature. Temperature-

related physical processes have a more significant impact on SCF bias and its seasonal 905 

variations in these datasets. The poor trend performance in GLDAS and CFSR is due to 

inconsistent between temperature and snowfall trends compared to TPMFD trends. 

Meteorological factor errors impact the poor spatiotemporal performance of MERRA2. 

Additionally, the overestimation of SCF in JRA55 is also linked to aggressive parameterization. 

Except for JRA55, parameterization optimization improves SCF but does not significantly alter 910 

the spatial performance ranking of the eight reanalysis datasets. To improve SCF accuracy, 

combining datasets is an effective method. The key findings are: 



 46 

Among the eight reanalysis datasets, HMASR shows the least bias from SPIReS in 

simulating the spatial distribution of SCF climatology, achieving the highest R value of 0.87 

and the highest SS value of 0.68. Additionally, it attains moderate accuracy in annual trend 915 

analysis. Overall, HMASR is the most suitable reanalysis dataset for SCF spatial simulation in 

the TP, benefiting from the direct assimilation of spectral unmixing algorithm derived SCF data 

from MODIS and Landsat satellites. GLDAS and CFSR are commendable for their spatial 

simulation accuracy of SCF, ranking just behind HMASR. However, their performance in 

annual trends is suboptimal, largely due to their poor representation of snowfall and temperature 920 

annual trends. 

Conversely, ERA5 and ERA5L exhibit SCF overestimation across most of the TP, resulting 

in moderate SS values of 0.42 and 0.5 due to high RMSEs. Overestimated snowfall and 

underestimated temperature jointly contribute to the overestimation of SCF over most of the TP. 

Moreover, compared with snowfall, temperature-related physical processes have a more 925 

pronounced and widespread responsibility for SCF bias and the seasonal variation of SCF bias. 

Nevertheless, ERA5 and ERA5L show the best performance in annual trend simulations among 

the reanalysis datasets. The relatively good performance benefits from their accurate 

simulations of snowfall and temperature annual trends. JRA55, which overestimates SCF but 

performs well in annual trend, is more sensitive to the choice of SCF parameterization than to 930 

meteorological forcing factors. Moreover, its indirect assimilation of SD data does not 

effectively correct errors introduced by parameterization processing. 

MERRA2, with the poorest spatial simulation indicated by the lowest STDR, R, and SS 

values, along with moderate CI values in annual trend simulation, ranks as the least effective 

reanalysis dataset for SCF simulation in the TP. This underperformance is attributed to errors 935 

in meteorological factors and a lack of snow data assimilation. CRAL demonstrates moderate 

accuracy in both spatial distribution and annual trend, which is consistent with its moderate 

performance in snowfall and temperature. 

A threetwo-member combined of CFSR, GLDAS, and HMASR HMASR and GLDAS is 

optimal for the study of SCF spatial scales, while the combination of ERA5L, JRA55, HMASR, 940 
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ERA5, GLDAS, and CRAL whereas a three-member combined of ERA5L, ERA5, and JRA55 

is optimal for the study of annual trends. 

These findings are crucial for selecting the most suitable reanalysis SCF datasets and 

gaining deeper insights into SCF variations and their controlling mechanisms on the TP. 

Reducing uncertainties within reanalysis SCF datasets stands as a pivotal stride toward refining 945 

climate models and prediction systems. Considering the significant impact of precipitation and 

temperature bias, along with snow assimilation, acquiring more precise meteorological forcing 

data and snow observation data is essential to further enhance the accuracy of reanalysis SCF 

simulations. Simultaneously, selecting more appropriate parameterization methods specific to 

reanalysis data models will contribute to improving dataset reliability. Optimizing simulations 950 

of snow cover on the TP will provide critical support for future climate change research and 

response strategies. 
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